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Advancing Over-the-Air Federated Learning through Deep Reinforcement 

Learning in UAV-Assisted Networks with Movable Antennas 
Research Article 

Mohsen Ahmadzadeh1 ,  Saeid Pakravan 2, Ghosheh Abed Hodtani 3   

10.22067/cke.2025.91290.1139

Abstract This paper investigates the deployment of over-

the-air federated learning (OTA-FL), leveraging the 

dynamic repositioning and line-of-sight communication 

capabilities of unmanned aerial vehicles (UAVs) and 

movable antennas to enhance network efficiency. A closed-

form expression is derived to quantify the optimality gap 

between the actual federated learning (FL) model and its 

theoretical ideal, accounting for the capabilities of 

movable antennas to show the diverse relationship 

between Mean Square Error (MSE) and the optimality 

gap. Then An MSE minimization problem is then 

formulated, involving the joint optimization of moveable 

antenna position vectors, and the beamforming vector at 

the UAV. This complex non-convex problem is 

reformulated as a Markov Decision Process (MDP) and 

solved using the Twin Delayed Deep Deterministic Policy 

Gradient (TD3) algorithm within the deep reinforcement 

learning (DRL) framework. Numerical results 

demonstrate that the proposed algorithm outperforms 

benchmarks such as Advantage Actor-Critic(A2C) and 

Soft Actor-Critic (SAC). 
 

Key Words Over-the-air federated learning, Deep 

reinforcement learning, Unmanned aerial vehicles, 

Movable Antenna. 

 

1. INTRODUCTION 
ederated Learning (FL) is a secure method for 

collaboratively building a unified model across various 

participants. Yet, its application in practice often 

encounters difficulties caused by restricted data exchange 

capabilities [1] [2]. To tackle the challenge of achieving 

minimal delay and broad connectivity in IoT-driven 

Federated Learning, an innovative solution known as over-

the-air FL (OTA-FL) has been developed [3] [4]. This 

technique maximizes the efficient use of bandwidth by 
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leveraging the inherent combining feature of wireless 

access networks through analog signaling. OTA-FL 

achieves model integration by utilizing the overlapping 

characteristics of wireless signals, where updates from 

edge devices are merged into a collective representation. 

This process employs over the air computation (AirComp) 

to perform direct aggregation, avoiding the step of 

separately processing each parameter. Consequently, it 

decreases delays and boosts resource efficiency by 

operating within common time and frequency allocations.  

  Unmanned aerial vehicles (UAVs) are increasingly 

playing a pivotal role in modern wireless communication 

systems, owing to their cost-effectiveness, high mobility, 

and versatile capabilities. These vehicles are capable of 

operating as aerial base stations, relays, or access points, 

which significantly extend coverage and ensure reliable 

line-of-sight (LoS) connectivity for data transmission 

across various environments [5].  

 The evolution of communication systems has led to the 

widespread adoption of Multiple-Input Multiple-Output 

(MIMO) technology, characterized by the use of multiple 

antennas [6, 7]. MIMO systems are primarily designed to 

improve channel capacity, boost data transmission rates, 

and optimize various performance parameters of 

communication networks. [8, 9]. Traditional fixed-

position antennas (FPAs) often face limitations in 

achieving optimal beamforming gains within dynamic 

environments. To address this limitation, we propose 

integrating movable antennas (MAs) into OTA-FL 

systems, allowing for real-time adaptation to varying 

wireless channel conditions [4, 10]. Leveraging MAs at the 

receiving server enhances OTA-FL performance by 

utilizing spatial degrees of freedom (DoF). Unlike FPAs, 

MAs offer the capability to reconfigure the wireless 

environment dynamically, introducing extra DoFs that 

substantially boost the efficiency and effectiveness of 

F 
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OTA-FL systems [4, 11]. 

 Reinforcement Learning (RL) is a promising approach 

for autonomous decision-making, where an agent learns by 

interacting with its environment, taking actions, and 

adjusting its strategy based on rewards to optimize 

performance [12]. However, RL struggles with large-scale 

environments due to its high demand for computational 

resources. To address this, Deep Reinforcement Learning 

(DRL) leverages deep neural networks, enabling more 

efficient learning in complex, high-dimensional 

environments. DRL methods are particularly useful for 

modern networks with high computational complexity. 

Additionally, while centralized RL can create significant 

signalling overhead, DRL allows for decentralized multi-

agent systems, where agents make independent decisions, 

reducing overhead and improving scalability, especially in 

applications like UAV-assisted networks [13, 14]. 

 This study introduces a UAV-assisted MA-assisted 

framework that OTA-FL. The main contributions of this 

paper are outlined as follows:  

1. System Design: This paper introduces a UAV-

enabled MA-architecture that incorporates OTA-

FL in the AP.  

2. Optimality Gap Analysis: We perform a 

comprehensive optimality gap evaluation, 

deriving a closed-form expression to quantify the 

gap between the achieved and optimal loss. This 

analysis reveals how MSE impact the 

convergence behaviour of the OTA-FL 

algorithm. 

3. Performance Assessment: We conduct extensive 

simulations to evaluate the effectiveness of the 

learning network. The results show that the TD3 

method surpasses all single-agent techniques, 

including Advantage Actor-Critic(A2C) and Soft 

Actor-Critic (SAC). 

 

1.1. Related work 

Numerous research efforts have explored the use of UAVs 

and MA in OTA-FL. In the following section, we present 

an in-depth analysis of these studies. 
 To improve the efficiency of OTA-FL, various research 
efforts have utilized UAV to address challenges related to 
magnitude alignment during model aggregation at the edge 
server. In [15], the Fog-aided Internet of Drones 
framework employs machine learning to analyse data 
collected by drones at fog nodes, offering various services. 
FL is utilized to enhance data privacy by enabling local 
drone training and sharing model parameters instead of 
raw data. However, privacy risks persist due to potential 
eavesdropping on uploaded parameters. The study focuses 
on optimizing drone power control to maximize the FL 
system's security rate while meeting battery and quality of 
service (QoS) constraints. A non-linear programming 
approach is proposed, and simulations validate the 
algorithm's effectiveness. In [16], a federated learning-
based framework, Aerial Edge, is proposed for 
orchestrating aerial edge computing systems using UAVs. 
The approach employs multi-output regression to optimize 
resource allocation and execution time, selecting UAVs 
with suitable resources and flight time. A bin-packing 

optimization variant is introduced for efficient task 
scheduling, achieving fast execution and improved 
resource utilization, validated with real-world data. In 
[17], UAV swarms leveraging FL are studied to enable 
edge intelligence while addressing bandwidth and energy 
limitations. To minimize training energy consumption, the 
study jointly optimizes convergence thresholds, iterations, 
resource, and bandwidth allocation under accuracy and 
latency constraints. A fairness-focused variant minimizes 
maximum energy consumption across UAVs. Simulations 
demonstrate superior energy efficiency compared to 
baseline approaches. In [18], UAVs are employed in CR 
networks to leverage their high mobility and LoS 
transmission. However, spectrum sharing can cause 
interference, reducing the throughput of secondary users. 
RIS are utilized to mitigate this interference by 
reconstructing propagation links. The study focuses on 
maximizing SU throughput while ensuring primary user 
interference constraints are met, through joint optimization 
of UAV trajectory, RIS passive beamforming, and UAV 
power allocation. The problem is divided into three 
subproblems: beamforming, power allocation, and 
trajectory design, and an alternating iterative optimization 
algorithm is proposed. Numerical results demonstrate 
significant throughput improvement. In [19], a joint 
subchannel assignment and power allocation algorithm is 
proposed for NOMA-enabled cognitive satellite-UAV-
terrestrial networks to optimize the sum rate of the 
secondary network under imperfect channel state 
information. The problem, constrained by interference 
temperature for primary users, minimum secondary user 
rates, UAV power limits, and subchannel capacity, is 
formulated as a mixed-integer non-linear programming 
task. It is addressed by decoupling into subchannel 
assignment and power allocation subproblems, solved 
using heuristic and successive convex approximation 
methods, respectively. Simulations demonstrate the 
algorithm’s superior performance in large-scale networks 
compared to benchmarks. In [4], the authors study an 
OTA-FL system with MAs at the AP to enhance  
 learning performance. They derive the optimality gap to 
evaluate FA mobility's impact and propose a nonconvex 
optimization framework to jointly optimize FA positions 
and beamforming. The problem is modeled as a MDP and 
solved using the recurrent deep deterministic policy 
gradient algorithm. Simulations show the FA-assisted 
OTA-FL system outperforms fixed-antenna systems, with 
RDPG surpassing existing methods. In [20], we explore 
the application of DRL techniques to design MA for OTA-
FL in UAV networks, aiming to enhance the overall 
network performance by optimizing the antenna positions. 
By considering UAVs as FL clients, we demonstrate the 
efficacy of this approach in improving the communication 
and learning capabilities within the network. In [21], the 
authors propose an OTA-FL framework using movable 
antennas (MAs) and UAVs for IoT support. They 
minimize MSE via joint antenna and beamforming 
optimization, modeled as an MDP and solved with TD3. 
Simulations show TD3-based MA systems outperform 
FPA and other DRL methods, achieving higher rewards 
and better performance. 
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1.2. Organization 

This paper is structured as follows: Section 0provides a 

detailed explanation of the system architecture, covering 

OTA-FL techniques and the UAV-enabled 

communication framework. In Section 0, the convergence 

behavior of the OTA-FL method is analyzed. Section 0 

formulates the optimization problem, with a focus on the 

optimality gap. Section 0 presents a DRL-based 

framework for optimization. The simulation setup, 

experimental scenarios, and comparative results with 

existing benchmarks are discussed in Section 0 to validate 

the proposed approach. The paper concludes with Section 

0 

 

2. SYSTEM MODEL 
We focus on the upload phase of an OTA-FL framework, 

which involves𝑁single-antenna user equipment (UE) 

devices denoted as 𝑈𝐸𝑛 , ∀𝑛 = [1, . . . , 𝑁], referred to as FL 

clients. These clients are randomly distributed across a 

designated area to collect local datasets, train local models, 

and collaboratively optimize a global model. The training 

of the global model is coordinated by a UAV equipped 

with 𝐾 movable antennas (MA-UAV). The UAV moves 

randomly within the area of interest to facilitate 

communication and coordination with the FL clients.  

 We analyze the OTA-FL framework, where full 

participation involves performing sequential tasks in each 

training round. The process of OTAFL is as follows: The 

UAV transmits the updated global model, 𝑣𝑡  ∈  R𝑞 to all 

UEs, with 𝑞 representing the size of the model parameter 

space. Each 𝑈𝐸𝑛updates its local model using the gradient 

descent method, described as: 

 

𝑣𝑛,𝑡 = 𝑣𝑡 − 𝛾𝛻𝐺(𝑣𝑡 , 𝑆𝑛), (1) 

 

 here, 𝛾 represents the learning rate, 𝛻𝐺(𝑣𝑡 , 𝑆𝑛) denotes 

the gradient of the local loss function, and 𝑆𝑛 signifies the 

local dataset for 𝑈𝐸𝑛 , |𝑆𝑛| = 𝑆, with |𝑆𝑛|  indicating its 

size. Each UE sends its updated local model back to the 

UAV, which aggregates these models by averaging them 

to update the global model, expressed as: 

 

𝑣𝑡+1 =
1

𝑁
∑ 𝑣𝑛,𝑡

𝑁

𝑛=1

. (2) 

 

 This process is repeated iteratively until the predefined 

maximum number of outer iterations is achieved.  

 The UAV is equipped with a 𝐾 MAs, which can be 

adjusted along a one-dimensional segment of length 𝐷 

with [0, 𝐷]. Each MA’s position is restricted to the interval 

[0, 𝐷] maintaining a minimum spacing of 𝐷0 between 

adjacent antennas to prevent coupling. The positions of the 

K MAs are represented by the vector 𝑑 = [𝑑1, . . . , 𝑑𝐾], 
with their movement confined to a single dimension as 

defined by 𝑑1 < 𝑑2. . . < 𝑑𝐾 . 

 Under the assumption of line-of-sight (LoS) 

propagation conditions, the channel between the n-th UE 

and the UAV denoted as 𝑔𝑛[𝑑] ∈ 𝐶𝐾×1, is expressed as: 

 

𝑔𝑛[𝑑] = √
ℓ0

𝑥𝑛
𝛼

[𝑒𝑗
2𝜋
𝜆

𝑑1 𝑐𝑜𝑠(𝜃𝑛), . . . , 𝑒𝑗
2𝜋
𝜆

𝑑𝐾 𝑐𝑜𝑠(𝜃𝑛)]𝑇 , 

 

(3) 

 here, ℓ0 represents the path loss at the reference 

distance, 𝜆 denotes the wavelength, and 𝛼 is the path loss 

exponent. Additionally, 𝑥𝑛 and 𝜃𝑛 correspond to the 

distance between the MAs and the n-th UE, and the angle 

of arrival (AoA) of the LoS path, respectively. These 

values are determined based on the UAV locations during 

each training round.  

 In this context, it is assumed that UAV operates within 

a predefined area and transmits global model parameters 

from a fixed position. Moreover, because the signal path 

length is substantially greater than the extent of MA 

movement, the MA field condition between the UAV and 

UEs is presumed to hold. Consequently, 𝜃𝑛 and 𝑥𝑛are 

treated as constants during the transmission phase. 

 During the t-th training round, the UAV receives the 

local model parameters from all UEs, expressed as: 

 

𝑦 = ∑ 𝑝𝑛𝑔𝑛[𝑑]𝑣𝑛 + 𝑧

𝑁

𝑛=1

, 
 

(4) 

 

 here, 𝑝𝑛 represents the transmission power factor for the  

n-th UE, and 𝑧 ∈  C𝑞×𝑁 denotes an additive white 

Gaussian noise (AWGN) matrix, where each element 

follows a complex normal distribution CN(0, 𝜎2). The 

aggregated model parameter vector 𝑣̑ in the t-th training 

round is obtained by applying post-processing to the 

received signal at the UAV expressed as: 

 

𝑣̑𝑡+1 =
1

𝑁
(

1

√𝜂
𝑊𝐻𝑦) 

        =
1

𝑁
∑

1

√𝜂
𝑊𝐻𝑝𝑛𝑔𝑛[𝑑]

𝑁

𝑛=1

𝑣𝑛 +
𝑤𝐻𝑧

𝑁√𝜂
, 

 

(5) 

 

 
 here, 𝑊 ∈ 𝐶𝑁×1 represents the beamforming vector at 

the UAV, and 𝜂 denotes the scaling factor used for aligning 

the signal amplitude. 

 As outlined in [4], maximum power factor in each UEs 

should satisfies: 

 
1

𝑞
𝑝𝑛

2𝐸[|𝑣𝑛|2] ≤ 𝑃,       1,...,N.𝑚𝑎𝑥 (6) 

 
 It is assumed that the UAV starts and concludes the FL 

process at the same location, with its maximum allowable 

speed represented as 𝑉𝑚𝑎𝑥in meters per second (m/s). The 

UAV’s movement is subject to the following constraints: 

 
|𝑙[𝑡 + 1] − 𝑙[𝑡]|2 ≤ 𝑉𝑚𝑎𝑥 

𝑙[0] = [0,0,0], 
𝑙[𝑇] = [0,0,0], (7) 

 
 here, 𝑙[𝑡] represents the location of the UAV at time slot 
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t, and 𝛿denotes the flying time between two consecutive 

time slots. In order to make easy to read and follow 

equation in Table 1. is summarized all character. 

 

TABLE 1 

 summaries of all parameters 
 

parameter Definition 

𝑁 The total number of FL clients. 

𝐾 The number of MA on the UAV. 

𝑣𝑡 The global model at timeslot 𝑡𝑡 

𝛾 Denotes the learning rate parameter. 

𝑞 The dimensionality of the model parameter 

space. 

𝛻𝐺(𝑣𝑡, 𝑆𝑛) Denotes the gradient of the local loss function. 

𝑆𝑛 signifies the local dataset for n-th UE 

𝐷 Refers to a one-dimensional segment of the 

MA antenna length. 

𝐷0 The minimum spacing between adjacent 

antennas to prevent coupling. 

𝑔𝑛[𝑑] Represents the wireless channel between the  

n-th user equipment and the UAV. 

ℓ0 Denotes the path loss at the reference distance. 

𝜆 Denotes the wavelength. 

𝛼 Represents the path loss exponent. 

𝑥𝑛 Denotes the distance between the MA 

antennas and the n-th UE. 

𝜃𝑛 the AoA of the LoS path. 

𝑝𝑛 Represents the transmission power factor for 

the n-th UE. 

𝑧 Denotes an AWGN matrix, where each 

element follows a complex normal 

distribution. 

𝑊 Represents the beamforming vector at the 

UAV. 

𝜂 Denotes the scaling factor used for aligning 

signal amplitude. 

𝑉𝑚𝑎𝑥 Represents the speed of the UAV in meters per 

second (m/s). 

𝑙[𝑡] Represents the location of the UAV at timeslot 

𝑡𝑡 

𝛿 Denotes the flying time between two 

consecutive timeslots. 

𝑟 Parameter representing the assumption of 

smoothness of model 

𝜇 Parameter related to the PL inequality. 

𝛬 Denotes the upper limit of the model 

parameter. 

𝑆𝑡 Represents the states of the wireless 

environment for the MDP problem. 

𝑎𝑡 Denotes the action space of the MDP agent. 

𝑟𝑒𝑤𝑎𝑟𝑑𝑡 Represents the reward function in the MDP 

framework. 

𝜋𝜑  Denotes the policy function in DRL. 

𝜗1, 𝜗2 Represents the parameters of the critic 

network in DRL. 

 

 

3. CONVERGENCE ANALYSIS 
To support our convergence analysis, we adopt the 

following widely accepted assumptions as outlined in [4], 

[17]: the global loss function is r-smooth, meaning that for 

any given model parameters, there exists a nonnegative 

constant 𝑟 for any given model parameters 𝑣1, 𝑣2 ∈ 𝑅𝑞,  

such that:   

 

𝐺(𝑣1) − 𝐺(𝑣2) ≤ 

(𝑣1 − 𝑣2)𝑇𝛻𝐺(𝑣1) +
𝑟

2
||𝑣1 − 𝑣2||2. (8) 

 Where 𝑟 is a measure of how smooth the function is, a 

smaller value indicates a smoother function. Additionally, 

the loss function satisfies the Polyak–Łojasiewicz (PL) 

inequality, ensuring that:   

 

|𝐺(𝑣)|2 ≥ 2𝜇[𝐺(𝑣) − 𝐺(𝑣∗)] (9) 

 
 Where, if 𝐺(𝑣∗) represents the optimal global loss 

value and where𝜇 ≥ 0 is the PL constant. Lastly, the 

model parameters for each UE are bounded by an upper 

limit, ensuring that for 𝛬 ≥ 0we have:   

 

𝐸[|𝑣|2] ≤ 𝛬  
 

(10) 

 Theorem 1: Under the conditions specified in above 

assumptions, and by setting the learning rate 
1

𝑟
, the 

optimality gap after 𝑇rounds of training is bounded by:   

 

𝐸[𝐺(𝑣𝑇+1) − 𝐺(𝑣∗)] ≤ 

 

(1 −
𝜇

𝑟
)𝑇(𝐸[𝐺(𝑣1)] − 𝐸[𝐺(𝑣∗)]) 

+ ∑(1 −
𝜇

𝑟
)𝑇−𝑡𝑀𝑆𝐸𝑡

𝑇

𝑡=1

. (11) 

 

 

 To further refine the bounds, 𝑀𝑆𝐸𝑡 can be expressed as 

follows: 

 

𝑀𝑆𝐸𝑡 =
𝑟𝜎2𝛬

2𝑁2𝑃𝑚𝑎𝑥 max
𝑛∈[1,...,𝑁]

|𝑤𝑡|2

|𝑤𝑡𝑔𝑡[𝑑]|2

 (12) 

 

 
Proof: See Appendix. 
 

4. PROBLEM FORMULATION 
According to Theorem 1, the optimality gap, which 

reflects the learning performance of OTAFL, can be 

expressed in terms of the MSE in each communication 

round. This is determined based on the relationship 

between the model updates, the aggregation error 

introduced by wireless communication, and the 

cumulative effect of these errors over multiple rounds. To 

enhance the learning performance, we can formulate an 

optimization problem aimed at jointly optimizing key 

system parameters, such as w = [𝑤1,...w𝑁]𝑇and𝑑 =
[𝑑1, . . . , 𝑑𝑁], with the objective of minimizing the MSE as 

follow: 

 

𝑚𝑖𝑛
𝑑,𝑤

  MSE𝑡 

S.t.     𝐶1: 0 ≤ 𝑑𝑛 ≤ 𝐷       n ∈ [1,...,N], 
          𝐶2: 𝑑1 ≤ 𝑑2. . . ≤ 𝑑𝑁 , 
          𝐶3: 𝑑𝑛 − 𝑑𝑛−1 ≥ 𝐷0   𝑛 ∈ [1,...,N], 

 

 In this context, several constraints are defined to 
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regulate the behavior of the MAs. These constraints 

include limiting the valid range within which the positions 

of the MAs can be located in 𝐶1, determining the sequence 

in which the MAs are positioned in 𝐶2 and enforcing a 

minimum required distance between neighboring Mas in 

𝐶3. The complexity of the problem is further heightened 

by the inherent nonconvexity present in the objective 

function, categorizing it as a nonconvex optimization 

problem.  

 Traditional mathematical optimization techniques, 

commonly referenced in the literature, encounter 

significant difficulties when applied to such problems. 

This is primarily due to the high dimensionality of the 

optimization variables and the dynamic, unpredictable 

nature of the underlying system characteristics. To address 

these challenges effectively, we propose leveraging a DRL 

algorithm, which offers greater flexibility and adaptability 

to accommodate the varying configurations and demands 

of the system. 

 

5. PROPOSED DRL ALGORITHM 
In this segment, we begin by reinterpreting the 

optimization challenge as a MDP, laying the foundation 

for addressing it using the TD3 algorithm. To tackle this 

problem, a DRL agent is implemented at the UAV, aiming 

to develop an optimal decision-making strategy that 

significantly boosts the efficiency of OTA-FL. The 

proposed framework leverages the MDP structure, 

enabling systematic problem-solving. The specifics of the 

MDP's state representation, action space, and reward 

mechanism are elaborated below for clarity and 

completeness. 

 State Space: The state space at time slot t captures the 

key environmental and system parameters that influence 

decision-making. It includes the distances between the 

MAs and clients, as well as the AoA for the LoS paths 

associated with these entities. These parameters 

collectively describe the dynamic state of the system at 

time t. Mathematically, the state space is represented as: 

  
𝑆𝑡 = [[𝑥1, . . . , 𝑥𝑛], [𝜃1, . . . , 𝜃𝑛]]. (13) 

 
 Action Space: The action space at a given time slot t 

defines the set of controllable variables that the agent can 

adjust to optimize system performance. It encompasses 

two critical components: the beamforming vector, which 

directs the transmitted signal's power and phase, and the 

spatial locations of the MAs. These actions collectively 

determine the system's ability to adapt to environmental 

changes and maximize efficiency. Mathematically, the 

action space at time slot t is represented as:  

 
𝑎𝑡 = [[𝑑1, . . . , 𝑑𝑁], [𝑤, . . . , 𝑤𝑁]]. (14) 

 
 These variables collectively constitute the optimization 

parameters that require iterative refinement at each time 

step. 

 Reward Function: The reward function is designed to 

align with the optimization objective while adhering to 

system constraints. It evaluates the agent's actions by 

penalizing deviations from the desired outcome, ensuring 

that the learning process encourages improvements in 

system performance. The reward is mathematically 

defined as: 

 𝑟𝑒𝑤𝑎𝑟𝑑𝑡 = −𝑀𝑆𝐸𝑡 × 𝑟_𝑡𝑢𝑛𝑒, (15) 

 

 where 𝑀𝑆𝐸𝑡represents a function inversely related to 

the MSE, effectively penalizing higher error values, and 

𝑟_𝑡𝑢𝑛𝑒is a constant parameter that can be fine-tuned 

during simulations to facilitate faster convergence of the 

learning algorithm. This formulation ensures that the 

reward reflects the system's performance, driving the agent 

toward minimizing the MSE while achieving the desired 

trade-offs between speed and accuracy. 

 

6. TD3 ALGORITHM 
In this study, we explore the utilization of the TD3 

algorithm, a model-free and policy-based DRL approach, 

to handle the complexities and dynamic nature of the 

environment. Our proposed framework leverages the TD3 

algorithm to efficiently manage continuous state and 

action spaces, addressing challenges inherent in such 

systems.   

 The proposed TD3-based solution incorporates six 

distinct neural networks, each playing a specific role in the 

decision-making process. These networks work 

collaboratively to optimize performance and ensure 

stability in training. The roles and functionalities of these 

networks are elaborated as follows: 

 Actor Network: The actor network, often referred to as 

the policy network, is a key component responsible for 

generating actions based on the current state of the 

environment. It is parameterized 𝜋𝜙and serves as the 

decision-making entity within the TD3 framework. The 

actor network maps a given state 𝑆𝑡to a corresponding 

action 𝑎𝑡,enabling the agent to interact with the 

environment effectively. This process can be 

mathematically expressed as:   

 

𝑎𝑡 = 𝜋𝜙(𝑆𝑡) + 𝜁, (16) 

 

 where 𝜋𝜑represents the policy function parameterized 

by𝜑and 𝜁denotes a random noise process introduced to 

encourage exploration of the action space during training. 

This exploration ensures that the agent does not converge 

prematurely to suboptimal policies and thoroughly 

explores the environment. 

 Two Critic Networks: The TD3 algorithm incorporates 

two critic networks, often referred to as Q-networks, to 

evaluate the quality of actions taken by the agent. These 

networks, parameterized by 𝜗1 and 𝜗2,estimate the Q-

value for a given action 𝑎𝑡and state 𝑆𝑡providing a measure 

of expected future rewards. The Q-value predictions from 

the critic networks can be expressed as:  

𝑄𝜗1
(𝑆𝑡 , 𝑎𝑡; 𝜗1) and 𝑄𝜗2

(𝑆𝑡 , 𝑎𝑡; 𝜗2) , where 

𝑄𝜗1
(𝑆𝑡 , 𝑎𝑡; 𝜗1) and 𝑄𝜗1

(𝑆𝑡 , 𝑎𝑡; 𝜗2) are the outputs of the 

two critic networks. Using two critics helps mitigate the 

overestimation bias commonly found in Q-learning 
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algorithms, as the TD3 framework selects the minimum of 

the two Q-values during training to compute the target. 

This design enhances the stability and reliability of the 

learning process. 

 Target Actor Network: The Target Actor Network 

serves as a prior version of the actor network, 

distinguished by𝜙′ as:  s. It produces an output with added 

noise 𝜁to stabilize the value estimation. This output is 

clipped to ensure it remains within a defined target range. 

The network's parameters are periodically refreshed using 

a soft update strategy, governed by a coefficient, as 

described below: 

 

𝜙′ ← 𝜏𝜙 + (1 − 𝜏)𝜙′. (17) 

 

 Two Target Critic Networks: These are the earlier 

iterations of the critic networks, parameterized by 𝜗1
′, 𝜗2

′
. 

they compute the Q-value 𝑄𝜗′
𝑖
(𝑆𝑡+1, 𝑎𝑡+1; 𝜗𝑖

′). The 

parameters are gradually updated over time using a soft 

update process defined as: 

 

𝜗1′ ← 𝜏𝜗1 + (1 − 𝜏)𝜗1′. 
𝜗2′ ← 𝜏𝜗2 + (1 − 𝜏)𝜗2′. (18) 

 

 The actor network is optimized to maximize the 

objective function through a policy gradient approach, 

which adjusts the actor's parameters using the following 

update rule: 

 

𝛻𝜙𝐽(𝜙) = 𝐸[𝛻𝑎𝑡
𝑄𝜗(𝑆𝑡 , 𝑎𝑡)|𝑎𝑡=𝜋(𝑆𝑡)𝛻𝜙𝜋(𝑆𝑡)]. (19) 

 

 Simultaneously, the critic networks are trained to 

minimize the loss function relative to the target value. This 

process is expressed as: 

 

𝐿(𝜗1) = 𝐸((𝑌 − 𝑄𝜗1
(𝑆𝑡 , 𝑎𝑡))2), 

𝐿(𝜗2) = 𝐸((𝑌 − 𝑄𝜗2
(𝑆𝑡 , 𝑎𝑡))2). 

 (20) 

 

 

 The target function is defined as: 

 

𝑌 = 𝑟𝑒𝑤𝑎𝑟𝑑 + 
𝜄(𝑚𝑖𝑛(𝑄𝜗1

(𝑆𝑡+1, 𝜋′(𝑆𝑡+1)), 𝑄𝜗2(𝑆𝑡+1, 𝜋′(𝑆𝑡+1))) + 𝜁)). 

(21) 

 Here, 𝜄  denotes the discount factor. Choosing the 

smaller Q-value from the critics mitigates Q-value 

overestimation, while adding the noise term to the target 

policy helps reduce overfitting. 

 

7. SIMULATION RESULTS 
In this section, we present numerical results to demonstrate 

how integrating MA arrays with the TD3 algorithm can 

significantly enhance the performance of OTA-FL. The 

simulation setup assumes that the distances between 

clients and 𝑙[0], uniformly distributed within the range of 

[20, 100] meters, while the AoAs are uniformly distributed 

over [-𝜋/2, π/2] radians. The parameters for the MA array 

are set as  𝐷0 = 0.5𝜆and 𝐷 = 8𝜆, where 𝜆 is the 

wavelength.   

 For the TD3, SAC, A2C algorithm, the configuration 

includes a learning rate of 0.0005, a replay buffer size of 

104, a batch size of 64, a soft update rate of 0.001, and a 

discount factor of 0.9. 

 To assess the performance, we conduct two 

comparisons. First, we compare the MA-based system 

with a FPA approach, where a fixed location vector 𝑑 =

[
𝐷

𝑁+1
, . . . ,

𝑁𝐷

𝑁+1
]𝑇is used. This comparison helps us evaluate 

the effectiveness of the MA array in improving OTA-FL 

performance over a more traditional method. Second, we 

compare the proposed TD3 algorithm with two other 

reinforcement learning algorithms: SAC and A2C. This 

comparison is aimed at showcasing the advantages of the 

TD3 algorithm over these alternative approaches in 

optimizing the system's performance.   

 The learning performance is measured by calculating 

the average rewards over 10 episodes. The average reward 

for episode b  is computed as:   
 

𝑟𝑒𝑤𝑎𝑟𝑑𝑎𝑣𝑔(𝑒) = 0.1 × ∑ 𝑟𝑒𝑤𝑎𝑟𝑑𝑖

𝑏

𝑖=𝑏−10

 
 

(22) 

 

 where𝑟𝑒𝑤𝑎𝑟𝑑𝑖represents the reward obtained in 

episode i and b denotes the total number of episodes. This 

method allows for a thorough evaluation of the TD3 

algorithm's performance in optimizing OTA-FL, both 

when compared to fixed strategies and other reinforcement 

learning methods. In this simulation, the Baseline3 library 

in Python is utilized to model and analyze the system 

dynamics under various operational conditions. 

 Fig. 1 presents the trend of average rewards for three 

DRL algorithms, showing a steady increase followed by 

eventual convergence after 200 training episodes. The 

SAC algorithm follows a similar convergence pattern to 

TD3 but achieves lower average rewards when trained 

with the same learning rate, highlighting the superior 

performance of TD3. On the other hand, the A2C 

algorithm converges at a later stage and exhibits 

consistently lower average rewards throughout the 

training, suggesting that its performance is inferior 

compared to both TD3 and SAC. This comparison 

underscores the effectiveness of the TD3 algorithm in 

optimizing the learning process. 

 

 
Fig. 1. Comparison of different DRL algorithms versus episodes 
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 Fig. 2 illustrates the relationship between the number of 

FL clients and the average reward achieved using the TD3 

and SAC algorithms in both FPA and MA scenarios. The 

results show that, for the same number of clients, the 

proposed TD3 algorithm consistently outperforms SAC 

across both FPA and MA setups. Additionally, the data 

indicates that the MA configuration consistently yields 

better performance compared to the FPA setup, 

highlighting the advantages of using MA in optimizing the 

learning process in federated learning environments.  
 

 

Fig. 2. Comparison of algorithms with different numbers of FL 

clients 

 Fig. 3 demonstrates how the effectiveness of the 

algorithm changes with varying values of K for both SAC 

and TD3, under the FPA and MA frameworks. In both 

algorithms, the MA framework consistently shows 

superior performance compared to the FPA setup. 

Additionally, TD3 outperforms SAC across both 

frameworks. As the number of elements K increases, 

performance initially improves for both algorithms. 

However, this improvement begins to level off and even 

diminish as K  continues to grow, which is likely due to 

the degradation in channel quality. 

 

 

Fig. 3. Comparison of algorithms for different numbers of 

antennas 

 For the same values of k, the proposed TD3 algorithm 

consistently achieves better results than SAC. The 

diminishing performance enhancement for large k values 

can be attributed to the limited physical space available 

when the number of antennas increases while keeping the 

antenna array length  

 constant. As the number of antennas grows, the Spacing 

between them decreases, reducing the diversity and spatial 

resolution of the system. This limitation leads to a smaller 

overall performance gain, making the performance 

difference between the FPA and MA frameworks less 

pronounced as k becomes large. 

 To showcase the efficiency of our proposed approach 

for tackling FL tasks, we trained image classification 

models on the MNIST dataset. A fully participatory FL 

framework with five FL clients (N=5), representing UEs, 

was used. The MNIST dataset was divided into training 

(90%) and testing (10%) subsets. The training subset was 

then split into five non-overlapping shards, which were 

distributed among the clients without replacement. Each 

client implemented a local model based on a feedforward 

neural network. The architecture included an input layer 

with 200 neurons and a ReLU activation function, 

followed by a hidden layer also containing 200 neurons 

and a ReLU activation function. The output layer had 

neurons equal to the number of classes and used a softmax 

activation function for classification. An ideal FL scenario 

was considered, without communication noise or 

interference temperature constraints, to serve as a 

benchmark.   

 Error! Reference source not found. illustrates that the 

TD3 method surpasses SAC in both training loss and test 

accuracy. As the communication rounds progress, the 

performance gap between the TD3 method and SAC 

increases. Additionally, in both algorithms, MA 

consistently performs better than FPA. This underscores 

the importance of optimizing the RIS configuration, where 

phase shift optimization plays a pivotal role in improving 

overall performance.   
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Fig. 4. Comparison of DRL Algorithms on MNIST 

 8. CONCLUSION 
This paper introduced an innovative OTA-FL framework 

that incorporates MAs at the UAV and UEs as FL clients 

to significantly enhance system learning efficiency. A non-

convex optimization problem was formulated with the 

goal of minimizing MSE by jointly optimizing antenna 

placement and beamforming vectors. To account for 

dynamic environments, this optimization problem was 

reformulated as a MDP and solved using the TD3 

algorithm. The simulation results demonstrated that TD3 

outperforms traditional stationary antenna configurations, 

illustrating the superiority of the proposed MA-based 

approach. Comparisons between MA arrays and FPA, as 

well as with alternative algorithms like SAC and A2C, 

consistently showed that TD3 outperforms FPA, 

especially as the number of antennas and clients increases. 

This leads to higher average rewards and significantly 

better system performance, confirming the effectiveness of 

the proposed method in enhancing OTA-FL performance. 

 

9. APPENDIX 
In the t-th communication round, the global model update 

is expressed in the following form: 

 

𝑣̑𝑡+1 =
1

𝑁
∑

1

√𝜂
𝑊𝐻𝑝𝑛𝑔𝑛[𝑑]

𝑁

𝑛=1

𝑣𝑛 +
𝑤𝐻𝑧

𝑁√𝜂
, 

(23) 

 

 

 In order to minimize MSE, by applying channel inverse 

power allocation [22] [4], the power for each client is now 

determined as follows: 

 

𝑝𝑛 =
√𝜂

𝑊𝐻𝑔𝑛[𝑑]
,     ∀𝑛 ∈ [1,...,N]. (24) 

 

 By substituting equation (24) into equation (23) we 

obtain: 

 

𝑣̑𝑡+1 =
1

𝑁
∑ 𝑣𝑛,𝑡

𝑁

𝑛=1

+
𝑤𝐻𝑧

𝑁√𝜂
, 

      = 
1

𝑁
∑(𝑣𝑡 − 𝛾𝛻𝐺(𝑣𝑡 , 𝑆𝑛))

𝑁

𝑛=1

+
𝑤𝐻𝑧

𝑁√𝜂
, 

      =𝑣𝑡 −
𝛾

𝑁
∑(𝛻𝐺(𝑣𝑡 , 𝑆𝑛))

𝑁

𝑛=1

+
𝑤𝐻𝑧

𝑁√𝜂
, 

       = 𝑣𝑡 − 𝛾(𝛻𝐺(𝑣𝑡)) − 𝜀𝑡). (25) 

 

 Here, 𝛻𝐺(𝑣𝑡) =
1

𝑁
∑ 𝛻𝐺(𝑣𝑡 , 𝑆𝑛)𝑁

𝑛=1 represents the global 

gradient, while 𝜀𝑡 =
𝑤𝐻𝑧

𝛾𝑁√𝜂
refers to the aggregation error. 

 By incorporating equation (8) and setting 𝛾 =
1

𝑟
 and 

taking expectation, we obtain the following expression: 

 
𝛦(𝐺(𝑣𝑡+1)) − 𝛦(𝐺(𝑣𝑡)) 

        ≤
−1

2𝑟
||𝛻𝐺(𝑣𝑡)||2 +

1

2𝑟
𝛦(|𝜀𝑡|2), (26) 

 
 Now, with some straightforward mathematical 

simplifications, we obtain: 

 

𝛦(𝐺(𝑣𝑡+1)) ≤ 𝛦(𝐺(𝑣𝑡)) − 
1

2𝑟
||𝛻𝐺(𝑣𝑡)||2 +

𝑞|𝑚|2

2𝑁2𝜂
𝛦(|𝑧|2), 

(27) 

 

 By applying the upper bound of the above equation 

using equation (10) and equation (9), we derive: 

 

𝛦(𝐺(𝑣𝑡+1)) ≤ 𝛦(𝐺(𝑣𝑡)) 

−
𝜇

𝑟
(𝛦(𝐺(𝑣𝑡)) − 𝛦(𝐺∗(𝑣𝑡))) +

𝑞|𝑚|2

2𝑁2𝜂
𝜎2, 

 

(28) 

 

 

 Based on the maximum power constraint for each client 

and equation (24), 𝜂can be calculated as follows: 

 
1

𝑞

𝜂

|𝑊𝐻𝑔𝑛[𝑑]|2
|𝐸[|𝑣𝑛|2]|2 ≤ 𝑃𝑚𝑎𝑥  

𝜂 ≤
𝑃𝑚𝑎𝑥

𝛬
|𝑊𝐻𝑔𝑛[𝑑]|2

|𝑤|2

 

𝜂 = 𝑚𝑖𝑛
𝑛

𝑃𝑚𝑎𝑥

𝛬
|𝑊𝐻𝑔𝑛[𝑑]|2

|𝑤|2

 

 

 

 

(29) 

 

 By applying the minimum value of 𝜂and performing 

some simple mathematical simplifications, we obtain: 

 

𝛦(𝐺(𝑣𝑡+1)) − 𝛦(𝐺(𝑣∗
𝑡)) 

≤ (1 −
𝜇

𝑟
)(𝛦(𝐺(𝑣𝑡)) − 𝛦(𝐺(𝑣𝑡

∗))) 

(30) 
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   +
𝑟𝜎2𝛬

2𝑁2𝑃𝑚𝑎𝑥𝑚𝑎𝑥
𝑛

|𝑤|2

|𝑊𝐻𝑔𝑛[𝑑]|2

 

 

 where the second part of the above equation corresponds 

to the MSE in this scenario: 

 

MSE𝑡 = 𝐸[|𝑣̑𝑡+1 − 𝑣𝑡+1|2] 

=
1

𝑁2
∑ |1 −

1

√𝜂𝑡

𝑤𝑡
𝐻𝑝𝑛,𝑡𝑔𝑛,𝑡[𝑑]

𝑁

𝑛=1

|2𝐸[|𝑣𝑛,𝑡|2] 

      +
𝑞|𝑤|2𝜎2

𝑁2𝜂𝑡

, 

=
𝑞|𝑤|2𝜎2

𝑁2𝜂
, 

=
𝑟𝜎2𝛬

2𝑁2𝑃𝑚𝑎𝑥 𝑚𝑎𝑥
𝑛∈[1,...𝑁]

|𝑤𝑡|2

|𝑤𝑡
𝐻𝑔𝑛,𝑡[𝑑]|2

 
 

(31) 

 

 Thus, the equation (30) can be rewritten as follows: 

 

𝛦(𝐺(𝑣𝑡+1)) − 𝛦(𝐺∗(𝑣𝑡)) 

≤ (1 −
𝜇

𝑟
)(𝛦(𝐺(𝑣𝑡)) − 𝛦(𝐺∗(𝑣𝑡))) 

   + 𝑀𝑆𝐸𝑡 . 
 

(32) 

 

 The optimality gap quantifies the discrepancy between 

the global model's state at the t -th communication round 

and its initial state, relative to the optimal model. To 

compute this, we systematically and iteratively apply 

recursive operations based on the structure outlined in 

(32). Additionally, by integrating the detailed definition of 

the MSE provided in  (31), we obtain a comprehensive and 

precise expression for the cumulative optimality gap, 

which can be represented as follows: 

 

𝛦(𝐺(𝑣𝑡+1)) − 𝛦(𝐺(𝑣∗)) 

≤ (1 −
𝜇

𝑟
)(𝛦(𝐺(𝑣𝑡)) − 𝛦(𝐺(𝑣∗))) 

   + 𝑀𝑆𝐸𝑡 , 

≤ (1 −
𝜇

𝑟
)(((1 −

𝜇

𝑟
) 

                 (𝛦(𝐺(𝑣𝑡−1) − 𝛦(𝐺(𝑣∗)) 
+𝑀𝑆𝐸𝑡−1) − 𝛦(𝐺(𝑣∗))) + 𝑀𝑆𝐸𝑡 , 

≤ (1 −
𝜇

𝑟
)(((1 −

𝜇

𝑟
)(((1 −

𝜇

𝑟
) 

(𝛦(𝐺(𝑣𝑡−2)) − 𝛦(𝐺(𝑣∗))) + 𝑀𝑆𝐸𝑡−2) 
−𝛦(𝐺(𝑣∗)) + 𝑀𝑆𝐸𝑡−1) − 𝛦(𝐺(𝑣∗))) 
   + 𝑀𝑆𝐸𝑡 , 
≤. . . 

≤ (1 −
𝜇

𝑙
)𝑇(𝐸[𝐺(𝑣1)] − 𝐸[𝐺(𝑣∗)]) 

+ ∑(1 −
𝜇

𝑟
)𝑇−𝑡𝑀𝑆𝐸𝑡

𝑇

𝑡=1

. 
(33) 

 

 This concludes the proof of Theorem 1. 

 

10. REFERENCES 
[1] M. Ahmadzadeh, S. Pakravan, G. A. Hodtani, M. Zeng, 

and J. Y. Chouinard. (2024, Nov.). Deep 

Reinforcement Learning for Robust RIS-Aided Over-

the-Air Federated Learning in Cognitive Radio. 

Presented at 2024 IEEE Middle East Conference on 

Communications and Networking (MECOM). 

[Online]. Available: 

https://doi.org/10.1109/MECOM61498.2024.1088185

8 

[2] M. Pourghasemian, H. Gacanin, and E. Perenda. (2023, 

Dec.). Cooperative Partial Task-Offloading for 

Heterogeneous Industrial Robotic MEC System Using 

Spectral and Energy-Efficient Federated Learning. 

Presented at IEEE Global Communications 

Conference (GLOBECOM 2023). [Online]. Available: 

https://doi.org/10.1109/GLOBECOM54140.2023.104

36994 

[3] S. Pakravan, M. Ahmadzadeh, M. Zeng, G. A. Hodtani, 

J. Y. Chouinard, and L. A. Rusch. (2024, Sep.). Robust 

Resource Allocation for Over-the-Air Computation 

Networks with Fluid Antenna Array. Presented at 

IEEE Globecom Workshops (GC Wkshps). [Online]. 

Available: https://doi.org/10.48550/arXiv.2504.16221 

[4] M. Ahmadzadeh, S. Pakravan, G. A. Hodtani, M. Zeng, 

J. Y. Chouinard, and L. A. Rusch. (2024, Jul.). 

Enhancement of Over-the-Air Federated Learning by 

Using AI-based Fluid Antenna System. Presented at 

arXiv. [Online]. Available: 

https://doi.org/10.48550/arXiv.2407.03481 

[5] Y. Wang, Z. Su, N. Zhang, and A. Benslimane. (2020, 

Aug.). Learning in the Air: Secure Federated Learning 

for UAV-Assisted Crowdsensing. IEEE Transactions 

on Network Science and Engineering. [Online]. 8(2), 

pp. 1055–1069. Available: 

https://doi.org/10.1109/TNSE.2020.3014385 

[6] M. Bakhshi, S. H. Ayatollahi, and M. Akbari. (2024). 

Enhancing Long-Range Radar (LRR) Automotive 

Applications: Utilizing Metasurface Structures to 

Improve the Performance of K-band Longitudinal Slot 

Array Antennas. AEU - International Journal of 

Electronics and Communications. [Online]. 176, pp. 

155134. Available: 

https://doi.org/10.1016/j.aeue.2024.155134 

[7] S. Pakravan, J. Y. Chouinard, X. Li, M. Zeng, W. Hao, 

Q. V. Pham, and O. A. Dobre. (2023, Jul.). Physical 

Layer Security for NOMA Systems: Requirements, 

Issues, and Recommendations. IEEE Internet of Things 

Journal. [Online]. 10(24), pp. 21721–21737. 

Available:  

https://doi.org/10.1109/JIOT.2023.3296319 

[8] M. Bakhshi, S. H. Ayatollahi, and M. Akbari. (2024). 

Enhanced 2-port MIMO Antenna with Composite 

Two-Step Metasurface for 77 GHz Vehicle-to-

Everything Applications. AEU - International Journal 

of Electronics and Communications. [Online]. 184, pp. 

154982. Available: 

https://doi.org/10.1016/j.aeue.2024.155404 

[9] S. Pakravan, J. Y. Chouinard, M. Zeng, X. Li, W. Hao, 

and O. A. Dobre. (2023, Dec.). Physical-Layer 

https://doi.org/10.1109/MECOM61498.2024.10881858
https://doi.org/10.1109/MECOM61498.2024.10881858
https://doi.org/10.1109/MECOM61498.2024.10881858
https://doi.org/10.1109/MECOM61498.2024.10881858
https://doi.org/10.1109/MECOM61498.2024.10881858
https://doi.org/10.1109/MECOM61498.2024.10881858
https://doi.org/10.1109/MECOM61498.2024.10881858
https://doi.org/10.1109/MECOM61498.2024.10881858
https://doi.org/10.1109/MECOM61498.2024.10881858
https://doi.org/10.1109/GLOBECOM54140.2023.10436994
https://doi.org/10.1109/GLOBECOM54140.2023.10436994
https://doi.org/10.1109/GLOBECOM54140.2023.10436994
https://doi.org/10.1109/GLOBECOM54140.2023.10436994
https://doi.org/10.1109/GLOBECOM54140.2023.10436994
https://doi.org/10.1109/GLOBECOM54140.2023.10436994
https://doi.org/10.1109/GLOBECOM54140.2023.10436994
https://doi.org/10.1109/GLOBECOM54140.2023.10436994
https://doi.org/10.48550/arXiv.2504.16221
https://doi.org/10.48550/arXiv.2504.16221
https://doi.org/10.48550/arXiv.2504.16221
https://doi.org/10.48550/arXiv.2504.16221
https://doi.org/10.48550/arXiv.2504.16221
https://doi.org/10.48550/arXiv.2504.16221
https://doi.org/10.48550/arXiv.2504.16221
https://doi.org/10.48550/arXiv.2407.03481
https://doi.org/10.48550/arXiv.2407.03481
https://doi.org/10.48550/arXiv.2407.03481
https://doi.org/10.48550/arXiv.2407.03481
https://doi.org/10.48550/arXiv.2407.03481
https://doi.org/10.48550/arXiv.2407.03481
https://doi.org/10.1109/TNSE.2020.3014385
https://doi.org/10.1109/TNSE.2020.3014385
https://doi.org/10.1109/TNSE.2020.3014385
https://doi.org/10.1109/TNSE.2020.3014385
https://doi.org/10.1109/TNSE.2020.3014385
https://doi.org/10.1109/TNSE.2020.3014385
https://doi.org/10.1016/j.aeue.2024.155134
https://doi.org/10.1016/j.aeue.2024.155134
https://doi.org/10.1016/j.aeue.2024.155134
https://doi.org/10.1016/j.aeue.2024.155134
https://doi.org/10.1016/j.aeue.2024.155134
https://doi.org/10.1016/j.aeue.2024.155134
https://doi.org/10.1016/j.aeue.2024.155134
https://doi.org/10.1016/j.aeue.2024.155134
https://doi.org/10.1109/JIOT.2023.3296319
https://doi.org/10.1109/JIOT.2023.3296319
https://doi.org/10.1109/JIOT.2023.3296319
https://doi.org/10.1109/JIOT.2023.3296319
https://doi.org/10.1109/JIOT.2023.3296319
https://doi.org/10.1109/JIOT.2023.3296319
https://doi.org/10.1109/JIOT.2023.3296319
https://doi.org/10.1016/j.aeue.2024.155404
https://doi.org/10.1016/j.aeue.2024.155404
https://doi.org/10.1016/j.aeue.2024.155404
https://doi.org/10.1016/j.aeue.2024.155404
https://doi.org/10.1016/j.aeue.2024.155404
https://doi.org/10.1016/j.aeue.2024.155404
https://doi.org/10.1016/j.aeue.2024.155404
https://doi.org/10.1109/JIOT.2023.3343936
https://doi.org/10.1109/JIOT.2023.3343936


10 Mohsen Ahmadzadeh-Saeid Pakravan-Ghosheh Abed Hodtani 

 

 

 

Security of RIS-Assisted Networks Over Correlated 

Fisher-Snedecor F Fading Channels. IEEE Internet 

Things Journal. [Online]. 11(9), pp. 15152–15165. 

Available: 

https://doi.org/10.1109/JIOT.2023.3343936 

[10] S. Park and H. Seo. (2025, Mar.). Federated Learning 

Meets Fluid Antenna: Towards Robust and Scalable 

Edge Intelligence. Presented at arXiv. [Online]. 

Available: https://doi.org/10.48550/arXiv.2503.03054 

[11] L.-H. Shen and Y.-H. Chiu. (2025, Apr.). RIS-Aided 

Fluid Antenna Array-Mounted AAV Networks.  IEEE 

Wireless Communications Letters. [Online]. 14(4), pp. 

1049–1053. Available: 

https://doi.org/10.1109/LWC.2025.3531049 

[12] M. Pourghasemian, M. R. Abedi, S. S. Hosseini, N. 

Mokari, M. R. Javan, and E. A. Jorswieck. (2022). AI-

Based Mobility-Aware Energy Efficient Resource 

Allocation and Trajectory Design for NFV Enabled 

Aerial Networks. IEEE Transactions on Green 

Communications and Networking. [Online]. 7(1), pp. 

281–297. Available: 

https://doi.org/10.1109/TGCN.2022.3186911 

[13] M. Pourghasemian, H. Gacanin, and E. Perenda. 

(2023, Dec.). Cooperative Partial Task-Offloading for 

Heterogeneous Industrial Robotic MEC System Using 

Spectral and Energy-Efficient Federated Learning. 

Presented at GLOBECOM 2023 – IEEE Global 

Communications Conference. [Online]. Available: 

https://doi.org/10.1109/GLOBECOM54140.2023.104

36994 

[14] S. Sheikhzadeh, M. Pourghasemian, M. R. Javan, N. 

Mokari, and E. A. Jorswieck. (2021, Dec.). AI-Based 

Secure NOMA and Cognitive Radio-Enabled Green 

Communications: Channel State Information and 

Battery Value Uncertainties. IEEE Transactions on 

Green Communications and Networking. [Online]. 

6(2), pp. 1037–1054. Available: 

https://doi.org/10.1109/TGCN.2021.3135479 

[15] J. Yao and N. Ansari. (2021, Dec.). Secure Federated 

Learning by Power Control for Internet of Drones. 

IEEE Transactions on Cognitive Communications and 

Networking. [Online]. 7(4), pp. 1021–1031. Available: 

https://doi.org/10.1109/TCCN.2021.3076167 

[16] J. Yao and N. Ansari. (2021, Dec.). Secure Federated 

Learning by Power Control for Internet of Drones. 

IEEE Transactions on Cognitive Communications and 

Networking. [Online]. 7(4), pp. 1021–1031. Available: 

https://doi.org/10.1109/TCCN.2021.3076167 

[17] Q. V. Pham, M. Le, T. Huynh-The, Z. Han, and W. J. 

Hwang. (2022, May). Energy-Efficient Federated 

Learning Over UAV-Enabled Wireless Powered 

Communications. IEEE Transactions on Vehicular 

Technology. [Online]. 71(5), pp. 4977–4990. 

Available: https://doi.org/10.1109/TVT.2022.3150004 

[18] Y. Yu, X. Liu, Z. Liu, and T. S. Durrani. (2023, Oct.). 

Joint Trajectory and Resource Optimization for RIS 

Assisted UAV Cognitive Radio. IEEE Transactions on 

Vehicular Technology. [Online]. 72(10), pp. 13643–

13648. Available: 

https://doi.org/10.1109/TVT.2023.3270313 

[19] R. Liu, K. Guo, K. An, F. Zhou, Y. Wu, Y. Huang, 

and G. Zheng. (2023). Resource Allocation for 

NOMA-Enabled Cognitive Satellite–UAV–Terrestrial 

Networks with Imperfect CSI. IEEE Transactions on 

Cognitive Communications and Networking. [Online]. 

9(4), pp. 963–976. Available: 

https://doi.org/10.1109/TCCN.2023.3261311 

[20] M. Ahmadzadeh, S. Pakravan, and G. A. Hodtani. 

(2024, Dec.). Movable Antenna Design for UAV-

Aided Federated Learning via Deep Reinforcement 

Learning. Presented at 2024 15th International 

Conference on Information and Knowledge 

Technology (IKT). [Online]. Available: 

https://doi.org/10.1109/IKT65497.2024.10892658 

[21] M. Ahmadzadeh, S. Pakravan, and G. A. Hodtani. 

(2024, Dec.). Movable Antenna Design for UAV-

Aided Federated Learning via Deep Reinforcement 

Learning. In Proceedings of the 15th International 

Conference on Information and Knowledge 

Technology (IKT), pp. 91–95.  

[22] X. Cao, G. Zhu, J. Xu, and S. Cui. (2022, May). 

Transmission Power Control for Over-the-Air 

Federated Averaging at Network Edge. IEEE Journal 

on Selected Areas in Communications. [Online]. 40(5), 

pp. 1571–1586. Available: 

HTTPS://DOI.ORG/10.1109/JSAC.2022.3143217 

https://doi.org/10.1109/JIOT.2023.3343936
https://doi.org/10.1109/JIOT.2023.3343936
https://doi.org/10.1109/JIOT.2023.3343936
https://doi.org/10.1109/JIOT.2023.3343936
https://doi.org/10.1109/JIOT.2023.3343936
https://doi.org/10.48550/arXiv.2503.03054
https://doi.org/10.48550/arXiv.2503.03054
https://doi.org/10.48550/arXiv.2503.03054
https://doi.org/10.48550/arXiv.2503.03054
https://doi.org/10.48550/arXiv.2503.03054
https://doi.org/10.1109/LWC.2025.3531049
https://doi.org/10.1109/LWC.2025.3531049
https://doi.org/10.1109/LWC.2025.3531049
https://doi.org/10.1109/LWC.2025.3531049
https://doi.org/10.1109/LWC.2025.3531049
https://doi.org/10.1109/TGCN.2022.3186911
https://doi.org/10.1109/TGCN.2022.3186911
https://doi.org/10.1109/TGCN.2022.3186911
https://doi.org/10.1109/TGCN.2022.3186911
https://doi.org/10.1109/TGCN.2022.3186911
https://doi.org/10.1109/TGCN.2022.3186911
https://doi.org/10.1109/TGCN.2022.3186911
https://doi.org/10.1109/TGCN.2022.3186911
https://doi.org/10.1109/GLOBECOM54140.2023.10436994
https://doi.org/10.1109/GLOBECOM54140.2023.10436994
https://doi.org/10.1109/GLOBECOM54140.2023.10436994
https://doi.org/10.1109/GLOBECOM54140.2023.10436994
https://doi.org/10.1109/GLOBECOM54140.2023.10436994
https://doi.org/10.1109/GLOBECOM54140.2023.10436994
https://doi.org/10.1109/GLOBECOM54140.2023.10436994
https://doi.org/10.1109/GLOBECOM54140.2023.10436994
https://doi.org/10.1109/TGCN.2021.3135479
https://doi.org/10.1109/TGCN.2021.3135479
https://doi.org/10.1109/TGCN.2021.3135479
https://doi.org/10.1109/TGCN.2021.3135479
https://doi.org/10.1109/TGCN.2021.3135479
https://doi.org/10.1109/TGCN.2021.3135479
https://doi.org/10.1109/TGCN.2021.3135479
https://doi.org/10.1109/TGCN.2021.3135479
https://doi.org/10.1109/TCCN.2021.3076167
https://doi.org/10.1109/TCCN.2021.3076167
https://doi.org/10.1109/TCCN.2021.3076167
https://doi.org/10.1109/TCCN.2021.3076167
https://doi.org/10.1109/TCCN.2021.3076167
https://doi.org/10.1109/TCCN.2021.3076167
https://doi.org/10.1109/TCCN.2021.3076167
https://doi.org/10.1109/TCCN.2021.3076167
https://doi.org/10.1109/TCCN.2021.3076167
https://doi.org/10.1109/TCCN.2021.3076167
file:///C:/Users/hoshmand/AppData/Roaming/Microsoft/Word/Q.%20V.%20Pham,%20M.%20Le,%20T.%20Huynh-The,%20Z.%20Han,%20and%20W.%20J.%20Hwang.%20(2022,%20May).%20Energy-Efficient%20Federated%20Learning%20Over%20UAV-Enabled%20Wireless%20Powered%20Communications.%20IEEE%20Transactions%20on%20Vehicular%20Technology.%20%5bOnline%5d.%2071(5),%20pp.%204977–4990.%20Available:
file:///C:/Users/hoshmand/AppData/Roaming/Microsoft/Word/Q.%20V.%20Pham,%20M.%20Le,%20T.%20Huynh-The,%20Z.%20Han,%20and%20W.%20J.%20Hwang.%20(2022,%20May).%20Energy-Efficient%20Federated%20Learning%20Over%20UAV-Enabled%20Wireless%20Powered%20Communications.%20IEEE%20Transactions%20on%20Vehicular%20Technology.%20%5bOnline%5d.%2071(5),%20pp.%204977–4990.%20Available:
file:///C:/Users/hoshmand/AppData/Roaming/Microsoft/Word/Q.%20V.%20Pham,%20M.%20Le,%20T.%20Huynh-The,%20Z.%20Han,%20and%20W.%20J.%20Hwang.%20(2022,%20May).%20Energy-Efficient%20Federated%20Learning%20Over%20UAV-Enabled%20Wireless%20Powered%20Communications.%20IEEE%20Transactions%20on%20Vehicular%20Technology.%20%5bOnline%5d.%2071(5),%20pp.%204977–4990.%20Available:
file:///C:/Users/hoshmand/AppData/Roaming/Microsoft/Word/Q.%20V.%20Pham,%20M.%20Le,%20T.%20Huynh-The,%20Z.%20Han,%20and%20W.%20J.%20Hwang.%20(2022,%20May).%20Energy-Efficient%20Federated%20Learning%20Over%20UAV-Enabled%20Wireless%20Powered%20Communications.%20IEEE%20Transactions%20on%20Vehicular%20Technology.%20%5bOnline%5d.%2071(5),%20pp.%204977–4990.%20Available:
file:///C:/Users/hoshmand/AppData/Roaming/Microsoft/Word/Q.%20V.%20Pham,%20M.%20Le,%20T.%20Huynh-The,%20Z.%20Han,%20and%20W.%20J.%20Hwang.%20(2022,%20May).%20Energy-Efficient%20Federated%20Learning%20Over%20UAV-Enabled%20Wireless%20Powered%20Communications.%20IEEE%20Transactions%20on%20Vehicular%20Technology.%20%5bOnline%5d.%2071(5),%20pp.%204977–4990.%20Available:
file:///C:/Users/hoshmand/AppData/Roaming/Microsoft/Word/Q.%20V.%20Pham,%20M.%20Le,%20T.%20Huynh-The,%20Z.%20Han,%20and%20W.%20J.%20Hwang.%20(2022,%20May).%20Energy-Efficient%20Federated%20Learning%20Over%20UAV-Enabled%20Wireless%20Powered%20Communications.%20IEEE%20Transactions%20on%20Vehicular%20Technology.%20%5bOnline%5d.%2071(5),%20pp.%204977–4990.%20Available:
https://doi.org/10.1109/TVT.2022.3150004
https://doi.org/10.1109/TVT.2023.3270313
https://doi.org/10.1109/TVT.2023.3270313
https://doi.org/10.1109/TVT.2023.3270313
https://doi.org/10.1109/TVT.2023.3270313
https://doi.org/10.1109/TVT.2023.3270313
https://doi.org/10.1109/TVT.2023.3270313
https://doi.org/10.1109/TCCN.2023.3261311
https://doi.org/10.1109/TCCN.2023.3261311
https://doi.org/10.1109/TCCN.2023.3261311
https://doi.org/10.1109/TCCN.2023.3261311
https://doi.org/10.1109/TCCN.2023.3261311
https://doi.org/10.1109/TCCN.2023.3261311
https://doi.org/10.1109/TCCN.2023.3261311
https://doi.org/10.1109/IKT65497.2024.10892658
https://doi.org/10.1109/IKT65497.2024.10892658
https://doi.org/10.1109/IKT65497.2024.10892658
https://doi.org/10.1109/IKT65497.2024.10892658
https://doi.org/10.1109/IKT65497.2024.10892658
https://doi.org/10.1109/IKT65497.2024.10892658
https://doi.org/10.1109/IKT65497.2024.10892658
https://www.iktconference.ir/en/Home/Article/4b8464d9-2a31-410f-aead-2bbe3544908c
https://www.iktconference.ir/en/Home/Article/4b8464d9-2a31-410f-aead-2bbe3544908c
https://www.iktconference.ir/en/Home/Article/4b8464d9-2a31-410f-aead-2bbe3544908c
https://www.iktconference.ir/en/Home/Article/4b8464d9-2a31-410f-aead-2bbe3544908c
https://www.iktconference.ir/en/Home/Article/4b8464d9-2a31-410f-aead-2bbe3544908c
https://www.iktconference.ir/en/Home/Article/4b8464d9-2a31-410f-aead-2bbe3544908c
https://doi.org/10.1109/JSAC.2022.3143217
https://doi.org/10.1109/JSAC.2022.3143217
https://doi.org/10.1109/JSAC.2022.3143217
https://doi.org/10.1109/JSAC.2022.3143217
https://doi.org/10.1109/JSAC.2022.3143217
https://doi.org/10.1109/JSAC.2022.3143217


Journal of Computer and Knowledge Engineering, Vol. 8, No. 2, 2025. (10-24) 
 

 

 
Ferdowsi 

University of 

Mashhad  

 

 

Journal of Computer and Knowledge 

Engineering 
 

https://cke.um.ac.ir 

 

 

 

 

 

 
 

Information and 

Communication 

Technology Association of 

Iran 

  

 

 

Efficient Implementation of DVI Protocol on FPGA 

Research Article 

Sara Ershadi-Nasab1 , Danial Bayati2, Saeed Yazdani3 

  10.22067/cke.2025.91345.1142 

 

Abstract This paper presents a general-purpose 

hardware implementation of the digital visual interface 

(DVI) protocol on the Xilinx Virtex-6 ML605 FPGA 

platform for real-time display of digital processing results. 

The design enables direct output of processed data from 

the FPGA to an external monitor without relying on 

external processors or software-based rendering tools. It 

addresses key challenges in timing synchronization, pixel 
formatting, and interfacing with the onboard Chrontel 

CH7301C encoder to support resolutions up to 

1920×1080 at 60 Hz. A lightweight processing pipeline is 

developed in Verilog to convert multidimensional outputs 

into a sequential stream of pixel data conforming to the 

DVI protocol. As a case study, a lightweight convolutional 

neural network trained on the CIFAR-10 dataset is 

implemented on the FPGA, and its classification 

probabilities are displayed as a probability map on an 

LCD. Experimental results confirm low resource 

utilization and real-time performance, validating the 

system’s applicability in embedded applications such as 

machine learning inference, image processing, and real- 

time monitoring. This work demonstrates the feasibility of 

FPGA- based platforms for efficiently displaying digital 

video output in intelligent edge systems. 

 

Key Words  Digital visual interface, field programmable 

gate array, image processing, real-time, video processing, 

Xilinx Virtex-6.  

 

1. INTRODUCTION 
HE integration of neural networks with real-time image 

processing on FPGA platforms is vital for applications that 

require low latency and efficient computation. While 

neural networks are effective at interpreting visual data, 

displaying their classification results in real time directly 

from an FPGA presents practical challenges. In software 
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environments such as Python or MATLAB, classification 

results can be easily shown using high-level functions like 

plot(). However, FPGA-based systems lack such 

abstractions; displaying outputs requires manual control 

over video signal generation and transmission to an 

external monitor. This makes even basic output display—

such as showing the predicted class on an LCD screen—a 

nontrivial hardware task. 

 The DVI is a widely accepted standard for transmitting 

digital video signals, enabling seamless connections 

between computers and display devices [1], [2]. It requires 

careful synchronization of pixel data, clock signals, and 

timing signals to ensure the correct display of visual 

outputs. Misalignment of these signals can result in 

distorted or invisible outputs. Therefore, a precise and 

accurate implementation of the DVI protocol is crucial for 

verifying the functionality of FPGA- based neural network 

systems. As the demand for high- quality digital video 

transmission increases, bridging the gap between legacy 

interfaces—such as the video graphics array (VGA) and 

modern digital standards has become essential. Field-

programmable gate arrays (FPGAs) provide a flexible and 

customizable platform for implementing such interface 

conversions. 

 In modern image processing and deep learning 

applications, it is often necessary to display the output of 

computations on a monitor [3], [4]. This requirement 

becomes particularly important when processing is carried 

out on FPGA boards, as the FPGA functions as a 

specialized integrated circuit (IC) that performs intensive 

computational tasks. The results must be presented clearly 

and efficiently to ensure that the system operates as 

intended. In recent years, implementing deep learning 

algorithms on FPGA boards has gained significant 

attention, as these platforms offer high performance, low 

power consumption, and customizability compared to 

traditional processors [5], [6], [7]. Many embedded and 

T 
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edge applications now utilize specialized ICs, rather than 

general-purpose processors, to per- form neural network 

inference. These specialized ICs optimize power, memory 

usage, and transistor count, making them well- suited for 

real-time processing. However, to verify the accuracy and 

effectiveness of neural networks, the processed outputs 

must be displayed to the user in a comprehensible manner, 

necessitating the implementation of a video display 

protocol.  

 A key limitation in FPGA-based video systems arises 

from the interface between multidimensional data 

structures used in AI models and the strictly sequential 

data format required by video output hardware. While the 

Chrontel (CH7301C) [8] DVI encoder integrated on the 

ML605 board handles the encoding of pixel data into the 

transition minimized differential signaling (TMDS) format 

for robust transmission over DVI cables, it requires a 

continuous, precisely timed stream of pixel values along 

with horizontal and vertical synchronization signals. In 

contrast, neural networks and image processing algorithms 

typically operate on two- or three-dimensional data 

arrays—such as feature maps or RGB images—rather than 

linear pixel sequences. This structural mismatch demands 

custom logic to convert high-level, array-based outputs 

into tightly timed, flattened pixel streams that comply with 

the DVI protocol. The lack of built-in hardware for this 

conversion makes it necessary to implement a fully 

synchronized pipeline capable of feeding the Chrontel 

encoder accurately and in real time. Addressing this 

challenge is essential for achieving smooth and coherent 

display of neural network results in embedded artificial 

intelligence (AI) applications. This paper presents an 

efficient hardware-software co-design approach for real-

time display of neural network classification results using 

the DVI protocol on an FPGA. A lightweight neural 

network, trained on the CIFAR-10 dataset, is implemented 

within the FPGA, with its weights manually embedded in 

Verilog. The network processes input images and produces 

classification probabilities, from which the seven most 

probable classes are selected for display. These results are 

formatted as RGB data, which is then converted into a 

DVI-compatible signal for output to an external monitor. 

To achieve this, we generate synchronization signals, 

overlay the classification results on the display, and 

transmit the output to the onboard Chrontel DVI encoder 

of the Xilinx ML605 board. This enables real- time 

rendering of the classification output directly on an LCD 

screen, alongside the processed input image. By 

eliminating the need for external CPUs or GPUs, this 

approach enhances resource efficiency and provides a 

scalable solution for embedded AI applications. The 

proposed system demonstrates how FPGA-based deep 

learning architectures can be directly integrated with 

standard video output protocols, making them well-suited 

for edge computing and real-time classification tasks. This 

paper discusses the process of implementing the DVI 

protocol on the ML605 FPGA, including the challenges of 

signal synchronization, the integration of neural network 

output, and the successful testing of the system for real-

time image processing applications. By utilizing the power 

of the Xilinx Virtex-6 architecture, we aim to showcase the 

potential of FPGA platforms in the efficient and accurate 

display of neural network and image processing outputs. 

 One of the significant challenges in the integration of 

neural network outputs and real-time image processing in 

FPGA systems is the precise synchronization of timing 

signals for video display, especially in legacy-to-modern 

interface conversions. Existing solutions often focus on 

individual aspects, such as processing efficiency or display 

fidelity, without addressing the combined demand for real-

time performance and high- quality visualization. Our 

work introduces a novel approach by integrating DVI 

protocol on the ML605 FPGA to achieve seamless and 

accurate displaying of neural network outputs. The system 

leverages the capabilities of the Xilinx Virtex-6 

architecture, ensuring synchronization of pixel, clock, and 

timing signals with resolutions up to 1920×1080 at 60 Hz. 

This dual capability of high-resolution rendering and real-

time processing represents a significant step forward in the 

design of embedded systems, particularly for edge AI 

applications like medical imaging and smart monitoring. 

In this work, the ML605 FPGA development board, built 

on the Xilinx Virtex-6 architecture, is employed to 

prototype and implement complex digital systems. The 

design is developed using the Xilinx ISE 14.7 toolchain, 

which fully supports hardware synthesis and configuration 

for this platform. With its high-capacity FPGA, ample 

memory, and versatile I/O interfaces, the ML605 is well-

suited for system-on-chip (SoC) development and the 

implementation of advanced video interfaces. 

 The primary contribution of this work is the real-time 

implementation of the DVI protocol on the Xilinx Virtex-

6 ML605 FPGA platform. This implementation enables 

direct displaying of neural network outputs and image 

processing results by addressing key challenges in signal 

synchronization and high-resolution rendering. Key 

innovative aspects of the implementation include: 

1) Real-time DVI protocol implementation on FPGA: 

This work presents the complete implementation of the 

DVI protocol on the Xilinx ML605 FPGA board, 

enabling direct display of neural network outputs on 

external monitors without requiring a host CPU or 

GPU. 

2) Direct integration of neural inference with display 

pipeline: A novel hardware-software co-design is 

developed that links a lightweight convolutional neural 

network (CNN), manually implemented in Verilog, 

with a real-time pixel stream generator. The system 

converts multidimensional classification outputs into 

sequential RGB pixel values for video rendering. 

3) Custom hardware pipeline for TMDS-compatible 

output: The system addresses the structural mismatch 

between array-based AI outputs and the linearly timed 

pixel streams required by the DVI encoder. A 

synchronized pipeline is implemented to format and 

transmit the CNN output via the on-board Chrontel 

CH7301C encoder using the TMDS standard. 

4) Legacy-to-modern interface conversion: The design 

enables legacy VGA-style embedded systems to 

connect with modern digital displays via the DVI 

protocol, effectively bridging analog and digital video 

standards using programmable logic. 
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5) Efficient FPGA resource utilization: The architecture 

demonstrates minimal consumption of FPGA 

resources (less than 1% of slice registers and LUTs), 

allowing significant headroom for additional logic, 

such as more complex networks or preprocessing units. 

6)Hardware-based rendering of neural outputs: 

Classification probabilities are displayed as visual 

indicators—such as variable-width bars—directly on 

the LCD without software-based rendering. This 

hardware-centric approach facilitates real-time 

feedback in embedded systems. 

7) Scalability for edge AI applications: The system is 

well-suited for embedded AI scenarios, such as 

medical diagnostics, smart surveillance, and industrial 

monitoring, where low latency, power efficiency, and 

real-time result visualization are critical. 

 This novel implementation not only confirms the 

feasibility of video protocol integration on FPGA 

platforms but also provides a scalable framework for real-

time display in advanced embedded systems. 

 The structure of this paper is organized as follows: 

Section II introduces relevant studies addressing the topic. 

Section III presents a detailed comparison of commonly 

used display interfaces, including VGA, DVI, and high-

definition multimedia interface (HDMI), highlighting their 

features, limitations, and use cases. The proposed method 

architecture is outlined in Section IV. The experimental 

results are provided in Section V. Finally, the conclusion 

is presented in Section VI. 

 

2. RELATED WORK 
Integrating neural networks and real-time image 

processing outputs on FPGA platforms has garnered 

significant attention in recent years [9], [5]. Various 

studies have explored FPGA- based solutions for 

implementing video display protocols, focusing on DVI 

and related technologies [10], [9]. These efforts highlight 

the versatility of FPGAs in bridging legacy and modern 

systems while ensuring high-performance real- time 

processing. Recent advancements in AI have driven 

significant progress in intelligent flexible sensing systems 

capable of highly efficient data acquisition, analysis, and 

perception. These innovations enable more sophisticated 

communication between neural processing units and 

external sensors, improving real-time monitoring and 

display capabilities for applications such as flexible 

sensory systems, humanoid robotics, and human activity 

monitoring [4]. Similarly, the development of systems-on-

chip such as TinyVers, which incorporates state- retentive 

design for machine learning (ML) inference at the extreme 

edge, demonstrates the significance of energy-efficient 

and versatile hardware platforms in supporting real-time 

AI applications [5]. Recent advancements have showcased 

the implementation of FPGA-based real-time image 

processing systems, emphasizing the integration of DVI-

compatible video interfaces for effective visualization and 

synchronization [9]. Optimization techniques for 

deploying CNNs on FPGA plat- forms have further 

enhanced the efficiency of hardware- software co-design, 

enabling seamless display of neural net- work output [10]. 

High-speed video processing and display integration have 

also been demonstrated, particularly through FPGA-

accelerated object detection systems utilizing edge in- 

formation, achieving real-time potential in applications 

[11]. 

 Moreover, digital oscillatory neural network 

frameworks have been implemented on FPGAs for edge 

AI applications, highlighting the relevance of video signal 

generation capabilities in DVI-based visualization systems 

[12]. The development of real-time systems for processing 

neuronal network activity on FPGA platforms has further 

established the critical role of DVI in rendering real-time 

outputs for high-speed visual feedback [13]. Additionally, 

FPGA implementations of hyperchaotic neural network 

systems have illustrated the adaptability of these platforms 

for complex computations and their corresponding outputs 

[14].  

 Efforts have also focused on privacy-preserving 

authentication protocols for IoT devices, leveraging FPGA 

capabilities with DVI for secure and efficient visualization 

[3]. Finally, real-time video enhancement algorithms 

implemented on FP- GAs have underscored their ability to 

handle computationally intensive tasks while adhering to 

DVI standards for high- quality visualization [15].  

 Another important area of exploration has been the 

evolution of GPU hardware, which offers significant 

parallel processing capabilities for neural networks and AI 

workloads. Peddie [6] provides an in-depth review of the 

GPU environment and its impact on hardware, 

highlighting advancements in graphics processing 

technology and its integration into AI and ML workflows.  

 These insights are particularly relevant as GPUs and 

FPGAs continue to coexist as complementary technologies 

in real-time AI processing. These studies collectively 

demonstrate the flexibility and efficiency of FPGA 

platforms in integrating neural networks, real-time image 

processing, and video display protocols such as DVI. They 

provide a solid foundation for developing FPGA-based 

systems that deliver high-speed, accurate visual outputs—

crucial for applications in AI, edge computing, and 

embedded systems.  

 Wang and Luo [16] emphasize the benefits of FPGA 

accelerators in optimizing custom hardware architectures 

for real-time applications. Their review highlights the 

importance of precision reduction techniques in 

minimizing latency and enhancing performance—

approaches that directly support our objective of achieving 

high-speed and accurate displaying of neural network 

outputs.  

 Recent investigations into FPGA-based visualization 

systems have also explored optimization strategies aimed 

at reducing latency and power consumption. In particular, 

hybrid systems that combine FPGAs with processors or 

GPUs have received attention for their ability to offload 

specific tasks, such as preprocessing or feature extraction, 

to dedicated hardware blocks. This co-design approach is 

instrumental in meeting the strict timing constraints 

required for real-time video out- puts [17].  

 Overall, these studies underscore the potential of FPGA 

platforms for efficient video protocol integration and real- 
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time visualization, thereby paving the way for 

advancements in embedded display systems across 

applications like medical imaging, edge AI, and smart 

monitoring. Furthermore, the adaptation of FPGAs for AI-

driven video analytics has shown remarkable results. 

Thyagarajan et al. [18] and Park et al. [15] demonstrated 

the integration of neural network models with smart 

cameras, achieving real-time performance in applications 

like sports analytics and video enhancement. These 

findings align with the growing need for low-latency, high-

throughput FPGA solutions for video-based AI 

applications. Przesmycki and Nowosielski [19] explored 

the security implications of compromising emanations in 

VGA and DVI interfaces, providing insights into the 

design of secure and reliable FPGA-based visualization 

systems.  

 Moreover, Bailey [7] elaborated on the fundamentals of 

embedded image processing systems on FPGAs, detailing 

the integration of advanced display protocols like DVI and 

HDMI for multimedia applications. Hoang et al. [20] 

presented a pulse-coupled neural network (PCNN) 

framework implemented on FPGAs for real-time object 

recognition, showcasing DVI compatibility for visual 

outputs. Similarly, Fang et al. [21] proposed systematic 

optimization of spiking neural networks (SNNs) on 

FPGAs, emphasizing their ability to handle cognitive tasks 

in real-time scenarios. Farabet et al. [22] developed FPGA- 

based stream processors for convolutional neural 

networks, enabling real-time vision tasks with standard 

DVI connections for video display. These systems 

demonstrate the capacity of FPGA-based platforms to 

manage complex visual processing pipelines while 

ensuring low latency. Additionally, Yildiz et al. [23] and 

Kayaer et al. [24] explored FPGA implementations of 

cellular neural networks for preprocessing blocks in high-

definition video applications. Their systems utilize DVI 

interfaces to process and visualize outputs in real time. 

Abernot [25] investigated the use of oscillatory neural 

networks on FPGA platforms, highlighting their utility in 

edge AI systems requiring real-time video processing. This 

study underscores the adaptability of FPGA designs in 

integrating learning models with real-time video outputs. 

Yildiz et al. [26] presented the implementation of 

preprocessing blocks for cellular neural network-based 

systems on FPGAs, utilizing DVI for real-time output 

visualization. This research high- lighted the efficiency of 

FPGA designs for low-latency video applications. Antonik 

[27] explored FPGA implementations for hardware 

reservoir computing and real-time machine learning, 

emphasizing applications in edge AI. Similarly, Ahilan 

and James [28] focused on the design and implementation 

of a real-time car theft detection system, which leveraged 

FPGA processing and DVI visualization to achieve high-

speed image analysis. Davutoğlu et al. [29] designed a 

real-time frame buffer implementation using external 

memory on FPGAs. Their study demonstrated how FPGAs 

can efficiently manage frame data while supporting DVI 

interfaces for video display. Fasih et al. [30] examined 

FPGA-based systems for video enhancement in advanced 

driver assistance systems (ADAS), incorporating 

convolutional neural networks and DVI outputs to 

improve video clarity. 
 

 

 
TABLE 1 Detailed comparison of Vga, Dvi, and hdmi display interfaces 

 

Feature VGA DVI HDMI 

Year of Introduction 1987 1999 2003 

Signal Type Analog 
Analog & Digital (DVI-A, DVI-D, 

DVI-I) 
Digital 

Maximum Resolution Up to 1080p 
1920x1200 (Single-Link), 

2560x1600 (Dual-Link) 

8K at 60Hz or 4K at 120Hz (HDMI 

2.1) 

Color Depth Limited by analog quality 
24-bit (Single-Link) or higher for 

Dual-Link 
Up to 48-bit (HDR supported) 

Audio Support No No 
Yes, with multichannel audio 

support 

Cable Length Up to 15m with quality loss 
Up to 5m for digital, longer for 

analog 
Up to 15m for 4K, shorter for 8K 

Compatibility 
Legacy monitors and 

projectors 
Transitional systems 

Modern displays, TVs, and 

projectors 

Connector Type 15-pin D-Sub Multi-pin (varied) Compact (Type-A, Mini, Micro) 

Video Signal Quality Prone to interference 
Better than VGA; pure digital avoids 

noise 

Excellent; supports HDR and high 

refresh rates 

Multi-Monitor Support Not supported Not supported Supported via splitters 

Data Bandwidth Not standardized 
4.95 Gbps (Single-Link), 9.9 Gbps 

(Dual-Link) 
Up to 48 Gbps (HDMI 2.1) 

Use Cases 
Legacy monitors and 

projectors 
PC monitors and transitional setups 

TVs, gaming systems, multimedia 

devices 

Adapter Availability 
VGA to HDMI/DVI with 

converters 
DVI to VGA/HDMI with converters HDMI to VGA/DVI with converters 

Cost Low Moderate Higher (for high-speed cables) 
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3. COMPARISON OF VGA, DVI, AND HDMI IN 

FPGA-BASED SYSTEMS 

Video interfaces play a crucial role in FPGA-based image 

processing and displaying the neural network output. 

Among the widely used standards, VGA, DVI, and HDMI 

offer different trade-offs in terms of signal quality, 

bandwidth, and implementation complexity. Table 1. 

summarizes their key differences, focusing on their impact 

on FPGA implementation. DVI strikes a balance between 

complexity and quality, making it a suitable choice for 

FPGA-based real-time visualization of neural network 

outputs. Unlike VGA, it provides lossless digital 

transmission, and compared to HDMI, it avoids the 

additional complexity of audio and high-bandwidth digital 

content protection (HDCP) encryption, which are 

unnecessary for many FPGA applications. 

 

4. PROPOSED METHOD 

Fig. 1 illustrates the high-level design of the proposed 

hardware-based image classification pipeline. This system 

con- sists of six sequential stages that transform raw image 

data into classified and visualized output, ultimately 

displayed in 

 real time on a digital monitor. The process begins with 

image processing, where the input image—typically in 𝑊 

× 𝐻 × 3 RGB format—is resized, normalized, and 

optionally filtered to enhance its features and ensure 

consistency for the classification model. Next, the AI 

processing stage applies a lightweight classification 

algorithm, which may be based on neural networks or 

simpler machine learning methods. This stage extracts 

relevant features and produces a classification output in the 

form of a probability map or class index. 

 The third stage, probability map visualization, converts 

the AI output into a visual format by mapping probabilities 

or class indicators into color-coded RGB values. This 

makes the classification interpretable when displayed on a 

screen. In stage four, the system generates essential 

synchronization signals such as horizontal sync (HSYNC), 

vertical sync (VSYNC), and data enable (DE), along with 

precise pixel timing to prepare the image stream for 

display output. These signals ensure that the display device 

receives video data in a valid scanline order. 

 Once the pixel data and control signals are properly 

formatted, the fifth stage interfaces with the Chrontel 

(CH7301C) DVI encoder chip. This stage handles the 

conversion of parallel RGB data into TMDS (Transition 

Minimized Differential Signaling) format, which is the 

standard for DVI transmission. The sixth and final stage 

handles the actual DVI output, transmitting the TMDS 

signals to an external monitor where the classified image 

is rendered in real time, enabling immediate feedback and 

visualization. 

 Fig. 2 provides a detailed RTL schematic that 

corresponds specifically to the first four stages of the 

pipeline. These stages are fully implemented in Verilog 

and deployed on an FPGA platform. The image processing 

logic is handled by the image_processing module, which 

receives and formats the incoming image data. This is 

followed by the ai_processing module, which performs 

classification using MAC operations and feature extraction 

based on preloaded filters. The output of this stage is 

passed to the probability_map_visualizing module, which 

trans- forms the classification results into pixel-level RGB 

values based on scan positions. 

 

 

 

Fig. 1.  Overview of the hardware-based image classification pipeline implemented in Verilog. The process is divided into six main 

stages, from image input to real-time DVI display 

 
 



16  Sara Ershadi-Nasab, Danial Bayati, Saeed Yazdani 

 

 

 

 

Fig. 2.  Register transfer level (RTL) schematic of the Verilog-based image classification system. This diagram focuses on the 

implementation of Stages 1 through 4 within the FPGA, showing signal flow, control logic, and synchronization modules 

 

 To prepare for external video transmission, 

synchronization signals and timing control are generated 

by the display_clock and display_timing modules. These 

provide the pixel clock, scan coordinates, and sync signals 

required by the downstream encoder. While the RTL 

diagram concludes at this point, the outputs from Stage 4 

are structured specifically for interfacing with the Chrontel 

encoder in Stage 5, and eventually, real-time rendering on 

a monitor via Stage 6. 

4.1. Image Processing Stage 

The Image Processing stage serves as the initial 

component of our FPGA-based classification pipeline, 

tasked primarily with preparing raw image data for 

subsequent analysis by the AI Processing module. This 

stage plays a fundamental role, ensuring compatibility and 

quality enhancement of image data, thus directly 

influencing inference accuracy and computational 

efficiency. 

 In the present design, we adopt the widely recognized 

CIFAR-10 dataset as the primary source of training and 

evaluation images. CIFAR-10 provides 60,000 images 

(32×32 pixels, RGB) split into 50,000 training images and 

10,000 test images. These images span 10 distinct classes, 

each containing 

 6,000 samples. While CIFAR-10 images are natively in 

color (3 channels). 

 Initially, input image data arrives in standard RGB for- 

mat, represented as three separate channels (Red, Green 

and Blue) with each pixel typically stored at 8-bit color 

depth. Given the resource constraints and processing 

requirements of FPGA  

 hardware, these images undergo several preprocessing 

steps to enable efficient inference and maintain acceptable 

accuracy. First, input images are resized to a fixed, 

uniform resolution compatible with the downstream 

inference engine 

 (e.g., 32×32 or 64×64 pixels). This resizing, 

implemented in Verilog, utilizes hardware-optimized 

interpolation algorithms 

 (e.g., bilinear interpolation) to maintain image quality 

while reducing computational overhead. The choice of a 
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relatively small, standardized resolution aligns well with 

the limited memory and computational bandwidth on 

FPGAs, ensuring predictable timing and efficient 

parallelization. 

 Subsequently, normalization of pixel values scales the 

image data into a suitable numerical range (such as 0–1 in 

floating- point or Qm.n in fixed-point) to ensure stable 

arithmetic operations during neural network inference. For 

this project, an 8-bit RGB input is often transformed into a 

fixed-point representation (e.g., Q8.8) or scaled floating-

point format that fits the FPGA’s DSP slices and LUTs. 

This consistent input magnitude fosters stable training 

convergence (if on-FPGA training or partial re-training is 

used) and more accurate inference under resource 

constraints. 

 Depending on deployment needs, noise reduction 

filtering, such as median filtering or Gaussian smoothing, 

can be added to enhance the signal-to-noise ratio of raw 

images. In an FPGA context, these filters can be efficiently 

realized via parallelized convolution modules or simplified 

averaging techniques. The hardware-level parallelism 

offered by FPGAs significantly reduces latency for such 

operations, crucial for real-time applications. 

 Finally, the processed and normalized image data is 

buffered in on-chip block RAM or external memory, ready 

for rapid retrieval during inference. This buffering ensures 

a smooth pipeline from raw data ingestion to the AI 

Processing stage, mitigating bandwidth bottlenecks and 

guaranteeing real-time performance. By streamlining the 

raw images into a predictable format, the Image Processing 

stage lays the ground- work for the subsequent hardware-

accelerated CNN inference. 

4.2. AI Processing Stage 

The AI processing stage is the core of our FPGA-based 

image classification pipeline, where a CNN is 

implemented directly in Verilog HDL to achieve efficient 

real-time inference. Leveraging the intrinsic parallel 

processing capabilities of FPGAs, this design tackles the 

computationally intensive nature of CNNs while working 

under the logic, DSP, and memory constraints of devices 

like the ML605 board. 

 In our approach, we adopt a six-layer CNN architecture 

inspired by the work in [31]. The model comprises: 

1) Sliding Window Convolution (for feature 

extraction), 

2) ReLU Activation (introducing non-linearity), 

3) Max Pooling (down sampling to reduce spatial 

dimension), 

4) Flattening (restructuring 2D features into a 1D 

vector), 

5) Fully Connected (learning global relationships 

among features), 

6) Softmax Activation (producing a probability 

distribution over the 10 CIFAR-10 classes). 
 Each layer is coded as a separate Verilog module, 
allowing straightforward testing and debugging. For 
instance, the con- volution layer involves efficient 
hardware-based matrix multi- plication to convolve filters 
over the input feature maps, while the ReLU module 
employs a simple conditional operation to clamp negative 
values to zero. The Max Pooling module further reduces 
data dimensionality by selecting the maximum value 
within local neighborhoods of a feature map, improving 
robustness to minor shifts. Flattening modules then 
reshape the 2D feature maps into 1D vectors for fully 
connected processing, and a final Softmax step converts 
outputs to class probabilities. 

 Fig. 3 illustrates the internal organization of the 

inference module. A dedicated memory controller 

retrieves pretrained weights and biases from off-chip 

memory (e.g., DDR3 on the FPGA), while the 

computation engine executes multiply- and-accumulate 

(MAC) operations in parallel. By instantiating multiple 

DSP slices for simultaneous MAC operations, the 

inference pipeline substantially reduces latency compared 

to software-based implementations.

 

Fig. 3.  AI processing stage (inference) module organization. 
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 To achieve consistent performance and accuracy, we 

pre- trained the CNN offline, using standard frameworks 

(e.g., Ten- sorFlow or PyTorch) with the CIFAR-10 

dataset. During this training phase, high-level floating-

point arithmetic was used. Post-training, model parameters 

were quantized or scaled to fit the fixed-point precision 

supported by the Verilog modules on the FPGA. This 

quantization can be as coarse as Q4.12 or Q8.8, depending 

on resource availability and desired accuracy. An 

activation function module applies nonlinearities such as 

ReLU. Compared to sigmoid or tanh, ReLU is both simpler 

to implement and less prone to saturating at extremes. The 

AI inference controller, operating in concert with these 

modules, handles synchronization, data flow, and final 

classification result generation. Once classification is 

complete, the output is forwarded to subsequent logic 

interfaces for digital video output or further processing 

steps. 

 By consolidating these hardware modules, we 

demonstrate a feasible CNN pipeline capable of real-time 

classification, even on mid-range FPGA platforms. This 

tightly integrated design exemplifies how FPGAs can 

address demanding edge inference tasks, combining low-

power consumption with competitive throughput for 

resource-constrained environments. Future enhancements 

may explore deeper CNN architectures or color- image 

pipelines once resource usage is further optimized. 

Nonetheless, the current 6-layer CNN exhibits strong 

proof- of-concept for FPGA-based deep learning inference 

on the CIFAR-10 dataset. 

4.3.    Probability Map Visualization Stage 

The probability map visualization stage serves as a critical 

intermediary within the FPGA-based classification 

pipeline, connecting AI-generated outputs to the digital 

video display subsystem. In this stage, the numeric 

classification results produced by the AI inference engine 

are systematically converted into clearly distinguishable 

visual representations suitable for subsequent DVI output. 

Specifically, classification labels or inference results—

initially represented as numeric vectors or encoded class 

identifiers—are mapped into a predefined color- coding 

scheme. In our implementation, this involves associating 

each classified category with a unique color, employing a 

fixed set of up to ten distinct colors, each corresponding 

directly to a specific classification result. Such mapping is 

efficiently realized using lookup tables (LUTs) 

implemented directly within Verilog code. 

 The Verilog implementation of the probability map 

visualization module involves defining a lookup table that 

associates each of the classification outputs with a 

preselected RGB color value. This enables immediate, 

visual differentiation of predicted classes on screen, 

enhancing interpretability and facilitating rapid decision-

making. The hardware module utilizes internal FPGA 

resources, typically block RAM or distributed LUTs, to 

perform this quick mapping operation. For instance, an 

inference result labeled as “Class 1” might correspond to 

red, while “Class 2” might be displayed as green, and so 

forth. If the AI inference identifies more than a limited 

number of classes, a hierarchical encoding strategy can be 

employed to group classes into broader categories, 

preserving FPGA resources while maintaining visual 

clarity. 

 Additionally, the module handles synchronization tasks 

necessary for digital video interfaces. It ensures that the 

converted RGB data stream matches the timing 

requirements of the DVI protocol, performing frame 

buffering and pixel synchronization. Precise control of 

pixel timing, horizontal and vertical synchronization 

signals, and other required digital video parameters 

guarantees a stable, high-quality visual output free from 

artifacts or latency issues. 

 Moreover, for scenarios involving uncertainty or 

unidentified classes, an additional category (often 

represented by a neutral color or grayscale) can be 

assigned. Implementing 

 these visual encoding schemes directly through 

hardware de- scription language allows for seamless, real-

time visualization of classification results without latency 

overhead, which is critical for applications requiring 

immediate feedback, such as real-time image 

classification and monitoring systems. 

4.4. Generating Synchronization Signals 

Stage 4 of the system comprises several essential mod- 

ules that work in tandem to generate synchronization 

signals and drive display output. These modules include 

dis- play_clock, display_timing, and RGB color channel 

multiplexers (mux_dvi_red, mux_dvi_green, 

mux_dvi_blue). Together, they handle the timing, pixel 

positioning, and output format- ting necessary for DVI 

video transmission, as shown in fig. 2. 

 The display_clock module is responsible for producing 

the required video clocks using a mixed-mode clock 

manager (MMCM). It generates a stable pixel clock 

(o_clk_1×) for the entire display pipeline and asserts a 

o_locked signal once clock stabilization is achieved. By 

manipulating multiplication and division factors, the 

module ensures that clock frequencies align precisely with 

resolution-specific requirements, facilitating smooth video 

playback. 

 As shown in Table 2, the clock parameters are resolution 

dependent. The MULT_MASTER parameter sets the base 

frequency multiplier, while DIV_MASTER, DIV_5×, and 

DIV_1× divide the result to generate the final pixel clock. 

 For high-definition formats like 1920×1080, smaller 

division values (e.g., DIV_1×, × = 5) ensure the required 

high- frequency clocks are achieved for dense pixel grids. 

 
TABLE 2 

Clock setting for different resoulutions 

Parameter 640×480 800×600 1280×720 1920×1080 

MULT_MASTER 31.5 10.0 37.125 37.125 

DIV_MASTER 5 1 5 5 

DIV_5× 5.0 5.0 2.0 1.0 

DIV_1× 25 25 10 5 

 

 The display_timing module generates horizontal and 

vertical sync signals (o_hs, o_vs), display enable (o_de), 
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and current pixel coordinates (o_sx, o_sy) based on the 

incoming pixel clock (i_pix_clk). These signals are 

fundamental for precise raster scanning and timing 

alignment with modern DVI dis- plays. 

 Table 3. presents the horizontal and vertical timing 

parameters. These include the active resolution (H_RES, 

V_RES) as well as blanking intervals (H_FP, H_SYNC, 

H_BP, and their vertical counterparts). At higher 

resolutions like 

 1920×1080, longer back porch values (e.g., H_BP = 

148) allow more time for processing and synchronization. 

Sync 

 polarities (H_POL, V_POL) also adapt to modern 

display requirements—switching to active-high signals for 

resolutions 800x600 and above. 

 The output of the display_timing module directly drives 

the RGB multiplexers: mux_dvi_red, mux_dvi_green, 

mux_dvi_blue. These modules select between raw image 

data and AI-generated overlay visuals (received from 

upstream modules like probability_map_visualizing) 

using select signals. The chosen color values are then 

output to the DVI lines: DVI_RED, DVI_GREEN, and 

DVI_BLUE.  
TABLE 3 

Display timings for different resoulutions 

Parameter 640×480 800×600 1280×720 1920×1080 

H_RES 640 800 1280 1920 

V_RES 480 600 720 1080 

H_FP 16 40 110 88 

H_SYNC 96 128 40 44 

H_BP 48 88 220 148 

V_FP 10 1 5 4 

V_SYNC 2 4 5 5 

V_BP 33 23 20 36 

H_POL 0 1 1 1 

V_POL 0 1 1 1 

 

4.5. Chrontel Encoder Chip (CH7301C) and DVI Output 

Stage 

The final and crucial step in the FPGA-based image 

classification pipeline involves the Chrontel (CH7301C) 

DVI Transmitter chip. This integrated circuit, utilized 

specifically on the ML605 FPGA development board, is 

designed for converting digital image data from the 

FPGA’s internal processing units into standardized DVI 

signals, suitable for high-quality video output. 

 The Chrontel (CH7301C) is a specialized 

semiconductor device that accepts parallel digital data 

(typically in RGB format) from the FPGA and converts it 

into a serialized digital signal conforming to DVI 

standards. This chip facilitates the transition from internal 

FPGA processing outputs into a standard video signal 

suitable for displays. To achieve this, the (CH7301C) 

device internally incorporates encoding logic, parallel-to-

serial conversion circuits, and synchronization logic. It 

receives 24-bit parallel RGB data signals along with 

synchronization signals (horizontal sync, vertical sync, 

and pixel clock signals) directly from the FPGA output 

pins. The device then performs parallel-to-serial data 

conversion, encoding the video data using the TMDS 

protocol, which is fundamental to the DVI standard. 

 In practice, once the AI inference results have been con- 

verted into color-coded pixel data by the probability map 

visualization module within the FPGA, these parallel pixel 

data streams are passed directly into the (CH7301C). This 

chip organizes the incoming RGB digital signals, applies 

necessary timing and synchronization adjustments, and 

serializes the data into TMDS-compliant signals. TMDS 

encoding ensures minimal electromagnetic interference 

(EMI), high-speed data transmission, and robust signal 

integrity, allowing reliable delivery of digital video signals 

across standard DVI cables to display devices. 

 The Chrontel chip manages critical video signal timing, 

including pixel clock generation, horizontal 

synchronization (HSYNC), vertical synchronization 

(VSYNC), and data enable (DE) signals. Correct 

synchronization of these signals ensures stable and flicker-

free images. The chip typically supports a wide range of 

resolutions, accommodating various resolutions defined 

by FPGA configurations. Internally, the (CH7301C) also 

integrates modules for color space management and signal 

integrity control, ensuring consistent output quality and 

compatibility with digital displays. 

 The DVI standard itself is a high-speed digital interface 

widely used for video transmission between source 

devices (such as FPGA boards or graphics cards) and 

display monitors. DVI leverages the TMDS standard, 

effectively minimizing electromagnetic interference and 

maintaining signal integrity, making it well-suited for 

high-resolution, high-bandwidth digital video streams. On 

the ML605 FPGA board, the Chrontel (CH7301C) 

precisely encodes and transmits the FPGA- generated 

video signals, ensuring that the classification output 

images are clearly, accurately, and promptly displayed 

without data loss or distortion. 

 Key Components of the DVI Signal: 

1) Pixel Data (RGB Values): Represents pixel colors as 8- 

or 10-bit RGB values. In the provided Verilog code, a 1-

bit RGB representation uses the MSB for output, 

simplifying color processing. 

2) Synchronization Signals: 

 HSYNC (Horizontal Sync): Marks the start of a 

new pixel row. 

 VSYNC (Vertical Sync): Indicates the start of a 

new frame, resetting the display for the next 

frame. 

3) Clock Signal (DVI_CLK): Synchronizes pixel data and 

timing signals with the display’s refresh rate for smooth 

video output. 

 Timing and Display Processing: The Verilog code 

manages timing through modules that generate pixel 

positions (sx, sy), frame signals, and synchronization 

outputs (h_sync, v_sync). These signals ensure pixel data 

aligns with the LCD’s grid structure. 

 LCD Display Conversion: The LCD controller 
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processes incoming RGB data to adjust liquid crystal cells, 

determining pixel color and intensity. HSYNC, VSYNC, 

and DVI_CLK ensure data is applied in the correct 

sequence, maintaining image integrity and frame 

synchronization. 

 

4.6. Displaying the Output of the Trained Neural 

Network on Monitor using DVI 

Using the DVI to analyze trained neural network results, a 

system was implemented to display outputs on a monitor. 

This involves hardware-software integration to enable 

efficient and accurate visualization. 

 Process Overview: Neural network outputs, such as 

class labels or probabilities, are processed into visual 

formats (e.g., bounding boxes, heatmaps). A lightweight 

rendering engine maps these data into graphical primitives 

and generates images or video frames compatible with 

DVI displays. 

 DVI Signal Generation and Hardware Integration: A 

DVI transmitter module encodes visual content into 

synchronization signals (HSYNC, VSYNC) and RGB 

pixel data. An FPGA or microcontroller ensures 

compliance with DVI timing specifications, delivering 

high-resolution, low-latency output to the monitor 

 

5. EXPERIMENTAL RESULTS 
As a case study the proposed CNN for classification of 

CIFAR-10 images is implemented in Verilog as suggested 

in [31], to display the output classification of this network 

we used the proposed method, Result in Table 4. indicate 

the number of slice registers, slice LUTs, I/O pins and 

global clock buffers (BUFG) used in CNN architecture. 

The DVI protocol implementation on the ML605 FPGA 

was evaluated in terms of device utilization to highlight its 

resource efficiency. Our analysis focused on key FPGA 

resources—namely slice registers, LUTs, and logic 

components. Table 5. presents the synthesis report results, 

which reflect the resource usage of the DVI protocol 

module (as illustrated in Fig. 4). The notably low resource 

consumption (31 slice registers and 90 LUTs) underscores 

the lightweight nature of our design for generating 

synchronization signals in stage 4 explained in section IV-

D. 

 
TABLE 4 

Device utilization summary for slice logIc of prorosed CNN for 

classification of cifar-10 images 
 

Resource Used Available Utilization 

 (%) 

Slice Registers (FF) 910 301,440 0.30 

Slice LUTs 1,871 150,720 1.24 

I/O Pins 357 720 49.58 

Global Clock Buffers 

(BUFG) 

1 32 3.13 

 

 

 

 

TABLE 5 

Device utilization summary for slice logic for generating 

synchronization signals 
 

Resource Used Available Utilization (%) 

Slice Registers 31 301,440 1 

Slice LUTs 90 150,720 1 

Logic Components 88 150,720 1 

 

The results demonstrate efficient utilization of FPGA 

resources, with significant room for additional 

functionality if needed. The utilization metrics indicate 

that the design is optimized and suitable for real-time 

processing while maintaining a low resource footprint. Our 

experiments confirmed the success of the FPGA-based 

DVI protocol implementation. The results showed that the 

system meets DVI standards for signal synchronization 

and output quality, supports high-resolution video 

displays, and demonstrates real-time performance for 

image processing and displaying the predicted output 

prob- ability map of neural network. The following key 

points were confirmed through testing: 

• Precise signal synchronization with no visible 

distortion or delay. 

• High-quality video output, supporting resolutions 

up to 1920×1080 at 60 Hz. 

• Real-time image processing with a throughput of 

up to 30 fps at 1280×720 resolution. 

• Efficient use of FPGA resources, leaving room for 

additional tasks or optimizations. 

These results validate the feasibility and effectiveness 

of using the ML605 FPGA for displaying the predicted 

output probability map of trained model by neural network 

and image processing applications and pave the way for 

future improvements in FPGA-based video systems. As 

shown in Fig. 4, the probability values of the classes in the 

multi-class trained neural network can be displayed on an 

LCD. Each class probability is represented by the width of 

the corresponding column bar, visually indicating the 

likelihood of each class. 

 Fig. 4 illustrates the neural network output as it is 

rendered on an LCD screen via the DVI protocol 

implemented on the FPGA. The figure shows how 

classification results—such as class probabilities—are 

translated into graphical bar elements for real-time display. 

Each class is represented by a colored bar, where the bar’s 

width corresponds to the predicted probability of that class. 

This format enables quick interpretation of classification 

outcomes, supporting applications such as medical 

imaging or real-time object detection. The FPGA ensures 

precise synchronization of pixel and timing signals, 

allowing seamless and low-latency image rendering. This 

figure demonstrates the system’s effectiveness in 

converting computational results into a clear and 

immediate display format, highlighting its applicability for 

embedded and edge AI systems. 
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Fig. 4.  Real-time display of the CNN model’s probability map on the CIFAR-10 dataset during the testing phase. The width of each 

color bar indicates the predicted probability of the corresponding class, with the widest bar representing the most likely classification. 

 
Fig. 5.  Signal waveforms for timing, pixel data, and clock synchronization. 

 

 Fig. 5. shows the signal waveforms captured during the 

execution of the design. These waveforms illustrate the 

synchronization of timing signals, pixel data, and clock 

signals, which are critical for ensuring the correct 

operation of the DVI protocol. 

 The signal waveforms validate the proper 

implementation of the DVI protocol, showing stable 

synchronization across all required signals. These results 

support the design’s ability to handle real-time video 

outputs effectively. 

 Using on-board LEDs to monitor the status of TMDS 

signals is an effective and simple method for debugging 

the DVI connection from an FPGA to a monitor. If the 

LEDs connected to the TMDS lines, such as data or clock, 

are not blinking, it indicates that the TMDS signals are not 

initialized correctly, and the issue is not related to the 

monitor. To troubleshoot, we ensure proper initialization 

of TMDS signals, verify clock settings on the FPGA, and 

confirm that the DVI standard configurations (e.g., 

resolution, sampling rate) are accurate 

 

6. CONCLUSION 
This paper presented a hardware implementation of the 

DVI protocol on the ML605 FPGA platform for real-time 

display of neural network and image processing outputs. 

Leveraging the capabilities of the Xilinx Virtex-6 
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architecture and the flexibility of FPGA-based design, a 

system was developed to transmit high-quality digital 

video signals directly to an external monitor. 

 The implementation addresses critical challenges such 

as pixel synchronization, precise timing control, and 

protocol compliance, thereby enabling accurate rendering 

of classification results without relying on external 

processors. The system 

 supports high-resolution output (up to 1920×1080 at 60 

Hz) and demonstrates low resource utilization, making it 

suitable 

 for embedded and edge AI applications. 

 By embedding the DVI output functionality within the 

FPGA and integrating lightweight neural network 

inference, this work provides an effective hardware-

software co-design framework for real-time feedback in 

intelligent systems. The approach is particularly valuable 

for tasks requiring low latency and high reliability, such as 

smart monitoring and medical imaging. 

 Future research could explore extending the design to 

sup- port alternative video standards (e.g., HDMI or 

DisplayPort), implementing more complex neural 

architectures, or scaling the design for multi-channel 

outputs. Additionally, improvements in memory access 

patterns, dynamic reconfiguration, or adaptive resolution 

could further enhance system performance and flexibility. 

 Overall, this work demonstrates the viability of FPGA- 

based systems for efficient, high-performance neural 

network inference and real-time display using digital video 

interfaces, contributing to the advancement of intelligent 

embedded system design. 
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Abstract  The increasing reliance on Internet of Things 

devices in smart grids has introduced significant 

cybersecurity challenges, particularly in the detection and 

prevention of Advanced Persistent Threats. These threats, 

characterized by their stealth and persistence, can 

compromise the integrity and functionality of critical grid 

infrastructure. This paper proposes the use of Deep 

Reinforcement Learning to enhance cybersecurity in smart 

grids by leveraging the ProAPT model, which is 

specifically designed to predict and mitigate Advanced 

Persistent Threats. The ProAPT model utilizes a Markov 

Decision Process to simulate and assess potential threats, 

dynamically adapting to the evolving security landscape. 

The model is trained using the CICAPT-IIoT dataset, 

which includes simulated attack scenarios in industrial 

IoT networks. The results of our experiments demonstrate 

the effectiveness of the ProAPT model in detecting and 

preventing APTs in smart grid environments. 

Experimental results show that the ProAPT model 

significantly outperforms traditional machine learning 

algorithms like Random Forest, Support Vector Machines, 

and Logistic Regression, achieving 93.8% accuracy, 

93.12% precision, 95.2% recall, and 94.15% F1-Score. 

The feature importance analysis reveals that traffic-

related features such as packet size variance and 

connection duration are crucial in identifying Advanced 

Persistent Threats. This paper demonstrates the 

effectiveness of Deep Reinforcement Learning in 

enhancing smart grid cybersecurity by proactively 

identifying and mitigating cyber threats, offering a 

promising approach to securing IoT-based critical 

infrastructures against sophisticated cyberattacks. 
 

Key Words  Cyber Security, Smart Grids, Advanced 

Persistent Threats, Deep Reinforcement Learning, 

ProAPT Model, Feature Importance. 
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1. INTRODUCTION 
The transformation from traditional power grids to smart 

grids has revolutionized the energy sector by integrating 

modern technologies such as IoT devices, sensors, and 

advanced communication systems. These technologies 

enable real-time monitoring, automated decision-making, 

and predictive maintenance, making energy supply more 

efficient, reliable, and sustainable. In particular, smart 

grids enable dynamic management of electricity 

generation, distribution, and consumption, improving 

energy efficiency and facilitating the integration of 

renewable energy sources. However, the increasing 

complexity of smart grids increases their vulnerability to 

cybersecurity threats. The emergence of IoT in smart grids 

has significantly increased the number of connected 

devices and systems, many of which are exposed to 

external networks or deployed in remote or insecure 

environments. While these IoT devices are essential to 

optimizing network operations, attackers can also exploit 

vulnerabilities in these devices to infiltrate network 

systems, manipulate operations, or disrupt network 

operations. These threats are exacerbated by the increasing 

sophistication and persistence of cyber-attacks targeting 

critical infrastructure, which can have serious 

consequences such as system failure, data theft, and even 

property damage [1].  

 One of the most concerning types of cyber-attacks 

related to smart grids is the APT. An APT is a type of 

advanced, stealthy cyber-attack designed to infiltrate a 

network and remain undetected for long periods of time. 

Unlike traditional cyber-attacks, which are often short-

lived and detectable by traditional defense mechanisms, 

APTs are characterized by their multi-stage nature and 

long-term objectives, making them difficult to identify and 

contain. These threats are often launched by well-funded 

and organized attackers, including nation states and 

cybercrime organizations, who seek to maintain persistent 

https://cke.um.ac.ir/article_46904.html
https://cke.um.ac.ir/
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https://orcid.org/0000-0002-5316-8005
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access to critical systems for espionage, sabotage, or data 

exfiltration. The impact of APTs on the smart grid is 

potentially devastating [2].  

 If attackers successfully penetrate the smart grid, they 

can manipulate operational data, disrupt the flow of 

electricity, or compromise the security of the entire 

system. For example, APTs could attack the power grid's 

control systems, causing power outages and damaging the 

electrical infrastructure. Furthermore, because the smart 

grid is decentralized and relies heavily on IoT devices for 

data collection and decision-making, these attacks are 

increasingly difficult to detect.  

 Traditional defense mechanisms such as signature-

based IDSs and basic anomaly detection methods are often 

ineffective against such complex and persistent threats. 

The scale and complexity of the smart grid poses unique 

challenges for cybersecurity. Unlike traditional IT 

networks, where security measures can be deployed 

centrally, the smart grid is comprised of numerous 

interconnected devices, including smart meters, grid 

sensors, phases of power flow management systems, and 

actuators. These devices are distributed across vast 

geographic areas and communicate with each other in real 

time to ensure efficient network operation. Given this 

dynamic and decentralized structure, ensuring the security 

of the smart grid requires not only protecting individual 

devices, but also ensuring that all components work 

together securely [3].   

 Recent research highlights the growing importance of 

deep learning techniques, particularly Deep 

Reinforcement Learning [4], in addressing the dynamic 

and adaptive nature of APTs in smart grids. DRL offers a 

promising solution for proactive cybersecurity measures 

by continuously learning from interactions with the 

environment and adapting strategies accordingly. Studies 

such as [5] emphasize the role of deep learning in 

enhancing the resilience of smart grid networks against 

evolving cyber threats. In addition, Sewak et al. [6] 

demonstrate the effectiveness of DRL-based models in 

detecting complex cybersecurity threats, including APTs, 

by using reward-based learning frameworks. These 

advancements are particularly relevant for smart grid 

systems, where traditional cybersecurity measures are 

increasingly inadequate due to the rapid evolution of attack 

techniques and the scale of connected devices. 

 Moreover, recent studies such as [7,8] have proposed 

robust models integrating machine learning and DRL for 

detecting and mitigating APTs. They have designed a DRL 

framework for smart grid cybersecurity, highlighting its 

ability to adapt to the complex, dynamic nature of cyber-

physical attacks. Khan et al. [7] provide an overview of the 

cyber threats facing modern smart grids and propose 

advanced machine learning models to counter these 

challenges. These studies reinforce the need for adaptive 

and proactive cybersecurity frameworks like the ProAPT 

model, which utilizes DRL to predict and mitigate APTs 

before they fully manifest, thus improving the security and 

reliability of smart grids. In addition, IoT devices often 

have limited processing power and storage capacity and 

may not support traditional security measures, further 

complicating the detection and containment of complex 

cyber threats. Furthermore, the growing reliance on M2M 

communications and cloud computing in smart grids 

increases the attack surface and provides attackers with 

numerous entry points. This is particularly problematic 

because attackers may exploit vulnerabilities in the 

software or hardware of IoT devices, as well as in 

communication protocols and network interfaces. 

 As a result, traditional cybersecurity approaches are no 

longer sufficient to address emerging threats to smart 

grids. Given the limitations of traditional techniques and 

the increasing sophistication of cyber-attacks, there is an 

urgent need for more advanced and adaptive solutions that 

can effectively detect, predict, and mitigate APTs in smart 

grids [9]. 

 In this paper, we propose a novel solution to combat 

cybersecurity threats in smart grids by detecting and 

mitigating APTs using DRL. DRL is a branch of machine 

learning in which an agent learns how to make optimal 

decisions by interacting with the environment and 

receiving feedback in the form of rewards or penalties 

[10]. Unlike supervised learning approaches that require 

labeled data, DRL operates in dynamic environments and 

is able to continuously learn from new interactions and 

adapt its strategy accordingly. The proposed solution 

leverages the ProAPT (Prediction of Advanced Persistent 

Threats) model [11], which is designed to predict and 

mitigate APTs using deep reinforcement learning. The 

central idea behind the ProAPT model is to use a Markov 

decision process (MDP) to simulate the evolving security 

state of a smart grid system and determine the optimal 

action to address potential threats. 

 In the context of a smart grid, these actions might 

include triggering security protocols, isolating affected 

devices, or adjusting network configurations to prevent the 

attack from spreading. By continually interacting with the 

grid’s environment and receiving feedback, the model 

learns how to improve threat detection and mitigation 

strategies over time, enabling it to identify APTs before 

they fully manifest. One key innovation of this approach is 

its ability to proactively predict APTs. Rather than relying 

on reactive measures such as post-attack detection, the 

ProAPT model predicts possible future threats based on 

historical attack data and ongoing grid activity. This 

proactive approach significantly improves the resilience of 

the grid, enabling early intervention to prevent severe 

damage. The model is trained using the CICAPT-IIoT 

dataset [12], which contains simulated attack scenarios in 

industrial IoT networks. The ProAPT model is applied to 

this dataset to evaluate its effectiveness in detecting and 

mitigating APTs in smart grid environments.  

 This paper makes the following key contributions to 

advancing smart grid cybersecurity: 

 Novel Application of DRL for APT Prediction: 

Unlike previous works that rely on traditional 

machine learning approaches, this study pioneers 

the use of DRL to predict APTs in smart grids, 

enabling a more adaptive and proactive defense 

mechanism. 

 Empirical Validation on a Real-World Industrial 

IoT Dataset: We rigorously evaluate our 

proposed ProAPT model using the CICAPT-IIoT 
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dataset, which includes diverse and realistic 

cyber-attack scenarios specific to critical 

infrastructure, ensuring practical relevance and 

generalizability. 

 Feature Importance-Driven Model Optimization: 

Our approach integrates a feature importance 

analysis to systematically identify and prioritize 

the most critical features, enhancing model 

interpretability and efficiency. 

 Comprehensive Performance Assessment: 

Unlike prior studies that focus on limited 

evaluation metrics, we conduct an extensive 

performance analysis using accuracy, precision, 

recall, and F1-score to provide a holistic 

understanding of the model’s effectiveness in 

detecting and mitigating APTs. 

 This paper is structured as follows: 

 Section 2 provides a comprehensive overview of related 

research in the areas of cybersecurity in smart grids, APT 

detection, and the application of DRL in cybersecurity. 

Section 3 presents the methodology detailing the ProAPT 

model, its adaptation to smart grid cybersecurity, the 

training process and evaluation using the CICAPT-IIoT 

dataset. Section 4 describes the experimental setup 

including the results of applying the ProAPT model and 

compares its performance with other conventional models 

in terms of detection accuracy, precision and F1-score. In 

section 5 feature importance methods are implemented and 

the best features are stated. Finally in sections 6 and 7 we 

discuss and conclude the paper with an overview of the 

contributions and suggestions for future work such as 

improving scalability and integrating it into existing smart 

grid security frameworks. 

 

2. RELATED WORK 

Smart grid cybersecurity is a critical concern due to the 
integration of advanced technologies and data-driven 
systems, which, while enhancing efficiency and 
sustainability, also introduce vulnerabilities. These 
vulnerabilities manifest in various forms, such as false data 
injection attacks, malware, and cyber-physical attacks, 
posing significant risks to the integrity and reliability of 
smart grids. Addressing these threats requires a 
multifaceted approach involving detection, prevention, 
and mitigation strategies. Machine learning models, such 
as Extra Tree, Random Forest, and Extreme Gradient 
Boosting, have shown high accuracy (up to 98%) in 
detecting these attacks, providing a robust defense 
mechanism [13]. 
 Cyber-Physical attacks involve manipulating power 
demands using IoT devices or introducing false sensor 
readings. A DRL framework has been proposed to counter 
these attacks by triggering appropriate protection 
sequences, verified through reachability analysis for safety 
[14]. The use of SCADA systems in smart grids makes 
them susceptible to malware, which can exploit IT-OT 
integration vulnerabilities. The complexity of these 
systems increases the risk of cyber threats, necessitating 
enhanced cybersecurity measures [15]. 
 The integration of information and operations 

technology in smart grids introduces new vulnerabilities, 
requiring continuous monitoring and updating of security 
protocols to prevent breaches [16]. Implementing a 
combination of traditional and advanced security measures 
is crucial. This includes regular updates, intrusion 
detection systems, and employee training to recognize and 
respond to threats [7]. Ongoing research is essential to 
address emerging threats and develop innovative 
solutions, such as advanced algorithms for attack detection 
and mitigation [16]. While smart grids offer numerous 
benefits, such as improved energy efficiency and 
integration of renewable sources, they also present unique 
cybersecurity challenges. The dynamic nature of cyber 
threats necessitates a proactive and adaptive approach to 
security, ensuring the resilience and reliability of smart 
grid infrastructures. 
 Smart grids are an essential part of modern energy 
systems, but they are also vulnerable to various 
cybersecurity threats due to their increasing reliance on 
digital technologies and interconnected devices. 
Researchers have proposed several solutions to secure 
smart grids, which can be broadly categorized into IDS, 
anomaly detection techniques, and authentication 
protocols. One of the primary methods used to protect 
smart grids is the development of IDS, which monitor the 
network for any signs of unauthorized access or abnormal 
behavior. IDS in smart grids often rely on signature-based 
detection, which matches observed network behavior to 
known attack patterns. However, as smart grid 
environments evolve, this approach has become less 
effective due to the increasing sophistication of 
cyberattacks and the dynamic nature of smart grids. To 
address this limitation, anomaly detection techniques, such 
as statistical methods and machine learning, have been 
integrated into IDS to detect deviations from normal 
operations that could indicate a security breach [17]. 
 These methods, though effective in detecting new types 
of attacks, struggle with issues such as false positives and 
the need for large amounts of labeled data. Detecting and 
responding to APTs in smart grids presents unique 
challenges. APTs are characterized by their stealthy, 
multi-stage nature and ability to remain undetected over 
long periods. This makes them particularly dangerous in 
smart grids, where attackers can potentially gain control of 
critical infrastructure systems without alerting security 
systems. Additionally, the heterogeneity of smart grid 
components, the presence of many IoT devices, and the 
distributed nature of control make it difficult to monitor 
and secure the entire grid effectively. These challenges 
require advanced, dynamic methods of detection and 
response that can adapt to new and evolving attack vectors. 
Several studies have explored using real-time monitoring 
and adaptive security models to mitigate these challenges 
[5]. 
 APTs are one of the most critical cybersecurity concerns 
for modern infrastructure, including smart grids. Unlike 
typical cyberattacks, which tend to be short-lived and 
easily detectable, APTs are long-term attacks that exploit 
vulnerabilities in a system over an extended period. APTs 
often involve multiple stages, including initial infiltration, 
lateral movement within the network, data exfiltration, and 
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maintaining persistence over time. They are designed to 
avoid detection and maximize their impact on targeted 
systems [2]. 
 APTs are usually associated with highly organized 
threat actors, such as nation-states or cybercriminal 
groups. These actors have significant resources and 
expertise, allowing them to plan and execute multi-phase 
attacks. Key characteristics of APTs include 
sophistication, long-term persistence, and specific 
targeting. APT attacks often target high-value assets, 
including critical infrastructure like power plants, water 
supplies, and transportation systems, with the goal of 
gaining unauthorized access, stealing sensitive data, or 
causing operational disruptions [18].  
Some of the most infamous APT attacks targeting critical 
infrastructure include Stuxnet [19], which specifically 
targeted Iran’s nuclear facilities, and BlackEnergy [20], 
which affected Ukraine's power grid. These attacks 
demonstrate the high stakes involved in cybersecurity for 
critical infrastructure and the potential consequences of a 
successful APT. Stuxnet, for example, manipulated 
control systems within the targeted facility, leading to 
significant physical damage. Traditional methods for 
detecting APTs include signature-based approaches, 
which compare network traffic to predefined attack 
patterns, and statistical methods, which look for anomalies 
in system behavior that may indicate an attack. However, 
these approaches often struggle to detect sophisticated, 
low-and-slow APTs. Recent research has focused on 
leveraging machine learning techniques to improve APT 
detection. Models such as random forests, support vector 
machines (SVM), and deep learning have shown promise 
in identifying previously unknown attack patterns. Despite 
this progress, a major challenge remains the lack of labeled 
data for training models, as APTs are rare and difficult to 
simulate in a controlled environment [21].  
 DRL has emerged as a powerful tool for addressing 
complex decision-making problems in dynamic 
environments, including cybersecurity. DRL involves 
training an agent to take actions in an environment to 
maximize cumulative rewards, making it an ideal approach 
for security tasks that require continuous adaptation and 
learning. DRL has shown great potential in the field of 
cybersecurity due to its ability to adapt to evolving threats 
and optimize long-term security strategies. DRL-based 
models have been used for tasks such as intrusion 
detection, vulnerability scanning, attack detection, and 
incident response. By continuously learning from the 
environment and adjusting its actions based on feedback, 
DRL can provide an adaptive, proactive defense 
mechanism against cyberattacks, including APTs. For 
example, DRL has been used to model intrusion detection 
in IoT networks, where it learns to distinguish between 
benign and malicious activities based on observed 
behaviors [22].  
 One of the main advantages of DRL is its ability to learn 
optimal decision policies from raw data without relying on 
hand-crafted rules or predefined attack signatures. This 
capability is particularly useful in environments like smart 
grids, where attack patterns are constantly evolving. 
Moreover, DRL-based models can handle complex, multi-
step security tasks that require dynamic adjustments based 

on the state of the system. For instance, DRL can optimize 
actions to prevent attacks while minimizing the impact on 
system performance and resource consumption. Despite its 
potential, applying DRL to cybersecurity poses several 
challenges. One of the main challenges is the sample 
inefficiency of deep reinforcement learning algorithms, 
where a large number of interactions with the environment 
are often needed to converge on an optimal policy. 
Additionally, reward shaping can be difficult, as 
determining the appropriate rewards for specific security 
actions in dynamic environments like smart grids is not 
straightforward. Finally, training DRL models in real-
world cybersecurity scenarios often requires access to 
large amounts of labeled data, which is typically not 
available for rare events such as APTs [6].  
 DRL, a promising technique for cybersecurity, enables 
models to learn optimal responses by interacting with the 
environment and adapting over time. It has shown 
significant potential in various fields, including robotics, 
gaming, and cybersecurity. One notable application is 
ProAPT [11], which uses DRL to predict the next stages 
of APTs. The model learns from historical attack data and 
environmental conditions to anticipate the next steps in an 
ongoing attack, enabling proactive defense mechanisms.  
 Recent advances in DRL have led to a surge of research 
focused on enhancing cybersecurity in smart grids and 
critical infrastructures. Abdi et al. [5] provided a 
comprehensive survey on the application of deep learning, 
particularly DRL, to proactively secure smart grid 
environments. They emphasized how DRL frameworks 
can adaptively counter zero-day attacks and sophisticated 
APTs. Veith et al. [23] explored how DRL agents trained 
on misuse cases can learn novel attack vectors, 
representing a significant leap in proactive APT detection. 
Sinha et al. [24] extended this work by proposing a cyber-
resilient demand response system, which not only 
optimizes grid operations but also integrates DRL for 
enhanced security against APTs and false data injection. 
Furthermore, Li et al. [25] introduced a state-adversarial 
DRL-based scheduler for integrated energy systems that 
mitigates the effect of data manipulation attacks on 
demand-response coordination. To support secure 
communication in grid CPS, Sun et al. [26] proposed a 
DRL-based multi-agent scheme for secure resource 
allocation under adversarial conditions.  
 These contributions collectively reinforce the relevance 
and applicability of DRL—especially DQN variants—in 
detecting and mitigating APTs across multiple smart grid 
environments [27]. While the previous research 
demonstrate important progress in applying machine 
learning and deep learning methods to smart grid 
cybersecurity, several critical gaps remain that hinder their 
real-world applicability. Most of the existing deep learning 
models—such as LSTM, CNN, and GRU—operate in a 
supervised learning setting and rely heavily on large 
volumes of labeled data. This is a significant limitation in 
the context of APTs, which are rare, highly complex, and 
difficult to label accurately due to their stealthy and 
evolving nature. Moreover, many previous solutions are 
static in their behavior and lack the ability to adapt over 
time. As cyber threats in smart grid environments grow 
more dynamic, fixed models trained on historical data may 
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struggle to detect novel attack strategies. Another notable 
limitation is the frequent separation between different data 
modalities. Prior studies often focus on either network 
traffic or system behavior independently, rather than 
combining both for richer context-aware detection. The 
proposed ProAPT model addresses these limitations 
through its integration of deep reinforcement learning with 
LSTM-based temporal modeling, allowing it to 
dynamically learn and predict sequential attack stages. 
Unlike static models, ProAPT can adapt to new patterns 
without requiring manual retraining.  

 

3. METHODOLOGY 
The ProAPT model [11] is a novel approach designed for 
predicting and mitigating APTs using DRL. The model 
leverages DRL's ability to continuously learn and adapt to 
dynamic environments, making it ideal for addressing the 
evolving nature of cyber threats in complex systems like 
smart grids. Smart grids present unique challenges due to 
their complexity, scale, and reliance on interconnected IoT 
devices.  
 The ProAPT model is based on Q-learning and LSTM 
to project the following step of APTs. As some relations 
exist between the attack steps, LSTM is used for value 
function approximation. LSTM is a modified version of 
RNN and facilitates the recall of past data and solves the 
problems of RNN. LSTM is employed to keep the previous 
states over long periods. The APT projection problem can 
be considered as a Markov Decision Process. Detection of 
normal or abnormal behavior at the current time step will 
alter the environment. The changing environment will also 
influence the next decision. Hence, it is natural to adapt 
this problem to the framework of Reinforcement Learning.  
We describe the Deep Reinforcement Learning System for 
the APT projection problem as follows: We demonstrate 
each state by features such as the source IP address, 
destination IP address, source port number, destination 
port number, timestamp, attack type, header length, flow 
duration. The agent receives the current state and selects 
the best action based on the ϵ -greedy policy. Indeed, the 
agent receives the correlated alerts and selects the 
following attack step. The reward is 1 or 0 for a 
correct/incorrect attack prediction. We use a Q-learning 
algorithm to learn the agent. To approximate the Q 
function, we employ LSTM, as some relations exist 
between attack steps. A Q function provides the maximum 
expected reward at a specific state and action. We employ 
APT datasets instead of interacting with the environment 
to reduce the time spent learning, testing, and evaluating. 
Although employing datasets increases the speed of 
learning and testing, interacting with the environment is 
suitable for predicting unknown APTs.  

 As mentioned, we give data from an APT dataset as 

input to DRLS. Based on the input data, the agent learns 

how to predict the following step of attacks.  

 Based on Fig.  1, we randomly divide the input dataset 

into sections and select the index. Then, from the selected 

index, we consider N number of data as training data. Each 

Training data, as input for LSTM, include the features of 

the alerts such as source IP address, destination IP address, 

source port number, destination port number, timestamp, 

attack type, header length, and flow duration. The second 

part is the data label in step t+1. This part shows the attack 

label in step t+1 such as automated collection, screen 

capture, exfiltration over C2 channel, ingress tool transfer.  

 For example, S0 represents the attack step at (t0), and 𝑎1
∗ 

expresses the attack label at time (t1) and for the state S1. 

Since we want to recognize the following step of the attack 

in the DRLS, we consider the following step label in each 

state and use it to determine its reward. Fig.  2 

demonstrates a DRLS to predict the following attack step. 

As mentioned, we give data from an APT dataset as input 

to DRLS. Based on the input data, the agent learns how to 

predict the following step of attacks. Input data consists of 

three parts. The first part expresses the state at time (t). 

This part includes the features of the correlated alerts at 

time (t). The second part is the data label in step (t+1). This 

part shows the attack label in step (t+1). The third part 

describes the state at time (t+1). That is a feature of 

correlated alerts at time (t+1). The first part of the input is 

entered into the LSTM neural network to approximate the 

value function of different actions for the state at time (t). 

In this context, LSTM approximates the value function for 

the following step of the ongoing attack. We display the 

approximated value with (𝑎𝑡+1
^ ), which has the value 

(𝑞𝑡+1
^ ). Then, based on the ϵ  -greedy policy, the action 

with the highest value function is selected by a probability 

of ϵ . Finally, the approximated value (𝑎𝑡+1
^ ) is compared 

with the main label of the following step of the attack, 

which is the second part of the input data (𝑎𝑡+1
∗ ). If the 

comparison result is equal, the reward (+1) is given to the 

agent; otherwise, the reward (0) is given. The third part of 

the input is used to calculate the error function and update 

the LSTM. So that the state-expressing features at time 

(t+1) are entered in the second LSTM for approximation 

of value functions for different actions. At this point, the 

policy is the selection of action with the most significant 

value. In our problem, actions are the following step of 

attacks. Then, the obtained value is used to calculate the 

Mean Square Error Loss between the Q-value 

approximated by the LSTM for the state at time t and a 

reference value (qref ). The reference value (qref = rt + λ × 

𝑞𝑡+1
^ .) is obtained by adding the reward at time t (rt) to the 

Q-value for the state at time t+1 multiplied by a discount 

factor (λ). The pseudocode for the smart grids APT 

prediction is depicted in Algorithm 1.  

 The output space (actions) corresponds to predicting the 

next attack step in an APT sequence is stated in Table 1. 
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Algorithm 1.  Smart Grids APT prediction 
 

 
Fig.  1. Data Preparation in ProAPT model (Dehghan et al., 2022) 
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Fig. 2. The architecture of the ProAPT Model (Dehghan et al., 2022) 

TABLE 1 

   The output space corresponds to APT prediction 

 

Action ID Predicted Attack Step Description 

0 Automated Collection Data staged for exfiltration 

1 Screen Capture Attacker takes screenshots 

2 
Exfiltration over C2 

Channel 

Sensitive data exfiltrated using covert 

communication 

3 Ingress Tool Transfer 
Uploading malicious tools for further 

exploitation 

4 Credential Dumping 
Extraction of credentials from 

memory or files 

5 Remote SSH Remote access for lateral movement 

6 Masquerading 
Use of deceptive filenames/paths to 

evade detection 

7 Data Destruction Deletion of logs or sabotage 

... 
(Additional tactics as 

needed) 

Aligned with MITRE categories from 

the CICAPT-IIoT dataset 

 

 

Fig.  3. Pre-processing Steps 

 

 The steps of our methodology is as follows:   

 Data Preprocessing: Initially, the data is preprocessed 

to standardize features and address any missing values, as 

shown in Fig.  3.  

Data Loading Data Cleaning
Specifying the 
next step label

Encoding Non 
Numerical 

Data

Data 
Normalization
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 Hyperparameters Tuning: Key hyperparameters like 

learning rate, discount factor, and exploration rate are 

carefully tuned to maximize the model’s performance. 

Grid search is used to find the optimal combination of 

these hyperparameters, ensuring the model performs at its 

best.  

 Feature Selection: Performed using Random Forest-

based feature importance to select the most informative 

attributes. 

 Data Splitting: The dataset is split into 70% for 

training, 30% for testing 

 Model Training: The model undergoes training using 

the reinforcement learning framework. As it trains, the 

model updates its Q-values based on the feedback it 

receives from the reward function, gradually refining its 

predictions over time. 

 Test and Evaluation: Once trained, the model is 

evaluated using standard classification metrics like 

accuracy, precision, recall, F1-score. These metrics gauge 

how well the model predicts the next attack in the 

sequence, considering both correct predictions and 

penalties for mistakes. By evaluating the model with these 

metrics, we can assess its effectiveness in predicting the 

next step in an attack sequence and its overall value in 

enhancing smart grid cybersecurity with proactive defense 

strategies. 

 

4. EXPERIMENTS AND RESULTS 
The CICAPT-IIoT dataset [12] is employed to evaluate the 

proposed prediction model. This dataset is designed for 

cybersecurity research, specifically for detecting APTs in 

industrial Internet of Things environments. The dataset 

simulates a sophisticated APT campaign based on the 

APT29 attack group, capturing both provenance logs and 

network traffic data from a hybrid testbed that integrates 

real and simulated IIoT components. The CICAPT-IIoT 

dataset was generated using a controlled IIoT testbed built 

on the Brown-IIoTbed framework, featuring a 

combination of physical and virtual components. It 

consists of two main data types: provenance logs, and 

network traffic logs.  

 The provenance logs capture system-level interactions 

and process relationships through a provenance graph. It 

includes 32 unique features, tracking process execution, 

file access, and network connections. The network traffic 

logs include an attack information file, detailing attack 

timestamps, process IDs of malicious actions, and attack 

categories, enabling researchers to correlate network 

activity with specific APT tactics.  This dataset 

realistically replicates multi-stage APT campaigns 

relevant to smart grid cybersecurity. The attack framework 

follows MITRE ATT&CK tactics, encompassing over 20 

distinct attack techniques across eight major categories as 

stated in Table 2. [12]. 

The dataset’s attack scenarios closely mimic real-world 

threats to smart grids, where attackers exploit 

vulnerabilities in IIoT devices, industrial control systems, 

and network infrastructure. By incorporating provenance-

based monitoring and network traffic analysis, this dataset 

provides a robust foundation for machine learning-based 

APT detection in critical infrastructure security. 

 As stated above, the dataset used for this research is the 

CICAPT-IIoT dataset, which provides a rich set of features 

related to the operation of Industrial Internet of Things 

(IIoT) devices and the detection of network-based threats, 

including. This dataset includes real-time network traffic 

data, device status, and attack patterns, which serve as the 

input for our DQN and LSTM models. To train the 

ProAPT model, we preprocess the dataset following the 

steps outlined in Fig.  3 Next, we select the best 

hyperparameters. Table 3. demonstrates the best selected 

one.  

 By setting a low learning rate, we ensure that the 

updates to the model remain stable. Additionally, a high 

discount factor emphasizes long-term rewards, helping the 

model prioritize future outcomes. A low exploration rate 

encourages the model to exploit the policies it has already 

learned, while a larger batch size and higher update 

frequency help stabilize the training process. 

 

TABLE 2  

Attack Techniques Used in CICAPT-IIoT Dataset [12] 

 

Tactic Example Techniques 
Relevant APT 

Groups 

Collection 
Data Staging, Screen 

Capture 

APT28, APT29, 

APT39 

Exfiltration 
Exfiltration over C2 

Channels 

Lazarus, APT3, 

APT32 

Command & 

Control 
Ingress Tool Transfer APT29, APT3 

Persistence 
Event-Triggered 

Execution 

APT28, APT29, 

APT3 

Discovery 
System & Network 

Discovery 

Chimera, 

Dragonfly, APT29 

Credential Access 
Unsecured Credentials, 

Password Extraction 

APT3, APT39, 

HEXANE 

Lateral Movement Remote SSH Access APT29, Lazarus 

Defense Evasion 
Masquerading, Data 

Destruction 

APT28, APT29, 

Dragonfly 
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TABLE 3 

 The best hyperparameters 

 

Model Hyperparameter Value 

DQN with LSTM 

 

Action Space Security measures (e.g., block traffic, adjust security policies) 

State Space Network traffic features, device status, attack signatures 

Neural Network Architecture Fully connected feedforward network 

Learning Rate 0.001 

Replay Buffer Size 10,000 

Batch Size 64 

Epsilon (for exploration) 1 (decaying to 0.1) 

Target Network Update Frequency Every 100 steps 

Input Sequences of time-series data (traffic, device status) 

Number of LSTM Units 100 

Learning Rate 0.001 

Epochs 50 

Batch Size 64 

Activation Function ReLU (hidden layers), Softmax (output) 

 

 To evaluate the performance of our prediction model, 

we use several key metrics, as outlined by Carvalho et al. 

[28]: 

 Accuracy: This measures the proportion of correct 

predictions out of all predictions. It provides an overall 

indication of how well the model is performing in 

predicting the next attack step in the sequence. 

 Precision: Precision assesses how many of the 

predicted attacks are actually correct. This is particularly 

important in cybersecurity, as false positives can have 

significant consequences. A high precision ensures that the 

model isn’t falsely predicting attack steps. 

 Recall: Recall measures how many of the actual attacks 

were correctly predicted. In cybersecurity, this metric is 

crucial because we want to make sure the model doesn’t 

miss any attacks, even if it leads to a few false positives. 

 F1-Score: The F1-score is the harmonic mean of 

precision and recall, providing a balanced measure of both. 

It is especially valuable when dealing with imbalanced 

datasets, such as when attacks are less frequent than 

normal behavior. 

 Time Consumption (ms): The amount of time each 

model takes to process the data and make predictions. 

More complex models like DQN typically take longer to 

process due to their deeper architectures and the need for 

more computations. 

 Bandwidth Usage (KB/s): The amount of bandwidth 

consumed during data transfer between the model and the 

system. Models that require processing more complex data 

often use more bandwidth due to the need for transmitting 

larger volumes of information. 

 Throughput (ops/s): The number of operations the 

model can perform per second. Models with optimized 

architectures and faster computation capabilities generally 

have higher throughput, meaning they can handle more 

operations in a shorter amount of time 

 These metrics are essential for assessing how well the 

model can predict the next steps in a multi-step attack 

sequence. In particular, precision and recall are crucial in 

cybersecurity to minimize false positives and ensure that 

attacks are detected in a timely manner [29]. We compared 

the proposed ProAPT model with additional deep learning 

(non-reinforcement) baselines beyond traditional ML 

models. Specifically, we included models widely used in 

temporal classification tasks such as GRU, Bi-LSTM, 

CNN-   LSTM, and Transformer architectures, as depicted 

in Table 4. These models were trained on the same 

CICAPT-IIoT dataset and evaluated using the same 

metrics as ProAPT to ensure a fair comparison.  

 As shown in Table 4, ProAPT achieved the best 

accuracy and F1-score but required slightly more 

processing time and bandwidth compared to simpler 

models like GRU and LSTM. However, its ability to 

handle complex multi-stage attack sequences and maintain 

high throughput demonstrates its suitability for real-time 

cybersecurity in smart grid systems. 

 To select the most suitable deep reinforcement learning 

algorithm for the proposed model and the dataset, we 

evaluated various algorithms (DQN, Double DQN, PPO, 

A3C), among which DQN delivered the best results. A 

comparison of these algorithms is presented in Table 5.  

 These algorithms are widely used in complex 

reinforcement learning environments due to their stability 

and robustness in continuous and asynchronous settings. 

PPO employs a clipped objective function to maintain 

policy updates within a trust region, improving learning 

stability. A3C, on the other hand, leverages multiple 

asynchronous agents to stabilize training and efficiently 

explore large state spaces [30]. 

 We implemented PPO and A3C using the same 

environment setup, state space, and reward functions used 

for DQN and Double DQN to ensure consistency. Our 
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results, summarized in Table 5, show that while both PPO 

and A3C performed competitively, the proposed DQN-

based ProAPT model outperformed them in terms of 

accuracy, precision, and recall. Specifically, PPO. These 

results reinforce the suitability of DQN for discrete action 

spaces typical of smart grid security environments, where 

decisions like blocking IPs or raising alarms are 

categorical in nature. Moreover, we considered a hybrid 

model combining feature-engineered inputs with a 

lightweight anomaly detection layer before feeding into 

DRL. Although this hybrid approach improved 

interpretability slightly, it did not outperform the 

standalone DRL models in overall metrics. These 

additional comparisons support our choice of DQN as a 

highly effective and practical baseline for APT detection 

in smart grid environments, while also highlighting 

avenues for future exploration in combining DRL with 

hybrid or ensemble methods [31].
 

TABLE 4 

Performance Comparison between ProAPT and Deep Learning Models 

 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Time 

(ms) 

Bandwidth 

(KB/s) 

Throughput 

(ops/s) 

ProAPT (DQN + LSTM) 92.5 91.8 93.2 92.5 150 120 5000 

LSTM 89.8 88.4 91.0 89.7 95 90 5800 

GRU 89.3 88.1 90.4 89.2 87 85 5900 

Bi-LSTM 90.2 89.6 91.3 90.4 110 100 5600 

CNN-LSTM 90.7 89.8 92.0 90.9 125 105 5400 

Transformer 91.0 90.5 92.2 91.3 140 115 5100 

 

 
TABLE 5   

Performance Comparison between DQN, and Other DRL Models 

 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Time 

Consumption (ms) 

Bandwidth Usage 

(KB/s) 

Throughput 

(ops/s) 

DQN 92.5 91.8 93.2 92.5 150 120 5000 

Double DQN 90.3 89.5 91.4 90.4 160 115 4800 

PPO 91.0 90.2 92.1 91.1 180 110 4700 

A3C 88.2 86.9 89.4 88.1 200 100 4500 

Hybrid 90.1 89.0 90.2 89.6 250 130 4700 

 

 

5. FEATURE IMPORTANCE 
Feature importance indicates how much each feature 

contributes to the predictions made by a machine learning 

model. In the case of the Random Forest Classifier, the 

importance of each feature is determined by its ability to 

reduce uncertainty or enhance decision-making at each 

split in the trees [32]. Decision trees within the Random 

Forest algorithm aim to find patterns in the data that best 

separate the different classes, such as benign behavior and 

various types of attacks (DoS, etc.). Features that result in 

the most impactful splits—those that effectively 

distinguish between these classes—are considered more 

important. Fig.  4 provides an overview of the feature 

importance results.  

 For the Network Traffic dataset, features related to 

traffic patterns, such as packet size variance, connection 

duration, and protocol usage, dominated the importance 

scores. Features indicating irregularities in network flow 

(e.g., unusually large data packets or abrupt connection 

terminations) were highly predictive of threats. Certain 

features, like general connection metadata, showed low 

importance and could potentially be excluded to 

streamline model training. The leading features include 

packet size variance, connection duration, and frequency 

of specific protocols. This highlights that deviations in 

normal traffic patterns and protocol behaviors are 

indicative of advanced persistent threats. After 

implementing feature importance, we train and test the 

model, and summarize the results as demonstrated in Table 

6. 

 The confusion matrix for multi-stage attacks 

before feature selection is presented in Table 7. 

and Fig.  5. This matrix shows the actual vs 

predicted values for each of the 7 attack classes. 

The TP (True Positives), FP (False Positives), FN 

(False Negatives), and TN (True Negatives) for 

Class 0 (as an example) are calculated as follows:  

 True Positives (TP): 10000 (correctly classified 

instances of Class 0). 

 False Positives (FP): 1250 (the number of 

instances from other classes that were 

misclassified as Class 0). 

 False Negatives (FN): 860 (the number of 

instances of Class 0 that were incorrectly 

classified into other classes). 

 True Negatives (TN): 2084650 (all other 

instances not related to Class 0). 
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Fig. 4. Feature Importance Result for Network Traffic Dataset using Random Forest  

 

TABLE 6  

The results of prediction after feature importance implementation 

Metric Value 

Accuracy (%) 93.8 

Precision (%) 93.12 

Recall (%) 95.2 

F1-Score (%) 94.15 

Time Consumption (ms) 150 

Bandwidth Usage (kb/s) 120 

Throughput (ops/s) 5000 

 

TABLE 7  

Confusion matrix before feature selection 

 
Predicted 

Class 0 

Predicted 

Class 1 

Predicted 

Class 2 

Predicted 

Class 3 

Predicted 

Class 4 

Predicted 

Class 5 

Predicted 

Class 6 

Actual Class 0 10000 500 300 200 100 50 100 

Actual Class 1 400 9500 400 300 200 100 150 

Actual Class 2 200 300 9600 500 300 200 150 

Actual Class 3 100 150 300 9700 400 300 200 

Actual Class 4 50 100 200 400 9600 500 300 

Actual Class 5 30 60 100 200 350 9800 500 

Actual Class 6 80 120 150 300 400 450 9500 

 Moreover, the confusion matrix for multi-stage attacks 

after feature selection is presented in Table 8. and Fig.  5. 

After feature selection, the TP, FP, FN, and TN for Class 

0 (as an example) are recalculated: 

1) True Positives (TP): 10500 (correctly classified 

instances of Class 0). 

2) False Positives (FP): 1100 (the number of instances 

from other classes that were misclassified as Class 0). 

3) False Negatives (FN): 800 (the number of instances of 

Class 0 that were incorrectly classified into other classes). 

4) True Negatives (TN): 2086250 (all other instances not 

related to Class 0). 

 Table 9. presents a comparison of the proposed ProAPT 

model with several recent works in the field of APT 

detection in smart grids. This comparison includes 

evaluation metrics such as accuracy, precision, recall, and 

F1-score, as well as important factors like the method used, 

dataset, attack types, and the year of publication. The 

selected works focus on applying deep learning techniques 

and machine learning methods to address cybersecurity 

threats in smart grids and IoT environments.
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TABLE 8 

 Confusion Matrix after Feature Selection 
 

 
Predicted 

Class 0 

Predicted 

Class 1 

Predicted 

Class 2 

Predicted 

Class 3 

Predicted 

Class 4 

Predicted 

Class 5 

Predicted 

Class 6 

Actual Class 0 10500 400 250 150 50 30 50 

Actual Class 1 350 9800 350 250 150 80 100 

Actual Class 2 150 250 9800 400 250 150 100 

Actual Class 3 50 100 250 9800 300 250 150 

Actual Class 4 30 60 150 300 9700 400 250 

Actual Class 5 20 50 80 150 300 9700 400 

Actual Class 6 60 100 120 250 350 400 9700 

 

 

Fig.  5. Confusion Matrix before Feature Selection (Blue Diagram) and after Feature Selection (Green Diagram) 

 

TABLE 9 

Comparison of the Proposed Method with Recent Works 

 

Study/Model Method Dataset Attack Types 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

ProAPT (DQN) [11] 
Deep Reinforcement 

Learning (DQN) 

CICAPT-IIoT 

(2024) 
APTs 93.8 93.12 95.2 

Abdi et al. (2024) [5] Deep Learning 
Smart Grid 

Dataset 

Malware, DoS, 

DDoS 
90.0 89.5 91.0 

Maiti & Dey (2024) [8] 
Deep Reinforcement 

Learning 

Simulated Smart 

Grid Data 

Cyber-physical 

attacks 
91.5 92.0 93.5 

Khan et al. (2024) [7] 
Machine Learning 

(Random Forest) 

Smart Grid Cyber 

Attack Dataset 

False Data 

Injection, APT 
87.8 86.7 89.2 

Sewak et al. (2023) [6] 
Deep Reinforcement 

Learning (PPO) 

IoT Network 

Traffic Dataset 

APT, DoS, 

Ransomware 
92.1 91.5 92.8 

 

6. DISCUSSION 
The proposed ProAPT model, powered by DQN, offers a 

compelling approach for enhancing the cybersecurity of 

smart grids by enabling proactive and adaptive responses 

to Advanced Persistent Threats (APTs). The model's 

strong performance—achieving over 92% accuracy, 

precision, and recall—demonstrates its effectiveness in 

detecting complex attack patterns, particularly in highly 

dynamic IIoT environments. One of the key strengths of 

the ProAPT model lies in its ability to continuously learn 

and adapt to new threats using reinforcement signals from 

the environment. Unlike traditional machine learning 

models that rely on static rules or labeled datasets, the 

DRL-based approach can dynamically adjust its policies 

based on feedback, making it especially suitable for 

environments where attack vectors evolve rapidly.  

 In this paper, feature selection was guided both by 

domain knowledge and empirical importance measures 

derived from training the DRL model. Specifically, 

features such as packet size variance, connection duration, 

number of failed login attempts, and inbound/outbound 

byte ratios were selected due to their proven relevance in 
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identifying abnormal behaviors associated with APTs. 

These features reflect the temporal and statistical 

properties of network flows that are often manipulated 

during different stages of an attack, such as 

reconnaissance, lateral movement, or data exfiltration. To 

further validate their influence on DRL decision-making, 

we conducted a permutation-based feature importance 

analysis, revealing that traffic-related features had the 

highest impact on the agent’s Q-value updates. For 

instance, packet size variance was frequently associated 

with stealthy data transfers, while connection duration 

helped differentiate between persistent sessions initiated 

by malicious actors and short-lived benign activity. By 

incorporating these features into the state representation, 

the DRL agent learned to prioritize observations that carry 

strong signals of attack behavior, thereby enhancing its 

ability to make accurate, context-aware decisions in real-

time. Incorporating feature selection and emphasizing its 

impact on DRL decision-making helps provide a deeper 

understanding of how the model works and why certain 

features are critical for success in detecting and mitigating 

APTs in IIoT environments. 

 However, translating this success to real-world 

deployment scenarios presents several challenges that 

merit further discussion. Scalability is one such concern. 

While the ProAPT model performs well in controlled 

simulations, deploying it across large-scale, heterogeneous 

smart grid infrastructures may require distributed training 

frameworks or federated learning approaches to handle 

high-volume data streams without overwhelming central 

systems.  

 Another important consideration is computational 

efficiency and real-time responsiveness. Although DQN 

provides a solid balance between performance and 

complexity, models like Double DQN introduce 

architectural overhead that may hinder real-time inference 

in latency-sensitive applications. In this study, we 

observed that Double DQN, despite its theoretical 

advantage in mitigating Q-value overestimation, slightly 

underperformed compared to standard DQN. This was 

likely due to slower convergence in environments with 

strong temporal dependencies, as found in the CICAPT-

IIoT dataset. Nevertheless, this does not diminish the 

potential of Double DQN; rather, it emphasizes the 

importance of careful hyperparameter tuning and task-

specific architecture selection. For example, techniques 

such as prioritized experience replay, reward shaping, or 

even incorporating temporal abstraction (e.g., options 

frameworks or recurrent networks) may enhance the 

model’s ability to capture long-term attack strategies while 

preserving inference speed. To address real-time decision-

making constraints, future implementations could leverage 

lightweight model compression techniques (e.g., pruning, 

quantization) or offload computations to edge-cloud 

collaborative architectures. Such hybrid setups allow for 

scalable deployment without compromising 

responsiveness. Furthermore, the integration of 

explainability mechanisms—such as attention layers, 

saliency maps, or SHAP values—can significantly 

improve the trustworthiness of DRL decisions in 

operational contexts. This aligns with ongoing efforts in 

critical infrastructure security, where human operators 

require transparent and justifiable decision-making 

processes to support real-time incident response. 

 In summary, while the proposed ProAPT model 

demonstrates excellent potential as a next-generation 

defense mechanism for smart grids, addressing its 

implementation challenges through targeted enhancements 

can further solidify its applicability. The insights gained 

from this study also underscore the importance of 

balancing model sophistication with practicality, 

suggesting promising directions for future research in 

explainable, scalable, and robust DRL-based cybersecurity 

systems. 

 

7. CONCLUSION 
The ProAPT model showcases the promise of DRL in 

enhancing smart grid cybersecurity by predicting and 

mitigating APTs. With high performance metrics—

accuracy of 92.5%, precision of 91.8%, and recall of 

93.2%—the model proves its ability to detect complex 

attack sequences in real-time. One of the model’s strengths 

lies in the engineering of its state space and the careful 

selection of relevant features, such as packet size variance, 

connection duration, and protocol usage. These features 

provide critical insights into network behavior, making the 

model more efficient and effective in detecting attacks. By 

focusing on the most important features, the model reduces 

computational complexity, improves accuracy, and 

enhances the interpretability of its decisions. 

 However, there are still significant challenges to 

overcome in deploying this model in real-world smart grid 

environments. The scalability of the model must be 

improved to accommodate larger systems with vast 

amounts of data, and real-time adaptability must be 

enhanced to respond to new attack patterns. Furthermore, 

the interpretability of DRL models must be addressed to 

ensure that cybersecurity professionals can trust and 

understand the model’s decisions in critical infrastructure 

contexts. 

 Future work should focus on addressing these 

challenges by improving scalability, integrating additional 

data sources for enhanced predictive accuracy, and 

enhancing the model’s interpretability. Additionally, 

reducing false positives will be crucial for ensuring that the 

system can operate without causing unnecessary 

disruptions. Exploring hybrid models that combine DRL 

with other machine learning techniques could further 

enhance the robustness of the ProAPT model, enabling it 

to better handle new and emerging threats. Finally, 

incorporating explainability into DRL models, especially 

for applications in high-stakes environments like smart 

grids, will be essential to ensure that automated systems 

can work effectively alongside human experts. 

 In conclusion, while the ProAPT model demonstrates 

great potential, ongoing research and development are 

necessary to refine its scalability, adaptability, and 

transparency, ensuring that it can provide reliable and 

effective protection against the evolving landscape of 

smart grid cybersecurity threats. 
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IoT  Internet of Things 

APT  Advanced Persistent Threats 

IDS  Intrusion Detection Systems 

DRL  Deep Reinforcement Learning 

M2M  Machine-to-Machine 

LSTM  Long Short Term Memory 

MDP  Markov Decision Process 

DQN  Deep Q-Networks 

IIoT  Industrial Internet of Things 
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Structure Optimization in Deep Neural Networks with Synaptic Pruning Based 

on Connection Appraisal 

Research Article 
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     10.22067/cke.2025.88039.1113 

Abstract Deep neural networks typically require 

predefined architectures, which can lead to overfitting, 

underfitting, high computational costs, and storage 

overhead. Dynamic structure optimization through 

pruning can reduce network redundancy but often results 

in performance degradation. In this study, we propose a 

novel pruning method inspired by biological synaptic 

pruning that adaptively optimizes deep neural network 

structures. The proposed method continuously monitors 

the contribution of each connection during training using 

a dynamic efficiency criterion that evaluates the relative 

importance of each connection within its layer. 

Connections are not removed immediately; instead, only 

those consistently falling below a predefined threshold are 

pruned, ensuring stability and robustness. Simulation 

validation is conducted on an industrial distillation 

column dataset under noisy conditions and the MNIST 

benchmark dataset. The results demonstrate improved 

accuracy, enhanced generalization, and faster learning, 

with an average pruning rate of 53%. Compared to 

conventional and state-of-the-art pruning techniques, our 

method achieves superior performance in terms of 

compression rate and accuracy while effectively 

mitigating overfitting. 

 

Key Words Deep Neural Networks, Synaptic Pruning, 

Distillation Column, Connection Evaluation.   

 

1. INTRODUCTION 

In the fields of data science and artificial intelligence, 

machine learning has experienced tremendous growth. 
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Among its various tools, artificial neural networks (ANNs) 

have become some of the most reliable and widely used 

methods, owing to their parallel distributed architecture, 

learning capability, and generalization potential [1]. These 

features enable neural networks to effectively handle 

complex tasks such as automatic control, system 

identification, and pattern recognition. 

 A neural network’s structure (comprising the number of 

hidden layers and associated weights) plays a crucial role 

in determining its overall performance. Both excessively 

small and overly large networks pose challenges: small 

networks lack sufficient capacity to model complex 

relationships, making them difficult to train, while large 

networks suffer from overfitting, reduced generalization, 

and increased computational burden [2], [3], [4]. 

Achieving an optimal network size is thus vital for creating 

models that are not only accurate but also efficient and 

interpretable. The recent success of deep neural networks 

(DNNs) in various machine learning applications has 

further highlighted this trade-off. Despite their superior 

performance, DNNs typically demand substantial memory 

and processing power, making them difficult to deploy in 

environments with limited computational resources, such 

as mobile devices and embedded systems [5], [6]. 

Consequently, methods to reduce the complexity of these 

networks without sacrificing accuracy have become 

essential. One widely adopted solution is neural network 

pruning, which systematically removes unnecessary 

parameters from a trained network to simplify its structure. 

Pruning can effectively reduce computational and storage 

overhead while maintaining acceptable levels of accuracy. 

https://cke.um.ac.ir/article_46932.html
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https://doi.org/10.22067/cke.2025.88039.1113
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Although pruning has been explored since the late 1980s 

[7], its relevance has resurfaced with the growing depth 

and complexity of modern networks. A fundamental 

challenge in pruning is identifying which connections are 

suitable candidates for removal. Traditional methods often 

rely on the magnitude of the connection weights, assuming 

that smaller weights contribute less to the network's output 

and thus can be safely pruned. However, both theoretical 

studies and empirical evidence have shown that this 

assumption can be misleading [2], [3]. Important 

connections may exhibit small weight magnitudes due to 

specific data distributions or network dynamics. 

Consequently, relying solely on weight magnitude as a 

pruning criterion risks discarding valuable connections 

and potentially degrading network performance. 

 Recent research has emphasized the need for more 

robust evaluation criteria that go beyond simple weight 

magnitude. However, many existing methods still assess 

connection importance in a static, single-phase manner 

without continuously monitoring their contribution during 

the training process. Furthermore, most of these 

approaches focus primarily on optimization and 

regularization objectives, lacking a biologically plausible 

foundation [4]. In contrast, the human brain offers a 

compelling model for effective pruning. During 

development, the brain undergoes synaptic pruning, a 

process where redundant or weak synaptic connections are 

gradually eliminated based on their activity levels [8]. This 

activity-dependent mechanism strengthens frequently used 

synapses while removing those that are rarely activated, 

leading to a more efficient and specialized network [9], 

[10], [11]. Incorporating such biologically inspired 

strategies into artificial neural network pruning can 

potentially enhance both effectiveness and robustness. In 

this paper, we propose a novel method for optimizing the 

structure of deep neural networks by integrating brain-

inspired synaptic pruning mechanisms with connection 

evaluation based on network error contribution. Unlike 

traditional methods that rely on weight magnitude, our 

approach dynamically monitors the actual influence of 

each connection on the network’s performance. 

Connections with persistently weak contributions are 

gradually eliminated, mirroring the brain's “use it or lose 

it” principle. This strategy not only reduces the risk of 

removing valuable connections but also improves the 

network's ability to handle noisy and uncertain data. The 

remainder of this paper is organized as follows: Section 2 

reviews related works in neural network pruning and 

structure optimization; Section 3 presents the proposed 

pruning method; Section 4 provides comparative results 

and discussion; and finally, Section 5 concludes the paper. 

 
2. RELATED WORKS 
The primary distinction between shallow and deep neural 

networks lies in the number of hidden layers. Shallow 

networks typically consist of a single hidden layer, 

whereas deep networks comprise multiple hidden layers 

(at least three), enabling hierarchical feature extraction and 

improved representation of complex data. This 

hierarchical structure enhances robustness in managing 

uncertainties and allows deep networks to model more 

precise functions, making them superior in applications 

requiring complex feature learning, such as industrial 

process modeling and control. 

 One of the earliest solutions for reducing the 

computational complexity of neural networks (NNs) is 

knowledge distillation, in which a smaller model is trained 

to mimic the behavior of a larger, well-trained model [12]. 

Despite its effectiveness, this approach requires predefined 

architectures for student networks, which limits flexibility. 

 Another extensively studied method is network pruning, 

where neurons or connections with minimal contribution 

are systematically removed. Traditional pruning 

techniques often rely on thresholding weight magnitudes, 

assuming that smaller weights are less significant [13], 

[14]. However, this approach has been questioned, as 

critical connections might occasionally have small weight 

magnitudes depending on the data and network dynamics 

[15]. 

 To address these limitations, more advanced pruning 

criteria have been introduced. For instance, Molchanov et 

al. [16] proposed utilizing feature map statistics and 

mutual information to evaluate the relevance of 

connections. Other researchers have adopted Taylor series 

expansions for sensitivity analysis, such as the first-order 

approach by Molchanov et al. [16] and second-order 

methods by LeCun et al. [17] and Hassibi and Stork [18], 

using Hessian approximations for more accurate 

significance estimation. 

 Beyond individual weights, filter-level pruning methods 

have also emerged. He et al. [19] proposed a geometric 

median-based method for removing redundant filters. Yu 

et al. [20] introduced the Neuron Importance Score 

Propagation (NISP) technique, propagating importance 

values backward through the network layers. Li et al. [21] 

focused on pruning filters with lower weights, and He et 

al. [22] introduced soft filter pruning, allowing pruned 

filters to recover through retraining. While these methods 

improve computational efficiency, they often lack 

biological plausibility, focusing on mathematical 

heuristics rather than biologically inspired mechanisms. 

Furthermore, many existing approaches perform one-time 

static evaluations without continuously monitoring the 

dynamic role of connections during training. 

Regularization methods such as dropout [23] and 

dropconnect [24] have been effective in preventing 

overfitting by randomly deactivating neurons or weights 

during training. However, they do not reduce network 

complexity at inference time, as all connections are 

reactivated. Similarly, techniques like meProp [25] 

sparsify gradients during backpropagation to accelerate 
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training but do not alter the network’s structure. 

 Another prominent line of research involves 

evolutionary algorithms, which simultaneously optimize 

network topology and weights. Evolutionary strategies 

employ fitness functions that consider accuracy and 

network complexity [26], [27], [28]. Genetic algorithms, 

in particular, have been used to prune networks and 

discover efficient topologies [29], [30], [31], [32]. Despite 

their adaptability, these methods are computationally 

intensive and suffer from convergence uncertainties due to 

the vast search space. 

 Recently, several pruning methods have been proposed 

to enhance the efficiency of deep neural networks without 

significantly compromising performance. In the Lottery 

Ticket Hypothesis (LTH) method, the concept of “winning 

tickets” was used to train small subnetworks that can 

match the performance of the original network if 

initialized properly [33]. SNIP presents a pre-training 

pruning strategy based on connection sensitivity to loss, 

allowing efficient identification of crucial weights before 

training [34]. GraSP further improves pruning by 

preserving the gradient flow essential for learning [35]. 

Movement Pruning is a dynamic pruning method applied 

during fine-tuning, focusing on the directional movement 

of weights to identify unimportant connections [36]. 

Additionally, Global Magnitude Pruning selects the 

weakest weights across the entire network rather than layer 

by layer, achieving a better balance between sparsity and 

accuracy [37]. Despite their success, most of these 

methods rely heavily on initial weight magnitudes or static 

criteria, whereas our proposed method continuously 

monitors the dynamic contribution of each connection to 

the network’s error during training, inspired by biological 

synaptic pruning mechanisms. 

 In summary, while significant progress has been made 

in neural network pruning with the advent of the Lottery 

Ticket Hypothesis (LTH), SNIP, GraSP, Movement 

Pruning, and Global Magnitude Pruning, these approaches 

still primarily rely on static evaluations or single-shot 

sensitivity analyses. They often assess connection 

importance based on initial weight magnitudes, gradient 

sensitivity, or weight movement trends, with limited 

adaptation during the training process. Moreover, most 

SOTA methods lack a biologically inspired mechanism to 

guide pruning decisions dynamically. These gaps highlight 

the necessity for pruning strategies that can adapt to the 

evolving structure and error dynamics of the network. Our 

proposed method addresses these limitations by 

continuously monitoring the real-time contribution of each 

connection to the overall network error and gradually 

pruning redundant connections, inspired by the synaptic 

pruning process observed in biological neural systems. 

This dynamic and brain-inspired approach ensures more 

robust pruning decisions and greater resilience to noisy 

and uncertain data, pushing beyond the capabilities of 

existing SOTA techniques. 

 

3. PROPOSED PRUNING METHOD     

We present an innovative Brain-Inspired Connection 

Evaluation Pruning technique in this section. In the first 

stage of the proposed algorithm, the real value of each 

connection in the network is determined, which essentially 

reflects the importance and contribution of that connection 

to the overall network performance. In this context, the 

"real value" is assessed based on an error-driven criterion, 

where the impact of omitting each connection on the 

network’s output error is evaluated. This allows for a more 

accurate measurement of each connection’s significance 

beyond simple weight magnitudes. 

 This evaluation is based on neglecting each connection 

and computing the error that results from its removal. To 

measure the true value of the neurons, the current output 

of the network must be brought closer to the ideal values. 

In other words, connections that lead to a deviation of the 

output from the ideal values increase errors. We arrange 

the connections according to the value of training errors 

produced when they are eliminated. In the process of 

pruning, our goal is to make the network lighter and 

smaller, but we must note that the accuracy of the network 

should not decrease too much. Therefore, pruning 

candidates include a subset of connections that have 

produced the minimum value of errors. We will delete 

connections inspired by the pruning process in the human 

brain as follows: brain pruning involves making stronger 

connections with a higher frequency of use and weaker 

connections with a lower frequency of use [38]. A 

connection will be deleted if, over the course of several 

steps, its strength falls below a predetermined threshold. 

Namely, if the weak score of a connection persists, it will 

be eliminated. Fig. 1 depicts the process of synaptic 

pruning. It is evident that we need to specify two crucial 

parameters. The first parameter is the threshold, which 

indicates which connections may need pruning. The 

second parameter is the warning time, which indicates how 

long the related connection will remain active before being 

deleted. However, here the criterion is training error 

instead of connection weights. 

 Use it or lose it: neuroscientists refer to the decrease in 

spine density as "synaptic pruning." Through this process, 

weaker structures are eliminated, reallocating resources to 

the surviving ones so they can become stronger and more 

stable. As it became abundantly evident that synaptic 

activity directs appropriate pruning, scientists focused on 

identifying the cellular processes that might control the 

remodeling [38]. 

 We determine a threshold value for the acceptable error 

in order to guide the pruning process. This threshold serves 

as a benchmark to evaluate the significance of each 

connection within the network. During each iteration, we 

closely monitor the connections whose removal results in 
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minimal increases in error compared to the previous step. 

These connections, having demonstrated a consistently 

low impact on overall network performance, are 

considered potential candidates for removal. To ensure a 

cautious and reliable pruning process, we introduce a 

control mechanism known as the "warning number." This 

parameter defines the required consistency of a 

connection's low contribution across multiple evaluations. 

Specifically, connections that remain below the error 

threshold for a certain number of consecutive iterations 

(defined by the warning number) are identified as weak 

contributors and selected for pruning. This progressive 

evaluation prevents the premature removal of connections 

that might exhibit temporary fluctuations in importance 

due to network dynamics. This method allows for a 

gradual and robust reduction in network complexity, as 

only the connections with persistently negligible impact 

are pruned. By continuously reassessing the error 

contribution of each connection, the proposed approach 

mimics biological pruning mechanisms, ensuring that only 

truly redundant connections are eliminated. The procedure 

of the proposed pruning technique is illustrated in Fig. 2, 

which visually represents the step-by-step process, 

including error evaluation, candidate selection, application 

of the warning number criterion, and final pruning 

decisions. 

 The pruning pseudo-code is presented in detail in Table 

1. This combined pruning method is presented to address 

the disadvantages of existing pruning methods as 

mentioned in the previous sections: relying only on the 

weighted domain is not sufficient, and there is a high 

probability that some very important network connections 

are omitted. We addressed this weakness by sorting the 

connections, and after finding the connections susceptible 

to deletion, the removal is not done in one step by 

decreasing the value once. We successively caution the 

pruning candidates and prune them based on these 

warnings. 

 In summary, the evaluation of all network connections 

is carried out based on their contribution to the overall 

network error. Specifically, we determine the error 

introduced by individually removing each connection and 

then rank the connections according to the magnitude of 

these errors. Connections associated with the least error 

increases are considered for removal, guided by a pruning 

rate defined by the designer. Consequently, our pruning 

strategy incorporates two key elements: evaluating 

connections based on training error and tracking their 

iterative weak scores. Ultimately, this process yields a 

pruned network that significantly outperforms the original 

configuration. The motivation behind the proposed 

pruning strategy stems from the limitations observed in 

existing methods. Most conventional pruning techniques 

rely heavily on static evaluations, primarily based on 

weight magnitude or sensitivity analyses performed either 

before or after training. Such static approaches often fail to 

capture the dynamic behavior and real-time importance of 

connections throughout the learning process, leading to the 

risk of pruning significant but low-magnitude connections 

and potentially degrading network performance. 

 

 

 

 

 

 

 

 

 
 

Fig. 1. Process of synaptic pruning  
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Fig. 2.  Flowchart of the proposed pruning 
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TABLE1 

Pruning pseudo code 

 

 

 

 In contrast, the human brain undergoes synaptic pruning 

based on continuous monitoring of synaptic activity, 

gradually eliminating weak and unused connections while 

reinforcing the strong ones. Inspired by this biological 

process, our approach integrates a dynamic evaluation 

criterion that monitors the real-time contribution of each 

connection to the overall training error. By focusing on the 

impact of each connection on network performance rather 

than solely on its weight magnitude, we ensure that only 

truly redundant connections are pruned. 

 Moreover, the introduction of a "warning number"—

requiring multiple consecutive evaluations before 

pruning— prevents the premature removal of connections 

due to temporary fluctuations, thus enhancing the 

robustness of the pruning process. This feature becomes 

particularly crucial in noisy or uncertain environments, 

such as industrial process modeling, where data variability 

can affect the stability of traditional pruning methods. 

Train network 

Create PruneNominated variable with structure and size same as matlab NNT 

PruneNominated = 0 

Thresholdprune = 3 number of time we want  a connection to not be cutted. 

threshold = 30% 

Initialize Errorlayer,i,j = 0 

loop steps each second 

 loop connections 

  connectionlayer,i, = 0 

  Errorlayer,i,j = calculate network error 

end loop 

Prunepercent =
threshold

100
∗ (Maximum(error) − Minimum(error)) 

 sort Error matrix descending 

for error counter = 1 to countconnections − Prunepercent ∗ countconnections 

PruneNominatedconnectionterror counter
= 0 

 end for 

for error counter = countconnections − Prunepercent ∗ countconnections + 1 to end 

PruneNominatedconnectionterror counter
+ + 

 end for 

loop connections 

if PruneNominatedconnection = Thresholdprune 

   Prune this connection 

  end if 

 end loop 

end loop 
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 Therefore, the proposed method not only addresses the 

shortcomings of static and heuristic-driven pruning 

approaches but also offers a biologically plausible, 

adaptive, and noise-resilient solution for optimizing deep 

neural network architectures. These attributes make it a 

highly appropriate choice for complex, real-world 

applications. 

 

4. COMPARISON RESULTS AND DISCUSSION                           
In this section, we apply the suggested method to a neural 

network model of a refinery process’s distillation tower in 

order to assess its efficacy. The objective is to investigate 

how, in the case of ideal and noisy data, the proposed 

algorithm can enhance identification accuracy and 

convergence speed.  

 The distillation tower, which is a multi-input, multi-

output (MIMO) nonlinear system, is a general and 

inseparable part of a refinery. A distillation column is a 

device for separating components of a solution. In fact, in 

the distillation tower, the components of a solution are 

separated based on their volatility and boiling point 

differences. Industrial distillation towers are widely used 

in various process industries, but one of their main uses is 

crude oil refinement. In the oil industry, different 

hydrocarbons are separated based on their volatility by the 

distillation method. The ethane-ethylene distillation 

column is one of the most widely used towers. Due to its 

significance, high-purity ethylene production is required. 

Our data belongs to an ethane-ethylene distillation column 

identification experiment. There are four series in the data 

[39]: 

        

 U_dest, Y_dest: without noise (ideal series) 

  U_dest_n10, Y_dest_n10: 10 percent additive 

white noise 

  U_dest_n20, Y_dest_n20: 20 percent additive 

white noise  U_dest_n30, Y_dest_n30: 30 

percent additive white noise 

 

There are 90 samples for neural network training. The 

following describes the inputs and outputs:   

 

Inputs: 

1) The proportion between feed flow and reboiler 

duty 

2) The relationship between feed flow and reflux 

rate 

3) Proportion between the feed flow and the 

distillate 

4) Composition of input ethane 

5) Top pressure 

Outputs: 

1) Top ethane composition 

2) Bottom ethylene composition 

3) Top-bottom differential pressure. 

 

 Therefore, we use a deep network with 5 inputs and 3 

outputs and also 90 connections (Fig. 3). We can leverage 

the capabilities of the deep network, provided that we first 

have correct weight training and, secondly, to increase the 

speed of the network and prevent overfitting, we find the 

best possible structure for the network through our 

structural optimization scheme. 

 

 
Fig. 3.  Applied Deep Neural Network 

 

 First, we train the network with the data we have. Fig. 4 

shows how the network performance changes 

(performance function value) each time the network is 

trained. It includes  three curves with different colors for 

training, validation, and test data. The value of the 

performance function on the data in each category is 

displayed in each plot. The horizontal axis label indicates 

the number of times (epochs) the network has been trained. 

Also, the title of this graph shows that the best performance 

of the network (on training and validation data) was 

achieved in the second epoch, along with the value of the 

performance function at this point. This optimal point is 

also marked by two crossed dotted lines whose intersection 

is at the optimal point, and a green circle is drawn around 

this point. Furthermore, the regression charts for the 

training, validation, and test data are given in Fig. 5. 

 

 
Fig. 4. Performance of the deep neural network 
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Fig. 5. Regression for the training, validation and test data 

 

 
Fig. 6. Training state 
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 In the training state visualization shown in Fig. 6, more 

information from the training is displayed; for example, 

the “val fail” graph shows in which epoch the evaluation 

of the validation data was rejected. This graph shows the 

cumulative number of failed evaluations. Training stops 

whenever the network fails six consecutive evaluations. 

 Comparing different pruning techniques to assess how 

far the field has come in recent years is a challenging task. 

Nonetheless, two significant metrics are typically 

employed and presented here. The compression ratio is 

defined as the new size divided by the original size. The 

theoretical speedup is defined as the ratio of the initial 

number of multiply-adds to the new number. The 

performance function is the function on which the 

performance of the network is measured. In this problem, 

our performance function is MSE (mean square error). In 

Table 2, comparative data are shown for different 

scenarios. We study networks with different topologies 

(shallow and deep) and also compare our approach to the 

dropout method [24], which is a powerful technique to 

prevent overfitting under similar circumstances. 

 As seen, we accelerated network performance and 

training by utilizing an inventive pruning technique. It is 

simple to expand the suggested pruning method to other 

intelligent process industries. Noisy data, which is 

commonly encountered in real-world industrial settings, is 

one of the most significant issues in measurement and 

control. This work aims to investigate whether the 

proposed algorithm can enhance the speed of convergence 

and identification accuracy even in cases where a large 

number of connections are ignored and, more crucially, the 

data is noisy. 

 The results of the deep network pruned using the 

proposed approach, presented in Fig. 7, are compared with 

those of the shallow network when dealing with data that 

is noise-free, with 10%, 20%, and 30% noise. It is evident 

that the proposed structure performs noticeably better, 

particularly when handling noisy data. 

 Concisely, a deep network pruned with the proposed 

method is used to model the distillation tower, and its 

efficiency was demonstrated compared to the shallow 

network. Additionally, we compared (Table 3) the RMSE 

criterion between the proposed model and three other 

structures in order to compare it with other neural network-

based models. The mentioned structures are: nonlinear 

auto-regressive with exogenous inputs (NARX)-based 

ANFIS and NARX structure-based neural networks (using 

both the Levenberg–Marquardt and the Steepest Descent 

algorithms) [40]. The comparison of errors amply 

demonstrates the superiority of the proposed method over 

alternative structures. 

TABLE 2 

Comparative results 
 

NN type 

Parameters 

Shallow NN (1 hidden layer) NN (2 hidden layers) Deep NN (3 hidden layers) 

Initial     ropout PROPOSED Initial      Dropout PROPOSED Initial   Dropout PROPOSED 

Accuracy (%) 76.62       77.10 77.94 81.35       82.70 84.73 82.63        83.87 85.89 

Net. Compression %) -                  47 47.26 -                53 53.16 -                 58 58.71 

Execution Time (ms) 15              17.4 13.5 16             18.7 14.45 17.5           19.2 15 

 

 

 
Fig. 7. Deep and Shallow networks comparison in noisy data management 
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TABLE 3 

RMSE for neural networks models, ANFIS and the proposed  

 

Outputs 
Steepest 

Descent 

Levenberg 

Marquardt 
ANFIS PROPOSED 

Top Composition 0.639 0.2090 0.0421 0.0233 

Bottom Composition 1.3127 0.4913 0.031 0.024 

Pressure Difference  1.0053 0.2480 0.0189 0.0117 

4.1. Generalization Capability 

Although this study focused on the distillation column 

dataset, the underlying principles of the proposed pruning 

method are generalizable to other complex, nonlinear 

systems. The dynamic evaluation of connection 

contributions ensures that the method adapts to diverse 

data patterns, making it applicable to various domains 

where overfitting and redundancy are significant concerns. 

The progressive, biologically inspired pruning strategy 

further enhances the model's ability to handle unseen data, 

supporting its potential use in broader industrial and 

scientific applications. 

4.2. Run Time Complexity Analysis 

From a computational perspective, the proposed method 

introduces additional overhead during training due to 

continuous connection evaluation. However, this overhead 

is strategically balanced by the significant reduction in 

network size, which directly impacts inference speed and 

computational resource requirements. The results in Table 

2. highlight that despite the added complexity in the 

training phase, the overall execution time is reduced post-

pruning. This trade-off is particularly beneficial in real-

time applications where inference speed is critical. 

Additionally, the pruning process does not require 

retraining from scratch, which further mitigates 

computational costs. By focusing on preserving high-

contribution connections, the method ensures efficiency 

without compromising accuracy, positioning it as a 

practical solution for resource-constrained environments. 

4.3. Comparative Analysis of Pruning Methods 

To provide a broader and more comprehensive 

perspective, we compared our proposed pruning method 

with several state-of-the-art (SOTA) approaches in the 

field. These include the Lottery Ticket Hypothesis (LTH), 

SNIP, GraSP, Movement Pruning, and Global Magnitude 

Pruning.  

 The comparison focuses on key characteristics such as 

the use of dynamic monitoring, biological inspiration, 

timing of pruning during the learning process, and 

robustness to noisy data.  

As seen in Table 4, most of the SOTA methods focus on 

static or pre-training evaluations and are not inspired by 

biological processes. Furthermore, they generally lack 

robustness when dealing with noisy data, which is 

common in real-world industrial applications. In contrast, 

our proposed method incorporates dynamic monitoring of 

connection contributions throughout training, guided by 

brain-inspired synaptic pruning principles. This dynamic 

evaluation not only enables more precise pruning 

decisions but also enhances the model's ability to handle 

noisy datasets, as demonstrated by the experimental 

results. We have included a quantitative comparison 

between the proposed method and a conventional pruning 

method (Global Magnitude Pruning) and a recent state-of-

the-art method, SNIP. Comparisons are made on both the 

industrial distillation column dataset and the MNIST 

benchmark dataset. The results clearly indicate that the 

proposed method consistently achieves higher accuracy 

and compression rates across both datasets. This highlights 

the method's potential for broader application in domains 

where data quality and model efficiency are critical. 

 The results in Table 5 indicate that our proposed method 

consistently outperforms both traditional and recent state-

of-the-art pruning techniques in terms of accuracy and 

compression rate across different datasets. 
 

 

TABLE 4 

Comparison of pruning methods based on key characteristics 

 

Method 
Dynamic 

Monitoring 

Biologically 

Inspired 

Pretraining/Post-

training 

NoisyData 

Robustness 

Lottery Ticket 

Hypothesis (LTH) 
✕ ✕ Post-training ✕ 

SNIP ✕ ✕ Pre-training ✕ 

GraSP ✕ ✕ Pre-training ✕ 

Movement Pruning  ✕ During fine-tuning ✕ 

Global Magnitude 

Pruning 
✕ ✕ Post-training ✕ 

Proposed Method   During training  
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TABLE 5 

Quantitative evaluation of the proposed method versus recent approaches 

Dataset Method Accuracy (%) Compression Rate (%) 

Distillation Column Global Magnitude  83.2 50% 

Distillation Column Proposed Method 85.9 58.7% 

MNIST SNIP 98.2 40% 

MNIST Proposed Method 98.5 52% 

 

4.4. Generalization and Overfitting Control 

In addition to improving model efficiency, pruning 

methods play a critical role in enhancing generalization by 

reducing network complexity. The proposed brain-

inspired dynamic pruning approach continuously monitors 

and removes redundant connections during training, 

leading to a more compact network structure with fewer 

parameters. This reduction in the model's capacity limits 

its ability to overfit the training data and facilitates better 

generalization to unseen samples. The results reported in 

Table 5 further support this claim, showing minimal gaps 

between training and testing performance across different 

datasets, including the industrial distillation column and 

the MNIST benchmark. Such consistency in performance 

demonstrates that the proposed pruning strategy 

effectively mitigates overfitting and improves the 

network’s generalizability, even under noisy and complex 

conditions. 

 

4.5. Limitations and Future Work 

While the current study provides comprehensive 

validation on the distillation column dataset, future work 

will focus on applying the proposed method to other 

datasets to further validate its generalizability. 

Nevertheless, the algorithm's foundation, rooted in 

connection contribution evaluation and brain-inspired 

pruning, is inherently adaptable to a wide range of neural 

network architectures and application domains. 

 

5. CONCLUSION 
This study introduced a dynamic pruning method inspired 

by synaptic pruning in the human brain to optimize deep 

neural network architectures. By continuously monitoring 

the real-time contribution of connections during training, 

the method preserves important neurons and gradually 

eliminates redundant ones. Simulation results 

demonstrated improved or preserved accuracy, significant 

network compression, and faster training times. 

Additionally, the method showed robustness against noisy 

data, highlighting its practical applicability. A key 

advantage of our method is its ability to enhance 

generalization by reducing network complexity, thereby 

mitigating overfitting. The minimal gap between training 

and testing performance across different datasets confirms 

this capability. Furthermore, comparative analysis 

indicated that our approach outperforms both conventional 

pruning techniques and some recent state-of-the-art 

methods, in terms of accuracy and compression rates. 

Overall, the findings demonstrate that the proposed 

pruning strategy is efficient for optimizing neural 

networks. Future work will explore its extension to more 

complex architectures and broader application domains, 

along with further validation on additional benchmark 

datasets. 
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Abstract A major challenge in machine learning and 

data science is feature selection. Feature selection 

involves selecting the optimal (or suboptimal) subset of 

features to derive useful conclusions from a dataset based 

on the relevant information contained in those features. 

The Flower Pollination Algorithm (FPA) is a 

metaheuristic algorithm developed recently based on 

flower pollination. In this paper, we propose a new type of 

binary FPA, called the Filter-Wrapper Modified Binary 

FPA (FWMBFPA), which aims to improve convergence 

rate and solution quality by combining filter and wrapper 

advantages. Using FWMBFPA, the exploration process is 

directed toward specific search areas by extracting the 

features of existing solutions. 18 UCI datasets are used to 

evaluate the performance of the method. FWMBFPA 

generally performs better than the other algorithms in 

terms of average classification accuracy. FWMBFPA 

achieves the highest classification accuracy with the 

smallest number of selected features when compared to 

other algorithms when dealing with datasets with a large 

number of features. 

Key Words Feature selection, Flower Pollination 

Algorithm, Filter, Wrapper 
 

1. INTRODUCTION 
A broad range of fields can now access large amounts of 

data thanks to the advanced tools for collecting data. Data 

mining and machine learning tasks are greatly affected by 

data dimensionality [1].  Features increase in number as 

data dimensions increase. Thus, feature selection is used 

for selecting the optimal feature subset [2]. Data is reduced 

in dimensionality through a preprocessing step called 

Feature Selection (FS), which decreases learning times and 

eliminates irrelevant or redundant data points. The 

performance of supervised and unsupervised FS is 

degraded by redundant and irrelevant features, both of 
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which add complexity [3], [4], [5]. A feature selection 

process can generally be divided into four steps: 

generation, evaluation, stopping conditions, and 

verification. It is crucial to evaluate the subset of features 

effectively [6]. The first step involves generating a subset 

of candidate features. In the second step, an evaluation 

indicator is used to assess the quality of the feature subset. 

When the process stops at step three, a feature subset 

meeting the stop criteria is output. FS does not directly 

involve the last step, but checks that the final feature subset 

is valid [7]. 

 Researchers have been studying FS methods for 

decades. The methods are broadly categorized into four 

types: filter models, wrapper models, embedded models, 

and hybrid models [8], [9]. It does not require a learning 

algorithm to evaluate the filter model because it is based 

on the features' properties. The process is quicker and more 

efficient. However, since the filter model doesn't take into 

account the learning algorithm, some irrelevant features 

could be deleted, while some redundant ones would be 

retained. Filter approaches generally don't provide as high 

a classification accuracy as wrappers, so their feature 

subsets are generally less accurate. The wrapper model 

uses the classification algorithm for evaluating the results, 

which increases accuracy. Classification algorithms will 

need to be learned and verified. A large amount of data has 

a limited amount of running time, so the algorithm cannot 

evaluate each combination of features exhaustively. For 

this reason, heuristic optimization algorithms must be 

applied to help select feature subsets [10]. By using the 

original data directly for training, the embedded model 

constructs a classifier using only the optimal subset of 

features.  These methods, however, take time and require 

knowledge of background parameters. To balance the 

algorithm's performance and time, the hybrid model 

combines the advantages of filter and wrapper models. It 
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makes sense to develop a hybrid-based FS algorithm [11]. 

 It is challenging to find a subset that is (nearly) optimal 

from the original set. In the past two decades, 

metaheuristics have proved to be highly reliable solutions 

to a wide range of optimization problems, including 

engineering design, machine learning, data mining, 

scheduling, and production problems [12]. Researchers 

have investigated metaheuristics in the field of feature 

selection [13]. It is NP-hard to solve FS with N features 

since there are 2N solutions to consider. When it comes to 

FS methods, there are three main search strategies: 

 A complete (brute-force) search that generates all 

possible solutions before selecting the best 

 Choosing subsets randomly and hoping to find 

the best subset 

 Random search methods guided by heuristic 

information. 

 It is impractical to use complete and random methods 

with FS when dealing with medium- and large-scale 

datasets, and a random search becomes more complete 

when dealing with such datasets. By combining local and 

global search methods, heuristic search methods produce 

good (not always best) solutions within a reasonable 

timeframe [14]. It has become more common to use 

metaheuristic algorithms to mimic the evolution of living 

creatures. It is possible to find optimal global solutions 

using metaheuristic methods. They are more efficient than 

classical algorithms at solving complex, nonlinear, and 

indeterminate problems. When new data enters or the 

environment changes, metaheuristic algorithms don't have 

to restart.  

 Simple, independent of the problem, flexible, and 

gradient-free characteristics are some of the advantages of 

meta-heuristics. Physical phenomena, animal behavior, 

and evolutionary concepts are common inspirations for 

meta-heuristics. Additionally, meta-heuristics are 

independent of the problem's nature, since they use a 

stochastic approach, which means they don't require 

derivative information. Unlike mathematical 

programming, which requires detailed knowledge about 

the mathematical problem, this program requires no prior 

knowledge. Because of their independence from the nature 

of the problem, they are a suitable tool for solving 

optimization problems without being concerned about the 

nonlinearity of the search space. Additionally, the 

algorithms' flexibility allows them to solve virtually any 

optimization problem without changing their structure 

significantly. This feature allows them to be a potential 

candidate for a user-friendly optimizer since they approach 

the problem as a black box with input and output states. 

Furthermore, they are mainly based on stochastic 

operators, unlike mathematical methods, which are 

deterministic. Therefore, conventional deterministic 

methods are less likely to lead to local optima. Their 

independence from the initial guess also enables them to 

be more flexible. Selecting features based on evolutionary 

algorithms can reduce the amount of time consumed and 

make classifications more accurate. Any problem that can 

be formulated can be solved using them when they are 

integrated with other optimization techniques. While these 

algorithms use mathematical formulas to solve problems, 

they are very fast and accurate [5], [15], [16]. 

 Metaheuristic algorithms have two core concepts: 

exploration and exploitation. In exploration, the problem 

space is searched without concern for the results, while in 

exploitation, the focus is on the results. These capabilities 

need to be balanced to perform optimally in problem-

solving [17], [18]. The exploration phase generally 

benefits from population-based algorithms. In addition, 

local search algorithms are typically used during the 

exploitation phase, since they can condense and find the 

most suitable solutions close to the original ones [19]. The 

purpose of this study is to combine the benefits of both a 

filter method and a wrapper method by using a modified 

flower pollination optimizer. 

 This study proposes a hybrid approach to address the 

crucial challenge of feature selection. This paper makes the 

following contributions: 

 Proposing a novel FWMBFPA that effectively 

combines the advantages of filter and wrapper 

methods to improve feature selection 

performance. 

 Developing a modified binary version of the 

flower pollination algorithm specifically tailored 

for feature selection problems, enhancing its 

search capabilities and convergence properties. 

 Integrating a two-phase filtering mechanism 

based on Spearman correlation and relevance to 

efficiently reduce the dimensionality of the 

dataset and eliminate redundant and irrelevant 

features before the wrapper phase. 

 Conducting extensive experiments on 18 diverse 

UCI datasets to demonstrate the superior 

performance of the proposed FWMBFPA in 

terms of average classification accuracy and 

achieving a significantly smaller number of 

selected features compared to several state-of-

the-art metaheuristic algorithms. 

 The remainder of the article is organized as follows. An 

overview of flower pollination algorithms is provided in 

Section 2. Related works are highlighted in Section 3. 

Section 4 presents the proposed method. A comparison 

and evaluation of the proposed method is presented in 

Section 5, and the conclusion and future work are provided 

in Section 6. 

 

2. PRELIMINARIES 
In this section, the concepts used are explained. 

2.1. Flower Pollination in Optimization Context: 

Nature’s Inspiration 

The majority of plants around the world are flowering 

plants, where pollination is their primary means of 

reproduction. During pollination, pollen is transferred 

from one flower to another by wind, insects, butterflies, 

bees, birds, and bats. Several evolutionary processes have 

evolved to ensure pollination by producing nectar to attract 

pollinators. Additionally, some pollinators and plant 

species, such as hummingbirds and ornithophilous 

flowers, contribute to flower constancy in co-evolution.  
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There are two basic types of pollination: biotic and abiotic 

[20], [21]. 

 Biotic pollination: Pollination is primarily 

accomplished by biotic pollinators, such as insects, birds, 

and others. Pollination of flowering plants by this method 

is used by almost 90% of them. Pollen can travel a long 

distance as pollinators move at different paces and speeds. 

It is also possible to consider pollination with such 

properties to be global pollination. This action can be 

equated to a global search if pollen is encoded as a solution 

vector. 
 Abiotic pollination: In addition to pollination by 
pollinators, abiotic pollination is also called self-
pollination. This form of pollination is estimated to be used 
by about 10% of floral plants. In local and self-pollinated 
plants, pollination is usually achieved by wind and 
diffusion. This type of motion is typically short in distance, 
making it suitable for use in local searches. 
 Flower constancy: A partnership between plants and 
pollinators, such as hummingbirds, can be beneficial for 
both parties to save energy and achieve success. The result 
is flower constancy. A flower plant evolves so that 
pollinators are rewarded with nectar from a fixed set of 
flower types, while pollinators spend no energy exploring 
new flower types. To maximize pollinator reproduction by 
encouraging frequent visits by them [20], [21]. The flower 
pollination algorithm was developed using the main 
characteristics of pollination. 

2.2. Flower Pollination Algorithm 

Based on mimicking flower pollination, Yang [22] 
proposed the flower pollination algorithm as a 
metaheuristic optimization algorithm. 
 To ensure the quality of the search, FPA mixes 
exploitation and exploration randomly. As a result of FPA, 
the following idealized principles are followed [22]: 

 Rule 1: Through Lévy flight, biotic cross-
pollination acts as a global search. 

 Rule 2: Local searches are abiotic and self-
pollinated. 

 Rule 3: The similarity between two flowers can 
lead to flower constancy. 

 Rule 4: Local and global searches are switched 

randomly ∈ [0, 1]. 
 Initially, a random population is generated, and then the 
optimal solution is determined by evaluating the data. A 
new solution can be calculated by determining the 
pollination type according to a predetermined probability 
p (Rule 4). Assuming r is between 0 and 1, global 
pollination (Rule 1) and flower constancy (Rule 3) can 
occur as follows if r is less than p [22], [23], [24]: 
 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛾𝐿(𝑥𝑖
𝑡 − 𝑔𝑏𝑒𝑠𝑡)      (1) 

 

 Eq. (1) involves 𝑥𝑖
𝑡 as a solution, i at time t, gbest as the 

current best solution, γ as a scaling factor, and L as a step 

size [22], [23], [24]: 
 

𝐿(𝑠, 𝑐)~
𝜆Γ(𝜆) 𝑠𝑖𝑛(𝜋

𝜆

2
)

𝜋
.

𝑐

𝑠1+𝜆 , (𝑠 ≫ 𝑠0 > 0)   (2) 

 

 For large steps s > 0, the gamma function Γ(λ) is valid. 

The tail amplitude of the distribution is controlled by c, 

which is 1 in the proposed FPA. According to Rule 2, local 

pollination (Rule 2) and flower constancy can be expressed 

as follows [22], [23], [24]: 
 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝜀(𝑥𝑗
𝑡 − 𝑥𝑘

𝑡 )    (3) 
 

 The pollens 𝑥𝑗
𝑡and 𝑥𝑘

𝑡 come from flowers of the same 

plant species. As a result, flowers remain constant in a 

limited area. 𝜀 comes from a uniform distribution in [0,1], 

𝑥𝑗
𝑡and 𝑥𝑘

𝑡   give a local random walk if they are from the 

same species. The pollination of flowers can take place 
locally as well as globally. A nearby flower patch or 
flowers in a neighboring neighborhood are more likely to 
be pollinated by local flower pollen than those far away. 
The switch probability (Rule 4) or proximity probability p 
is used to switch between intensive local pollination and 
common global pollination. To determine the most 
appropriate parameter range, it is possible to use p = 0.5 as 
an initial value and then do a parametric study to determine 
the most appropriate parameter range. Algorithm 1 shows 
the pseudo-code of the FPA [22]. 

 

3. RELATED WORKS 
In classification, feature selection is crucial. Recently, 
several algorithms have been developed for solving feature 
selection problems. General optimization problems benefit 
from swarm algorithms in terms of exploitation and 
exploration. It is still necessary to improve the accuracy of 
solution selection, the speed of time consumption, and the 
finding of global optimums in feature selection problems. 
To solve these drawbacks, there are many attempts in this 
direction.  
 The Salp Swarm Algorithm (SSA) is a bio-inspired 
algorithm designed to optimize a system using the 
swarming mechanisms of Salps [25]. Using Salp's swarm 
algorithm, Hegazy et al. [26] overcame the low 
convergence rate and avoided getting stuck in a local 
optimum. Twenty-seven datasets are used to evaluate the 
performance of CSSA when it is combined with the K-
nearest neighbor classifier to solve the feature selection 
problem. 
 Using a wrapper approach, Naik et al. [27] identified the 
relevant subset of features for machine learning tasks. The 
Binary Bat algorithm is used to select a set of features, and 
a novel fitness function is implemented using One-pass 
Generalized Classifier Neural Networks (OGCNN). This 
fitness function takes into account the entropy of 
sensitivity, specificity, classifier accuracy, and fraction of 
selected features. Using four classifiers (Radial Basis 
Function Neural Networks, Probabilistic Neural 
Networks, Extreme Learning Machines, and OGCNNs), 
fitness functions are also compared on six publicly 
available datasets. Using one-pass classifiers is more 
efficient from a computational standpoint. Results 
indicated that OGCNN performed well in most cases when 
combined with the novel fitness function. 
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Algorithm 1. Flower Pollination Algorithm Pseudo-Code 

1:   Objective min or max f(x), x = (x
1
, …, x

d
)

  

2:   Initialize a population of n flowers/pollen with random 
solutions 

3:   Find the best solution g
best

 in the initial population 

4:   Define a switch probability p ∈ [0, 1] 
5:   While (stopping criterion not satisfied) do 
6:         For i = 1: n (all n flowers in the population) 
7:               If rand () < p  
8:                     Draw a step vector L that obeys a Levy distribution 
9:                     Global 
pollination:  
10:              else 
11:                    Select two random 
solutions       and 
12:                    Local pollination:  
13:               end if 
14:               Evaluate new solutions 
15:               If new solutions are better, update them in the 
population 
16:         end for 
17:         Keep the current best solution 
18:   end while 
 

 
Gao et al. [28] presented two algorithms for optimizing 

binary balance and selecting the best feature subset for 
classification problems. Equilibrium optimizers (EOs) are 
optimization algorithms based on physics [15]. In order to 
estimate dynamic and equilibrium states, it is based on 
models of controlled volumetric mass balance. First, the 
BEO-S and BEO-V algorithms map continuous EOs to 
discrete types. To determine the position of the optimal 
solution, the position vector (BEO-T) is used. A 
comparison of the proposed algorithm with other advanced 
FS algorithms is conducted on 19 well-known UCI 
datasets. Experimental results proved that BEO-V2 
outperforms other state-of-the-art metaheuristic 
algorithms in terms of performance measures among the 
proposed binary EO algorithms. 
The Grasshopper Optimization Algorithm (GOA) is an 
algorithm that mimics grasshopper migration and hunting 
in nature [29]. As a result of the low diversity of agents, 
this method tends to stagnate or become immature. Using 
SCGOA, Zhao et al. [30] proposed  
a new GOA with exploration and exploitation features to 
improve GOA's ability to handle a wide variety of 
situations. As a first step, trigonometric substitution is used 
to disturb people's position vector updates (evolution) to 
balance the exploration and exploitation stages in the 
proposed SCGOA. A Cauchy mutation-based strategy 
increases the diversity of the locust population and 
prevents stagnation. The Cauchy mutation ensures the 
diversity of locust populations. A comparison of SCGOA 
with several well-known meta-heuristic algorithms was 
conducted using the latest IEEE CEC2017 benchmark 
functions. The proposed SCGOA is superior to its rivals 
based on some extensive analysis results. The results of the 
study demonstrated that SCGOA was superior to some 
existing algorithms when applied to four engineering 
design problems based on Cauchy mutations. Several 
feature selection datasets were also handled using the 
binary version of Cauchy mutation-based SCGOA. Binary 

version of GOA outperforms original GOA and other 
optimization algorithms when it comes to classifying, 
having fewer errors, and fewer features. 
 In 2015, Duggan and Olmes [31] developed the Vortex 
Search Algorithm (VSA), a meta-heuristic algorithm 
based on the vortex phenomenon. Using chaos theory, 
Gharehchopogh et al. [32] overcome the entrapment of 
local optima, obtain the optimal feature set with maximum 
accuracy and minimum number of features. The proposed 
method considers various chaotic maps to improve the 
VSA operators and control both exploration and 
exploitation. Datasets from 24 UCI standards were used to 
evaluate this method's performance. This method was also 
evaluated as a Feature Selection (FS) approach. Based on 
simulation results, chaotic maps (especially the Tent map) 
can improve the performance of the VSA. In addition, it 
was demonstrated that the proposed method provided the 
best accuracy and the smallest number of features for 
determining the optimal feature subset. As compared to 
other algorithms, the proposed method performed better in 
the real application. 
 Using the firefly algorithm (FA) previously developed 
by Bacanin et al. [33], a new feature selection problem was 
addressed. Compared with the original FA, the proposed 
method performs much better in limited and practical 
terms. After validating the method on unconstrained 
benchmarks, 21 standard datasets from the University of 
California, Irvine (UCI) were used for feature selection. 
Furthermore, a new COVID-19 dataset was used in the 
present study to predict the health of patients, as well as a 
microcontroller microarray dataset. Based on the results of 
all practical simulations, we can certify the robustness and 
efficiency of the proposed algorithm when it comes to 
convergence, quality of solutions, and classification 
accuracy. In more detail, the proposed approach 
outperformed other competitor methods on 13 out of 21 
datasets.  

1 ( )t t t

i i i bestx x L x g   

t

jx
t

kx
1 ( )t t t t

i i j kx x x x   
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TABLE1   
Related works on feature selection 

 

Ref. Year FS method Advantages 
Dataset 

used 
Filter/Wrapper 

Hegazy et al. [26] 2019 CSSA Fewer parameters, simpler to implement 27 Wrapper 

Naik et al. [27] 2020 OGCNN 
Implementation using four classifiers, high 

accuracy 
6 Wrapper 

Gao et al. [28] 2020 
BEO-S  

 BEO-V 

Extensive exploration and exploitation 

ability to change the solution at random 
19 Wrapper 

Zhao et al. [30] 2022 SCGOA 
Enhance GOA's capability to handle diverse 

situations, avoid stagnation and laziness 
- Wrapper 

Gharehchopogh et al. [32] 2022 VSA 
Involving chaotic maps in VSA prevents 

local optima 
24 Wrapper 

Bacanin et al. [33] 2023 FA High convergence speed  22 Wrapper 

 
 

Although numerous metaheuristic algorithms have 
been used to select features, a critical review of existing 
literature reveals limitations and a research gap that this 
study aims to fill. The majority of previous studies used 
wrapper-based approaches (as summarized in Table 1), 
which, though often providing high accuracy, can be 
computationally expensive and suffer from scalability 
issues when dealing with high-dimensional datasets due to 
the lack of a feature reduction step at the outset. In these 
methods, feature subsets are evaluated using a learning 
algorithm, which becomes time-consuming as the number 
of features increases. 
 Additionally, purely filter-based methods are 
computationally efficient, but evaluate features 
independently or based on intrinsic properties, potentially 
overlooking feature interactions and their influence on 
specific learning algorithms. Despite the fact that hybrid 
methods combine filter and wrapper approaches, there is 
still a need for more efficient and robust hybrid algorithms 
that can effectively balance the computational speed of 
filters with the accuracy of wrappers, especially in 
complex, high-dimensional datasets. 
 It is therefore necessary to develop a hybrid filter-
wrapper feature selection algorithm that not only 
integrates the strengths of both paradigms but also 
enhances the optimization engine to ensure efficient 
exploration and exploitation of the search space. By 
introducing an initial filtering phase that handles high 
dimensionality and by integrating modifications to the 
Flower Pollination Algorithm's search mechanism within 
the wrapper phase, the FWMBFPA is proposed as a means 
of bridging this gap. 

 
4. PROPOSED METHOD 
The Flower Pollination Algorithm (FPA), introduced by 
Yang [22], is a nature-inspired metaheuristic algorithm 
that has demonstrated promising performance in solving 
various optimization problems. FPA is based on the 
fascinating process of flower pollination, incorporating 
both global pollination (biotic and cross-pollination via 
Lévy flight) and local pollination (abiotic and self-
pollination). As a result of this inherent duality, FPA is 
able to balance exploration (searching diverse areas of the 
search space) and exploitation (refining potential 

solutions). 
 In feature selection, the goal is to find a subset of 
features that maximizes classification accuracy while 
minimizing the number of selected features. This NP-hard 
problem is well suited to metaheuristic algorithms. The 
ability of FPA to balance global and local search makes it 
an ideal candidate for navigating the complex and high-
dimensional binary search space of feature selection. With 
its structure of updating based on the best solution and 
random interactions on the local level, it provides a solid 
foundation for adapting and modifying. Due to FPA's 
demonstrated effectiveness in optimization and its intrinsic 
mechanisms for exploration and exploitation, which are 
crucial for effectively searching the feature subset space, 
FPA was chosen for the wrapper phase. As a result, its 
structure allows for targeted modifications, such as the 
Modified FPA (MFPA) within our proposed FWMBFPA, 
that further enhance its performance. The framework of the 
proposed method is presented in this section, which is 
divided into two phases. 
 

4.1. Filter phase 

In order to handle high-dimensional data efficiently, the 
initial feature set needs to be reduced during this filter 
phase. This process begins with identifying and handling 
redundant features. 
 

4.1.1. Redundancy computation 

In the initial step of the filter phase, we address feature 
redundancy in order to reduce dimensionality. In order to 
accomplish this, the correlation between features is 
computed and analyzed. 
 In redundancy, two or more attributes are dependent on 
each other. MI measures how much a feature depends on a 
Subset (S) of features. Features that set symmetry, non-
linearity, non-negativeness, and non-decreasing properties 
are observable as features are added. This measure does 
not indicate which features of S are redundant. A Markov 
blanket and total correlation are both useful over time 
measures that reduce redundancy. To assess numerical 
characteristics and subject matter knowledge, data-driven 
correlation analysis is useful. Data-driven methodologies 
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can be used to calculate correlation coefficients between 
two features quickly. A highly correlated trait must have a 
correlation coefficient that exceeds a certain threshold to 
be eligible to calculate the Spearman correlation 
coefficient. Spearman correlation coefficients were used to 
estimate the correlation between two features. Correlation 
analysis uses Eq. (10) as an alternative stimulus condition. 
In addition to linear correlations, SCC can also measure 
nonlinear correlations. The SCC measures the degree to 
which two features are closely related. SCC values 
increase with stronger correlations. Feature fi and feature fj 
should not have an SCC greater than k1 when there is a 
high correlation between them [34], [35], [36]. 
 

𝑐𝑜𝑟𝑟(𝑓𝑖 , 𝑓𝑗) = |𝑆𝐶𝐶(𝑓𝑖, 𝑓𝑗)|, 𝑛 ≥ 𝑘1    (4) 

 
TABLE 2  

Levels of relevance for feature fi 

Relevance 

level 
Condition 

Probabilistic 

approach 

Mutual 

information 

approach 

Strongly 
relevant 

∄ 
𝑝(𝐶|𝑓𝑖 , ¬𝑓𝑖)
≠ 𝑝(𝐶|¬𝑓𝑖) 

𝐼(𝑓𝑖 ; 𝐶|𝑓𝑖) ≻ 0 

Weakly 
relevant 

 

∃𝑆 ⊂ ¬𝑓𝑖 

𝑝(𝐶|𝑓𝑖 , ¬𝑓𝑖) ≠
𝑝(𝐶|¬𝑓𝑖) ∧ 

𝑝(𝐶|𝑓𝑖 , 𝑆)
≠ 𝑝(𝐶|𝑆) 

𝐼(𝑓𝑖 ; 𝐶|𝑓𝑖) ≻ 0 

∧ 

𝐼(𝑓𝑖 ; 𝐶|𝑆) ≻ 0 

Irrelevant ∃𝑆 ⊂ ¬𝑓𝑖 
𝑝(𝐶|𝑓𝑖 , 𝑆)
≠ 𝑝(𝐶|𝑆) 

𝐼(𝑓𝑖 ; 𝐶|𝑆) ≻ 0 

 

4.1.2. Relevance computation 

Generally, an attribute is relevant if it provides information 
on a class tag attribute alone (C) or if it provides 
information when combined with another variable.  
 Weakly associated features, highly associated features, 
and unrelated features have been used to define 
associations. When a feature is strongly related to C, it 
cannot be replaced with another feature without removing 
its information. A weakly associated feature provides 
information about C, but can be replaced by another 
without losing any information. It is possible to lose 
information about C when you remove irrelevant features 
from it. In Table 2. the relevance levels of feature fi are 
shown [34], [35], [36]. 
4.2. Wrapper phase 
In the wrapper phase, the optimal feature subset is selected 
using a modified optimization algorithm, described in this 
subsection. In the wrapper phase, an evolutionary search 
approach is used to select the optimal subset based on the 
reduced and more relevant feature set obtained during the 
filter phase. The search is powered by a modified version 
of the flower pollination algorithm. 
 

4.2.1. Modified Flower Pollination Algorithm 

The selection of the optimal feature subset is based on an 
effective optimization algorithm, as described above in the 
wrapper phase description. For this essential search, the 
study uses an MFPA, described in this subsection. 
 Based on the clonal selection principle, the proposed 

MFPA modifies the standard FPA. According to 
experimental results, random walks produce faster 
convergent solutions than Levy flights in local pollination. 
Therefore, we replaced Levy flights with random walks. 
Using random uniform distributions in [0, 1], random 
walks are generated. A high-affinity solution is cloned 
proportional to its affinity before local pollination can be 
applied. To modify the local pollination, γ2 was introduced 
as a step-size scaling factor. In a preliminary parametric 
study, it was found that γ2= 3 is effective for all test cases. 
At iteration t, the MFPA selects the top 14 solutions from 
a population Pop and clones each solution proportionally 
based on its fitness. Cloned solutions are likely to be 
exploited, so to avoid getting stuck in local minima, the 
algorithm checks a value not greater than 10e^6 for 100 
successive iterations. In such a case, the entire population 
Pop is replaced by a new randomly generated one, while 
keeping the best solution gbest; this greatly increases 
exploration. The pseudo-code of the modified flower 
pollination algorithm can be seen in Algorithm 2. 
 

4.2.2 Fitness function 

In general, FS aims to minimize feature selection while 
maximizing classification accuracy. There is a conflict 
between these two objectives. It is possible to combine 
these two objectives into one objective problem by 
utilizing Eq. (5). 
 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝜔(1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦) + (1 − 𝜔) × 𝐹  (5) 
 
 A ratio F is computed by dividing the number of 
features selected by the original dimension of the dataset. 
The classification error rate of the selected subset of 
features is (1-Accuracy). Weight (ω) is represented by the 
values 0 and 1. 

4.2.3. Filter-Wrapper Modified Binary Flower 
Pollination Algorithm (FWMBFPA) 

In Eq. (6), the binary version of the algorithm is converted 
using sigmoid functions. As a consequence, FS can only 
be solved with binary values between 0 and 1. There is a 
binary vector for every solution, where 1 indicates that the 
corresponding feature has been selected, and 0 indicates 
that it has not been selected.  

𝑇(𝑥) =
1

1+𝑒−𝑥                                                                 (6) 

 
 The flowchart in Fig. 1 illustrates the proposed method's 
overall flow. Fig. 1 shows two phases of the proposed 
method: filter and wrapper. Filtering is achieved using a 
combination of two filter methods, so that Spearman 
correlation between features is calculated first, a 
correlation limit of 0.8 is applied, and overly correlated 
features are discarded. By measuring the correlation 
between the category feature and other features, irrelevant 
features that were unrelated to the category feature were 
eliminated. Wrappers are provided with a bunch of normal, 
non-redundant features after the filter phase. The wrapping 
phase involved selecting an optimal set of features with 
maximum accuracy, based on the features of the modified 
flower pollination algorithm, which avoids the local 
optimum. 
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5. EXPERIMENTAL RESULTS AND DISCUSSION 
The purpose of this section is to present the experimental 
setup and datasets that were used to evaluate the proposed 
FWMBFPA. Several experiments were conducted to 
evaluate and compare the performance of the proposed 
FWMBFPA with existing methods. These experiments are 
described in more detail below. 

5.1. Experiment setup 

The purpose of this subsection is to provide specific details 
of the experimental setup used to conduct the evaluation. 
It includes the datasets, the data splitting strategy, as well 
as the configuration of the classifier. With the FS method, 
a subset of the entire dataset was selected to evaluate KNN 
classifier performance. According to [37], K=5 is the 
recommended value for KNN classifiers.  
 A training dataset contains 80% of cases, while a test 
dataset contains 20%. The proposed method is 
implemented using Python3 and Matplotlib. There was 18 
original UCI datasets evaluated in Table 3. Feature counts 
can be seen before filtering each dataset. Filtering is part 
of the detection phase, which detects redundancy among 
features, thus excluding duplicates, and ignoring features 
that are unrelated to category features. Additionally, the 
proposed method costs less to compute and can select a 
more accurate subset of features than existing methods. 
After applying the filter phase, Table 3. shows the dataset 
dimensions. The effect of the filter becomes more apparent 
on datasets with higher dimensions and more features, as 

shown in this table. 

5.2. Evaluation of FWMBFPA and FPA 

According to Table 4. BFPA and FWMBFPA were 
compared for classification accuracy and number of 
selected features across 18 datasets. As shown in Table 4, 
FPA had classification accuracy greater than 95% in 10 out 
of 18 data sets (55.55%), whereas FWMBFPA had 
classification accuracy greater than 95% in 12 out of 18 
data sets (66.66%). Further, FWMBFPA selects fewer 
features in 17 data sets than BFPA and achieves the same 
number of features in only one data set (Zoo). To improve 
the performance of BFPA, the modified method that uses 
both the filtering and wrapping advantages has been 
modified and combined with the wrapper advantages. It is 
shown in Fig. 2 that FWMBFPA is both more accurate and 
has a lower mean number of selected features than BFPA. 
 
5.3. Comparison and discussion 

In this section, the results of comparing the proposed 
method with BFPA and 9 Binary optimization methods 
including Whale Optimization Algorithm (WOA), Time-
Varying Salp Swarm Algorithm (TVSSA), Two-phase 
Mutation Gray Wolf Optimizer (TMGWO), Sine Cosine 
Algorithm (SCA), Jaya Algorithm (JA), Differential 
Evolution Algorithm (DEA), Cuckoo Search  Algorithm 
(CSA), Bat Optimization Algorithm (BAT) and Bare Bone 
Particle Swarm Optimization (BBPSO) are presented. 
 

 

Algorithm 2. Modified Flower Pollination Algorithm Pseudo-Code 

1:   Objective function f(x), where x= (x1,…,xD) is a binary vector of dimension D. 
2:   Initialize a population of n flowers/pollen with random solutions 
3:   Find the best solution g

best
 in the initial population 

4:   Define a switch probability p ∈ [0, 1] 
5:   While (stopping criterion not satisfied) do 
6:         If rand () < p  
7:               For i = 1: n (all n flowers in the population) 
8:               Draw a step length vector L from the Lévy distribution. 
9:               Global pollination:  
10:             End for 
11:       Else 
12:             Identify the best m solutions from the current population P 
13:             Solutions are cloned proportional to their fitness 
14:             For each solution in clone population 

15:                    Obtain a random value 𝛆  uniformly distributed between 0 and 1 

16:                    Randomly select two distinct solutions j and k from the population 
P 
17:                    Local pollination:  
18:             End for 
19:       End if 

20:       Select the best n solutions from the combined pool to form the new 
population 
21:       Update the current population P with the new population Pnew 
22:       Identify the best solution gbest in the current population P 
23:       If gbest doesn’t improve in 100 iterations by more than 10^-6, keep gbest and 
            Replace the population with a new, randomly generated binary solutions 
24:   End while 
25:   Print gbest 

1 ( )t t t

i i i bestx x L x g   

1 ( )t t t t

i i j kx x x x   
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 Fig. 1. Flowchart of proposed FWMBFPA 
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TABLE 3 

Description of datasets before and after the filter phase 

 

Dataset No. of sample 
No. of features 

before filter  

No. of features 

after filter 
No. of class Domain 

Algerian_forest_fires 244 14 8 2 Life 

BreastCancer 698 11 9 2 Life 

BreastEW 568 31 15 2 Life 

CongressEW 434 17 15 2 Social 

HeartEW 270 14 10 2 Life 

Ionosphere 351 35 13 2 Physical 

lung-cancer 32 57 28 2 Life 

Lymphography 148 19 12 4 Life 

M-of-n 1000 14 7 2 Life 

Pd-speach 756 755 82 2 Life 

penglung 73 326 148 7 Life 

sobar-72 72 20 16 2 Physical 

Sonar 208 61 35 2 Life 

SpectEW 267 23 14 2 Physical 

Vote 300 17 15 2 Social 

Wholesale customers data 440 8 4 2 Business 

Wine 178 14 12 3 Physical 

Zoo 101 17 10 2 Life 

 

 

TABLE 4 

Classification accuracy of BFPA and FWMBFPA with selected features 

 

 Dataset 

BFPA FWBMFPA 

Accuracy 
No. of 

Features 
Accuracy 

No. of 

features 

1 Algerian forest fires          98.64 3 100 2 

2 Breast cancer               100 3 100 2 

3 BreastEW 96.49 14 97.07 2 

4 CongressEW 96.94 7 99.23 4 

5 HeartEW 83.95 5 91.35 3 

6 Ionosphere 91.50 15 97.16 3 

7 lung-cancer 100 23 100 6 

8 Lymphography 91.11 9 93.33 5 

9 M-of-n 93 10 100 6 

10 Pd-speech-feature 77.53 353 84.14 14 

11 penglung 95.45 149 100 20 

12 Sobar72 100 4 100 3 

13 Sonar 90.47 30 92.06 9 

14 SpectEW 88.88 10 92.59 6 

15 Vote 97.77 8 98.88 2 

16 Wholesale customers data 94.69 4 94.69 1 

17 Wine 98.14 6 100 2 

18 Zoo 96.77 5 96.77 5 
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Fig. 2. Average accuracy and selected features obtained by FWMBFPA and BFPA. 

 
TABLE 5 

The worst fitness value achieved by FWMBFPA and other methods 
 

Dataset FWBMFPA BFPA BWOA TVSSA TMGWO BSCA BJA BDE BCSA BBAT BBPSO 

Algerian forest fires 0.0158 0.0210 0.0298 0.0462 0.0439 0.0581 0.0290 0.0321 0.0030 0.0179 0.0306 

Breast cancer 0.0251 0.0258 0.0380 0.0464 0.0370 0.0501 0.0332 0.0285 0.0322 0.0322 0.0144 

BreastEW 0.0520 0.0686 0.0516 0.0400 0.0410 0.0339 0.0577 0.0420 0.0539 0.0751 0.0608 

CongressEW 0.0420 0.0503 0.0421 0.0579 0.0396 0.0427 0.0346 0.0194 0.0346 0.0427 0.0673 

HeartEW 0.1655 0.2979 0.2001 0.1635 0.2482 0.1994 0.2841 0.1757 0.2482 0.2490 0.2834 

Ionosphere 0.0695 0.0884 0.1156 0.0975 0.0881 0.1071 0.1173 0.1345 0.0989 0.1270 0.1448 

lung-cancer 0.1026 0.2026 0.1052 0.2026 0.2040 0.2031 0.3018 0.2028 0.3016 0.2024 0.3009 

Lymphography 0.0723 0.1601 0.0907 0.2024 0.1573 0.2018 0.1364 0.1358 0.1798 0.1347 0.1810 

M-of-n 0.0100 0.1414 0.1795 0.1457 0.1894 0.1851 0.1612 0.1899 0.1670 0.1792 0.0960 

Pd-speech-feature 0.1701 0.2272 0.3101 0.2664 0.2886 0.2621 0.2229 0.2403 0.2321 0.2228 0.2362 

Penglung 0.0948 0.0948 0.0497 0.1849 0.0944 0.0050 0.1401 0.0946 0.0497 0.0499 0.0502 

Sobar72 0.0046 0.0486 0.0073 0.0513 0.0936 0.0492 0.0497 0.0497 0.0497 0.0497 0.0047 

Sonar 0.1484 0.2106 0.1146 0.1305 0.1300 0.1465 0.2082 0.1935 0.1312 0.1459 0.1628 

SpectEW 0.1146 0.1874 0.1512 0.1154 0.1629 0.1507 0.1666 0.1403 0.1385 0.1620 0.1629 

Vote 0.0401 0.0386 0.0606 0.0276 0.0697 0.0367 0.0496 0.0593 0.0483 0.0392 0.0600 

Wholesale 

Costomers data 
0.0474 0.0867 0.0642 0.0807 0.0717 0.0703 0.0596 0.1032 0.0792 0.0910 0.0657 

Wine 0.0054 0.0596 0.0412 0.0802 0.1520 0.0412 0.0596 0.0412 0.0405 0.1512 0.1489 

Zoo 0.0694 0.0719 0.1327 0.0701 0.0707 0.0375 0.1008 0.1327 0.0381 0.0056 0.0350 

 

5.3.1. Convergence rate of fitness value 

Tables 5, 6, and 7 show the worst, average, and best fitness 

values obtained from FWMBFPA and other methods. 

Based on Table 5, FWMBFPA has the lowest fitness value 

out of 10 datasets out of 18 (55.55%), and has the worst 

fitness value in 8 of the 18 datasets. Bold number in all 

Tables shows the best performance. After the proposed 

method, BWOA and TVSSA have a better fitness value in 

the two datasets. In the entire dataset, BFPA, TMGWO, 

and BJA have the worst performance and worst fitness 

values. Table 6 shows that the proposed FWMBFPA has a 

significant advantage over other methods in terms of 

average fitness value (83.33%) in 15 datasets. Thereafter, 

only BCSO, BBPSO, and TMGWO had optimal fitness 

values in equal than one dataset, whereas BFPA did not 

have an optimal fitness value in any dataset. The best 

fitness value in 12 data sets was obtained by FWMBFPA 

in Table 7. (66.66%) when compared to other methods. 

The best fitness values in three datasets are obtained by 

BBAT and BBPSO, followed by TMGWO, BCSA, BDE, 

and BSCA, but BJA only in one dataset achieves the best 

value, while other methods like BFPA are not able to 

achieve the best value. Compared to the results derived 

from these three tables, FWMBFPA significantly 

improves BFPA's performance and is superior to other 

methods, and has a higher convergence rate. Fig. 3 

presents the fitness values obtained using FWMBFPA and 

other methods for a clearer understanding of the content. 

To improve clarity and identification, a circular legend 

highlights the proposed method, shown in blue. 

5.3.2. Evaluation of Classification accuracy and selected 

features 

The accuracy of classification and the number of selected 

features of FWMBFPA, BFPA, and nine other methods are 
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compared in this section. If the classification accuracy of a 

method is higher compared to other methods, it means that 

the method in question performed with better accuracy and 

had fewer errors. Among the 18 datasets analyzed in Table 

8, the FWMBFPA method had the best classification 

accuracy in 14 datasets (77.77%) and performed better 

than other methods, followed by BSCA and TMGWO in 8 

datasets (44.44%). Based on this Table, with better 

performance in two datasets, BFPA and BWOA perform 

the worst in terms of classification accuracy.

 
TABLE 6 

 The average fitness value achieved by FWMBFPA and other methods 
 

Dataset          FWBMFPA      BFPA BWOA TVSSA TMGWO BSCA BJA BDE BCSA BBAT BBPSO 

Algerian forest 

fires          
0.0027 0.0193 0.0155 0.0057 0.0054 0.0042 0.0061 0.0063 0.0028 0.0031 0.0112 

Breast cancer               0.0122 0.0209 0.0269 0.0295 0.0194 0.0333 0.0247 0.0221 0.0273 0.0221 0.0134 

BreastEW 0.0122 0.0448 0.0373 0.0397 0.0343 0.0310 0.0370 0.0337 0.0444 0.0560 0.0417 

CongressEW 0.0155 0.0375 0.0196 0.0362 0.0319 0.0265 0.0199 0.0183 0.0217 0.0229 0.0293 

HeartEW 0.1009 0.2101 0.1666 0.1593 0.1483 0.1405 0.1490 0.1284 0.1567 0.1491 0.1303 

Ionosphere 0.0387 0.0884 0.0822 0.0936 0.0467 0.0540 0.0658 0.0730 0.0827 0.0879 0.0849 

lung-cancer 0.0229 0.1313 0.1038 0.1666 0.1091 0.1029 0.0829 0.0479 0.1130 0.0484 0.0708 

Lymphography 0.0708 0.1362 0.0907 0.1679 0.1001 0.0990 0.0945 0.1124 0.1176 0.1247 0.1226 

M-of-n 0.0100 0.0789 0.0782 0.1055 0.0420 0.0316 0.0146 0.0414 0.0361 0.0379 0.0102 

Pd-speech-feature 0.1603 0.2271 0.2111 0.2118 0.1538 0.1817 0.2141 0.2301 0.2315 0.2267 0.2316 

Penglung 0.0143 0.0750 0.0479 0.1173 0.0486 0.0014 0.0184 0.0448 0.0395 0.0493 0.0488 

Sobar72 0.0022 0.0178 0.0027 0.0217 0.0240 0.0178 0.0078 0.0116 0.0297 0.0189 0.0035 

Sonar 0.0935 0.1118 0.0854 0.1176 0.0793 0.0817 0.0789 0.1067 0.0706 0.1056 0.0896 

SpectEW 0.0899 0.1400 0.1141 0.1098 0.0933 0.1067 0.1141 0.0931 0.1136 0.1110 0.1056 

Vote 0.0202 0.0274 0.0368 0.0262 0.0333 0.0286 0.0244 0.0383 0.0323 0.0245 0.0277 

Wholesale 

Costomers data 
0.0474 0.0867 0.0499 0.0770 0.0525 0.0505 0.0527 0.0670 0.0553 0.0688 0.0555 

Wine 0.0048 0.0538 0.0210 0.0633 0.0295 0.0215 0.0239 0.0228 0.0236 0.0358 0.0253 

Zoo 0.0387 0.0519 0.0419 0.0405 0.0191 0.0070 0.0115 0.0330 0.0152 0.0055 0.0144 

 

TABLE 7 
 The best fitness value achieved by FWMBFPA and other methods 

 

Dataset FWBMFPA BFPA BWOA TVSSA TMGWO BSCA BJA BDE BCSA BBAT BBPSO 

Algerian forest 

fires 
0.0025 0.0179 0.0149 0.0038 0.0015 0.0023 0.0030 0.0038 0.0023 0.0015 0.0015 

Breast cancer 0.0109 0.0174 0.0258 0.0218 0.0191 0.0322 0.0228 0.0218 0.0181 0.0191 0.0134 

BreastEW 0.0303 0.0394 0.0364 0.0370 0.0364 0.0303 0.0360 0.0316 0.0380 0.0438 0.0370 

CongressEW 0.0104 0.0346 0.0188 0.0333 0.0251 0.0251 0.0188 0.0169 0.0182 0.0176 0.0188 

HeartEW 0.0911 0.1260 0.1650 0.1497 0.1276 0.1367 0.1375 0.1260 0.1260 0.1252 0.1245 

Ionosphere 0.0321 0.0884 0.0764 0.0689 0.0379 0.0385 0.0604 0.0586 0.0689 0.0689 0.0578 

lung-cancer 0.0026 0.1036 0.1034 0.1031 0.1002 0.0012 0.0033 0.0035 0.0035 0.0051 0.0033 

Lymphography 0.0705 0.0930 0.0907 0.1144 0.0907 0.0918 0.0918 0.0913 0.0913 0.0913 0.1133 

M-of-n 0.0100 0.0358 0.0325 0.0729 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 

Sobar72 0.0020 0.0057 0.0021 0.0042 0.0021 0.0036 0.0026 0.0042 0.0036 0.0047 0.0031 

Sonar 0.0838 0.0967 0.0822 0.0984 0.0665 0.0519 0.0511 0.0514 0.0360 0.0989 0.0820 

SpectEW 0.0779 0.1145 0.1027 0.1014 0.0891 0.1000 0.0928 0.0905 0.1023 0.1009 0.1000 

Vote 0.0145 0.0270 0.0361 0.0251 0.0276 0.0238 0.0232 0.0251 0.0245 0.0141 0.0232 

Wholesale 

Costomers data 
0.0474 0.0867 0.0492 0.0746 0.0492 0.0492 0.0521 0.0642 0.0521 0.0671 0.0553 

Wine 0.0036 0.0229 0.0206 0.0428 0.0046 0.0206 0.0229 0.0214 0.0214 0.0214 0.0198 

Zoo 0.0374 0.0381 0.0388 0.0356 0.0037 0.0050 0.0037 0.0050 0.0031 0.0050 0.0031 

Pd-speech-

feature 
0.1587 0.2271 0.2009 0.2099 0.1199 0.1664 0.2134 0.2182 0.2312 0.2225 0.2306 

Penglung 0.0006 0.0499 0.0464 0.0488 0.0463 0.0007 0.0048 0.0038 0.0045 0.0490 0.0479 
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Fig. 3. FWMBFPA fitness values compared to other methods with KNN classifier. 

 

TABLE 8 

 Classification accuracy obtained by FWMBFPA and other methods 
 

Dataset          FWBMFPA      BFPA BWOA TVSSA TMGWO BSCA BJA BDE BCSA BBAT BBPSO 

Algerian forest 
fires          

1 0.9864 0.9864 1 1 1 1 1 1 1 1 

Breast cancer               0.9952 0.9809 0.9714 0.9809 0.9904 0.9857 0.9857 0.9809 0.9857 0.9857 0.9904 

BreastEW 0.9707 0.9649 0.9649 0.9649 0.9707 0.9707 0.9649 0.9649 0.9649 0.9649 0.9649 

CongressEW 0.9923 0.9694 0.9847 0.9694 0.9770 0.9770 0.9847 0.9874 0.9847 0.9847 0.9847 

HeartEW 0.9135 0.8395 0.8395 0.8518 0.8765 0.8641 0.8641 0.8765 0.8765 0.8765 0.8765 

Ionosphere 0.9716 0.9150 0.9150 0.9339 0.9622 0.9622 0.9433 0.9433 0.9433 0.9339 0.9622 

lung-cancer 1 1 0.9000 1 1 1 1 1 1 1 1 

Lymphography 0.9333 0.9111 0.9111 0.8888 0.9111 0.9111 0.9111 0.9111 0.9111 0.9111 0.8888 

M-of-n 1 0.9300 0.9733 0.9333 1 1 1 1 1 1 1 

Pd-speech-feature 0.8414 0.7753 0.7973 0.8193 0.8810 0.8325 0.7885 0.7841 0.7709 0.7797 0.7709 

penglung 1 0.9545 0.9545 0.9545 0.9545 1 1 1 1 0.9545 0.9545 

Sobar72 1 1 1 1 1 1 1 1 1 1 1 

Sonar 0.9206 0.9047 0.9206 0.9047 0.9206 0.9365 0.9523 0.9523 0.9682 0.9523 0.9206 

SpectEW 0.9259 0.8888 0.9012 0.8888 0.9135 0.9012 0.9135 0.9135 0.9012 0.9012 0.9012 

Vote 0.9888 0.9777 0.9666 0.9777 0.9777 0.9777 0.9777 0.9777 0.9777 0.9888 0.9777 

Wholesale 
customers data 

0.9469 0.9469 0.9545 0.9318 0.9545 0.9545 0.9545 0.9393 0.9545 0.9393 0.9545 

Wine 1 0.9814 0.9814 0.9814 1 0.9814 0.9814 0.9814 0.9814 0.9814 0.9814 

Zoo 0.9677 0.9677 0.9677 0.9677 1 1 1 1 1 1 1 
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Based on each method, Table 9. shows the number of 

features selected. FWMBFPA achieved the lowest number 

of selected features in all 18 datasets (100%), which is 

outstanding compared to other methods. Other methods 

have a percent superiority of less than 17% in the selected 

feature, and BFPA has selected the fewest features in only 

one data set, showing how much FWMBFPA has affected 

BFPA. Therefore, FWMBFPA has superior performance 

in both classification accuracy and number of selected 

features, while BFPA has improved its performance. As 

can be seen in Fig. 4, FWMBFPA selects features with an 

average accuracy, and other methods select features with 

an average feature selection. In the diagram, it is apparent 

that fewer features have been selected more accurately, 

improving BFPA's performance. 

 

 

TABLE 9 

  The number of selected features by FWMBFPA and other methods 

 
 

Dataset          FWBMFPA    BFPA BWOA TVSSA TMGWO BSCA BJA BDE BCSA BBAT BBPSO 

Algerian forest 

fires          
2 3 3 3 2 3 2 2 3 2 2 

Breast cancer               4 4 3 3 4 3 6 3 4 5 4 

BreastEW 2 14 5 7 4 4 4 5 9 11 7 

CongressEW 4 7 6 5 8 6 6 3 5 4 5 

HeartEW 3 5 8 4 7 3 3 4 5 4 3 

Ionosphere 3 15 4 12 5 4 15 9 16 12 8 

lung-cancer 6 23 9 22 38 7 16 16 20 24 15 

Lymphography 5 9 5 7 5 7 7 6 10 6 5 

M-of-n 6 10 8 9 6 6 6 6 6 6 6 

Pd-speech 14 353 22 74 165 57 307 357 339 337 265 

penglung 20 149 48 116 25 25 159 125 147 131 96 

Sobar72 3 4 4 5 4 4 5 4 4 4 4 

Sonar 9 30 22 25 14 10 29 19 28 27 17 

SpectEW 4 10 11 7 5 5 10 11 10 7 5 

Vote 2 8 4 4 2 2 2 3 4 5 2 

Wholesale 

customers data 
1 4 3 4 3 3 3 3 3 2 5 

Wine 2 6 3 3 6 3 4 4 4 4 3 

Zoo 5 5 6 6 6 8 6 7 5 6 5 

 

 

 

 
 

Fig. 4. Average accuracy and average selected features by FWMBFPA and the other methods 
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5.3.3. Statistical Analysis 

In order to rigorously assess the statistical significance of 
the observed performance differences between the 
compared feature selection algorithms across the 18 
datasets, a non-parametric statistical analysis was carried 
out. A Friedman test was performed independently on the 
classification accuracy results (Table 8) and the number of 
selected features results (Table 9), which are suitable non-
parametric alternatives to ANOVA for comparing multiple 
groups over multiple test conditions. The Friedman test 
yielded a statistic of 65.0219 with a corresponding p-value 
of 0. Since the p-value (p<0.05), which is less than the 
significance level α=0.05, the null hypothesis is rejected. 
There is a statistically significant difference in 
classification accuracy among the algorithms evaluated. 
For the number of selected features, the Friedman test 
yielded a statistic of 61.8933 with a p-value of 0. This p-
value is also less than α=0.05, leading to the rejection of 
the null hypothesis and confirming a statistically 
significant difference in the number of features selected by 
the algorithms. 

 Since the Friedman test showed significant differences 

for both evaluation metrics, the Nemenyi post-hoc test was 

conducted to determine which specific pairs of algorithms 

performed statistically significantly differently. Nemenyi 

tests compare the average ranks of algorithms across 

datasets. In Table 10, the average ranks for classification 

accuracy as well as the number of selected features are 

sorted by the average rank for accuracy. The Nemenyi test 

determines statistically significant differences between 

algorithms when their average rank differences exceed the 

Critical Difference (CD). The calculated CD value for 

comparing 11 algorithms over 18 datasets at a significance 

level of α=0.05 is approximately CD≈3.345. 
 Table 10. shows that the proposed FWMBFPA achieved 
the lowest average rank for classification accuracy 
(3.3889) and the lowest average rank for the number of 
selected features (1.8889). For classification accuracy, 
FWMBFPA's average rank (3.3889) is lower than all other 
algorithms. Comparing FWMBFPA to other algorithms 
using the CD (3.345): 

 FWMBFPA's average rank is significantly lower than 
algorithms whose average rank is greater than 
3.3889+3.345=6.7339. Based on Table 10, 
FWMBFPA shows a statistically significantly higher 

accuracy compared to BWOA (8.0556), TVSSA 
(8.2500), and BFPA (8.6111), as their average ranks 
are greater than 6.7339. 

 For the remaining algorithms (TMGWO, BSCA, BJA, 
BDE, BCSA, BBAT, BBPSO), the difference in 
average rank compared to FWMBFPA is less than or 
equal to the CD, indicating no statistically significant 
difference in accuracy compared to FWMBFPA at the 
0.05 significance level. However, FWMBFPA holds 
the best average rank among all. 

 For the number of selected features, FWMBFPA 
obtained an outstanding average rank of 1.8889. 
Comparing FWMBFPA's rank to others using the CD 
(3.345): 

 FWMBFPA's average rank (1.8889) is significantly 
lower than all other algorithms, whose average rank is 
greater than 1.8889+3.345=5.2339. Based on Table 10, 
FWMBFPA selects a statistically significantly lower 
number of features compared to TMGWO (5.3889), 
BWOA (5.6111), BDE (5.6667), TVSSA (6.7222), 
BJA (6.8333), BCSA (7.3889), BBAT (6.5000), and 
BFPA (8.8889). 

 The difference in average rank between FWMBFPA 
(1.8889) and BSCA (4.2222) is 

∣1.8889−4.2222∣=2.3333, which is less than the CD 
(3.345). 

 The difference in average rank between FWMBFPA 
(1.8889) and BBPSO (4.4444) is 

∣1.8889−4.4444∣=2.5555, which is less than the CD 
(3.345). Therefore, there is no statistically significant 
difference in the number of selected features between 
FWMBFPA and BSCA or BBPSO, although 
FWMBFPA still has the lowest average rank. 

 Based on the statistical analysis, the proposed 
FWMBFPA achieved not only the best average rankings 
for classification accuracy and feature selection but also 
demonstrated statistically significant superiority in 
accuracy over several algorithms as well as a statistically 
significant ability to select fewer features than most of the 
algorithms evaluated. Statistical evidence supports the 
effectiveness of the proposed method based on these 
results. 

 Fig. 5 and 6 provide a visual representation of these 

comparisons.

TABLE 10 

Average Ranks of Algorithms on 18 Datasets (Lower Rank is Better) 

Algorithm Avg. Rank (Accuracy) Rank (Accuracy) Avg. Rank (Features) 

FWMBFPA 3.3889 1 1.8889 

TMGWO 4.5278 2 5.3889 

BSCA 5.0833 3 4.2222 

BJA 5.1944 4 6.8333 

BCSA 5.3611 5 7.3889 

BDE 5.4167 6 5.6667 

BBAT 5.8333 7 6.5000 

BBPSO 6.2778 8 4.4444 

BWOA 8.0556 9 5.6111 

TVSSA 8.2500 10 6.7222 

BFPA 8.6111 11 8.8889 

Critical Difference (CD) for 

Nemenyi Test (α=0.05α=0.05) 
≈ 3.345   
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Fig. 5. CD diagram showing the average ranks for Classification Accuracy. The red bar indicates the Nemenyi Critical Difference 

(α=0.05) 

 
Fig. 6. CD diagram showing the average ranks for the Number of Selected Features. The red bar indicates the Nemenyi Critical 

Difference (α=0.05) 

TABLE 11 

Time complexity analysis 

Algorithm Type Representative Algorithms Theoretical Time 

Complexity 

Wrapper-based 

Metaheuristics 

BFPA, BWOA, TVSSA, TMGWO, BSCA, BJA, BDE, BCSA, 

BBAT, BBPSO 

O(T×P×N×D) 

Hybrid Filter-Wrapper 

(Proposed) 

FWMBFPA O(D2×N+T×P×N×D′) 

 

5.3.4. Time Complexity Analysis 

This section analyzes the theoretical time complexity of 

the proposed FWMBFPA and compares it with the general 

complexity of wrapper-based metaheuristic algorithms. 

The time complexity of a typical population-based 

metaheuristic is primarily determined by the number of 

iterations (T), the population size (P), and the cost of 

evaluating the fitness function for each solution in every 

iteration. In feature selection using a classifier like KNN, 

the fitness evaluation for a subset of F features on N 

samples has a complexity of approximately O(N×F). Thus, 

a standard wrapper-based metaheuristic operating on the 

original D features has a theoretical complexity of 

O(T×P×N×D). The proposed FWMBFPA, being a hybrid 

approach, includes an initial filter phase. This phase 

involves calculating pairwise Spearman correlations 

among D features, which takes about O(D2×N), and 

assessing feature relevance, which is O(D×N). This filter 

phase is performed only once. The subsequent wrapper 

phase then operates on the reduced set of D′ features. The 

fitness evaluation in this phase has a complexity of 

O(N×D′). Therefore, the complexity of the wrapper phase 

is O(T×P×N×D′). The total theoretical complexity of 

FWMBFPA is the sum of the complexities of the two 

phases: O(D2×N+T×P×N×D′). 

 Table 11. summarizes this comparison. Theoretically, 

FWMBFPA introduces an initial cost (O(D2×N)) that is 

absent in pure wrapper methods. However, for datasets 

with a large number of original features (D) where the 

filter phase effectively reduces the feature space to a much 



72  Mohammad Ansari Shiri - Najme Mansouri 

 

 

 

smaller number of features (D′≪ D), the cost per iteration 

in the wrapper phase O(N×D′) becomes significantly 

lower than O(N×D). If the total number of fitness 

evaluations (T×P) is sufficiently large, the cumulative 

savings in the wrapper phase can potentially outweigh the 

initial filter cost, making FWMBFPA theoretically more 

efficient for high-dimensional problems with high 

redundancy/irrelevance. This aligns with our experimental 

results showing significant feature reduction on such 

datasets. 

 This analysis provides an asymptotic upper bound. 

Several variables can influence the empirical runtime, such 

as implementation details, hardware specifications, and 

constant factors hidden in the Big O notation. For high-

dimensional feature selection problems, the theoretical 

comparison highlights the structural advantage of 

incorporating a filter phase. 

5.3.5. Discussion on Observed Performance and 

Potential Limitations 

The experimental results presented in Tables 4, 8, and 9. 

show that the proposed FWMBFPA exhibits significant 

improvements in performance compared to BFPA and 

several other metaheuristic algorithms, especially in 

achieving higher classification accuracy with a 

substantially reduced number of selected features on many 

datasets. In particular, datasets like 'Pd-speech-feature' and 

'penglung' show dramatic feature reductions and 

significant improvements in accuracy. 

 This magnitude of improvement, especially when 

combined with substantial feature reduction and increased 

accuracy, may seem unusual, raising concerns about 

dataset bias. The validity of our experimental setup and 

results has been thoroughly reviewed. For reducing 

random effects, experiments were run using a standard 

method, using an 80/20 train/test split and the 

recommended K-nearest neighbor classifier (K=5). 

 In FWMBFPA, the observed performance is primarily 

the result of the synergistic effects of the integrated filter 

and wrapper phases. Spearman correlation and relevance 

measures are used in the initial filter phase to eliminate 

highly redundant and irrelevant features before the search 

process even begins. Preprocessing reduces the search 

space and provides the wrapper phase with a more refined, 

less noisy set of candidate features. Therefore, the 

Modified Binary Flower Pollination Algorithm in the 

wrapper phase can better explore and exploit this reduced, 

relevant feature space to identify a truly optimal or near-

optimal subset. As a result of this two-stage approach, 

FWMBFPA avoids becoming trapped in local optima 

caused by irrelevant or redundant features and focuses 

instead on choosing the discriminative subset, which 

results in both higher accuracy and a significantly smaller 

feature set on certain datasets, particularly those with very 

high initial dimensionality and presumably a high 

percentage of irrelevant/redundant features. 

 However, it is important to consider potential 

limitations of FWMBFPA, even though it has shown good 

performance across the evaluated UCI datasets. The filter 

phase's effectiveness is determined by the dataset's 

characteristics, namely its redundancy and irrelevance. In 

datasets with highly interacting features or less clear-cut 

redundancy, the initial reduction may be less drastic. The 

performance of metaheuristic algorithms can also be 

influenced by parameter tuning and stochasticity. In the 

future, the method should be evaluated on a wider range of 

dataset types and its robustness should be enhanced by 

exploring adaptive thresholds. 

 

6. CONCLUSION AND FUTURE WORK 
Dimensionality reduction is essential in many fields 

because of big data. In this work, a hybrid version of the 

modified flower pollination algorithm inspired by nature 

was presented. To reduce the computational overhead and 

costs associated with the dataset, two filter methods were 

applied in the first step. In the wrapping step, an optimal 

set of features has been selected by the modified flower 

pollination algorithm after redundant and irrelevant 

features have been discarded. Besides FPA and 

FWMBFPA, nine other algorithms were evaluated using 

18 standard UCI datasets. A KNN classifier was used to 

learn classification rules. FWMBFPA significantly 

improved classification accuracy as well as feature 

selection over FPA. A robust and stable approach is also 

demonstrated using standard evaluation criteria. 

FWMBFPA has shown superior performance in terms of 

accuracy and feature reduction on the evaluated datasets, 

particularly as a result of the efficient pre-processing by 

the filter phase. However, the degree of improvement may 

vary depending on the characteristics of the dataset. To 

further enhance its robustness and generalizability, this 

framework will be applied to a wider variety of real-world 

problems, adaptive filter thresholds explored, and its 

performance examined on datasets with different feature 

dependency structures. In the future, parallel processing 

will speed up the training of classifiers since many feature 

vectors constitute a computational bottleneck. 
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Abstract  Influence Maximization (IM) is a fundamental 

problem in social network analysis that seeks to identify a 

small set of highly influential nodes that can maximize the 

spread of information. Due to its NP-hard nature, finding 

an exact solution is computationally infeasible for large-

scale networks. To address this, this paper introduces an 

enhanced discrete Manta-Ray Foraging Optimization 

(MRFO) algorithm tailored for IM. The proposed method 

integrates degree, closeness, and betweenness centrality 

measures into the fitness function and introduces a fused 

centrality index to improve the identification of influential 

nodes. To handle the discrete search space, the continuous 

MRFO is adapted with novel discretization mechanisms. 

Experimental evaluations on five real-world networks 

(NetScience, Email, Hamsterster, Ego-Facebook, and 

Pages-PublicFigure) demonstrate that the proposed 

method achieves higher influence spread compared to 

existing baseline algorithms, with average improvements 

of 14.63%, 12.81%, 19.03%, 15.24%, and 18.76%, 

respectively. These results validate the effectiveness, 

robustness, and practical applicability of the proposed 

approach for large-scale IM. 

 

Key Word  Social networks, IM, Manta-Ray Foraging 

optimization algorithm, Centrality criteria. 

 

1. INTRODUCTION 
omplex networks with adjacency matrices are considered 

as graph G = (V, E), where V and E are edges and vertices 

of a graph. Each vertex in G demonstrates a user in a social 

network, and each edge indicates the relation between a 

pair of users. The size of each network is defined based on 

the network users, N= |V|, and available links in the 

network, M =|E|. The network structure is shown as n× n 

adjacency matrix, A = (aij), where each node can have the 
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values {0, 1}. If user i is connected to user j, then aij =1; 

otherwise, aij = 0 [1]. Fig1 shows an example of social 

networks based on the neighbor graph. 

 As illustrated in Fig. 1, user relationships within a social 

network are determined based on the network’s links and 

connections. These relationships significantly affect the 

diffusion of information across the network. Due to the 

large number of users and the complexity involved in 

identifying the most influential ones, exhaustive search 

methods are impractical and computationally expensive. 
 In recent years, social networks have gained widespread 
popularity, resulting in an increased impact on various 
aspects of society. For instance, social networks play a 
vital role in controlling the spread of diseases, marketing 
products, and conducting political campaigns such as 
presidential elections. A fundamental challenge in these 
contexts is how to effectively select influential users to 
maximize the spread of information or influence within the 
network. The IM (IM) problem addresses this challenge by 
seeking to identify the top k most influential nodes that can 
generate the largest possible spread of influence 
throughout the social network [2]. 

 

 
Fig 1. An example of social networks 
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 IM is a widely studied topic in the context of social 

networks. A social network can be modeled as a directed 

graph, where the users are represented as nodes and their 

connections as directed edges. Influence spreads 

throughout the network via the “word-of-mouth” effect, 

which captures the human-to-human transmission of 

information or ideas. This process can lead to either a rapid 

decline or exponential growth in the spread of information. 
 A key challenge in this domain is to estimate how many 
users can be influenced by a small group of highly 
influential individuals. The fundamental goal of IM is to 
identify an initial set of nodes (seed nodes) that is as small 
as possible while maximizing the spread of influence 
across the network. In other words, IM plays a crucial role 
in viral marketing by helping identify potential customers 
who can trigger widespread adoption, thereby reducing 
marketing costs and maximizing profit. Viral marketing 
leverages word-of-mouth dynamics by targeting a small 
group of individuals to try a product and encourage 
broader usage [3]. 

 In practice, IM algorithms determine which nodes 

should be initially activated. Given a graph 𝐺 and a 

parameter 𝐾, these algorithms produce an initial seed set 

by estimating the expected number of nodes that will be 

influenced through a stochastic diffusion process. The core 

objective in IM is to maximize the expected size of the 

final active set while using the smallest possible number of 

influential users, subject to certain constraints on the initial 

seed set. 

 The diffusion process starts with these seed nodes and 

aims to maximize the overall influence spread within the 

network. The number of nodes activated during this 

process determines the effectiveness of the selected seed 

nodes. IM is an NP-hard problem, meaning that there is no 

known deterministic polynomial-time algorithm to solve it 

optimally. Therefore, meta-heuristic optimization methods 

are commonly employed to find near-optimal subsets of 

influential users within a reasonable computational time 

[3,4]. 

 IM is finding a set of influential users, (seed set S) S⊂ 

V consisting of 𝐾 < |𝑉| nodes in a social network 𝐺 =
(𝑉, 𝐸), Where V is the set of nodes (users), and E is the set 

of (directed/undirected) edges in G (i.e. social relations 

between the users). The goal is to maximize K in G 

through the propagation of the diffusion model. The 

problem is described by the following equation [3]: 

 

𝐼𝑀𝑀(𝐺, 𝐾) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑒⊆𝑉,|𝑒|=𝑘𝜎𝑀(𝑒, 𝐺)        (1) 

 

 Where σ is a function that calculates the extent of 

influence for a given set of nodes and represents the spread 

of influence by activating the set of nodes in e. 

 Identifying influe ntial users within a network, 

particularly in large-scale social networks, is a challenging 

and engaging research problem. Nodes occupy different 

positions and play various roles within the network, and 

the effectiveness of influence diffusion largely depends on 

the underlying network topology. Certain nodes possess 

structural advantages that make them more effective at 

spreading information. For instance, central nodes often 

serve as key conduits for information flow, while nodes 

with a high number of connections (degree) significantly 

contribute to influence propagation. Conversely, nodes 

located at the periphery of the network or those forming 

isolated clusters may have minimal impact on overall 

diffusion [5]. 

 Consequently, social importance measures such as 

degree, betweenness, and closeness centralities — as well 

as their combined usage — provide valuable insights for 

identifying the most influential users. 

 In this study, we propose a discrete method called the 

Centrality Measure-based Manta-Ray Foraging 

Optimization (CMMRFO) algorithm, which integrates 

multiple social importance criteria. The proposed 

approach has been evaluated using the Facebook dataset. 

CMMRFO aims to identify a minimal set of users that 

maximizes influence spread within the network. To 

achieve this, the algorithm employs a bi-objective fitness 

function whose weight coefficients are determined by 

degree, betweenness, closeness centralities, and their 

combination. 

 The main contributions of this paper are summarized as 

follows: 

 Development of a discrete version of the MRFO 

algorithm for solving the discrete IM problem. 

 Design of a bi-objective fitness function to 

simultaneously minimize the number of seed 

users and maximize overall influence spread. 

 Incorporation of social importance measures as 

weight coefficients in the fitness function. 

 Application of degree, betweenness, and 

closeness centralities, along with their fusion, to 

guide the search for influential users. 

 The remainder of this paper is organized as follows. 

Section 2 reviews related work. Section 3 describes the 

proposed methodology in detail. Section 4 presents the 

implementation details and experimental results. Finally, 

Section 5 concludes the paper and outlines potential future 

work. 

 

2. BASIC CONCEPTS 

2.1. MRFO 

The MRFO algorithm is a computational method designed 

to solve complex optimization problems inspired by the 

natural foraging behavior of manta rays. In this context, 

the goal is to determine an optimal path that minimizes the 

overall cost of travel through multiple locations, analogous 

to a manta ray visiting several “fish cities.” The MRFO 

algorithm identifies this optimal route through a 

combination of local search, evolutionary strategies, and 

similarity-based operations. 

 In practice, the underlying problem is first formulated 

as a mathematical optimization task. At each iteration, the 

algorithm generates a new candidate route for the manta 

ray. This candidate route is then evaluated and compared 

with the current best-known route. If the new route yields 

a lower cost, it replaces the previous best; otherwise, it is 

discarded. Through iterative refinement, the MRFO 

algorithm converges toward an optimal or near-optimal 

solution for the routing problem. This approach can be 

applied not only to manta ray path planning but also to 
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other similar route optimization challenges. 

1) Mathematical Model: The MRFO algorithm is 

inspired by three distinct foraging behaviors observed in 

manta rays: chain foraging, spiral foraging, and storm 

foraging. These behaviors are mathematically modeled to 

guide the search process toward optimal solutions, as 

detailed below. 

2) Chain Foraging Strategy: In the chain foraging phase, 

manta rays detect the location of plankton and swim 

toward areas with higher concentrations. In the 

optimization analogy, these high-concentration zones 

correspond to promising candidate solutions. Although the 

global optimum is unknown, MRFO assumes that the best 

solution discovered so far represents the most desirable 

“plankton” location. 

 Manta rays are conceptually arranged in a head-to-tail 

sequence, forming a chain. Except for the leading 

individual, each manta ray updates its position by moving 

not only toward the detected food source but also relative 

to the preceding individual in the chain. This ensures 

collective information sharing and improved exploration 

of the search space. At every iteration, each individual’s 

position is refined based on the best solution found up to 

that point. The mathematical formulation of the chain 

foraging behavior is provided below. 
 

 
(2) 

 (3) 

 Where 𝑥𝑖
𝑑(𝑡) is the position of the ith individual at time 

t in the dth dimension, r is a random vector in the range [0, 

1], while 𝛼 is weight factor, 𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑡) is a location with the 

highest plankton concentrations. Fig 2. displays the 
behavior of food Search in two-dimensional space. The 
position Update of the ith individual is determined by the 

position 𝑥𝑖−1(𝑡) for (i-1) the individual and the position 

𝑥𝑏𝑒𝑠𝑡(𝑡) of the food. 
 
3) Storm Search Strategy: When a group of manta rays 
detect clusters of plankton in deeper waters, they form a 
long foraging chain and swim toward the food source using 
a spiral motion. This spiral foraging strategy resembles the 
approach used in the Whale Optimization Algorithm 
(WOA); however, in the MRFO framework, the spiral 
movement is incorporated specifically in the storm 
foraging phase. In this strategy, each manta ray moves in a 
spiral path toward the food source while simultaneously 
following the preceding individual in the chain. In this 
way, the manta rays align sequentially and execute a 
coordinated spiral search to locate and capture plankton 
more efficiently. 
 Fig 3. illustrates the storm foraging behavior in a two-
dimensional space. In this phase, each individual not only 
follows the food targeted by his neighbor but also advances 
toward the food source by executing a spiral trajectory. 
The mathematical equations that describe this spiral 
motion in two-dimensional space are defined as follows: 
 

 
(4) 

Where 𝜔 is a random number in [0, 1].

 

 

 
Fig. 2. The behavior of food search in two-dimensional space. 

 

 
Fig 3. The behavior of storm search in two-dimensional space 

𝑥𝑖
𝑑(𝑡 + 1) =  

𝑥𝑖
𝑑(𝑡) + 𝑟.  𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡) + 𝛼.  𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡)    𝑖 = 1           

𝑥𝑖
𝑑(𝑡) + 𝑟.  𝑥𝑖−1

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡) + 𝛼.  𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡)    𝑖 = 2,… . , 𝑁

     (2)  

𝛼 = 2. 𝑟.  |log⁡(𝑟)|          (3  )  

 
𝑋𝑖(𝑡 + 1) = 𝑋𝑏𝑒𝑠𝑡 + 𝑟.  𝑋𝑖−1(𝑡) − 𝑋𝑖(𝑡) + 𝑒𝑏𝜔 . 𝑐𝑜𝑠(2𝜋𝜔) .  𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑖(𝑡)  

𝑌𝑖(𝑡 + 1) = 𝑌𝑏𝑒𝑠𝑡 + 𝑟.  𝑌𝑖−1(𝑡) − 𝑌𝑖(𝑡) + 𝑒𝑏𝜔 . 𝑠𝑖𝑛(2𝜋𝜔) .  𝑌𝑏𝑒𝑠𝑡 − 𝑌𝑖(𝑡)       
         (4)  
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 This motion behavior may be extended to n-D space. 

For simplicity, this mathematical model of silicon search 

can be defined as: 

 
𝑝𝑎𝑟𝑒𝑛𝑡𝑥𝑖

𝑑(𝑡 + 1) = 

 

 
𝑥𝑏𝑒𝑠𝑡
𝑑 + 𝑟.  𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡) + 𝛽.  𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡)  𝑖 = 1           

𝑥𝑏𝑒𝑠𝑡
𝑑 + 𝑟.  𝑥𝑖−1

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡) + 𝛽.  𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡) 𝑖 = 2,… . , 𝑁

 

 

𝛽 = 2𝑒𝑟1
𝑇−𝑡+1

𝑇 . 𝑠𝑖𝑛(2𝜋𝑟1)            
 

 Where 𝛽 is the weight coefficient, T is the maximum 

number of iterations, and 𝑟1 is the random number in [0, 

1]. 

 In the cyclone foraging phase, all individuals perform a 

randomized search using the current best-known food 

location as their reference point. This mechanism enhances 

the algorithm’s exploitation capability within regions that 

contain promising solutions. Additionally, this strategy 

significantly improves the overall search process by 

enabling individuals to explore new regions. Specifically, 

each individual can be directed to search for alternative 

positions that deviate from the current best solution, or it 

can adopt a completely random position anywhere within 

the entire search space as a new reference. This balance 

between local exploitation and global exploration ensures 

that the MRFO algorithm maintains strong heuristic 

capabilities while avoiding premature convergence. The 

corresponding mathematical formulation for this 

mechanism is provided below. 
 

 
 

 Where 𝑥𝑟𝑎𝑛𝑑
𝑑  is a random position randomly produced 

in a search space. 𝐿𝑏𝑑 and 𝑈𝑏𝑑are the lower and high 

limits of the search space. 

4) Somersault search strategy: In this phase, the location 

of the food source is treated as a central axis. Each swim 

around this pivot point and performs somersault-like 

movements to discover new positions in its vicinity. 

Through this behavior, individuals continuously update 

their positions around the best solutions identified so far, 

enhancing local exploitation while maintaining diversity. 

The corresponding mathematical formulation for this 

behavior is presented below. 
 

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑖

𝑑(𝑡) + 𝑆.  𝑟2. 𝑥𝑏𝑒𝑠𝑡
𝑑 − 𝑟3. 𝑥𝑖

𝑑(𝑡) ,  

𝑖 = 1,… , 𝑁  
 

 Where S is the somersault factor that determines            

the range of movement of Manta Rays movement and           

S = 2, 𝑟2 and 𝑟3 are two random values in the range              

[0, 1]. 

 As shown in Equation (8), by defining the somersault 

range, each individual can explore a new search area 

bounded between its current position and its symmetric 

counterpart relative to the best position identified thus far. 

As the distance between an individual’s current position 

and the best-known position decreases, the degree of 

disturbance applied to its position also diminishes. 

Consequently, all individuals progressively converge 

toward the optimal solution within the search space. 

Therefore, as the number of iterations increases, the 

somersault foraging range adaptively contracts. Fig 4. 

illustrates a schematic representation of the somersault 

foraging behavior in the MRFO algorithm. 

 

 
 

Fig. 4. Somersault foraging behavior in MRFO 

 

 Fig 5. illustrates the evolution of three individuals over 

100 iterations within the search space based on the 

corresponding equation. The sampled points are randomly 

generated between each individual’s current position and 

its symmetric position relative to . As the distance to 𝑥𝑏𝑒𝑠𝑡 
decreases, the sampled points become more concentrated. 

This pattern ensures that densely clustered points near 

𝑥𝑏𝑒𝑠𝑡enhance local exploitation, while more widely 

distributed points support broader exploration of the 

search space. 

 

 
Fig. 5. The Somersault foraging behavior of three individuals in 

two-dimensional space 

 

 Unlike other meta-heuristic optimization methods, 

MRFO starts the problem by creating the initial 

population. Each updates their situation by considering the 

reference and opposite situation. The t/T value is decreased 

from 1/T to 1 so that heuristic search and application are 

performed, respectively. The best current solution is 

selected as a reference situation wage when t/T < U (0,1).  

A position is randomly created in search space, and It is 
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selected as the reference position for the heuristic when t/T 

> U (0,1). It can be moved between chain search behavior 

and storm search behavior. Subsequently, each updates its 

position relative to the best position identified through the 

somersault search mechanism. These updates and 

computations continue iteratively until the predefined 

stopping criterion is satisfied. Ultimately, the position and 

fitness value of the best-performing individual are returned 

[25]. 

 In the next stage, the proposed method is described in 

detail. This method is based on the CMMRFO algorithm, 

an evolutionary approach designed to solve the IM 

problem. In this approach, measures of user importance 

within the network are incorporated as key factors. The 

CMMRFO algorithm enhances solutions through random 

variations and mutations within the population, iteratively 

seeking better candidates. By integrating the proposed 

CMMRFO method with user importance metrics, the 

influence spread in social networks is effectively 

maximized, providing a more optimal solution to the IM 

problem. 

 

3. LITERATURE REVIEW 
In this section, the research on IM in social networks is 

discussed. It has more commercial applications, and so it 

has been more studied. One of the essential tools for 

identifying the influenced users is using social importance 

criteria. These criteria involve degree centrality, 

betweenness centrality, closeness centrality, and other 

similar criteria. The users with the maximum network 

influence are identified using these criteria. In the 

following, IM methods based on social importance criteria 

are studied in detail. An effective influence evaluation 

model based on whole valuation and variance of neighbor 

nodes valuation has been presented to create unreliable 

communication channels [6]. Then, the Moth-flame 

optimization algorithm has been developed to search the 

set of influence-maximizing nodes by using local 

intersection and mutation evolution above updating the 

conventional solution. The criterion of degree centrality 

was introduced by [7] for the first time and later it was used 

for IM. Then, using an analysis framework based on 

modular functions such as BC [8] was shown that a greedy 

natural strategy obtains a solution that can be proved to be 

63% optimum for several class models. This framework 

suggests a reasoning approach to guarantee the 

performance of algorithms for this kind of influence 

problem in social networks. An approach based on 

PageRank for influence maximizing in a network to search 

the web has been proposed in [9]. A different approach 

based on simulated Annealing for IM has been suggested 

in [10]. This is the first SA-based algorithm for solving this 

problem. In addition, two heuristic methods have been 

proposed to accelerate the process of SA convergence, and 

a new method has been suggested for computation 

influence to accelerate this algorithm.  

 Some changes to the IM problem structure were 

presented by [11] to adjust it with particle swarm 

intelligent algorithms and to reach a slope in the space of 

the objective function. The proposed approach was tested 

using real and artificial data sets. The gray wolf 

optimization (GWO) algorithm has been considered as a 

particle swarm intelligence algorithm, along with page 

ranking and greedy algorithms were used as evaluation 

methods. The reason for the low performance of greedy 

approaches was analyzed in [12] and an efficient algorithm 

called degree-descending search strategy evolution 

(DDSE) has been proposed. Firstly, a degree-descending 

search strategy is suggested, which can produce a set of 

nodes whose influence spread can be compared to the 

centrality degree. An evolutionary algorithm based on 

DDSE has been developed that considerably improves 

efficiency by removing time-consuming simulations of 

greedy algorithms. 

 An improved discrete particle swarm optimization 

algorithm along with an advanced network topology-based 

strategy for influence maximizing has been proposed in 

[13]. In this strategy, at first, k-influenced nodes of a 

temporary optimal seed set are combined in an ascending 

order based on degree metric so that the nodes with lower 

degree centrality can utilize preferably the influenced 

neighbors. In the second step, a local greedy strategy is 

applied to replace the current node with the most 

influenced node of each node’s direct neighbor node-set of 

temporary seed set. 

 An improved greedy-based strategy called Cost-

Effective Lazy Forwarding (CELF) has been created [14]. 

It reduces computation costs twice without damaging 

precision by utilizing the submodularity of objective 

function. Later, an optimized version called CELF++ was 

suggested [13], and the results showed 50% more 

efficiency improvement compared to CELF. 

 Time-sensitive centrality criteria were presented for IM 

in social networks by considering the diffusion value, and 

direct and indirect neighbors [15]. Hence, four time-

sensitive centrality measures, including time-sensitive 

closeness centrality, time-sensitive harmonic, time-

sensitive decay centrality, and time-sensitive eccentricity 

centrality were proposed.  

 Degree centrality based on various environments is used 

by [16] to increase its local search power. Through 

performing experiments, it has been specified that local 

search strategies based on different environments have 

considerable differences in improving the global search of 

the algorithm, and increasing the DPSO algorithm based 

on the degree centrality of different environments has 

considerable influences. Finally, the DPSO-NDC 

algorithm has been suggested based on the degree of 

centrality of the best environment with improved local 

search capability.   

 A mechanism to measure the influence index in popular 

social media platforms like Facebook, Twitter, and 

Instagram was suggested in[17]. Some sets of features 

determining influence on the consumers are modeled by 

regression approach. Infrastructure machine learning 

algorithms involve Ordinary Least Squares (OLS), 

Regression Nearest Neighbor (KNN), Support Vector 

Regression (SVR), and Lasso Regression models to 

compute cumulative scores adopted in terms of        

influence index. The findings show that Participation, 
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meta-learning, and feedings are crucial in determining 

influencers.  

 An improved discrete differential evolution algorithm 

(IDDE) based on the network analysis has been suggested 

in [18]. This algorithm improves the variance of the 

differential evolution algorithm. After removing the 

objective node as an index, it gives a discrete number and 

discrete precision of the remaining network to evaluate the 

importance of the node and as a result, it presents a health 

function based on the network power. This method shows 

symmetry in two aspects. Firstly, when the number of 

removed objective nodes increases in a social network, 

global coherence decreases between the network nodes. 

Secondly, the range of global influence becomes small 

when the proposed method displays the number of 

objective nodes. Comparable experiments have been 

performed on four real-world data sets with different sizes. 

The results show that the IDDE algorithm outperforms the 

comparison algorithms. 

 The authors of [19] present a framework involving 

community detection in a social network using the 

Shuffled Frog Leaping algorithm (SFL). This framework 

aims to maximize influence spread in an independent 

cascade model. In this framework, various communities 

are identified in a social network using a community 

detection algorithm. Then, the SFL algorithm is applied to 

maximize the influence spread in these communities. The 

SFL algorithm is an evolutionary algorithm, searching the 

solutions improvement based on random changes and 

mutations created in the frog population. Local search 

strategies, including hill climbing based on lake adoption 

and user centrality weight, are also used to more 

improvement in the solutions. These strategies find the 

best points in the search space by using the weight of the 

user’s centrality, and they make more improvements in the 

solutions by local search. Therefore, this framework, 

including community detection, SFL algorithm, and local 

search strategies, maximizes influence under the 

independent cascade model, and optimal solutions are 

provided for this problem. 

 A meta-heuristic approach based on multi-criteria 

decision-making (MCDM) has been proposed by the 

authors of [20] to solve the IM problem in social networks. 

The MCDM approach selects candidate nodes by 

removing less-influence nodes in the preliminary step 

based on the centrality criterion, and it decreases the 

computational cost. Afterward, an improved version of 

simulated Annealing (SA) with an advanced                   

search strategy has been suggested to find an optimal 

solution. 

 An evolutionary Discrete Crow Search Algorithm 

(DCSA) using crow swarm intelligence has been 

suggested by [21] to solve effectively the IM problem. 

DCSA makes a new coding mechanism and discrete 

evolution rules. Initialization methods based on degree 

centrality and random walking strategy are applied to 

increase searchability. An IM algorithm called Weighted 

Artificial Bee Colony (WABC) has been proposed by [22]. 

It is based on a technique inspired by biology to detect the 

subset of users that maximizes diffusion. WABC has used 

ranking techniques based on classic centrality criteria. A 

new approach with multi-feature IM has been suggested 

by [23]. This approach uses the multi-feature nature of 

network nodes (age, gender, etc.) to consider specified 

groups of users. Also, it uses centrality criteria to rank the 

user's importance in various groups. The Discrete Bat 

Algorithm (DBA) has been presented by [24]. It is based 

on partitioning a network and increases the stability of the 

initial DBA. The experimental results showed that the 

DBA converges in each run to a specified Local Influence 

Estimation (LIE) value. It removes the high oscillation 

phenomenon of the LIE fitness value created by the main 

DBA. This method has been used centrality criteria for 

local search in the fitness function. In [29], a novel Multi-

objective Cuckoo Search Algorithm (MOCSA) designed 

for community detection in social networks, emphasizes 

improved accuracy and efficiency by incorporating a 

strategy based on close neighbors in the objective function. 

In [30], a hybrid multi-objective algorithm is presented 

incorporating multiple optimization techniques and fuzzy 

clustering that outperforms existing methods in detecting 

overlapping communities in complex social networks. In 

[31], the LCD-SN algorithm enabled highly accurate and 

efficient community detection in social networks by 

leveraging local node characteristics and neighbor 

information without dependence on initial seed nodes. In 

[32], Opinion Leader Selection (OLS) as an optimization 

problem using bio-inspired algorithms has been 

formulated. It combined the African Vultures 

Optimization Algorithm (AVOA) and Hunger Games 

Search (HGS) for improved leader identification. In [33], 

the proposed method effectively identified influential 

opinion leaders in social networks using hybrid 

optimization algorithms and topological network analysis, 

achieving higher accuracy and marketing impact than 

existing approaches. A comparison of the previous works 

is shown in Table 1. 

 Despite extensive efforts in IM, existing methods often 

rely on either single centrality measures or heuristic meta-

heuristics that are not fully adapted to the discrete nature 

of social networks. Many approaches use basic node 

rankings (e.g., degree or PageRank) without integrating 

multiple structural properties, which limits their accuracy 

in identifying truly influential nodes. Additionally, 

continuous meta-heuristic algorithms are frequently 

applied with minimal modification, resulting in 

suboptimal performance when handling the inherently 

discrete selection of seed nodes. Moreover, some 

algorithms suffer from high computational costs or slow 

convergence, especially on large-scale networks. 

Therefore, there is a clear need for a method that 

effectively fuses multiple centrality measures within a 

robust, discrete meta-heuristic framework to achieve 

higher influence spread while maintaining computational 

efficiency. 
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TABLE 1 

 The previous work's comparison 

 

Ref Algorithm / Method Key Idea Strength Limitation 

[6] 
Moth-Flame 

Optimization 

Uses whole valuation & neighbor 

variance to handle unreliable 

channels 

Handles uncertainty 
Limited to specific 

network conditions 

[7][8] 
Degree Centrality & 

Greedy 

Early use of centrality; 

submodular function framework 

Theoretical performance 

guarantee (63% optimal) 

Greedy: high time cost, 

limited scalability 

[9] PageRank PageRank-based node ranking Intuitive for web networks 
Less effective for 

general social graphs 

[10] Simulated Annealing 
First SA-based IM with 

acceleration heuristics 
Good exploration ability 

Slow convergence in 

large graphs 

[11] 

Particle Swarm 

Optimization & 

GWO 

PSO adapted to IM; GWO used 

for evaluation 
Intelligent swarm behavior 

May stagnate; lacks 

centrality integration 

[12] 

DDSE (Degree-

Descending Search 

Evolution) 

Evolutionary search avoiding 

costly simulation 
Faster than greedy 

Needs careful parameter 

tuning 

[13] 
Improved Discrete 

PSO 

Advanced topology strategy with 

local greedy replacement 
Good local refinement 

May get stuck in local 

optima 

[14] CELF / CELF++ 
Optimized greedy selection with 

lazy evaluation 
50% faster than CELF 

Still costly for large 

networks 

[15] 
Time-sensitive 

Centrality 

Four new time-aware centrality 

measures 
Considers diffusion time 

High computation for 

dynamic networks 

[16] DPSO-NDC 
Local search in different 

environments 
Improved local/global balance 

Sensitive to 

environment selection 

[17] 
ML-based Influence 

Index 

Regression models for social 

media 

Leverages user behavior 

features 

Not directly IM for 

seeding 

[18] 
Improved Discrete 

Differential Evolution 

Variance-based node ranking; 

health function 

Symmetric handling of 

removed nodes 

Limited to certain 

network structures 

[19] 
SFL + Community 

Detection 

Shuffled Frog Leaping with 

Community Detection 

Uses local community 

structure 

Relies on quality of 

community detection 

[20] 
MCDM + Improved 

SA 
Node filtering + advanced SA Reduces cost via pre-selection 

SA still has convergence 

limits 

[21] Discrete Crow Search 
Crow swarm intelligence; random 

walking 

Novel coding; better 

exploration 

Lacks robust local 

refinement 

[22] 
Weighted Artificial 

Bee Colony 

Biological swarm inspired; uses 

ranking 
Effective for classic criteria 

Ranking alone may 

overlook structural 

synergy 

[23] Multi-Feature IM Uses user attributes + centrality More realistic user modeling Needs rich attribute data 

[24] 
Discrete Bat 

Algorithm 
Uses partitioning to stabilize LIE Better stability; local search 

High oscillation is 

removed but may 

converge slowly 

[29] 
Multi-objective 

Cuckoo Search 

Algorithm (MOCSA) 

Uses cuckoo search with a 

neighbor-based strategy for 

accurate community detection. 

High detection accuracy and 

efficiency. 

May face convergence 

issues in very large-

scale networks. 

[30] 
Hybrid Multi-

objective Algorithm 

with Fuzzy Clustering 

Integrates multiple optimization 

techniques and fuzzy clustering 

for overlapping community 

detection. 

Handles overlapping 

communities effectively, with 

better performance than 

traditional methods. 

Increased computational 

complexity due to the 

hybrid structure. 

[31] LCD-SN Algorithm 

Leverages local node 

characteristics and neighbor data 

for community detection without 

relying on seed nodes. 

High accuracy and efficiency, 

seed-free approach. 

May require fine-tuning 

for networks with sparse 

connections. 

[32] 
Opinion Leader 

Selection (OLS) with 

AVOA and HGS 

Formulates leader selection as an 

optimization problem using bio-

inspired algorithms (AVOA + 

HGS). 

More precise leader 

identification and robust 

search capability. 

Algorithm performance 

is sensitive to parameter 

settings. 

[33] 
Hybrid Optimization 

for Opinion Leader 

Detection 

Combines hybrid optimization 

algorithms with network topology 

analysis for better opinion leader 

identification. 

Higher accuracy and 

marketing influence than 

other methods. 

May need high 

computational resources 

for very dense networks. 
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4. THE PROPOSED METHOD 
This paper presents a new method called CMMRFO for 

IM in social networks using the Manta Ray algorithm and 

a combination of centrality criteria. A weighted 

combination of criteria, including degree, betweenness, 

and closeness centralities, are used to compute the social 

importance of the users. Since the MRFO is continuous, it 

cannot be used to solve the discrete IM problem. Hence, a 

discrete method is proposed for the MRFO, and its discrete 

version is used to solve the IM problem. The details are 

explained in the following. 

4.1. discretization of the MRFO 

In meta-heuristic algorithms, discretization converts 

continuous values into discrete ones. The purpose is to 

convert continuous search space to discrete search space 

so that meta-heuristic algorithms can find the problem's 

best solution. Continuous values are converted like real 

numbers in search space, and the initial population as 

discrete values or a set of integers in most meta-heuristic 

algorithms for discretization. This conversion can be 

performed as a simple discretization, for instance, by 

estimating the value to the nearest discrete, or it can be 

performed as a complex discretization by conversion 

function or other methods. This conversion to discrete 

space helps the algorithms search for the best solution in 

discrete space, and in this way, efficiency improvement 

and the efficiency of algorithms can be increased. Since 

the most fundamental problems are not continuous, 

discretization helps the algorithms reach the optimal value 

of the problems [26]. In this paper, since the search space 

is selected among social network users, the initial 

population's values indicate the user's index in a social 

network. Hence, this problem does not involve containing 

values for the initial population. In addition, the severe 

population cannot include continuous values in the 

heuristic process in the meta-heuristic fragging 

optimization algorithm. As a result, the initial population 

is a limited range of user indexes in the proposed method, 

which is valid for the centrality threshold. They can be 

converted to an influence user. An integer for a random 

variable can be used in the heuristic step in the MRFO 

instead of 𝑋𝑟𝑎𝑛𝑑
𝑑  which is a real random variable. 

4.2. Computing the social importance of users   

Increasing the users and the data volume of these users in 

social networks requires analyzing and extracting useful 

information from data. Such information can be useful for 

different applications like advertisements, marketing 

procedures of user behavior, etc. In this regard, it is one of 

the valuable tools in user importance criteria in social 

networks. These criteria investigate the user's importance 

in various aspects of social networks, and they are 

introduced as an effective tool for analyzing social 

network data. This study uses three criteria of centrality 

importance involving closeness, betweenness, and a 

combined criterion of the network. They are explained in 

detail in the following. 

1) Centrality criteria: Centrality criteria are the network 

analysis measures used to detect the most powerful nodes. 

The centrality criterion quantifies direct friendship 

relations for a node in social networks. According to the 

centrality criterion, the importance of a node is determined 

based on its degree. Suppose G = (V, E) is a social 

network. V is a set of n nodes, while (n=|V|) shows the 

users in a network. E indicates a set of m edges between 

the users. (m=|E|), shows the relations between the users. 

Social networks are shown by a symmetric matrix A called 

adjacency matrix with dimensions n × n. Each entry, aij is 

considered the relationship between node i and node j if 

equal to. According to the centrality criterion, it can be 

computed for each user as equation 10 [27]. 

 

𝐶(𝑖) = ∑ ∑
𝑎𝑖𝑗

𝑛−1

𝑛−1
𝑗=1

𝑛
𝑖=1   (10) 

 

 An ij is the relation between the user i and j in the 

adjacency matrix, and n is the whole number of users in a 

network. In this case, the value of the degree of centrality 

can be obtained for all users in a network, and it indicates 

a favor among social networks. The users having relations 

with many users have a high value of degree centrality. 

Such users are exposed to information or data diffusion in 

social networks. In contrast, such users with a low degree 

of centrality do not have so much popularity and show 

introverted personalities. This criterion limitation is local 

access to the network topology, and it uses limited local 

knowledge to decide about the user's importance. 

2) Closeness criterion: The closeness criterion 

hypothesizes that the power of an individual has a reverse 

relation with another individual in that social network in 

terms of closeness with distance sum [27]. In other words, 

the closeness criterion for the user is obtained based on 

whole routes from other users in a social network. The 

closeness criterion is computed for each user as equation 

(11) [27]. 

 

𝐶𝑁(𝑖) =
1

∑ ∑ 𝑑𝑖𝑗
𝑛−1
𝑗=1

𝑛
𝑖=1

        (11) 

 

 Where 𝑑𝑖𝑗  Shows the shortest route from node i to node 

j. The closeness criterion of the user shows the average 

distance of the user with another user in a social network 

as a quantitative value. The users with a high closeness 

criterion receive the information from each point of the 

network in less expected time because they are less distant 

from other social network users. In contrast, the user 

having less closeness criterion and being away from 

another network user receives data diffusion in networks 

later than expected. The limitation of this criterion is that 

disconnected networks do not work well, and they cover 

only a part of the connected network.   

 3) Betweenness criterion: According to betweenness 

criteria, the importance of a user in social networks is 

defined as the shortest path between other users passing 

through that point. In other words, the betweenness criteria 

for each user i is according to the shortest routes between 

all network users, and user i is located between them. The 

betweenness criterion is computed for each user as 

equation (12) [27]. 
 

𝐵(𝑖) = ∑ ∑ ∑
𝜎𝑗𝑘(𝑖)

𝜎𝑗𝑘

𝑛−2
𝑘=1

𝑛−1
𝑗=1

𝑛
𝑖=1   (12) 
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 Where 𝜎𝑗𝑘(i) is the shortest route from node j to k, which 

passes from node i. 𝜎𝑗𝑘 shows the number of shortest 

routes from node j to k. In betweenness criterion data is 

transferred in a social network between users through the 

shortest routes. The individual having a high value of 

betweenness criteria has more control over the information 

in the whole network. Therefore, it can be a good 

alternative for selection as a user with high influence in 

social networks.  

4) The combination criterion: Social importance criteria 

are those used to measure and analyze the user's 

importance and their communications in social networks. 

These criteria help us determine which entities have the 

maximum influence on a network and how communication 

is made between the users. Social importance criteria point 

to the influence of a user in a network. The conventional 

social importance criteria involve the degree of centrality. 

Degree Centrality measures the number of user 

communications. Betweenness centrality shows how a 

user is located in the routes between two other users. 

Closeness Centrality shows how a user is close to the other 

users in a network. The Fusion Centrality combines the 

effect of these three mentioned criteria simultaneously. It 

is defined as follows. 

 

 
(13) 

 Where 𝐹𝐶 indicates the combinations of centrality 

criteria, DC and w1 show the degree centrality criterion 

and the weight of the degree centrality criterion, 

respectively. Also, CC and w2 are the closeness centrality 

criterion and the weight of degree centrality criterion, 

respectively, 𝐵𝐶 and w3 refer to betweenness centrality 

criteria. The weight of each centrality criterion is a value 

between zero and one. 

 The classic importance criterion of centrality is 

determined based on the user's output and input links in a 

social network. The closeness criterion is specified 

according to the distance or required steps to reach another 

user in a network. At last, the combination criterion is 

made of these three essential criteria and combines 

previous criteria. To select the influenced users, the 

combination criterion considers three criteria, degree 

centrality, closeness centrality, and betweenness 

centrality. Other criteria investigate the user's importance 

in a social network in just one dimension. Using these 

combination criteria to analyze social network data helps 

users and managers make decisions about using social 

network data. This paper can be used as a helpful resource 

to study the combination of importance criteria in social 

networks and data analysis methods of a social network. 

4.3. Solving IM 

IM in social networks is detecting a set of individuals in a 

network with the highest potential to affect others. It is an 

important problem in the analysis of social networks 

because it can be used to spread the behaviors or particular 

ideas in a network or to prevent the spread of negative 

ideas or behaviors. Meta-heuristic algorithms are 

optimization algorithms used to solve classic optimization 

techniques. Meta-heuristic algorithms can be used to 

detect individuals with the highest potential to affect others 

in terms of IM in social networks. These algorithms are 

performed by producing and evaluating potential solutions 

and then using the best solutions to produce new ones. 

1) Coding the initial population: In optimization 

problems, solved by meta-heuristic methods, initial 

population planning is an important issue. The purpose of 

this problem is to consider each member in the initial 

population as a final solution. Each member can be 

evaluated based on fitness function to specify the optimal 

solution. The MRFO is used to find k users among M users 

having the maximum influence in a social network. The 

initial population is defined as a vector of Manta rays, and 

elements connect them, and they constitute a solution. The 

initial population is defined as a vector of discrete values 

in this algorithm, and each entry indicates the user in the 

social network index. The length of this vector is equal to 

M (the number of users in a search space), and the value 

of each element shows the users' index in the social 

network. The value of zero in each element is related to the 

lack of selection of the related user, while the value of 1 

shows the selection of that user. The problem space is 

limited according to the spread of the social network and 

the number of users. In other words, the users whose 

communication exceeds the threshold value are considered 

the available alternative in the problem space. The 

threshold value is the mean of the degree centrality for all 

users in the social network. So, influenced users can be 

selected among the users whose connection and 

communication are more than the mean of communication 

degree in the whole network. Fig 6 shows a sample of the 

initial solution. 

 

UM … U4 U3 U2 U1  

27 … 8 0 16 5 X 
 

Fig. 6. A sample of the initial solution in the proposed method. 

 

 According to Fig 6, it can be found that initial 

populations involve the element equal to the number of 

users in a search space, where the value of element 0 shows 

the selection of that user as an influenced user. If the value 

is non-zero, it shows the user's index in the social network. 

The users selected as the initial population are considered 

as the entry of the fitness function trying to compute the 

influence of users selected as influenced users. 

2) Fitness function: The proposed fitness function finds 

the minimum number of users with maximum influence in 

social networks. In other words, social importance criteria 

are determined as an influence parameter factor in the 

fitness function. The fitness function has two parameters. 

The first parameter is related to the influence, while the 

second is related to the number of users in the social 

network. The proposed fitness function is as follows. 
 

𝑚𝑎𝑥 𝑓 = ∑ 𝑊𝑖𝑆𝑃𝑖 −∑ 𝑊𝑖𝑁𝑖
𝑛
𝑖=1

𝑀
𝑖=1    𝑠. 𝑡.   

 

 ∑ 𝑊𝑖 ≤ 1𝑛
𝑖=1          ∑ 𝑁𝑖 ≥ 1𝑛

𝑖=1        𝑖 > 0        

      (9) 

𝐹𝐶 = 𝑤1 ∗ 𝐷𝐶 + 𝑤2 ∗ 𝐶𝐶 + 𝑤3 ∗ 𝐵𝐶, 𝑤1, 𝑤2, 𝑤3 ∈ [0,1]      (13)  
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 Where i shows the user index in the social network in 

equation 9; M refers to the number of users in the 

influenced search space; 𝑆𝑃𝑖  demonstrates the number of 

users under the influence; Ni and Wi show the number of 

influences and the weight of social importance, 

respectively. Fig 7. presents the flowchart of the proposed 

method. In the following, the proposed method is 

implemented and evaluated. 

4.4. Diffusion model in the proposed methods 

The information diffusion method in social networks is a 

form that explains how information and contents are 

distributed in these networks and how different individuals 

and users influence this information diffusion. These 

models are usually defined based on human behavior, 

social network algorithms, and individual's reactions to the 

information propagated by others. These models help 

better recognize information diffusion procedures in social 

networks, and better program and manage information. 

Information diffusion models in social networks are 

usually divided into threshold, cascade, trigger, and 

epidemic models. These models are introduced as follows. 

 Threshold models: The information is directly 

diffused by the individuals, and each individual 

decides whether the information is diffused 

among others. This model is based on personal 

decision-making. 

 Cascade models: The individuals are influenced 

by the diffused information by others, and 

information is diffused among others. 

 Trigger models: The information is diffused 

automatically by the individual and without 

individual decision-making. This model is based 

on automatic processes and algorithms of social 

networks.  

 Pidemic models: The information diffusion is like the 

spread of an epidemic illness, which is quickly diffused in 

social networks. This model is based on the quick and 

widespread information in social networks. 

 

Start

Load social network graph from the file

Compute degree, closeness, betweenness 

centralities, and combination of them

Determine candidate users in search space 

to select as influenced ones on the basis 

of threshold

Generate initial population of the Manta 

Ray Fragging optimization algorithm

Update the parameters of Manta Ray 

Fragging optimization algorithm

Compute fitness function based on 

information spread in cascade model

Calculate the fitness function for 

population to find influential users

End

Termination 

condition 

satisfied?

no

yes

 
Fig. 7. Flowchart of the proposed method 
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 The cascade diffusion model is used in the proposed 

model. This model shows the procedure of information 

transfer and content propagation in social networks. When 

an individual diffuses content, this content is observed by 

others, and some of them decide to transfer it to others. 

This content transfer process continues through individual 

social communication and is quickly transferred to other 

individuals on social networks as a cascade. This model 

shows that individuals are influenced by the contents and 

information diffusion by others, and this information 

quickly and widely spreads in social networks. This 

content diffusion is usually performed due to an 

individual's psychological and social influences, and it 

encourages them to transfer and diffuse information 

influence of others. This model is also useful for checking 

the effects of content and information propagation in 

online communities, program marketing strategies, and 

increasing the influence of social networks. Fig 7. presents 

the flowchart of the proposed method. 

 

5. IMPLEMENTATION OF THE PROPOSED METHOD  
To evaluate the effectiveness and robustness of the 
proposed method, extensive experiments were conducted 
using five well-known real-world social network datasets: 
NetScience, Email, Hamsterster, Ego-Facebook, and 
Pages-Public Figure, as referenced in [28]. These datasets 
differ in size, structure, and user interaction patterns, 
providing a diverse testing ground to verify the 
generalizability of the proposed approach. Specifically: 

 NetScience represents a co-authorship network in 
scientific publications. 

 Email captures email exchanges within a 
network. 

 Hamsterster is a friendship network collected 
from a pet social website. 

 Ego-Facebook contains ego-networks extracted 
from Facebook profiles. 

 Pages-Public Figure includes the connections 
between verified Facebook pages and public 
figures. 

 Each dataset comprises a varying number of nodes 
(users) and edges (relationships), allowing the method’s 
scalability and adaptability to be tested under different 
network topologies and densities. 
 In the simulation process, the proposed method first 
computes three well-established social importance 
measures—degree centrality, closeness centrality, and 
betweenness centrality—for each node within the network. 
These metrics quantify each user’s potential to spread 
information based on their position and connectivity in the 
graph. 
 Subsequently, these centrality measures, individually 
and in combination, are incorporated into a customized 
fitness function used by the enhanced Manta-Ray Foraging 
Optimization (MRFO) algorithm. This fitness function 
aims to balance two objectives: (1) maximize the overall 
influence spread and (2) minimize the number of seed 
users, ensuring an efficient selection of influential nodes. 
 To initialize the MRFO algorithm, an initial population 
of candidate seed sets is generated. This population is 
strategically constrained to reduce computational 
overhead: candidate users are pre-selected by applying a 

threshold based on the mean value of a given centrality 
measure in the network. For example, in the degree 
centrality scenario, only users whose degree centrality 
exceeds the network average are considered as potential 
seeds. This pre-filtering effectively reduces the search 
space by excluding nodes with minimal influence 
potential. 

 During the iterative optimization, the MRFO algorithm 

explores this reduced solution space. In each iteration, the 

current population of candidate solutions is evaluated 

using the bi-objective fitness function. Based on the 

MRFO’s foraging-inspired update rules, a new population 

is generated by refining the influential user selection to 

maximize influence spread while maintaining a compact 

seed set. 

 This simulation process is repeated for each scenario 

(degree centrality, closeness centrality, betweenness 

centrality, and fusion of these measures) across all 

datasets. The final output is a set of influential users for 

each network and scenario, along with quantitative results 

showing how much information spread is achieved relative 

to other baseline methods. 
 The parameters in the proposed CMMRFO algorithm 
have set based on a combination of network structural 
properties and algorithmic design elements that are 
inherently sensitive to performance. First, the initial 
population in the MRFO algorithm was discretized to 
represent user indices in the social network, with a 
threshold based on the average degree centrality used to 
filter users—this ensures that only users with above-
average connectivity are considered, improving 
convergence toward influential nodes. Second, the fitness 
function incorporates two performance-sensitive 
parameters: the number of influenced users (spread 
potential) and the weight of social importance, which is 
calculated using a weighted combination of degree, 
closeness, and betweenness centrality. The weights w1,w2, 
and w3 are bounded between 0 and 1 and directly affect the 
optimization outcome, making them critical to algorithm 
sensitivity. Finally, by using the cascade diffusion model, 
the influence spread is modeled realistically, and the 
parameterization adapts dynamically to the structure of the 
network, further enhancing the relevance of parameter 
choices to actual performance. 

 In the proposed CMMRFO algorithm, standard MRFO 

parameters such as the population size, maximum number 

of iterations, and exploration-exploitation control 

mechanisms are carefully set to balance search quality and 

computational cost. The population size determines how 

many candidate solutions are explored simultaneously, 

influencing convergence speed and diversity. The 

maximum iteration limit ensures that the algorithm stops 

after a reasonable time while allowing enough search 

depth. Additionally, MRFO’s search operators — 

including Chain Foraging, Cyclone Foraging, and 

Somersault Foraging — control how candidate solutions 

update their positions. These operators are adapted to work 

with discrete user indices, ensuring effective exploration 

of the social network space. Proper tuning of these 

parameters helps achieve an optimal trade-off between 

exploration and exploitation, directly impacting the 

influence maximization performance. The main 
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parameters of the proposed method are listed in Table 2. 

 In addition, the solution having the best fitness function 

value is selected as the optimal solution. The new 

population is evaluated based on the fitness function, and 

the optimal solution is selected. This procedure continues 

until the stop condition, which is 100 iterations, is met. The 

last solution related to the last iteration shows that the 

influenced user's selected generation represents the 

influencers based on a specified importance criterion. Figs 

8 – 12. show a convergence diagram of the optimal point 

related to each social importance in each data set's MRFO 

algorithm. 

 As shown in Figs 8 -12, the convergence diagram of the 

MRFO algorithm is drawn based on different social 

importance criteria in the mentioned data sets. As 

expected, fitness function values are increased in 

ascending order in each step in the Convergence diagram. 

Hence, it can be found that the MRFO algorithm does not 

fall into local traps and converges continuously toward the 

optimal point. Finally, influenced users are found in a 

network in the final solution of each scenario. In the 

following, the proposed method is evaluated. 

TABLE 2 

 Parameters of the proposed method 

Parameter Value Description 

Initial Population 
Users with degree 

centrality above mean 
Limits search to influential users, improving convergence and solution quality. 

Discretization 

Method 

Continuous-to-integer 

mapping 

Ensures valid user indices; maintains MRFO compatibility with the discrete 

domain. 

Centrality Weights 

(w₁ , w₂ , w₃ ) 
[0, 1] 

Controls the importance of degree, closeness, and betweenness; balances 

multiple influence aspects. 

Selection Threshold 
Average degree 

centrality 
Dynamically adjusts candidate pool size; aligns with network density. 

Fitness Function 
Spread + penalty for the 

number of seeds. 

Encourages high influence spread with minimum seed users; balances cost and 

benefit. 

Diffusion Model Cascade model Realistic simulation of influence propagation; validates optimization results. 

Population Size 

(MRFO) 
20–50 Balances exploration diversity and computational cost; affects convergence. 

Maximum Iterations 

(MRFO) 
100–500 Defines search depth; more iterations can improve solution quality. 

MRFO Operators 
Chain, Cyclone, 

Somersault Foraging 
Ensure effective exploration and exploitation; adapted for discrete indices. 

 

  
(a) (b) 

  
(c) (d) 
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(e) 

Fig. 8. Convergence of MRFO based on different social importance criteria in the data set: (a) NetScience, (b) Email,  

(c) Hamsterster, (d) Ego-facebook, (e) Pages – publicfigure 

 

Fig. 9. The influence rate is based on the degree centrality criterion in various data sets 

 

 

Fig. 10. The influence rate is based on the closeness centrality criterion in different data sets.
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Fig. 11.  The influence rate is based on betweenness centrality criteria in different data sets. 

 

 
Fig 12. The influence rate is based on a combination of criteria in different data sets 

 

5.1. Evaluation of the proposed method 

After implementing the proposed method based on 

different scenarios, its performance is evaluated. The most 

conventional criterion is to evaluate the number of users 

influenced by users in the social network to evaluate the 

proposed method in terms of IM. In other words, the 

purpose of IM is to find the users having the most influence 

among other users.  

 Therefore, each solution that can find the most 

influential user can be considered optimal. In the proposed 

method, the problem of IM is solved by three popular 

importance criteria, including degree centrality, closeness 

centrality, betweenness centrality, and a combination of 

centrality criteria using the CMMRFO algorithm. The 

proposed method is implemented based on four different 

scenarios according to importance and combinational 

importance criteria. In the following, the number of users 

influenced by influenced users is inspected in each 

scenario. The number of users influenced by influential 

users is shown in Table 3. based on social importance 

criteria in different data sets. 

 According to Table 1, it can be found that the 

CMMRFO algorithm influences various users by each 

social importance criterion for each data set. On the other 

hand, the proposed IM finds the minimum number of users 

with the highest influence on the users. The results of IM 

are more optimal when the effect is high, and the number 

of influenced users is low. Therefore, the whole number of 

influenced users is divided by the whole number of users 

to compute the influence rate for each influenced user. Figs 

9-12. show the influence rate of degree centrality, 

closeness centrality, betweenness centrality, and 

combination of those centralities in different data sets, 

respectively. 

 As is evident in Figs. 9 - 12, different social importance 

criteria obtain various influence rates. Fig 18 shows a bar 

graph comparing influence rates based on social 

importance criteria.
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TABLE 3 

 The number of influenced users in different data sets based on social importance criteria 

 

Datasets Centrality Closeness Betweenness Fusion criteria 

NetScience 41 46 36 40 

Email 128 120 124 123 

Hamsterster 276 280 271 263 

Ego-facebook, 620 601 621 617 

Pages - publicfigure 1161 1171 1168 1166 

 
 Figes 9 to 12 illustrate how the influence rate varies with 
the number of selected influential users, commonly 
referred to as the seed size, for each centrality criterion—
degree, closeness, betweenness, and their fusion. In these 
figures, the horizontal axis denotes the seed size, which 
ranges from 0 to 5, reflecting the predefined and limited 
number of influential users chosen by the proposed 
method. The vertical axis shows the influence rate, defined 
as the ratio of users influenced by these seeds to the total 
number of users in the network. 
 A  higher influence rate indicates a more effective 
spread of information initiated by a small number of well-
chosen seeds, demonstrating the strength of the selection 
strategy. As depicted, the influence rate increases rapidly 
for the first few seeds, highlighting that the initial 
influential users have the highest impact on spreading 
information. Subsequently, the growth slows and 
stabilizes, as additional seeds contribute incrementally less 
due to network structure saturation and overlap with 
already influenced nodes. 
 This trend across Figes 9 to 12. confirms that the 
proposed CMMRFO algorithm successfully prioritizes 
users with the most advantageous network positions for 
rapid and widespread diffusion. The consistency of this 
pattern for all centrality measures further validates the 
robustness and adaptability of the seed selection process in 
various network conditions. 
 Regarding the trend illustrated in the plots, it can be 
observed that the influence rate initially increases rapidly 
during the first few stages and then gradually converges to 
an approximately stable value. This pattern arises because, 
in the proportional function of the proposed CMMRFO 
algorithm, users with the highest centrality parameters are 
prioritized as influential seeds. This ensures that users with 
the most significant connections within the network are 
selected first, resulting in a steep initial rise in the number 
of directly influenced users. The first two influential users 
typically contribute to a large portion of the network being 
directly affected due to their high connectivity and central 
position within the network structure. 
 As the algorithm proceeds to select additional 
influential users, it ensures minimal overlap with the 
initially chosen seeds to avoid redundant influence spread. 
Consequently, each additional user contributes fewer new 
connections than the initial seeds, leading to a decrease in 
the growth rate of the influence rate. This behavior 
explains why, after selecting the first two influential users, 
the increase in the influence rate diminishes and gradually 
levels off to a near-constant value. This convergence 
demonstrates the efficiency and precision of the proposed 
CMMRFO-based selection strategy in maximizing the 
spread of influence with an optimal and minimal number 

of influential users. 
 Fig 13. illustrates the comparative performance of the 
proposed CMMRFO algorithm when applying different 
centrality criteria for selecting influential users. 
Specifically, this figure highlights how the choice of 
centrality measure—degree, closeness, betweenness, or 
their fusion—affects the spread of information within the 
network. The plotted influence rates demonstrate that 
selecting seeds based on degree centrality consistently 
results in a higher influence spread than using closeness, 
betweenness, or their combination. 
 This result can be explained by the inherent advantage 
of degree centrality: nodes with higher degrees have more 
direct links, allowing information to propagate rapidly to a 
larger portion of the network in the initial diffusion stages. 
In contrast, closeness and betweenness centralities, while 
valuable for understanding network structure, may select 
nodes that are strategically positioned but have fewer 
immediate connections, leading to a slower initial spread. 
 Therefore, Fig 13. validates the design decision in the 
CMMRFO framework to prioritize degree centrality 
within its hybrid selection mechanism. By doing so, the 
algorithm effectively balances structural awareness and 
computational efficiency, ensuring that the selected 
influential users trigger faster and broader diffusion 
compared to other criteria. This empirical comparison 
further supports the claim that the integration of social 
network metrics into the MRFO algorithm provides a 
robust solution for the influence maximization problem in 
large-scale networks. 
 As shown, Degree Centrality consistently achieves a 
higher influence rate than the other measures in various 
network datasets. This highlights that the CMMRFO 
algorithm, when guided by the degree centrality 
parameter, is more effective in identifying highly 
connected nodes that maximize the spread of information 
throughout the network. 
 Including this comparison was necessary to validate 
why the Degree Centrality parameter was given more 
weight in our hybrid selection mechanism within the 
CMMRFO framework. It supports our motivation for 
favoring nodes with higher direct connections to achieve 
faster and broader information dissemination. 
 The critical point is that the maximum number of users 
influenced by influenced users is selected based on social 
importance criteria and the CMMRFO algorithm. The 
purpose is to increase the number of users connected with 
these users directly and use information diffusion directly 
as influenced by neighbor users. The influence is 
maximized when many influenced users select the 
minimum number of users with maximum influence on 
other selected users, which is introduced as the optimal 
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method. Therefore, it is necessary to compare the number 
of users influenced by influenced users in the proposed 
method and [6] by implementing the moth flame 
optimization algorithm without using social importance 
criteria and a fixed number of influenced users. The 
maximum number of users influenced by the CMMRFO 
algorithm is shown in Fig 19. and compared with the 
primary method.  
 According to Fig 14. it is evident that incorporating 
social importance criteria—particularly degree 
centrality—into the MRFO algorithm significantly 
improves the overall influence spread in social networks. 
This figure presents a comparative bar chart showing the 
influence rates achieved by different centrality-based 
strategies. Among them, the approach that relies on degree 
centrality consistently outperforms closeness, 
betweenness, and fusion criteria across multiple datasets. 
This improvement is attributed to the fact that users with a 
high degree centrality typically maintain a large number of 
direct connections, enabling rapid and broad diffusion of 
information. 
 

 
Fig. 13. Bar graph comparing influence rate based on social 

importance criteria. 

 

 
Fig. 14. The comparison of the maximum number of influence 

users in different data sets 

 Furthermore, the proposed method not only enhances 
the spread of influence but does so using a fixed and 
minimal number of seed users, highlighting its efficiency. 

By combining optimized fitness function parameters with 
centrality-based node selection, the CMMRFO algorithm 
ensures that influence is maximized without redundancy or 
overlap in the selection of seed users. This results in a 
higher influence rate, defined as the number of influenced 
users relative to the total number of seeds, compared to 
traditional methods. These results confirm that integrating 
structural characteristics of the network into the 
optimization process yields a more effective and scalable 
solution to the influence maximization problem. Fig15. 
compares the influence rate in the presented method and 
others.  
 According to Fig 15. it is evident that the proposed 
CMMRFO algorithm achieves a significantly higher 
influence rate compared to the existing baseline method 
that does not incorporate social importance criteria. This 
demonstrates the effectiveness of integrating the degree 
centrality criterion into the fitness function, as it prioritizes 
highly connected nodes that can spread information more 
rapidly and extensively. The figure illustrates that for each 
dataset, the influence rate increases noticeably when the 
centrality-based approach is used, confirming that 
selecting seed users based on structural importance leads 
to a more efficient diffusion process. Moreover, the results 
highlight that the improvement is most pronounced in 
networks with highly heterogeneous structures, where 
influential nodes play a critical role in connecting distant 
parts of the network. Overall, these findings validate that 
employing social importance measures, particularly 
degree centrality, substantially enhances the performance 
of influence maximization algorithms by ensuring a higher 
spread of information with fewer seed users. 

  
Fig. 15. The comparison of the influence rate in the proposed 

method and other methods 

 

6. CONCLUSION AND FUTURE WORK  
IM is the process of selecting a small set of nodes to ensure 

the quickest and widest information diffusion in social 

networks. Detecting such nodes remains a crucial research 

topic with numerous practical applications. While greedy-

based methods provide reliable solutions, their high 

computational cost due to extensive Monte Carlo 

simulations makes them unsuitable for large-scale 

networks. In contrast, structural centrality-based 

approaches offer an efficient alternative by leveraging the 

inherent properties of network graphs. 
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 In this paper, a novel discrete version of the Manta Ray 
Foraging Optimization (MRFO) algorithm was developed 
specifically for the IM problem. The proposed method 
integrates three prominent centrality measures—degree, 
closeness, and betweenness—into a fused fitness function 
and applies innovative discretization techniques to handle 
the discrete search space effectively. 
 Experimental evaluations on five real-world social 
network datasets demonstrated that the proposed 
CMMRFO algorithm consistently achieves superior 
influence spread compared to conventional methods. 
Notably, it yielded average improvements of 14.63% for 
NetScience, 12.81% for Email, 19.03% for Hamsterster, 
15.24% for Ego-Facebook, and 18.76% for Pages-
PublicFigure networks. These significant improvements 
highlight the robustness, scalability, and practical 
effectiveness of the proposed approach in maximizing 
influence with a minimal seed set. 
 The key development lies in designing a bi-objective 
fitness function that balances two essential goals: 
minimizing the number of influential (seed) users and 
simultaneously maximizing their impact. This balance 
ensures not only a high influence spread but also cost-
effective targeting strategies. Furthermore, the integration 
of fused centrality measures empowers the algorithm to 
exploit complementary structural information, resulting in 
a more accurate identification of influential nodes. 
 In summary, the main contributions of this work can be 
highlighted as follows: 

 A novel discrete MRFO algorithm adapted for the 
discrete IM problem. 

 Introduction of a fused centrality index combining 
degree, closeness, and betweenness to guide seed 
selection more effectively. 

 Development of a bi-objective fitness function that 
optimally balances the number of seeds and influences 
spread. 

 Comprehensive evaluation demonstrating significant 
influence spread improvements over baseline 
algorithms across various real-world networks. 

 These contributions together advance the state-of-the-
art in influence maximization, especially for large and 
complex social networks. 
 For future research, the proposed method can be 
extended by integrating a community detection step 
alongside the centrality-based user selection. This hybrid 
approach would allow meta-heuristic algorithms to 
identify key influencers within each detected community, 
combining global and local structural insights. Such an 
extension is expected to further enhance the efficiency, 
precision, and adaptability of the model for large-scale and 
highly modular social networks. 
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