A Data Replication Algorithm for Improving Server Efficiency in Cloud Computing Using PSO and Fuzzy Systems

Document Type : Special Issue


1 Department of Computer Engineering, Birjand University of Technology, Birjand, Iran

2 Department of Computer and Technology, Birjand University of Medical Sciences, Birjand, Iran

3 Department of Computer Engineering, University of Torbat Heydarieh, Torbat Heydarieh, Iran


In different scientific disciplines, large-scale data are generated with enormous storage requirements. Therefore, effective data management is a critical issue in distributed systems such as the cloud. As tasks can access a nearby site to access the required file, replicating the desired file to an appropriate location improves access time and reliability. Replicating the popular file to an appropriate site is a good choice, as tasks can get the necessary file from a nearby site. In this research, a novel data replication algorithm is proposed that is consisted of four main phases: 1- determining 20% of commonly used files, 2- computing five conflicting objectives (i.e., average service time, load variance, energy consumption, average response time and cost) 3- finding the near-optimal solution (i.e., suitable locations for new replica) by the PSO technique to acquire a trade-off among the desired objectives. 4- replica replacement considering a fuzzy system with three inputs (i.e., Number of accesses, size of replica and the last access time). The experimental results denote that the proposed replication algorithm outperforms the Profit oriented Data Replication (PDR) and Bee colony-based approach for Data Replication (BCDR) strategies in terms of energy consumption, average response time, load variance, number of connections, Hit ratio, Storage usage, and cost.


Main Subjects

  1. Chauhan, S., Pilli, E., Joshi, R., and Singh, G., "Govil, M.C. Brokering in Interconnected Cloud Computing Environments: A Survey", J Parallel Distrib Comput, Vol .133, pp. 193–209, doi:10.1016/j.jpdc.2018.08.001, 2019.
  2. Qiu, X., Sun, P., and Dai, Y., "Optimal Task Replication Considering Reliability, Performance, and Energy Consumption for Parallel Computing in Cloud Systems", Reliab Eng Syst Saf, 215, 107834, doi:10.1016/J.RESS.2021.107834, 2021.
  3. Shojaiemehr, B., Rahmani, A., Qader, N., "Cloud Computing Service Negotiation: A Systematic Review", Comput Stand Interfaces, 55, pp. 196–206, doi:10.1016/j.csi.2017.08.006, 2018.
  4. Huang, K., and Li, D., "MRMS: A MOEA-Based Replication Management Scheme for Cloud Storage System", International Conference on Communications in China, 2016.
  5. Moura, D., and Hutchison, D., "Review and Analysis of Networking Challenges in Cloud Computing", Journal of Network and Computer Applications, 60, pp. 113–129, doi:10.1016/j.jnca.2015.11.015, 2016.
  6. Aznoli, F., and Navimipour, N., "Cloud Services Recommendation: Reviewing the Recent Advances and Suggesting the Future Research Directions", Journal of Network and Computer Applications, 2017.
  7. Slimani, S., Hamrouni, T., Charrada, F., "Service-Oriented Replication Strategies for Improving Quality-of-Service in Cloud Computing: A Survey", Cluster Comput, 24, pp. 361–392, doi:10.1007/S10586-020-03108-Z/METRICS, 2021.
  8. Bello, S., Oyedele, L., Akinade, O., Bilal, M., Davila Delgado, J., Akanbi, L., Ajayi, A., and Owolabi, H., "Cloud Computing in Construction Industry: Use Cases, Benefits and Challenges", Autom Constr, 122, 103441, doi:10.1016/J.AUTCON.2020.103441, 2021.
  9. Mansouri, N., and Javidi, M., "A New Prefetching-Aware Data Replication to Decrease Access Latency in Cloud Environment", Journal of Systems and Software, Vol. 144, pp. 197–215, doi:10.1016/J.JSS.2018.05.027, 2018.
  10. Mansouri, N., "QDR: A QoS-Aware Data Replication Algorithm for Data Grids Considering Security Factors", Cluster Comput, 19, pp. 1071–1087, doi:10.1007/S10586-016-0576-7/METRICS, 2016.
  11. Sun, S., Yao, W., Li, X., "DARS: A Dynamic Adaptive Replica Strategy under High Load Cloud-P2P", Future Generation Computer Systems, Vol. 78, pp. 31–40, doi:10.1016/J.FUTURE.2017.07.046, 2018.
  12. Madhubala, R. P., "Survey on Security Concerns in Cloud Computing", Proceedings of the 2015 International Conference on Green Computing and Internet of Things, ICGCIoT 2015 2016, pp. 1458–1462, doi:10.1109/ICGCIOT.2015.7380697.
  13. Tao, M., Ota, K., Dong, M., DSARP: Dependable Scheduling with Active Replica Placement for Workflow Applications in Cloud Computing. IEEE Transactions on Cloud Computing, Vol. 8, pp. 1069–1078, doi:10.1109/TCC.2016.2628374, 2020.
  14. Xie, F., Yan, J., Shen, J., "Towards Cost Reduction in Cloud-Based Workflow Management through Data Replication", Proceedings - 5th International Conference on Advanced Cloud and Big Data, CBD 2017, pp. 94–99, doi:10.1109/CBD.2017.24, 2017.
  15. Marini, F., Walczak, B., "Particle Swarm Optimization (PSO)", A Tutorial. Chemometrics and Intelligent Laboratory Systems, Vol. 149, pp. 153–165, doi:10.1016/J.CHEMOLAB.2015.08.020, 2015.
  16. Ojha, V., Abraham, A., Snášel, V., "Heuristic Design of Fuzzy Inference Systems: A Review of Three Decades of Research", Eng Appl Artif Intell, Vol. 85, pp. 845–864, doi:10.1016/J.ENGAPPAI.2019.08.010, 2019.
  17. Aubry, P., Marrez, J., Valibouze, A., "Computing Real Solutions of Fuzzy Polynomial Systems", Fuzzy Sets Syst, Vol. 399, pp. 55–76, doi:10.1016/J.FSS.2020.01.004 , 2020.
  18. Guillaume, S., "Designing Fuzzy Inference Systems from Data: An Interpretability-Oriented Review", IEEE Transactions on Fuzzy Systems, Vol. 9, pp. 426–443, doi:10.1109/91.928739, 2001.
  19. Shingne, H., Shriram, R., "Heuristic Deep Learning Scheduling in Cloud for Resource-Intensive Internet of Things Systems", Computers and Electrical Engineering, doi:10.1016/j.compeleceng.2023.108652, 2023.
  20. Zhou, G., Tian, W.H., Buyya, R., Wu, K., "Growable Genetic Algorithm with Heuristic-Based Local Search for Multi-Dimensional Resources Scheduling of Cloud Computing", Appl Soft Comput, doi:10.1016/j.asoc.2023.110027, 2023.
  21. Liu, L., Yang, Y., Wang, H., Tan, Z., Li, C., "A Group Based Genetic Algorithm Data Replica Placement Strategy for Scientific Workflow", Proceedings - 16th IEEE/ACIS International Conference on Computer and Information Science, ICIS 2017, pp. 459–464, doi:10.1109/ICIS.2017.7960036, 2017.
  22. Li, C., Wang, Y.P., Tang, H., Luo, Y., "Dynamic Multi-Objective Optimized Replica Placement and Migration Strategies for SaaS Applications in Edge Cloud", Future Generation Computer Systems, Vol. 100, pp. 921–937, doi:10.1016/J.FUTURE.2019.05.003, 2019.
  23. Nousias, I., Khawam, S., Milward, M., Muir, M., Arslan, T. A Multi-Objective GA Based Physical "Placement Algorithm for Heterogeneous Dynamically Reconfigurable Arrays", Proceedings - 2007 NASA/ESA Conference on Adaptive Hardware and Systems, AHS-2007, pp. 504–510, doi:10.1109/AHS.2007.8, 2007.
  24. Huang, X., Wu, F., "A Cost-Effective Data Replica Placement Strategy Based on Hybrid Genetic Algorithm for Cloud Services", Lecture Notes in Business Information Processing, Vol. 327, pp. 43–56, doi:10.1007/978-3-319-99040-8_4/FIGURES/6,
  25. Navimipour, N. J., Milani, B. A., "Replica Selection in the Cloud Environments Using an Ant Colony Algorithm", 2016 3rd International Conference on Digital Information Processing, Data Mining, and Wireless Communications, DIPDMWC 2016, pp. 105–110, doi:10.1109/DIPDMWC.2016.7529372, 2016.
  26. khalili azimi, S., "A Bee Colony (Beehive) Based Approach for Data Replication in Cloud Environments", Lecture Notes in Electrical Engineering, Vol. 480, pp. 1039–1052, doi:10.1007/978-981-10-8672-4_80/COVER, 2019.
  27. Park, S. M., Kim, J. H., Ko, Y. B., Yoon, W. S., "Dynamic Data Grid Replication Strategy Based on Internet Hierarchy", Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3033, pp. 838–846, doi:10.1007/978-3-540-24680-0_133/COVER, 2004.
  28. Mokadem, R., Hameurlain, A., "A Data Replication Strategy with Tenant Performance and Provider Economic Profit Guarantees in Cloud Data Centers", Journal of Systems and Software, Vol. 159, 110447, doi:10.1016/J.JSS.2019.110447, 2020.
  29. Salem, R., Salam, M.A., Abdelkader, H., Awad Mohamed, A., "An Artificial Bee Colony Algorithm for Data Replication Optimization in Cloud Environments", IEEE Access, Vol. 8, pp. 51841–51852, doi:10.1109/ACCESS.2019.2957436, 2020.
  30. Gill, N. K., Singh, S., "A Dynamic, Cost-Aware, Optimized Data Replication Strategy for Heterogeneous Cloud Data Centers", Future Generation Computer Systems, Vol. 65, pp. 10–32, doi:10.1016/J.FUTURE.2016.05.016, 2016.
  31. Tos, U., Mokadem, R., Hameurlain, A., Ayav, T., Bora, S., "A Performance and Profit Oriented Data Replication Strategy for Cloud Systems", In Proceedings of the 2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), pp. 780–787, 2016.
  32. Mansouri, N., Javidi, M., Zade, B.M.H., "Hierarchical data replication strategy to improve performance in cloud computing", Front. Comput. Sci, Vol. 15, 152501. https://doi.org/10.1007/s11704-019-9099-8, 2021.
  33. Edwin, E. B., Umamaheswari, P., Thanka, M. R., "An efficient and improved multi-objective optimized replication management with dynamic and cost aware strategies in cloud computing data center", Cluster Comput 22 (Suppl 5), pp. 11119–11128. https://doi.org/10.1007/s10586-017-1313-6, 2019.
  34. Zade, B., Mansouri, N., Javidi, M. M., "A new hyper-heuristic based on ant lion optimizer and Tabu search algorithm for replica management in cloud environment", Artif Intell Rev., Vol. 56, pp. 9837–9947. https://doi.org/10.1007/s10462-022-10309-y, 2023.
  35. Sun, D. W., Chang, G. R., Gao, S., Jin, L. Z., Wang, X. W., "Modeling a Dynamic Data Replication Strategy to Increase System Availability in Cloud Computing Environments", J Comput Sci Technol, Vol. 27, pp. 256–272, doi:10.1007/S11390-012-1221-4/METRICS, 2012.
  36. Long, S. Q., Zhao, Y. L., Chen, W., "MORM: A Multi-Objective Optimized Replication Management Strategy for Cloud Storage Cluster", Journal of Systems Architecture, Vol. 60, pp. 234–244, doi:10.1016/J.SYSARC.2013.11.012, 2014.
  37. Singh, H., Gupta, M. M., Meitzler, T., Hou, Z. G., Garg, K.K., Solo, A. M. G., Zadeh, L. A., "Real-Life Applications of Fuzzy Logic", Advances in Fuzzy Systems 2013, doi:10.1155/2013/581879, 2013.
  38. Hu, J., Chen, P., Chen, X., "Intuitionistic Random Multi-Criteria Decision-Making Approach Based on Prospect Theory with Multiple Reference Intervals", Scientia Iranica, Vol. 21, pp. 2347–2359, 2014.
  39. Bai, Y., Wang, D., "Fundamentals of Fuzzy Logic Control — Fuzzy Sets, Fuzzy Rules and Defuzzifications", Advances in Industrial Control, pp. 17–36, doi:10.1007/978-1-84628-469-4_2/COVER, 2006.
  40. Pedrycz, W., "Why Triangular Membership Functions?" Fuzzy Sets Syst, Vol. 64, pp. 21–30, doi:10.1016/0165-0114(94)90003-5, 1994.
  41. Herva, M., Franco-Uría, A., Carrasco, E. F., Roca, E., "Application of Fuzzy Logic for the Integration of Environmental Criteria in Ecodesign", Expert Syst Appl, Vol. 39, pp. 4427–4431, doi:10.1016/J.ESWA.2011.09.148, 2012.
  42. Gulati, S., Pal, A., "Tuning Fuzzy Logic Controller with SGWO for River Water Quality Modelling", Mater Today Proc, Vol. 54, pp. 733–737, doi:10.1016/J.MATPR.2021.10.467, 2022.
  43. López-Pires, F., Barán, B., "Many-Objective Virtual Machine Placement", J Grid Comput, Vol. 15, pp. 161–176, doi:10.1007/S10723-017-9399-X/METRICS, 2017.