Diagnosing of Skin Lesions Using Deep Convolutional Neural Network and Support Vector Machines

Document Type : Image Processing-Pourreza


1 Department of Computer Engineering, Razi University, Iran, Kermanshah

2 Department of Computer Engineering, Razi University, Kermanshah, Iran


Abstract--The number of fatalities resulting from skin cancer has significantly increased over the past few years. Early diagnosis is highly important for the quick treatment of skin cancer. Computer-based dermoscopy analysis methods provide considerable information about the lesions that can be helpful to skin experts in the early detection of skin lesions. These computer-based diagnostic systems require image-processing algorithms to provide mathematical explanations of suspicious areas. Convolutional Neural Network (CNN) as one of the deep learning algorithms has high scalability in interaction with big data, and can automatically extract key image features for classification and segmentation of images. In this study, a hybrid model consisting of deep learning and machine learning method is proposed to classify different types of skin lesions. In this model, at first, an input image is pre-processed to remove the negative effect of Hairs on skin lesion detection and also to prepare it for applying to an efficient deep convolutional network employed as a feature extractor. Then Support Vector Machine (SVM) is utilized as a classifier to detect and classify different types of skin lesions.


Main Subjects

[1] https://www.skincancer.org/skin-cancer-information/ skin-cancer-facts/
[2] Calderón, C., Sanchez, K., Castillo, S., & Arguello, H. (2021) BILSK: A bilinear convolutional neural network approach for skin lesion classification.‏ Computer Methods and Programs in Biomedicine Update, 1, 100036.
[3] Gessert, N., Nielsen, M., Shaikh, M., Werner, R., & Schlaefer, A. (2020). Skin lesion classification using ensembles of multi-resolution EfficientNets with metadata. MethodsX, 7, 100864.
[4] Zhang, N., Cai, Y. X., Wang, Y. Y., Tian, Y. T., Wang, X. L., & Badami, B. (2020). Skin cancer diagnosis based on optimized convolutional neural network. Artificial intelligence in medicine, 102, 101756.
[5] Maron, R. C., Weichenthal, M., Utikal, J. S., Hekler, A., Berking, C., Hauschild, A., ... & Thiem, A. (2019). Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks. European Journal of Cancer, 119, 57-65.
[6] Khouloud, S., Ahlem, M., Fadel, T., & Amel, S. (2021). W-net and inception residual network for skin lesion segmentation and classification. Applied Intelligence, 1-19.
[7] Adegun, A. A., & Viriri, S. (2019). Deep learning-based system for automatic melanoma detection. IEEE Access, 8, 7160-7172.
[8] Hoshyar, A. N., Al-Jumaily, A., & Hoshyar, A. N. (2014). The beneficial techniques in preprocessing step of the skin cancer detection system comparing. Procedia Computer Science, 42, 25-31.
[9] Yilmaz, E., & Trocan, M. (2020, March). Benign and malignant skin lesion classification comparison for three deep-learning architectures. In Asian conference on intelligent information and database systems (pp. 514-524). Springer, Cham.‏
[10] Qin, Z., Liu, Z., Zhu, P., & Xue, Y. (2020). A GAN-based image synthesis method for skin lesion classification. Computer Methods and Programs in Biomedicine, 195, 105568.‏
[11] Annaby, M. H., Elwer, A. M., Rushdi, M. A., & Rasmy, M. E. (2021). Melanoma detection using spatial and spectral analysis on superpixel graphs. Journal of digital imaging, 34(1), 162-181.
[12] Gong, A., Yao, X., & Lin, W. (2020). Classification for dermoscopy images using convolutional neural networks based on the ensemble of individual advantage and group decision. IEEE Access, 8, 155337-155351.
[13] Al-Masni, M. A., Kim, D. H., & Kim, T. S. (2020). Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification. Computer methods and programs in biomedicine, 190, 105351.
[14] Hameed, N., Shabut, A. M., Ghosh, M. K., & Hossain, M. A. (2020). Multi-class multi-level classification algorithm for skin lesions classification using machine learning techniques. Expert Systems with Applications, 141, 112961.
[15] Kassem, M. A., Hosny, K. M., & Fouad, M. M. (2020). Skin lesions classification into eight classes for ISIC 2019 using deep convolutional neural network and transfer learning. IEEE Access, 8, 114822-114832.
[16] Albahar, M. A. (2019). Skin lesion classification using convolutional neural network with novel regularizer. IEEE Access, 7, 38306-38313.
[17] Dinga, S., Wu, Z., Zheng, Y., Liu, Z., Yang, X., Yang, X., Yuan, G., & Xie, J. (2021). Deep attention branch networks for skin lesion classification. Computer Methods and Programs in Biomedicine, 212, 106447.
[18] Alsaade, F. W., Aldhyani, T. H., & Al-Adhaileh, M. H. (2021). Developing a Recognition System for Diagnosing Melanoma Skin Lesions Using Artificial Intelligence Algorithms. Computational and Mathematical Methods in Medicine, 2021.
[19] Hsu, B. W., & Tseng, V.S. (2022). Hierarchy-Aware Contrastive Learning with Late Fusion for Skin Lesion Classification. Computer Methods and Programs in Biomedicine, (Jan. 2022), 106666.
[20] Wei, L., Pan, S. X., Nanehkaran, Y. A., & Rajinikanth, V. (2021). An Optimized Method for Skin Cancer Diagnosis Using Modified Thermal Exchange Optimization Algorithm. Computational and Mathematical Methods in Medicine, 2021.‏
[21] Fernando, K. R. M., & Tsokos, C. P. (2021). Dynamically weighted balanced loss: class imbalanced learning and confidence calibration of deep neural networks. IEEE Transactions on Neural Networks and Learning Systems.
[22] Pacheco, A. G., & Krohling, R. A. (2021). An attention-based mechanism to combine images and metadata in deep learning models applied to skin cancer classification. IEEE journal of biomedical and health informatics, 25(9), 3554-3563.
[23] Sun, Q., Huang, C., Chen, M., Xu, H., & Yang, Y. (2021). Skin lesion classification using additional patient information. BioMed research international, 2021.
[24] Putra, T. A., Rufaida, S. I., & Leu, J. S. (2020). Enhanced skin condition prediction through machine learning using dynamic training and testing augmentation. IEEE Access, 8, 40536-40546.
[25] Banerjee, S., Singh, S. K., Chakraborty, A., Basu, S., Das, A., & Bag, R. (2021). Diagnosis of Melanoma Lesion Using Neutrosophic and Deep Learning. Traitement du Signal, 38(5).
[26] Vaiyapuri, T., Balaji, P., Alaskar, H., & Sbai, Z. (2022). Computational Intelligence-Based Melanoma Detection and Classification Using Dermoscopic Images. Computational Intelligence and Neuroscience, 2022.
[27] Kaur, R., GholamHosseini, H., Sinha, R., & Lindén, M. (2022). Melanoma Classification Using a Novel Deep Convolutional Neural Network with Dermoscopic Images. Sensors, 22(3), 1134.
[28] Chabi Adjobo, E., Sanda Mahama, A. T., Gouton, P., & Tossa, J. (2022). Towards Accurate Skin Lesion Classification across All Skin Categories Using a PCNN Fusion-Based Data Augmentation Approach. Computers, 11(3), 44.
 [29] Adegun, A. A., & Viriri, S. (2020). FCN-based DenseNet framework for automated detection and classification of skin lesions in dermoscopy images. IEEE Access, 8, 150377-150396.
 [30] Oliveira, R. B., Pereira, A. S., & Tavares, J. M. R. (2017). Skin lesion computational diagnosis of dermoscopic images: Ensemble models based on input feature manipulation. Computer methods and programs in biomedicine, 149, 43-53.
[31] Mahbod, A., Tschandl, P., Langs, G., Ecker, R., & Ellinger, I. (2020). The effects of skin lesion segmentation on the performance of dermatoscopic image classification. Computer Methods and Programs in Biomedicine, 197, 105725.
[32] Haggenmüller, S., Maron, R. C., Hekler, A., Utikal, J. S., Barata, C., Barnhill, R. L., ... & Brinker, T. J. (2021). Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts. European Journal of Cancer, 156, 202-216.
[33] Höhn, J., Krieghoff-Henning, E., Jutzi, T. B., von Kalle, C., Utikal, J. S., Meier, F., ... & Brinker, T. J. (2021). Combining CNN-based histologic whole slide image analysis and patient data to improve skin cancer classification. European Journal of Cancer, 149, 94-101.
[34] Dhivyaa, C. R., Sangeetha, K., Balamurugan, M., Amaran, S., Vetriselvi, T., & Johnpaul, P. (2020). Skin lesion classification using decision trees and random forest algorithms. Journal of Ambient Intelligence and Humanized Computing, 1-13.
[35] Thanh, D. N., Prasath, V. B., Hieu, L. M., & Hien, N. N. (2020). Melanoma skin cancer detection method based on adaptive principal curvature, colour normalisation and feature extraction with the ABCD rule. Journal of Digital Imaging, 33(3), 574-585.
[36] Song, L., Lin, J., Wang, Z. J., & Wang, H. (2020). An end-to-end multi-task deep learning framework for skin lesion analysis. IEEE journal of biomedical and health informatics, 24(10), 2912-2921.
[37] Thurnhofer-Hemsi, K., & Domínguez, E. (2021). A convolutional neural network framework for accurate skin cancer detection. Neural Processing Letters, 53(5), 3073-3093.
[38] Jha, S., & Mehta, A. K. (2022). A hybrid approach using the fuzzy logic system and the modified genetic algorithm for prediction of skin cancer. Neural Processing Letters, 54(2), 751-784.
[39] Araújo, R. L., de Araujo, F. H., & Silva, R. R. (2022). Automatic segmentation of melanoma skin cancer using transfer learning and fine-tuning. Multimedia Systems, 28(4), 1239-1250.
[40] Shorfuzzaman, M. (2022). An explainable stacked ensemble of deep learning models for improved melanoma skin cancer detection. Multimedia Systems, 28(4), 1309-1323.
[41] Ahmad, M., Ahmed, I., Ouameur, M. A., & Jeon, G. (2022). Classification and Detection of Cancer in Histopathologic Scans of Lymph Node Sections Using Convolutional Neural Network. Neural Processing Letters, 1-16.
[42] Kiani, K., & Sharafat, A. R. (2011). E-shaver: An improved DullRazor® for digitally removing dark and light-colored hairs in dermoscopic images. Computers in biology and medicine, 41(3), 139-145.‏
[43] Chao, X., & Zhang, L. (2021). Few-shot imbalanced classification based on data augmentation. Multimedia Systems, 1-9.
[44] Tschandl P., Rosendahl C. & Kittler H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5, 180161 doi.10.1038/sdata.2018.161 (2018)
[45] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J. & Soyer, P. A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Sci Data 8, 34 (2021). https://doi.org/10.1038/s41597-021-00815-z