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Exploring Effective Features in ADHD Diagnosis among Children 

through EEG/Evoked Potentials using Machine Learning 

Techniques* 

 Research Article 

Faezeh Rohani1  Kamrad Khoshhal Roudposhti2    Hamidreza Taheri3     Ali Mashhadi4     Andreas Mueller5 

 
Abstract: With the aid of intelligent system approaches, the 

present study aimed at extracting and investigating effective 

features for detecting Attention-Deficit/Hyperactivity 

Disorder (ADHD) in children. With this end in view, 103 

children, aged from 6 to 10, were recruited for this study, 

among which 49 cases were assigned to the treatment group 

(ADHD children) and the remaining 54 cases to the control 

group (healthy children). The disorder diagnosis was 

performed using the well-known, relevant psychological 

questionnaires and clinical interviews with expert 

psychologists. Data collection consisted of EEG signals in 

eyes open and eyes closed states, as well as GO/NOGO task 

for about 3 hours for every participant. The extracted features 

consisted of the amplitudes and latency in Event-Related 

Potential (ERP) and the power spectrum in the sleep mode 

signals. Approximately 826 features of 19 channels were 

extracted in the standard 10-20 system and different task 

conditions. A set of features were selected with the aid of the 

feature selection methods, and then the selected features 

were analyzed by neuroscientists, and the irrelevant ones 

were removed. Next, the classification methods and their 

performance evaluation were applied. Finally, the best 

results in terms of the corresponding feature vector and 

classification method were presented. The healthy and 

ADHD groups were classified with 75.8% accuracy using 

the Support Vector Machine (SVM) method. The results 

showed that the use of selection of effective features with the 

aid of intelligent system techniques under the supervision of 

experts leads us to reach robust biomarkers in the detection 

of disorders. 

Keywords: Attention Deficit Hyperactivity Disorder 

(ADHD), EEG/Evoked Potentials, Feature Extraction, 

Feature Selection 

 

1. Introduction 

Psychiatric disorders are complex because psychological, 

biological, and genetic factors influence cognition, emotions, 

and behavior in certain areas [1]. With questionnaires and 

clinical interviews, it has been found that the diagnosis of 

disorders relies on mental descriptions and external 

observations. Therefore, such diagnoses are prone to error 

due to the complexity of psychiatric disorders, intrinsic 

mentality, and even the use of the Diagnostic and Statistical 

Manual of Mental Disorders, 5th Edition: DSM-5 [2] 

diagnostic guide. Accordingly, researchers have made 
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significant efforts to obtain biological markers of mental 

disorders [3-10]. Most of these markers are genetic, 

biochemical, blood epigenetic, and blood plasmatic [11, 12]. 

However, some of these markers are 

electroencephalographic letters, induced potentials, and 

magnetic resonance imaging [13]. Unhealthy groups and 

healthy individuals have complex characteristics and are 

difficult to detect using individual markers. Henceforth, the 

symptoms of the diagnosis can be obtained by different 

neurobiological pathways [14]. Attention-Deficit 

Hyperactivity Disorder (ADHD), a neurological disorder, 

affects an estimated 4% to 12% of school-aged children 

worldwide [15]. Based on DSM-5, this disorder consists of 

three types, namely hyperactive and impulsive, inattentive, 

and combined [2].  

The present study investigated and extracted the 

Electroencephalography (EEG) and Event-Related Potential 

(ERP) features that have been studied concerning the EEG 

and ERP indicators and brain function of ADHDs [16-19]. 

The principal advantage of using ERP includes the 

possibility of nonaggressive cognitive processes in 

milliseconds [20]. In recent years, machine learning methods 

have been widely used in the medicine and health realms [21-

23]. Nevertheless, in psychiatry, due to limitations such as 

the absence of data, fear of distancing from diagnostic 

measures, and inadequate knowledge, this technique has 

been applied less frequently. However, the needs suggest 

that the combinatorial biomarkers have better performance 

compared with individual values [24]. 

Extensive research at the Switzerland Brain and Trauma 

Foundation has shown that biological boundaries can be 

traced through the stimulated potential to create biological 

markers (a measurable indicator for biological conditions) 

[25]. Moreover, in this research center, psychological 

neuroscience is used as an indicator to identify a specific 

disorder in the brain. The foundation also believes that none 

of the markers can help the diagnosis alone but that the 

diagnosis must be made through the proper usage of a set of 

these markers [6]. In this view, researchers using machine 

learning methods for the separation of ADHD and control 

groups in adults (74 cases in the ADHD group, 74 cases 

between 18-50 years old in the control group) observed that 

with GO/NOGO task, the accuracy of the Support Vector 

Machine (SVM) method was 92 % [6]. 

In another study, researchers using machine learning 

https://cke.um.ac.ir/
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methods on 117 adults (67 particiants in the ADHD group 

and 50 participants in the control group) showed that the 

classification accuracy for separating groups was about 

69.2% in Visual Continuous Performance Test (VCPT) 

mode and 72.6 and 70.9% in eyes closed and eyes open 

states. However, in the form of scoring, the results showed 

up to 82.3 % change [26]. 

Oztoprak et al., using the time-frequency amplitude 

characteristics of EPR with strop test, classified the ADHD 

and control groups with 100% accuracy using the SVM 

method. This accuracy was for 3 to 5 features in the delta 

frequency band. In their study, all participants were male and 

in the age range of 6 to 12 years old, and the sample included 

44 cases in the ADHD group and 38 cases in the control 

group [27]. 

Helgadotter et al. had 310 participants in the ADHD group 

and 351 participants in the control group, aged from 5.8 to 

14. Their method accuracy rate was about 81% when 

analyzed by age and 73% the other way round (i.e., not based 

on age) [3]. 

Heinrich et al. investigated the neural mechanisms of 

motor control using the potentials in combination with MRI, 

obtaining a classification rate of 90% in a linear analysis. The 

study suggested that both cognitive and motor inhibition 

should be regarded as fundamental problems in children with 

ADHD [28]. 

Meuller et al. used machine learning techniques to 

separate ADHD from healthy participants. Their 

experimental EEG and ERP data were collected from 181 

ADHD and 147 healthy participants. Spectral power, ERP 

amplitude, and latency measures were extracted and used as 

a feature vector for the input of their machine-learning 

framework. ADHD patients and healthy participants were 

classified by logistic regression model with accuracy values 

between 72% and 76%, while their specificity values slightly 

decreased over time (between 64% and 67%) [29].  

During the review of the related literature, various studies 

have reported good EEG classification capability and ERP. 

These methods had different accuracy rates according to the 

selection of different effective features, their numbers of 

features, and the applied classification technique. Therefore, 

the number of features and the type of features are effective 

in obtaining accuracy. With this end in view, this study aims 

at extracting effective features to diagnose ADHD in 

children under the supervision of neuroscientists. Figure 1 

shows the workflow of the current study.

 

 
 

Figure 1. Workflow of the research framework. ECEO denotes EEG signals from eyes closed and eyes open states 
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2. Data collection  

2.1. Participants  

The participants consisted of 103 participants from 7 to 10 

years old. According to the DSM-5, 49 participants were 

diagnosed with ADHD (22 females, 27 males), and the 

remaining 54 participants were healthy participants (24 

females,30 males). The ADHD participants were recruited 

from clinics, and the members of the control group were 

selected from summer leisure classes of Ferdowsi University 

of Mashhad, Iran. Deprivation criteria in this study were an 

IQ scoring below 75, epilepsy, and comorbidities disorder 

with ADHD. Control patients who consumed a drug were not 

included in the study. The ADHD patients who had 

medication under the supervision of their doctors did not take 

drugs before testing. Therefore, all the participants did not 

receive any medication at the time of testing. 

 

2.2. Procedure  

Data was collected in the motor behavior lab at Ferdowsi 

University from July 2019 to February 2020. All ADHD 

participants were screened medically by medical doctors. As 

the first step in this project, parents filled out a set of such 

questionnaires as Child Behavior Checklist (CBCL), 

AMEN, ADHD, Cognitive Change Index (CCI), and the 

Swanson, Nolan, and Pelham (SNAP). For the IQ test, the 

Riven test was applied [30]. Participants were tested in a 

single session for about 3 hours, including recording their 

EEGs/ERPs and taking the IQ tests. The parents were aware 

of this study and agreed to use clinical data for research 

purposes. They had signed consent forms before the start of 

the study.  

 

2.3. EEG and ERP task 

EEG was recorded for 10 minutes (5 minutes with eyes 

closed and 5 minutes with eyes opened), and ERP was 

recorded for 20 minutes. The ERP test was Go/NOGO task 

that contained 400 trials. This task had four conditions, 

namely A-A (animal-animal), A-P (animal-plant), P-H 

(Plant-Human), and P-P (plant-plant). Each condition 

involved 100 trials. The task had novel sounds along with 

human images in the P-H state. The details of this task are 

provided in [5].  

 

2.4. Data recording and pre-processing  

The EEG was recorded with the aid of the “NeuroAmp® 

x23” and “ERPrec software” (BEE Medic GmbH, 

Switzerland). The Raw EEG was analyzed by Matlab. The 

sampling rate of the input signals was 500 HZ, and it was 

referenced with linked-earlobes and filtered by band-pass 

between 0.5 and 50 HZ with a 45-55 Hz notch filter. The 

Electro-Cap electrode application system (19channel, 

Electro-Cap, International Inc, USA) that worked with the 

international 10-20 system was used in the present study. 

The impedance for all electrodes was not more than five 

kOhm. Neuronal activity of 19 brain channels including Fp1, 

Fp2, F3, F4, F7, F8, F8, Fz, C3, C4, Cz, T3, T4, T5, T6, P6, 

P3, P4, Pz, O1, and O2 and linked earlobes and such 

frequency bands as Delta (0.5-4 Hz), Theta (4-8 Hz), Alpha 

(8-12 Hz), Beta (12-30), and Gamma (30-50 Hz) were 

recorded. 

For artifact removing, the starting raw EEGs were first 

removed. Then eye-blink and horizontal eye movements 

were detected, with the aid of independent component 

analysis (ICA) decomposition removed from the EEGs. The 

remaining artifacts were removed from the slow (e.g., sweat 

artifact)/fast (e.g., muscle artifacts) wave correction (i.e., 

excessive activity in the 0-3 Hz and 20-50 Hz frequency 

bands). Finally, the amplitudes range of more than 100 µV 

were removed.  

 

3. Method 

3.1. Feature extraction 

In signal processing, features are generally divided into the 

time, frequency, and time-frequency domains. The time-

domain characteristics refer to directly extracted features 

from the signal itself without altering such signal spaces as 

mean, standard deviation, energy and power, entropy, 

skewness, kurtosis, auto-regressive coefficient, zero-

crossing percentile, and Hjorth parameters [31-39].  

The purpose of applying a mathematical transformation to 

a signal is to obtain additional information that is not 

available in the original raw signal. However, time domain-

based analysis of the signals is popular, but in many cases, 

the useful information of the signal lies in its frequency 

content, which is called the signal spectrum. Simply, the 

spectrum of a signal represents the frequencies’ amplitude in 

that signal. Examples of approaches for extracting frequency 

range features are the Fourier transform, Short-Term Fourier 

Transform (STFT), spectral entropy, spectral centroid, 

spectral spread, spectral roll-off, harmonic parameters, and 

power spectral density [40- 43].  

 According to the description of the extraction feature, 

the features extracted in this study included the density 

spectrum of 5 frequency bands and 17 channels of EEGs in 

eyes closed and eyes opened states. The spectral power 

density was a description of power distributed over the 

frequencies in the limited data set signal, so the power 

spectrum density unit was the power in each frequency unit 

(watts per Hz). The density spectrum indicates at what 

frequencies the signal strength changes are weaker and at 

what frequencies they are stronger.  

Amplitude and latency peaks were extracted for ERP in 

eight task conditions for the 17 channels [5]. The conditions 

included four main states (A-A, A-P, P-P, and P-H) and four 

mixture conditions amid all states (A-A/P, A-P-A-A, P-P/H, 

P-H-P-P). For ERP, usually, the first, second, and third peaks 

from the curves would be extracted.  

The VCPT has two stimuli, and usually, the features 

should be extracted on the second stimulus, and the events 

and peaks are examined after the second stimulus 

appearance. In this case, the peaks will be considered after 

the second stimulus appearance and are positive or negative. 

The first positive peak is called P100, the second P200, and 

the third P300. The first negative peak is called N100, and 

the second negative peak is called N200, and this cycle, as 

shown in Figure 2 [44], continues. Therefore, knowing that 

the second stimulus appears in 1,400 milliseconds, the signal 

analysis time interval can be from 1,300 to 2,400 

milliseconds, and in cases where it is necessary to check the 

events of the first stimulus, the time interval is between 300 
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to 1,100. Besides, to align all the signals, a baseline is set in 

the range of 1,300 to 1,400 milliseconds.  
 

 
 

Figure 2. A waveform showing several ERP components, 

including the N100 (labeled N1) and P300 (labeled P3). Note that 

the ERP is plotted with negative voltages upward, a common but 

not universal practice in ERP research. 

 

In ERP, to obtain the appropriate peaks, the average ERP 

diagrams were considered for all participants. Moreover, to 

obtain the lowest and highest points along with the signals, 

curves of the time window, which are one of the features of 

ERP components, were considered. The size of the time 

window was fixed at 45% of the time interval from the 

highest peak to the adjacent peak in the average main ERP 

curve. To reach the main peak in this time window, different 

methods such as measuring the area under the ERP curves in 

the time window range or measuring the curve in the 

specified time window are applied. In this study, the curve 

range method has been used. Another list of features, 

including arousal index, reaction time, theta/beta ratio, 

C3/C4 index, and omission and commission error, was also 

extracted. Features related to reaction time, commission, and 

omission are behavioral parameters compared with other 

features that are characteristic of the brain.  

One of the major points in extracting features is to identify 

the important frequency bands for specific disorders. Based 

on the past studies, it has been found that the significant 

frequency bands in the diagnosis of ADHD are F3, F4, F8, 

Fz, C3, C4, Cz, Cz, T5, T6, P2, O1, and O2. However, since 

the purpose of the study was to obtain more variant 

characteristics, all frequency bands except FP1 and FP2 (due 

to artifact in the data and meanness in ADHD) were 

examined. The importance of the features is described in the 

feature selection part below. 

 

3.2. Feature selection  

A set of features has been extracted from the EEG/ERP 

signals, and it is evident that all of these features did not 

relate to ADHD. Thus, it was necessary to reduce features to 

achieve effective features, prevent over-fitting, and reduce 

computational efforts [45]. Therefore, in this study, to limit 

the number of features, a combinational approach using 

intelligent feature selection methods with a neuroscientist’s 

supervision was proposed. Based on this approach, several 

feature selection methods have been used to select different 

sets of effective features. Then neuroscientists examined the 

selected features and selected a set of effective features.  

One of the feature selection methods that was used in the 

present study was the combined Hybrid Structured sparse 

learning method [46]. This method is the same as the 

regression of Least-squares, which contains two regulating 

modes, L1-norm and L2.1-norm, as follows: 

 

𝐽(𝑊) = ‖𝑋𝑇𝑊 − 𝑌‖2 + 𝛾1‖𝑊‖1.1 + 𝛾2‖𝑊‖2.1𝑤
𝑚𝑖𝑛        (1)        

 

Equation 1 is a target function in which  𝑋 =
[𝑥1. 𝑥2 … . 𝑥𝑛]  ∈  𝑅𝑑×𝑛  where n training samples and d 

features are applied, and 𝑌 = [𝑦1 . 𝑦2 … . 𝑦𝑐]  ∈  𝑅𝑛×𝑐 where 

c is the number of classes for each 𝑥i training data. By 

finding the optimal values of the parameters γ1 and γ2, the 

optimal coefficient matrix for each feature of 𝑥𝑖  can be 

obtained. To get the best k features, the features would be 

sorted based on their effectiveness, and then the k feature is 

selected with the highest rank. 

The sequential floating forward selection (SFFS) [47] is 

another implemented feature selection method in the present 

study. This algorithm finds an optimal subset of features by 

addition (adding a new feature to the subset of previously 

selected features) and subtraction (removing a feature from 

the subset of previously selected features). 
Therefore, amongst all the features selected by automatic 

methods, after being analyzed by an expert, a set of features 

were finally selected. Table 1 shows the group of features. 

 
Table 1. The group of features  

 

Group Features name 

EC/EO/VCPT Arousal index 

EC/EO/VCPT Theta/beta ratio 

EC/EO frequency spectra (coherence) 

Behavioral in 

VCPT 

Omission errors 

Commission errors 

Reaction time 

ERP 

Min amplitudes 

Max amplitudes 

Min latency 

Max latency 

 

3.3. Classification  

Supervised machine learning methods work in such a way 

that in them, a set of input vectors such as 𝑋 = {𝑥𝑛} and the 

corresponding output vector 𝑇 = {𝑡𝑛} are given. The goal for 

the machine, using those training data for the new 𝑥 input, is 

to be able to predict t [48]. In this regard, two distinct modes 

can be considered. Regression, in which 𝑡 is a continuous 

variable and classification and belongs to a discrete set. In 

the learning process, the system first needs to be trained, and 

then in the testing process, the trained system is used to 

predict the output concerning the new input values. Support 

Vector Machine (SVM) is a well-known supervised machine 

learning method and one of the simplest types of SVMs (i.e., 

linear SVM), which finds a hyperplane that separates sets of 

positive and negative samples with the maximum distance. 

A couple of the most accurate approaches, SVM and 

ensemble classification models, were used and reported in 

this study. 

 

3.4. Cross-validation and evaluation  

In the supervised learning methods, there are two sets of data 

https://en.wikipedia.org/wiki/N100_(neuroscience)
https://en.wikipedia.org/wiki/P300_(neuroscience)
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(i.e., train data set and the test data set), which are managed 

in different ways for validation. Here, the K-fold method was 

used for validation. K-fold cross-validation is one of the 

most common methods of validating machine learning 

systems. In this method, the whole set of data is divided into 

K equal parts. Form the K parts, K-1 parts are used as a set 

of training data, based on which the model is constructed, 

and with the remaining part, the testing process is performed. 

The number of repetitions of this process will be K times 

such that each K part is used only once for evaluation, and 

the accuracy for the model is calculated each time. In this 

evaluation method, the final accuracy of the system will be 

equal to the average of all obtained K accuracies [49]. 

Confusion matrix: This matrix shows how the 

classification technique works. This is according to the 

separate input datasets for different class categories [50]. In 

what follows, TP, TN, FN, and FP and their relationships in 

the present study are explained. 

 True Negative (TN) = correctly rejected. This rate 

indicates the number of records whose true category has 

been negative, and the classifier has identified them as 

negative. In this study, it is the correct diagnosis of the 

control group, the participants who have been correctly 

diagnosed as healthy ones. 

 False Positive (FP) = incorrectly identified. The 

misdiagnosis with ADHD, meaning control group 

participants who have been misdiagnosed with ADHD. 

 False Negative (FN) = incorrectly rejected. The 

misdiagnosis of the control group. That is the participants 

who were ADHD but were misdiagnosed as healthy ones. 

 True Positive (TP) = correctly identified. Correct 

diagnosis of ADHD, participants who were in the ADHD 

group and were diagnosed with ADHD. 

Accuracy: The most important criterion for determining 

the performance of the classification technique is the 

accuracy criterion. This measure computes the total accuracy 

of a classification and illustrates that the designed 

classification correctly classifies a few percent of the entire 

set of experimental records. The accuracy of the 

classification based on the concepts expressed in the 

confusion matrix is calculated by the following equation: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

Scoring: The main scoring criterion is to evaluate the 

performance of the Receiver Operating Characteristic (ROC) 

area under the receiver operating characteristic curve (AUC). 

This criterion shows the overall performance of a model by 

combining the actual-positive rate (sensitivity) and the false 

positive rate (1-specificity). For binary classifiers, the AUC 

value varies from 0.5 to 1, in which 1 indicates the full 

performance of a classifier [51]. 

 

4. Results 

The effectiveness of the proposed method in this paper has 

been investigated with the aid of data collected from control 

group children and children with ADHD. In all classification 

processes, the 5-fold cross-validation approach was applied 

to validate the model, and for evaluation, accuracy criteria 

from the confusion matrix of each classifier were calculated. 

To stabilize the final output of the classifiers and provide a 

reliable answer based on the evaluation criteria, the results 

were an average of 10-trial classification.  

In the first step, the data was presented directly to the 

classifiers without selecting the subset of features. In the 

second step, the data was first presented to the feature 

selection algorithms and then to the classifiers. After 

obtaining their accuracies, the features were checked by the 

neuroscience specialist, and then the features were given to 

the classifiers again. The final output is shown in Table 2. 

The total number of features was 826, the number of features 

in each section was 30, 5, and 37, and finally, the number of 

effective features that have been obtained in combination 

methods was about 113 features. 

Based on the results, all of the selected methods and 

features were not approved by the specialist, so according to 

the expert’s opinion and previous studies, combining the 

features was necessary to obtain the appropriate accuracy to 

separate the control group from the ADHD group. Moreover, 

based on the results, 37 features were approved by experts 

[9, 52] for the data of this study that had an accuracy of 

61.9%, which slightly showed the specific characteristics of 

this research data.

 

Table 2. The performance of different feature selection techniques and classifier models 

 

o Features Feature Selection Model TP TN FP FN ACC AUC 
Expert 

Approved 

826 No Feature Selection Tree 80 67 20 33 73.8 0.74 - 

826 No Feature Selection 
Ensemble RUS 

Boosted tree 
85 61 15 39 73.8 0.68 - 

113 Combine SVM-Linear 83 67 17 23 75.8 0.75 Yes 

37 Neuroscience 
Ensemble Subspace 

Discriminant 
69 54 31 46 61.9 0.58 Yes 

30 
Hybrid Structured Sparse Learning 

(HSSL) 
Logistic Regression 81 88 19 12 

84.5 
0.90 - 

5 
Sequential Floating 

Forward Selection (sffsAB) 
Cosine KNN 96 59 4 41 

78.6 
0.83 - 

64 
Sequential Floating 

Forward Selection Standard (SffsSt) 

Ensemble Subspace 

Discriminant 
70 76 30 24 70.9 0.75 - 
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Figure 3. ROC score of the selected method 

 

The methods which used the feature selection method of 

HSSL and SFFS with 84.5% and 78.6% accuracy were not 

approved by the neuroscientist, and to the best of 

neuroscientist’s knowledge, most of the selected features 

were not relevant to the diagnosis of ADHD. Therefore, 

under the supervision of the neuroscientist, a small number 

of significant features were selected as effective features. 

By combining the features obtained from the selection 

methods that have been approved by the specialists and the 

proposed and approved features of the neuroscientist 

concerning the significance of ADHD and behavioral 

features, 113 features were obtained with a 75.8% accuracy 

rate. As shown in Table 2, using the SVM method, the 

correct detection rate of ADHD (TP) and control (TN) were 

83% and 67%, respectively. Accordingly, the misdiagnosis 

of ADHD (FP) and control (FN) groups were 17% and 33%, 

respectively. Figure 3 shows the ROC diagram of the 

classifier result. 

 

5. Discussion 

In this paper, all the mentioned features were extracted from 

the raw signal in the closed and open eye modes, as well as 

ERP and behavioral features. To select the best features, we 

used the methods of selecting the feature of the HSSL and 

SFFS. The method of extracting and selecting the feature 

vector from raw signals significantly impacts the obtained 

results. Consequently, we tried to use brain signal processing 

and extract the best features in diagnosing ADHD in the first 

stage. Then those features were approved by a specialist. 

In the present study, features included the theta, beta, and 

alpha frequency bands of Pz, O1, O2, T5, T6, C6, Cz, Fz, 

C3, C4, F3, F4, and F8 electrodes, the maximum and 

minimum latencies, and the highest and lowest domains in 

ERP. The effective features were obtained through feature 

selection methods with the approval of neuroscientists, and 

finally, for classification, the linear SVM was used. The 

feature vector with 113 features, which was obtained with a 

combination strategy, was used for the classification process 

by the SVM method. The obtained result showed that the 

accuracy of the proposed approach was 75.8%. 

Due to changes in brain functionality and the instability of 

their brain signals, the diagnosis of ADHD in children aged 

6 to 10 is very limited in the literature. Therefore, to compare 

with previous studies, the same research method and 

executive protocol must be applied to record data. This is a 

research constraint that limits comparison with accessible 

studies. TableIII summarizes the studies conducted on the 

diagnosis of ADHD in children. 

As shown in Table 3, different methods have been used in 

different studies for data collection. Moreover, the applied 

tests and the data registration conditions were different. One 

of the advantages of the present study is using all conditions 

in one setting: raw signal and ERP signal. 

Some studies like [3], have only used closed-eye data for 

diagnosis and analysis, in which case the type of data and the 

number of participants examined affected the results. In [3], 

due to the large number of participants, one of the prominent 

features was the age of the participants, while the number of 

participants of the present study was fewer, and all 

conditions, that is, raw signal (eyes closed and eyes opened) 

and the event-dependent potential were used. 

In some studies like [27], only male participants were 

recruited, and ERP was also performed by color strop test. In 

such studies, with about 3 to 5 behavioral features (omission 

and commission error), an accuracy of 99.5% was achieved. 

With respect to what experts claim, this number of features 

is not acceptable and comparable with the present study. In 

this study, with a few features, the observed accuracy was 

above 80%. However, some of the features were approved 

by the experts as criteria for ADHD detection. 

 In [56], to diagnose ADHD through the pre-forehead 

cortex, NIRS data, strop test, and behavioral data were 

collected where with the aid of SVM, the accuracy rate was 

86%. The difference between this method and the one in the 

current study is the type of data collection procedure 

followed. 
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Table 3. Studies conducted on the diagnosis of ADHD in children. SVM-RFE denotes support vector machine 

recursive feature. 

 
Data 

collection 

method 

Device and system Selected feature(s) 

Feature 

selection 

method 

Classification 

method 
Accuracy 

Age/ 

gender 

Number 

of 

participants 

Ref. 

ERP with 

Stroop 

task 

64 electrode 

10-10 system 

 

Three features 

(behavioral 

features) include 

omission, 

commission, errors 

(SVM-

RFE) 
SVM 99.5%. 

6 to 12 

Boy 

70 ADHD 

37 Control 
[27] 

ERP 

Go/No Go 

19 channel 

10-20 system 

Mitsar 201 

Theta/beta ratio 

Theta at Cz 

Beta at Cz 

Omission errors 

No 

Statistical 

analysis 

with 

Ancona 

58-63% 

 

85% 

7 to 16 

Boy/ 

girl 

62 ADHD 

39 Control 
[54] 

ERP 

Go/No Go 

14 channels (Fz, F3, 

F4, Cz, C3, C4, Pz, 

P3, P4, Oz, O3, O4, 

and M1-M2 for the 

left and right 

mastoids), 

10-20 system Ant 

company 

ERP 

Spectral 

perturbation 

Inter-trial coherence 

Time locked on 

each stimulus 

Omission, 

commission errors 

reaction time 

No 
statistical 

analysis 
- 

8 to 12 

Boy/girl 

7 ADHD 

7 Control 
[55] 

Reverse 

Stroop 

task 

10-20 system 

NIRSi system 

Reaction time 

Behavioral 
No SVM 86% 

~10 

Boy/girl 

108 ADHD 

108 

Control 

[56] 

Eyes 

Closed 

EEG 

17 electrodes: Fz, 

F3, F4, F7, F8, Cz, 

C3, C4, T3, T4, T5, 

T6, Pz, P3, P4, O1 

and O2 

NicoletOne 

20 features 

Age dependent 

Coherence Power, 

Relative power 

No SVM 76% 

5.8 to 

14 

Boy/girl 

310 ADHD 

350 

Control 

[3] 

ERP 

Go/No Go 

and 

TMS data 

BrainAmp 

10-20 system 
ERP 

statistical 

analysis 

with 

Ancona 

Statistical 

analysis 
90% 

9 to 14 

Boy/girl 

19 ADHD 

21 Control 
[28] 

 

6. Conclusion 

In this study, with the aid of intelligent techniques under a 

neuroscientist’s supervision for diagnosing ADHD, a new 

strategy was proposed to select effective EEG/ERP-based 

features. A new dataset was also collected for applying and 

evaluating the proposed method. The limitations of previous 

researches were discussed it was tried to improve them. The 

automatic feature selection techniques usually try to find a 

set of features that increase the accuracy measurement. Since 

the number of samples is limited, the automatic techniques 

can be affected by the experimental-based artifacts and can 

find some irrelevant features that can increase the system’s 

accuracy for that specific dataset but might not work in 

others. Thus, we have proposed an expert’s supervision-

based feature selection technique to achieve an acceptable 

result with the expert’s approval. In this study, due to the 

characteristics of the data, the effective feature was 

confirmed by experts. As experts stated, integrating all 

dimensions (including lifestyle, questionnaire, interview, 

and psychiatric examination) is essential in the diagnostic 

process [57]. In short, the results are promising and can be 

expended by taking into account such factors as the effects 

of age on more data samples. By increasing the number of 

features, the feature selection techniques show a weak 

performance or will be a time-consuming task. Thus, using 

optimization methods for the mentioned purpose can be a 

proper solution for future related works. 

Declaration of competing interest  

The authors have no conflict of interest to disclose. 

 

7. Acknowledgements  

A special thanks goes to the Brain and Trauma Foundation 

in Switzerland, headed by Dr. Andreas Mueller and his 

coworker Gian Candrian, who supported the study of 

Switzerland Opportunity, the HBI Foundation, and the 

BioMed Institute, which provided the hardware and software 

needed to record the signal. We also appreciate the Ferdowsi 

University School of Sports Science and Soroush 

Psychological Clinic for their help in collecting data and 

selecting samples. Without the support of these groups, the 

current research would not be possible at its best quality. We 

also appreciate all the children and their parents who 

patiently accompanied us. 

 

7. References 

[1] Guntern, G. "Auto‐ organization in human 

systems", Behavioral Science, Vol. 27(4), pp. 323-337, 

1982. 

[2] Association, A.P., "Diagnostic and statistical manual of 

mental disorders (DSM-5®)", American Psychiatric 

Pub, 2013. 

[3] Helgadóttir, H., Gudmundsson, Ó. Ó., Baldursson, G., 

Magnússon, P., Blin, N., Brynjólfsdóttir, B., ... & 

Johnsen, K., "Electroencephalography as a clinical tool 



8  Hamidreza Taheri et. al.: Exploring Effective Features in ADHD… 

 

 

for diagnosing and monitoring attention deficit 

hyperactivity disorder: a cross-sectional study", BMJ 

open, Vol. 5(1), 2015. 

[4] Müller, A., Candrian, G., Kropotov, J., "ADHS-

Neurodiagnostik in der Praxis", Springer-Verlag, 2011. 

[5] Mueller, A., Candrian, G., Kropotov, J. D., Ponomarev, 

V. A., & Baschera, G. M., "Classification of ADHD 

patients on the basis of independent ERP components 

using a machine learning system", In Nonlinear 

biomedical physics, Vol. 4, No. 1, pp. 1-12, BioMed 

Central, June, 2010. 

[6] Mueller, A., Candrian, G., Grane, V. A., Kropotov, J. D., 

Ponomarev, V. A., & Baschera, G. M., "Discriminating 

between ADHD adults and controls using independent 

ERP components and a support vector machine: a 

validation study", Nonlinear biomedical physics, Vol. 

5(1), pp. 1-18, 2011. 

[7] Dubreuil-Vall L, Ruffini G, Camprodon J. A., "Deep 

learning convolutional neural networks discriminate 

adult adhd from healthy individuals on the basis of 

event-related spectral eeg", Frontiers in neuroscience. 

Apr 9;14:251, 2020. 

[8] Furlong S, Cohen J. R, Hopfinger, J., Snyder, J., 

Robertson, M. M., Sheridan, M. A., "Resting-state EEG 

Connectivity in Young Children with ADHD", Journal 

of Clinical Child & Adolescent Psychology, Aug 18:1-7, 

2020. 

[9] Kaiser A, Aggensteiner PM, Holtmann M, Fallgatter A, 

Romanos M, Abenova K, Alm B, Becker K, Döpfner M, 

Ethofer T, Freitag CM. "EEG Data Quality: 

Determinants and Impact in a Multicenter Study of 

Children, Adolescents, and Adults with Attention-

Deficit/Hyperactivity Disorder (ADHD)", Brain 

Sciences, Feb, Vol. 11(2), pp. 214, 2021. 

[10] Tosun M. Effects of spectral features of EEG signals 

recorded with different channels and recording statuses 

on ADHD classification with deep learning. Physical 

and Engineering Sciences in Medicine. May 27:1-0, 

2021. 

[11] Cubero-Millán, I., Ruiz-Ramos, M. J., Molina-Carballo, 

A., Martínez-Serrano, S., Fernández-López, L., 

Machado-Casas, I., ... & Muñoz-Hoyos, A., BDNF 

concentrations and daily fluctuations differ among 

ADHD children and respond differently to 

methylphenidate with no relationship with depressive 

symptomatology. Psychopharmacology, Vol. 234(2), 

pp. 267-279, 2017. 

[12] Wang, L. J., Li, S. C., Lee, M. J., Chou, M. C., Chou, W. 

J., Lee, S. Y., & Kuo, H. C., "Blood-bourne MicroRNA 

biomarker evaluation in attention-deficit/hyperactivity 

disorder of Han Chinese individuals: an exploratory 

study", Frontiers in psychiatry, 9, 2018. 

[13] Kropotov, J. D., Grin-Yatsenko, V. A., Ponomarev, V. 

A., Chutko, L. S., Yakovenko, E. A., & Nikishena, I. S., 

"ERPs correlates of EEG relative beta training in ADHD 

children", International journal of 

psychophysiology, Vol. 55(1), pp. 23-34, 2005. 

[14] Insel, T. R., & Cuthbert, B. N., "Brain disorders? 

Precisely", Science, Vol. 348(6234), pp. 499-500, 2015. 

[15] Krieger, V., & Amador-Campos, J. A., Assessment of 

executive function in ADHD adolescents: contribution 

of performance tests and rating scales. Child 

Neuropsychology, Vol. 24(8), pp. 1063-1087, 2018. 

[16] Yang, M. T., Hsu, C. H., Yeh, P. W., Lee, W. T., Liang, 

J. S., Fu, W. M., & Lee, C. Y., "Attention deficits 

revealed by passive auditory change detection for pure 

tones and lexical tones in ADHD children", Frontiers in 

human neuroscience, Vol. 9, pp. 470, 2015. 

[17] Lenartowicz, A., & Loo, S. K., "Use of EEG to diagnose 

ADHD", Current psychiatry reports, Vol. 16(11), pp. 

498, 2014. 

[18] Kakuszi, B., Tombor, L., Papp, S., Bitter, I., & Czobor, 

P., "Altered response-preparation in patients with adult 

ADHD: A high-density ERP study", Psychiatry 

Research: Neuroimaging, Vol. 249, pp. 57-66, 2016. 

[19] Snyder, S. M., Rugino, T. A., Hornig, M., & Stein, M. 

A., "Integration of an EEG biomarker with a clinician's 

ADHD evaluation", Brain and behavior, Vol. 5(4), 

e00330, 2015. 

[20] Banaschewski, T., & Brandeis, D., "Annotation: what 

electrical brain activity tells us about brain function that 

other techniques cannot tell us–a child psychiatric 

perspective", Journal of child Psychology and 

Psychiatry, Vol. 48(5), pp. 415-435, 2007. 

[21] Khalifa, M., "Health Analytics Types, Functions and 

Levels: A Review of Literature", ICIMTH, pp. 137-140, 

2007. 

[22] Meskó, B., Hetényi, G., & Győrffy, Z., "Will artificial 

intelligence solve the human resource crisis in 

healthcare?", BMC health services research, Vol. 18(1), 

pp. 1-4, 2018. 

[23] Islam, M. S., Hasan, M. M., Wang, X., & Germack, H. 

D., "A systematic review on healthcare analytics: 

application and theoretical perspective of data mining", 

In Healthcare, Vol. 6, No. 2, pp. 54, Multidisciplinary 

Digital Publishing Institute, june, 2018. 

[24] Jollans, L., & Whelan, R., "Neuromarkers for mental 

disorders: harnessing population 

neuroscience", Frontiers in psychiatry, Vol. 9, pp. 242, 

2018. 

[25] Mandal, A. https://www.news-medical.net/health/What-

is-a-Biomarker.aspx. 

[26] Tenev, A., Markovska-Simoska, S., Kocarev, L., Pop-

Jordanov, J., Müller, A., & Candrian, G., "Machine 

learning approach for classification of ADHD 

adults", International Journal of 

Psychophysiology, Vol. 93(1), pp. 162-166, 2014. 

[27] Öztoprak, H., Toycan, M., Alp, Y. K., Arıkan, O., 

Doğutepe, E., & Karakaş, S., "Machine-based 

classification of ADHD and nonADHD participants 

using time/frequency features of event-related 

neuroelectric activity", Clinical Neurophysiology, Vol. 

128(12), pp. 2400-2410, 2017. 

[28] Heinrich, H., Hoegl, T., Moll, G. H., & Kratz, O., "A 

bimodal neurophysiological study of motor control in 

attention-deficit hyperactivity disorder: a step towards 

core mechanisms?", Brain, Vol. 137(4), pp. 1156-1166, 

2014. 

[29] Müller A, Vetsch S, Pershin I, Candrian G, Baschera 

GM, Kropotov JD, Kasper J, Rehim HA, Eich D., 

"EEG/ERP-based biomarker/neuroalgorithms in adults 

with ADHD: Development, reliability, and application 

in clinical practice", The World Journal of Biological 

Psychiatry, May 7, 2019. 



Journal of Computer and Knowledge Engineering, Vol.5 , No.2. 2022. 9 

 

 

[30] Raven, J., Court, J. H., "Manual for Raven's progressive 

matrices and vocabulary Scales", 1991, San Antonio, 

TX: Harcourt Assessment, 2003, updated 2004. 

[31] Zoubek, L., Charbonnier, S., Lesecq, S., Buguet, A., & 

Chapotot, F., "Feature selection for sleep/wake stages 

classification using data driven methods", Biomedical 

Signal Processing and Control, Vol. 2(3), pp. 171-179, 

2007. 

[32] Tzanetakis, G., & Cook, P., "Musical genre 

classification of audio signals", IEEE Transactions on 

speech and audio processing, Vol. 10(5), pp. 293-302, 

2002. 

[33] Tsallis, C., Mendes, R., & Plastino, A. R., "The role of 

constraints within generalized nonextensive 

statistics", Physica A: Statistical Mechanics and its 

Applications, Vol. 261(3-4), pp. 534-554, 1998. 

[34] Mormann, F., Andrzejak, R. G., Elger, C. E., & 

Lehnertz, K., "Seizure prediction: the long and winding 

road", Brain, Vol. 130(2), pp. 314-333, 2007. 

[35] Shannon, C. E., "A mathematical theory of 

communication", ACM SIGMOBILE mobile computing 

and communications review, Vol. 5(1), pp. 3-55, 2001. 

[36] Rényi, A., "On measures of entropy and information. 

In Proceedings of the Fourth Berkeley Symposium on 

Mathematical Statistics and Probability", Volume 1: 

Contributions to the Theory of Statistics. The Regents of 

the University of California, 1961. 

[37] Nai-Jen, H., & Palaniappan, R., "Classification of 

mental tasks using fixed and adaptive autoregressive 

models of EEG signals", In The 26th Annual 

International Conference of the IEEE Engineering in 

Medicine and Biology Society, Vol. 1, pp. 507-510, 

IEEE,September, 2004. 

[38] Bai, J., & Ng, S., "Tests for skewness, kurtosis, and 

normality for time series data", Journal of Business & 

Economic Statistics, Vol. 23(1), pp. 49-60, 2005. 

[39] Ansari-Asl, K., Chanel, G., & Pun, T., "A channel 

selection method for EEG classification in emotion 

assessment based on synchronization likelihood", 

In 2007 15th European Signal Processing 

Conference, pp. 1241-1245, IEEE, September, 2007.  

[40] Tang, W. C., Lu, S. W., Tsai, C. M., Kao, C. Y., & Lee, 

H. H., "Harmonic parameters with HHT and wavelet 

transform for automatic sleep stages 

scoring", REM, Vol. 365, pp. 8-6, 2007. 

[41] Peeters, G., Giordano, B. L., Susini, P., Misdariis, N., & 

McAdams, S., "The timbre toolbox: Extracting audio 

descriptors from musical signals", The Journal of the 

Acoustical Society of America, Vol. 130(5), pp. 2902-

2916, 2011. 

[42] Kıymık, M. K., Güler, İ., Dizibüyük, A., & Akın, M., 

"Comparison of STFT and wavelet transform methods 

in determining epileptic seizure activity in EEG signals 

for real-time application", Computers in biology and 

medicine, Vol. 35(7), pp. 603-616, 2005. 

[43] Percival, D. B., Walden, A. T., "Wavelet methods for 

time series analysis", Cambridge university press; 2000. 

[44] Kaiser, A., Aggensteiner, P. M., Baumeister, S., Holz, 

N. E., Banaschewski, T., & Brandeis, D., "Earlier versus 

later cognitive event-related potentials (ERPs) in 

attention-deficit/hyperactivity disorder (ADHD): a 

meta-analysis", Neuroscience & Biobehavioral 

Reviews, Vol. 112, pp. 117-134, 2020. 

[45] Jenke, R., Peer, A., & Buss, M., "Feature extraction and 

selection for emotion recognition from EEG", IEEE 

Transactions on Affective computing, Vol. 5(3), pp. 327-

339, 2014. 

[46] Park, K. S., Choi, H., Lee, K. J., Lee, J. Y., An, K. O., & 

Kim, E. J., "Emotion recognition based on the 

asymmetric left and right activation", International 

Journal of Medicine and Medical Sciences, Vol. 3(6), 

pp. 201-209, 2011. 

[47] Ververidis, D., & Kotropoulos, C., "Fast and accurate 

sequential floating forward feature selection with the 

Bayes classifier applied to speech emotion 

recognition", Signal processing, Vol. 88(12), pp. 2956-

2970, 2008. 

[48] Bishop, C. M., & Tipping, M., "Variational relevance 

vector machines", arXiv preprint arXiv,1301.3838, 

2013. 

[49] Borra, S., & Di Ciaccio, A., "Measuring the prediction 

error. A comparison of cross-validation, bootstrap and 

covariance penalty methods", Computational statistics 

& data analysis, Vol. 54(12), pp. 2976-2989, 2010. 

[50] Fawcett, T., "An introduction to ROC analysis", Pattern 

recognition letters, Vol. 27(8), pp. 861-874, 2006. 

[51] Hajian-Tilaki, K., "Receiver operating characteristic 

(ROC) curve analysis for medical diagnostic test 

evaluation", Caspian journal of internal medicine, Vol. 

4(2), pp. 627, 2013. 

[52] Kropotov JD. Quantitative EEG, event-related potentials 

and neurotherapy. Academic Press; 2010. 

[53] Thome, J., Ehlis, A. C., Fallgatter, A. J., Krauel, K., 

Lange, K. W., Riederer, P., & Gerlach, M., "Biomarkers 

for attention-deficit/hyperactivity disorder (ADHD)", A 

consensus report of the WFSBP task force on biological 

markers and the World Federation of ADHD. The World 

Journal of Biological Psychiatry, Vol. 13(5), pp. 379-

400, 2012. 

[54] Ogrim, G., Kropotov, J., & Hestad, K., "The QEEG 

theta/beta ratio in ADHD and normal controls: 

sensitivity, specificity, and behavioral 

correlates", Psychiatry Research, Vol. 198(3), pp. 482-

488, 2012. 

[55] Baijot, S., Cevallos, C., Zarka, D., Leroy, A., Slama, H., 

Colin, C., & Cheron, G., "EEG dynamics of a go/nogo 

task in children with ADHD", Brain sciences, Vol. 

7(12), pp. 167, 2017. 

[56] Yasumura, A., Omori, M., Fukuda, A., Takahashi, J., 

Yasumura, Y., Nakagawa, E., ... & Inagaki, M., 

"Applied machine learning method to predict children 

with ADHD using prefrontal cortex activity: a 

multicenter study in Japan", Journal of attention 

disorders, Vol. 24(14), pp. 2012-2020, 2020. 

[57] Bzdok, D., & Yeo, B. T., "Inference in the age of big 

data: Future perspectives on 

neuroscience", Neuroimage, Vol. 155, pp. 549-564, 

2017. 

  



10  Hamidreza Taheri et. al.: Exploring Effective Features in ADHD… 

 

 

 



Journal of Computer and Knowledge Engineering, Vol. 5, No. 2, 2022. (11-20) 11 

DOI: 10.22067/cke.2022.73802.1038  

 

 

Embedding Knowledge Graph through Triple Base Neural Network 

and Positive Samples* 
Research Article 

Sogol Haghani1                Mohammad Reza Keyvanpour2 
 

Abstract: Representation learning on a knowledge graph 

aims to capture patterns in the knowledge graph as low-

dimensional dense distributed representation vectors in the 

continuous semantic space, which is a powerful technique 

for predicting missing links in knowledge bases. The 

problem of knowledge base completion can be viewed as 

predicting new triples based on the existing ones. One of the 

prominent approaches in knowledge base completion is the 

embedding model. Currently, the majority of existing 

knowledge graph embedding models cannot deal with 

unbalanced entities and relations. In this paper, a new 

embedding model is proposed, with a general solution 

instead of using the additional corpus. First, a triple-based 

neural network is presented to maximize the likelihood of the 

knowledge bases finding a low-dimensional embedding 

space. Second, two procedures to generate positive triples 

are proposed. They produce positive triples and add them to 

the training data. The policies can capture rare triples, and 

simultaneously remain efficient to compute. Experiments 

show that the embedded model proposed in this paper has 

superior performance. 

Keywords: Knowledge Graphs, Link Prediction, Positive 

Samples, Embedding Neural Network, Graph Mining 

 

1. Introduction 

Knowledge bases like Wordnet [1], YAGO [2], or the 

Google Knowledge Graph are useful resources used in many 

AI tasks, which present ways to organize, manage, and 

retrieve all digital knowledge. A knowledge base can be 

represented as a set of (head, relation, and tail) triples. Any 

information can reach from the knowledge base through 

triples or concatenation of them [3, 4]. Although 

completeness, accuracy, and high quality of data are the 

parameters that guarantee their advantage of them, they 

suffer from incompleteness and a lack of reasoning 

capability [3]. The problem of knowledge base completion 

can be viewed as predicting new triples based on the existing 

ones [6].  

One of the promising approaches to knowledge base 

completion is to embed their entities and relations into low-

dimensional vector spaces. The methods define a score 

function and assign a score to the triple [5, 6]. For any 

unobserved triple, its plausibility can be predicted by using 

the learned embedding and the score function. The high-

value score will assign to the probable triple [5]. 

Despite the substantial efforts and great successes in the 

research, the effectiveness of the embedding methods has not 

been directly compared. They mostly use various pre-

training methods to initialize the embedding vector space. It 

is still unclear that which pre-training method should be 
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employed, though it has a considerable effect on the results 

[7, 8]. Another issue is heterogeneous and unbalanced 

entities and relations in the knowledge base. Heterogeneity 

may affect overfitting on simple triples or underfitting on 

rare ones. A simple triple is the one in which its elements 

appear in most other triples, while rare triples lack their 

entities and relations of looking most [9]. In Fig.1 triple 

(𝐹, 𝑙𝑖𝑣𝑒_𝑖𝑛, 𝐸) is such a rare triple that the rate of relation 

𝑙𝑖𝑣𝑒_𝑖𝑛 is lower than the other, or triple (𝐺, 𝑓𝑎𝑡ℎ𝑒𝑟_𝑜𝑓, 𝐻) 

is the other kind rare one, which the degree of 𝐻 is low in 

comparison to 𝐺. Alternatively, triple (𝐹 , 𝑏𝑜𝑟𝑛_𝑖𝑛 , 𝐷) is 

such a simple one. Although embedding methods have a 

strong ability to model knowledge graphs, it remains 

challenging faced with heterogeneous data [10]. 

 

 
 

Figure 1. Example of rare and simple triple 

 

The goal of this study is to introduce a novel algorithm 

that does not require pre-training and can perform and 

compete while it can deal with unbalanced entities and 

relations. To that end, two methods are proposed. 

First, we propose a new triple-based embedding neural 

network, to encode the knowledge base to the embedding 

vector space for entities and relations which maximizes the 

likelihood of the whole knowledge base. It is a customized, 

objective function using Stochastic Gradient Descent (SGD) 

motivated by prior work on natural language processing to 

the triple structure [11]. The proposed triple-based 

embedding neural network was used to capture the semantic 

and syntactic structure of the knowledge base. It takes a 

knowledge graph as input and produces latent 

representations for entities and relations. On this subject, we 

showed that the triple-based embedding neural network used 

in knowledge base completion obtains proper results in 

comparison to the state of the arts. 

Second, since the embedding models lack in predicting 

rare triples, two different procedures are introduced to 

augment the knowledge base to overcome this deficiency. To 

address this issue, positive triples are generated during the 

training with a semi-learned embedding vector. Generated 

triples are added to the training data based on the rate of 

appearing in previous training data. The rarer triple, the 

https://cke.um.ac.ir/
https://cke.um.ac.ir/article_42935.html
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higher the chance of being in the training set. Each procedure 

uses a specific mechanism in adding positive triples to the 

training data.  

 GNSs (Generate New Samples) generate positive triples 

after 𝛿 iteration of learning triple-based embedding 

neural network, then add them to the training set. The rest 

of the iterations are worked with the new augmented 

training set.   

 FCSA (Flip Coin Simulated Annealing) decides to 

generate new triples or use the training sample in the 

learning process. At the beginning of the process, it rarely 

generates new triples, and by the time when the 

embedding vectors learn, it can generate more new 

triples. 

We demonstrate their usefulness by applying them to our 

triple based neural network. Our extensive experiments on 

two benchmark datasets show that they achieve superior 

performance over competitive baselines in two knowledge 

base completion tasks. 

The rest of the paper is structured as follows. Section 2 

reviews literature on knowledge base embedding. Section 3 

presents our approach. Section 4 presents empirical results. 

Finally, section 5 includes the conclusion and plan of further 

work. 

 

2. Related works 

Various models have been proposed for knowledge graph 

completion through the link prediction task. Embedding the 

knowledge graph into a low-dimensional continuous vector 

space is one of the assuring approaches [12]. Various types 

of knowledge graph embedding models have been proposed, 

and they learn the relation between entities using observed 

triple in the knowledge graph. These models can be 

classified into three classes: translation-based models, 

bilinear models, and compositional models [6]. Before 

proceeding, mathematical notations need to be defined. h, r, 

and t denote a head entity, relation, and tail entity, 

respectively.  

The bold letters 𝑒ℎ, 𝑒𝑟 , and 𝑒𝑡 denote embeddings of h, r, 

and t, respectively, on an embedding space ℝ𝑑. E and R 

represent sets of entities and relations, respectively. 

Translation-based models 

The existing translation-based model treats the triple as a 

relation-specific translation from the head entity to the tail 

entity. The entity vector obtains the optimal value during the 

training process by score function, while the relation is 

regarded as an operator or a translator [5, 12]. Meanwhile, 

TransE has been introduced as a pioneer in this approach 

[13]. It is assumed that there is 𝑒ℎ + 𝑒𝑟  ≈  𝑒𝑡 equation for 

each valid triple which assumes that the tail embedding 𝑒𝑡 

should be in the neighborhood of 𝑒ℎ +  𝑒𝑟. TransE is used 𝐿2 

to learn embedding vectors. It is not only a simple model but 

also has a high degree of scalability for modeling complex 

patterns by embedding dimensions. TransH [10], TransD [9], 

and TransR [14] are other translation methods. For instance, 

TransH is a transitional projection. TransD is similar to it, 

with the difference that it uses the identity matrix of 𝑑 × 𝑘 

size. The dimensionality of the entity and relation vector is 

considered differently. TransR also uses a rotation 

transformation for the train. CTransR [14] and TransSparse 

[9] are an extension of TransR. CTransR considers 

correlations under each relation type by clustering diverse 

head-tail pairs into groups and learning distinct relation 

vectors for each group. TransSparse focuses on solving the 

imbalance issues in knowledge graphs, which are ignored by 

previous translation models. The imbalance means that the 

number of head entities and that of tail entities in relation 

could be different. 

Bilinear models 

The DistMult [15] is based on a bilinear model where each 

relation is represented by a diagonal rather than a full matrix. 

It learns a tensor that is symmetric in the subject and object, 

while datasets contain mostly non-symmetric triples. 

ComplEx [12] solves the same issue of DistMult by the idea 

that multiplication of complex values is not symmetric. 

ComplEx represents a real-valued tensor 𝑋 ∈  ℝ𝑁1×𝑁2×𝑁3  as 

the real part of the sum of R complex-valued rank one tensors 

𝑢𝑟
(1)

⨂ 𝑢𝑟
(2)

⊗  𝑢𝑟
(1)

where 𝑟 ∈ {1, … , 𝑅} and 𝑢𝑟
(𝑚)

∈  𝐶𝑁𝑚 
 

𝑓𝑟(ℎ, 𝑡) = 𝑅𝑒(∑ 𝑢𝑟
(1)

⨂ 𝑢𝑟
(2) ⊗ 𝑢𝑟

(1)𝑅
𝑟=1 )                (6) 

 

where 𝑢𝑟
(1)

 is the complex conjugate of 𝑢𝑟
(1)

. Bilinear 

models have more redundancy than translation-based models 

and so easily become overfitted. Hence, embedding spaces 

are limited to low-dimensional space. SimplE [34] are all 

proved to be fully expressive when embedding dimensions 

fulfill some requirements. The full expressiveness means 

these models can express all the ground truth which exists in 

the data, including complex relations. However, these 

requirements are hardly fulfilled in practical use. RotatE [35] 

represents relations as rotations in a complex latent space, 

with h, r, and t all belonging to 𝐶𝑑. The r embedding is a 

rotation vector: in all its elements, the complex component 

conveys the rotation along that axis, whereas the real 

component is always equal to 1. The rotation r is applied to 

h by operating an element-wise product (once again noted 

with ⊙ in 1). L1 norm is used for measuring the distance 

from t. The authors demonstrate that rotation allows 

modeling correctly numerous relational patterns, such as 

symmetry/anti-symmetry, inversion, and composition. 

Compositional models 

In the LP field, KG embeddings are usually learned jointly 

with the weights and biases of the layers; these shared 

parameters make these models more expressive, but 

potentially heavier, harder to train, and more prone to 

overfitting [33]. NTN [16] is one of the most well-known 

methods in knowledge base completion. The model uses a 

three-way tensor in its score function. In other words, NTN 

can replace the standard neural network layer with a three-

way tensor layer. Also, using 𝑡𝑎𝑛ℎ for applying the non-

linear actions, the score function can be calculated as 

follows: 
 

𝑓𝑟(ℎ, 𝑡) =  𝑢𝑟
T𝑓(𝑒ℎ

T 𝑊𝑟
[1:k]

𝑒𝑡 +  𝑊𝑟,1𝑒ℎ + 𝑊𝑟,2𝑒𝑡 +  𝑏𝑟)   (7) 

 

where 𝑊𝑟
[1:k]

 ∈  ℝ𝒅×𝒅×𝒌  is a tensor and 𝑊𝑟,1, 𝑊𝑟,2 ∈

 ℝ𝒌×𝒅 are weight matrices and 𝑏𝑟 ∈  ℝ𝒌 is the bias vector. 

Despite the fascinating performance, this method is very 

complicated, and the evaluation results show that 

representations vectors with the pre-train can reach such a 

function [17].  

HOLE [18] is another method known in this field. This 
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method has high performance compared to the others. The 

reason for this function is that it can be applied to a circle of 

correlation in the score function to represent the space of 

entities and relations. This method uses a pre-train to create 

the initial representation space, which causes representation 

vectors to not have random values at the beginning of the 

training process and, conversely, have an appropriate 

initialization.  

ConvE [31] performs a global 2D convolution operation 

on the subject entity and relation embedding vectors after 

they are reshaped to matrices and concatenated. The obtained 

feature maps are flattened and transformed through a linear 

layer, and the inner product is taken with all object entity 

vectors to generate a score for each triple. Whilst results 

achieved by ConvE are impressive, the reshaping and 

concatenating of vectors as well as using 2D convolution on 

word embeddings is unintuitive. The R-GCN uses a graph 

convolutional network to obtain an embedding of the triples, 

then applies DistMult [15] to compute a score for the 

embeddings.  

As pointed out in [8], pre-training is an open question 

where it is still unclear which pre-training method should be 

employed. There is no standard, and no priority has been 

mentioned for it. 

  
3. Our approach 

In this section, we first propose how the triple-based 

embedding neural network is worked to represent entities 

and relations. Second, the detail of generating positive triples 

and two procedures of how to apply them in learning is 

provided. 

 
3.1. Triple-Based Embedding Neural Network  

Figure 2 shows a perspective of the Triple-based Embedding 

Neural Network's layers. It consists of three layers. As seen 

in the figure, the first layer is composed of two parts 

connected by the weight matrices to the hidden layer. The 

upper part of the layer is a one-hot vector of the head entity, 

and the bottom is a one-hot vector of the relation. The hidden 

layer is a sum of the projection vectors of head and relation. 

The number of neurons in the last layer is also equal to |E|, 

which is equal to the size of the upper part of the first layer. 

This layer describes the probability of tail with the given of 

the head and relation. In other words, not only the last layer 

is not the output but also the embedding vectors are its rows 

of weight matrices. 

 

 
 

Figure 2. Triple Based Embedding Neural Network 

 

Three weight matrices 𝑊ℎ, 𝑊𝑟 and 𝑊𝑡 after training have 

optimal weights, and each rows of 𝑊ℎ
T, 𝑊𝑡 and 𝑊𝑟

T are a 

embedding vector for entities 𝑒ℎ, 𝑒𝑡 and relation 𝑒𝑟 [11, 13].  

The overall process of learning embedded neural network 

has been presented in algorithm 1. 

 

 
 

The purpose of the Triple-based embedding neural 

network is to estimate the maximum likelihood of a 

knowledge base. Accordingly, as shown in algorithm 1 the 

main loop of learning tries to maximize its likelihood by 

considering all training triples of the knowledge base. A loss 

function should minimize the error by considering corrupted 

triples [3]. 

It should be noted that the purpose of the method is to 

learn latent representations, not probable distribution 

between two entities. Conditional probability 𝑃𝑟(𝑡|ℎ, 𝑟) is 

considered for triple ( ℎ , 𝑟 , 𝑡). The goal is to set the 

parameter 𝜃 to maximize the probability of the knowledge 

base (8). 

 

arg max
 𝜃

∏ 𝑃𝑟(𝑡|ℎ, 𝑟;  𝜃 )𝑡𝑟𝑖𝑝𝑙𝑒 ∈𝑇                        (8) 

 

𝑇 is the list of observed triples or training sets. 𝑃𝑟(𝑇 =
 1|( ℎ, 𝑟 , 𝑡 )) is the probability that the triple (ℎ , 𝑟 , 𝑡) exists 

in the training set, or, more precisely, a triple has been 

observed.  

Conversely, the probability of 𝑃𝑟(𝑇 =  0|( ℎ , 𝑟 , 𝑡 ))  =
 1 −  𝑃𝑟(𝑇 =  1|( ℎ, 𝑟 , 𝑡 )) indicates that a triple has not 

been observed. With these assumptions, the goal is to find 

the parameters that maximize the likelihood of seeing all the 

observed triples in the training set: 
 

arg max
𝜃

∏ 𝑃𝑟(𝑇 = 1|(ℎ, 𝑟, 𝑡);  𝜃 )

𝑡𝑟𝑖𝑝𝑙𝑒 ∈𝑇

 

 

≈ arg max 𝑙𝑜𝑔
𝜃

∏ 𝑃𝑟(𝑇 = 1|(ℎ, 𝑟, 𝑡);  𝜃 )𝑡𝑟𝑖𝑝𝑙𝑒 ∈𝑇                           

 
 

= arg max
𝜃

∑ 𝑙𝑜𝑔 𝑃𝑟(𝑇 = 1|(ℎ, 𝑟, 𝑡);  𝜃 )

𝑡𝑟𝑖𝑝𝑙𝑒 ∈𝑇

 

(9) 

The sigmoid function is used to determine the value of 

𝑃𝑟(𝑇 = 1|(ℎ, 𝑟, 𝑡);  𝜃 ), which is defined as:   
 

𝑃𝑟(𝑇 = 1|(ℎ, 𝑟, 𝑡);  𝜃 ) =  
1

1+𝑒−𝑧            

 (10) 

 

and it is expected to meet the objective shown in the 
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formula 11 [11]. 

arg max
𝜃

∑ 𝑙𝑜𝑔𝑡𝑟𝑖𝑝𝑙𝑒 ∈𝑇 =  
1

1+𝑒−𝑧                   (11) 

 

To the triple based embedded neural network structure, the 

parameter 𝑧 is defined as follows: 
 

𝑧 = (𝑒ℎ + 𝑒𝑟). 𝑒𝑡                                        (12) 

𝑒ℎ , 𝑒𝑟 , and 𝑒𝑡 are embedded vectors. They are for ℎ𝑒𝑎𝑑, 

𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, and 𝑡𝑎𝑖𝑙 respectively. These are the rows of 

𝑊ℎ
T, 𝑊𝑟 and 𝑊𝑟

T weight matrices. Figure 3Error! Reference 

source not found.. illustrates the explanation of the equation 

12 in vector space. According to the cosine similarity, the 

smaller the angle between 𝑒ℎ + 𝑒𝑟 and 𝒆𝒕, maximize the dot 

product [13]. Due to Figure 3Error! Reference source not 

found.. it is desirable that the sum of 𝒆𝒉 and 𝒆𝒓 be parallel 

with 𝑒𝑡 [11]. 

 

 
 

Figure 3. An overview of the relation between 𝑒ℎ , 𝑒𝑟 , and 𝑒𝑡 

vectors 

 

Due to the structure of Triple-based embedding neural 

network, corrupted triples are used in learning. The table of 

corrupted triples with uniform distribution is created []. As 

shown in 1 the table is generated before the main loop. The 

relevant question is, can a corrupted generated triple be an 

observed one. In response, it should be stated that there is no 

claim to the injection of noise in the learning procedures. 

Owing to the high dimensionality of entities and their 

relations, the probability of being a missing triple is low [11]. 

Finally, gradient descent is used to update the weights. As 

shown in Algorithm 1, all weight matrices are randomly 

initialized. By the continuation of the training, optimized 

weights are obtained. 

TransE is one of the popular models on large datasets due 

to its scalability. Similar to TransE, the time complexity of 

Triple based neural network is 𝑂(𝑑), where 𝑑 is the size of 

embedding vectors, it is more efficient than ConvE, NTN, 

and the neural network models [4]. 

 

3.2. Generate positive triples 

In this section, we start by explaining why to generate 

positive triples and then describe how to construct them. In 

the next two sections, the two distinct procedures of how to 

apply them in the learning model will be illustrated.  
Triples are highly heterogeneous in knowledge bases [5]. 

The diversity is evident both in the type of relation and in the 
entities. Most of the presented embedding methods are 
incapable of dealing with such heterogeneity [9]. Therefore, 
rare entities and relations get an argument. We try to 
augment rare ones to get a consistent knowledge base. To the 
best of our knowledge, there has not been an attempt to 
petition to gain consistent a knowledge base. Inspired by 
machine vision, data augmentation is used to imbalance 
classification. Hence, it is being tried to create new images 

from existing ones and add to the unbalanced classes [20, 
21]. Such a mechanism is needed to balance the knowledge 
base, though creating new triples from existing ones is not 
possible in this manner. 

To address this problem, we adopted the idea of sequence 
modeling which is stated that the learning model randomly 
predicts the next sequence at first, and with learning, the 
model can correctly predict the following one [22]. In these 
circumstances, the triple-based embedding neural network is 
allowed to be learned: the model can generate new triples 
even as the weight matrices are updating. In other words, 
after several repetitions, the embedding vectors were found 
to have reasonably optimized: they were able to predict new 
instances. 

For each entity, all possible triples are created, which it 
has located as head or tail, and the probability of being a true 
triple is calculated. Then N top of the probable triples is 
nominated to be used in the learning model. These 
candidates are chosen concerning their rareness: the rarer 
relation and entity, the more chance to be selected. In other 
words, a triple has a higher chance of being selected when 
the head, tail, or relation has been less commonly observed 
in the training set. The pseudo-code on how to Generate 
Positive Triples has been shown in Algorithm 2. In the 
following sections, two strategies named GNSs and FCSA 
describe explaining how to use new triples in the learning 
model. 

 
 

A. GNSs 
Figure 4 shows the whole process of when to apply GNSs. 

In the GNSs strategy, the learning procedure stops after 𝛿 
repetitions, and the model starts generating new positive 
triples. These are created by the updated weights matrices 
and then add to the training set. Then, the learning model 
continues training with a new training set. In other words, the 
new set has the original triples and the new positive triples, 
which predicts by the semi-learned model. Entities and 
relations in which there is a higher chance of prediction 

regarding node reverse degree 
1

deg (𝑒𝑛𝑡𝑖𝑡𝑦)
 and relation 

repetition 
1

|relation|
 can benefit from the algorithm. The more 

infrequent relation and entity, the more chance to predict. In 
other words, a triple has a higher chance of being selected 

when ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙 or 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 has been less commonly 
observed in the training set. In the opinion of the results of 
the experiments, selecting a part of the probable triples will 
increase the performance of the method. According to a 
thumb rule, the size of the new samples should not be in such 
a way that eliminates the effect of the original samples.
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Figure 4. An overview of applying GNSs strategy 

 

 
 

Figure 5. An overview of applying FCSA strategy 

 

 

The time complexity of finding positive triple is 𝑂(𝑑), and 

it repeated to z times where 𝑧 ≪  |𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎|. As the 

size of generated positive triples is much less than the 

training data and they are calculated once in the training, it 

remains efficient to apply this procedure to the learning. 

 

B. FCSA 

The fundamental idea of FCSA is illustrated in Figure 5. 

During training, FCSA decides whether a new true triple will 

be generated or use the original one. In contrast with GNS, 

the training procedure never pauses. For every sample, we 

propose to flip a coin and use the true triple or generate the 

probable one. At the beginning of training, sampling from 

the model would yield a random triple since the model is not 

well trained. So, selecting more often, the original samples 

should help. We thus propose to use a schedule to help the 

model to generate new triples when it becomes more learned. 

A sigmoid function is used to decide when new triples can 

be generated: 
 

𝜖 =  
1

1+𝑒𝑧                      (13) 
 

𝑧 = 𝑡𝑜𝑡𝑎𝑙 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑟𝑎𝑡𝑖𝑜𝑛             
 

It states that the chances of choosing a new triple are 

higher at the closure of the learning process and expects the 

model to sample reasonable triples [22]. If a new sample is 

selected, FCSA will replace the original. FCSA’s goal is to 

explore newer spaces. As in GNSs, the greater chance is 

given to probable triples which are more heterogeneous 

when selecting alternative triples. As the size of training sets 

remains constant the time complexity of FCSA is 𝑂(𝑑). 

 

4. Experiments 

This section proposes an experimental comparison of the 

proposed method and demonstrates that it can compete with 

current state-of-the-art methods [3, 18]. The evaluations are 

based on Wordnet11 and Wordnet18. 
 

4.1. Datasets and metrics 

To evaluate the proposed method, two datasets Wordnet11 

[16] and Wordnet18 [13] were used: both are state-of-the-art 

methods. The statistics of these data sets are given in Table 

1. 

Wordnet11 and Wordnet18 are not only different from 

each other regarding the size of entities and relations, but 

also in the structure of the test and the validation set. Each 

dataset and assessment criteria are described individually in 

the following sections. 

 Wordnet11: Positive and negative samples are indicated 

in the triple format with a label in test and validation sets. 

In other words, triples with negative and positive labels 

are wrong and right triples respectively. Negative triples 

are constructed from the corruption of positive ones.  

Test methodology 

Due to the structure of the dataset, link prediction became a 

binary classification issue. For each relation, a threshold 𝜃𝑟 

was determined for evaluation by the validation set. 

Therefore, the probability of each triple in the test set was 

compared with its relation threshold: this determined the 

decision to put a positive or negative label [16]. 

Evaluation criteria 

Accuracy is a criterion for evaluating this data set, as shown 

in Equation 14 [23].  
 

Accuracy =
𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑡𝑛+𝑓𝑝+𝑓𝑛
                                (14) 

 

 Wordnet18:  In this dataset, all triples were positive. 

Therefore, the test methodology and evaluation criteria 

were based on the triple's rank. 

Test methodology 

The rank of the triple was calculated following what is 

mentioned in [13]. Accordingly, for each examination 

sample, the tail of the triple was replaced with all entities, 

and the probability for each of them was calculated. The 

same procedure is also applied to the head entity. Finally, 

two lists of all created triples were sorted in descending order 

by their probability. This procedure is called raw mode, 

which is composed of all possible triples. Another mode is 

called filtered, in which all created triples that exist in the 

training, test, and validation sets are removed except the one 

that should be evaluated [13]. 
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Table 1. Statistics of the experimental datasets used in this study (and previous works). #Entity is the number of entities, #Relation is the 

number of relation types, and #Train, #Validation and #Test are the numbers of triples in the training, validation and test sets, 

respectively 

 

Datasets #Entity #Relation #Train #Validation #Test 

Wordnet11 38,696 11 112,581 2,609 10,544 

Wordnet18 40,943 18 141,442 5,000 5,000 

 
Evaluation criteria 

𝑀𝑅, 𝑀𝑅𝑅, and 𝐻𝑖𝑡@𝑘 are the evaluation criteria used for 

Wordnet18. The mean of the triple's rank is called the mean 

rank 𝑀𝑅. 𝑀𝑅 is in the range of [ 1 , ∞ ). As 𝑀𝑅 gets close 

to 1, it shows that the proposed method can predict triples at 

lower ranks [5] which indicates the efficiency of the method. 

  

𝑀𝑅 =
∑ 𝑟𝑎𝑛𝑘𝑖

|𝑁|
                                              (15) 

 

The Mean Reciprocal Rank (MRR) is a statistical measure 

for evaluating each process that presents a list of possible 

responses to a sample of questions that are arranged with the 

correct probability. After calculating the rank of all triples, 

the MRR is calculated as follows: 

 

𝑀𝑅𝑅 =
1

|𝑁|
∑

1

𝑟𝑎𝑛𝑘𝑖

|𝑁|
𝑖=1                                            (16) 

 
𝑀𝑅𝑅 is in the range of [0, 1]. 𝐻𝑖𝑡@𝑘, like the mean rank 

criterion, is used to evaluate the prediction of links in the 

knowledge base. The triple is considered as predicted when 

the rank is less or equal to 𝐾.  Finally, the ratio of predicted 

triples to the total has been shown as the criterion of 𝐻𝑖𝑡@𝑘 

(17).     
 

𝐻𝑖𝑡@𝑘 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑖𝑝𝑙𝑒𝑠 𝑡ℎ𝑎𝑡 𝑟𝑎𝑛𝑘𝑠 𝑙𝑒𝑠𝑠 𝑜𝑟 𝑒𝑞𝑢𝑎𝑙 𝑡ℎ𝑎𝑛 𝐾

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑙𝑙 𝑇𝑟𝑖𝑝𝑙𝑒𝑠
   (17) 

 

𝐻𝑖𝑡@𝑘 is in the range of [0, 1]. As the value of this 

criterion is higher, it shows that most of the triples get a rank 

lower or equal to 𝑘 [18]. 

 

4.2. Experimental setup 

In training the triple-based embedding neural network, two 

learning rates 𝛼 and 𝛽 are used for entity and relation 

respectively. The learning rate is validated in 

{ 0.001, 0.01, 0.03, 0.05, 0.07, 0.1, 0.15} and the learning 

rate 𝛼 are 0.03 and 0.07 in Wordnet11 and Wordnet18 

respectively. Also, the learning rate 𝛽, among the values 

{0.001, 0.005, 0.01, 0.05, 0.1}, 0.005, and 0.001 is 

validated for Wordnet11 and Wordnet18 respectively. The 

reason for adding the 𝛽 learning rate is that the error 

calculated from the model is added to the relationship 

weights at a different rate. Since the entity-to-relation ratio 

is very heterogeneous, two learning parameters are needed to 

tune the neural network. The appropriate number of negative 

samples for learning triple base neural network is considered 

𝑘𝑛𝑠 = 1 and 𝑘𝑛𝑠 = 5 in Wordnet11 and Wordnet18 [16]. 

Furthermore, the number of positive triples in the training 

process in the GNSs strategy is estimated at 500 and 1500 

in Wordnet11 and Wordnet18, respectively. By increasing 

large numbers of positive triples noise can spread. While, the 

less samples impact minor effect on results. In GNSs the 𝛿 is 

equal to 3/4 total iteration for each data set.  

 

4.3. Baselines 

This paper compared several state-of-the art relational 

learning approaches. TransE, TransR, R-GCN, NTN, 

ComplEx, ConvE and R-GCN comprise our baselines. The 

results of TransE, R-GCN, TranSparse-DT, and ComplEx 

are reported from [12] and the results of TransR and NTN 

from [36], and the rest are from [31]. They are current, state-

of-the-art methods and they use the same evaluation 

protocol. 

 

4.4. Results 

To specify the effect of each method, four distinct 

examinations are presented: 

1. ENN: Train Triple-based Embedding Neural Network 

Without Any Strategy; 

2. ENN + GNSs: Train Triple-based Embedding Neural 

Network with GNSs; 

3. ENN + FCSA: Train Triple-based Embedding Neural 

Network with FCSA; 

4. ENN + GNSs + FCSA: Train Triple-based Embedding 

Neural Network with both GNSs and FCSA strategies 

 

4.4. Results on Wordnet11  

The results of the four examinations are provided in Figure 

6. To illustrate the different aspects of the neural network's 

capabilities and proposed strategies, these examinations are 

presented. We also consider the results by the label of 

relation, classifying each relation according to its labels. It 

can be seen from Figure 6. that ENN detects their accuracy 

less than others, such as the domain topic and the domain 

region, by applying the strategies, the accuracy of each has 

increased about 7%. Also, the relations chart shows that the 

amount of heterogeneity of the relations causes the strategies 

to have an effect on the accuracy of each relation. For 

instance, the synset domain topic relation that the ENN 

estimates its accuracy more than domain topic and domain 

region, with applying the strategies the results show less 

improvement compared the two mentioned. Even in some 

relations, there is no increase in accuracy. In member 

holonym and member meronym relations, the accuracy of the 

ENN is greater than applying strategies (these relations have 

the highest accuracy among them). The difference is about 

0.5%. This phenomenon shows the decreasing effect of 

original samples or existence noise in applying strategies. 

However, it is worth noting that such decreasing is negligible 

in comparison with the increase of accuracy in other 

relations.
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Figure 6. Accuracy of each relation with 4 different tests 

 
The results demonstrate that ENN associated with GNSs 

is more accurate in comparison with ENN + FCSA. Not only 
ENN + GNSs consider the training set at the end but also a 
new training set has been given to the triple-based 
embedding neural network. Comparing the superiority of the 
applying FCSA strategy is to reduce the error in high-
frequency relations such as member holonym and member 
meronym. In this regard, it can be ensured that the accuracy 
of applying FCSA is not as good a less adverse effect, and is 

relatively more stable. The ENN has an accuracy of 87.3% 
and by applying strategies GNSs and FCSA, the accuracy 

increases about 1 and 2 percent, and this demonstrates that 
the proposed strategies have a positive effect on the 
performance of the method. Applying strategies at the same 
time performs inversely and does not increase accuracy. The 
cause of this deterioration is related to various aspects. First, 
by performing FCSA, choosing new samples occurs more 
when the model is close to the end of the training. If applying 
FCSA occurs with GNSs, it is probable that some of the new 
positive samples generated by GNSs will be changed again 
with FCSA and will be reduced the effect of the GNSs 
strategy. Also, simultaneously applying these two strategies 
will cause the original samples at the end of training more 
faded, and the actual samples do not have their effect [24, 
25]. 
In table 2, all four our distinct examination accuracy with the 
previously reported results on Wordnet11 are compared. 
Besides their accuracy, the optimization function that they 
use for pre-training is shown. Some models have used 
optimization functions to avoid overfitting. For instance, the 

NTN method achieves the accuracy of 70.6 without any pre-
training, while initializing the embeddings with an 
unsupervised semantic word vector the accuracy increases to 

86.6. Table 2 shows the same result for TransE. Pre-training 
is used to prevent overfitting, mainly on simple relations. 
Each model uses distinct methodologies, which makes the 
comparison not reasonably fair. However, as pointed out by 
[10] and [34], averaging the pre-trained word vectors for 
initializing entity vectors is an open problem, and it is not 
always beneficial since entity names in many domain-
specific knowledge bases are not lexically meaningful. 
However, a comparison has not been made on their 
performance independently. 

According to Table 2, ENN has a high accuracy compared 

to methods with the same conditions (without any 

optimization). It shows that the triple-based embedding 

neural network is robust to overfitting. Also, applying the 

GNSs strategy has the highest efficiency among all previous 

states of the arts. It does not only increase the performance 

but also it is not domain-specific and does not need external 

data. 

 
Table 1. Link prediction results on Wordnet11 

 

Methods Acc% Opt 

NTN [16] 70.06 None 

NTN [16] 86.2 

Initiate with unsupervised 

semantic word 

vectors 

TransE(unif) [10] 75.85 None 

TransE(bern) [10] 75.82 None 

TransE [8] 85.2 
Initiate embedding with 

word2vec 

TransH(unif) [10] 77.7 None 

TransH (bern) [10] 78.8 None 

TranSparse-DT 

[26] 
87.1 None 

TransD [9] 86.4 
Initiate embedding with the 

result of TransE 

TransR [14] 85.9 
Initiate embedding with the 

result of TransE 

CTransR (bern) 

[14] 
85.7 

Initiate embedding with the 

result of TransE 

TransG [27] 87.4 Initiate embedding by [28] 

ENN 87.3 None 

ENN+GNSs 89.4 None 

ENN + FCSA 88.2 None 

ENN + GNSs + 

FCSA 
87.4 None 

 

Analysis of Generate Positive triples. In this section, the 

effectiveness of the generated positive examples is analyzed. 

In this regard, some of the positive samples generated in 

procedure GNSs are given in Table 3. As shown in table 3, 

the bold tails are also in the test data set. Adding these 

positive samples and fine-tuning the triple based neural 
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network with the new training dataset will increase the 

accuracy and improve the ranks of the test samples.  

 
Table 3. Samples of Generated New Samples 

 

Generated Positive triples in GNSs  

(__chromatic_color_,1 _has_instance, __pink_4)  

(__chromatic_color_,1 _has_instance, __red_1)  

(__period_1, _has_instance, __bronze_age_1) 

(__period_1, _has_instance, __civilisation_2) 

(__period_1, _has_instance, __june_1) 

(__astronomy_1, _domain_region, __apex_2) 

(__astronomy_1, _domain_region, __zenith_1) 

(__astronomy_1, _domain_region, __outer_planet_1) 

(__family_lobeliaceae_1,_member_meronym, 

__dicot_family_1) 

(__japan_2, _has_part, __hondo_1) 

Although triples like 
(__period_1,_has_instance,__june_1) and 
(__chromatic_color_,1 _has_instance, __pink_4)  not in the 
test data set, their tails are in the same community with 
examples like (__period_1, _has_instance, __season_5) and 
(__chromatic_color_1, _has_instance, __yellow_2) 
respectively, as a result, according to Figure 6, they have 
affected the performance of the relationship. 

 

4.5. Results on Wordnet18   
This section evaluates and represents results on Wordnet18 
in two levels. First, results from the four examinations are 
presented, then a comprehensive analysis of the results of a 
variety of evaluation criteria with the other state-of-the-art 
methods is provided. Table 3 shows the result of four 
different examinations. In this table, the results are displayed 
in two raw and filtered modes with evaluation criteria. 

𝑀𝑅 is quite sensitive to the outliers. From Table 3, we see 
that different strategies do not have much effect on the 
outliers and make significant changes. Unlike Wordnet11, 
applying both of the strategies has decreased the value of 

𝑀𝑅, which indicates it has advantages in some ways. The 

lower value of 𝑀𝑅, the more desirable. One of the matters is 
to reduce the rank of the outliers. Although the effect is not 

striking, cannot ignore. The 𝐻𝑖𝑡@𝑘 criterion is a significant 
benchmark, due to it helps to understand the capability of 
assigning better ranks to each triple. It is essential to be 

assured, how many potential triples in the 𝐾 first choices are 
predicted. Hence, the examinations have been evaluated by 

𝐾 =  1, 3, 10 [18].  As illustrated in Table 3, over more than 

90% of samples are predicted with 𝑘 =  10. Even in the 

strictest mode, which 𝑘 =  1, more than half of the samples 
predict as the first prediction option. An assessment with 

𝑘 =  3 is the balance between a flexible and yet rigorous 
one. However, more than two-thirds of the test cases have 

been predicted. The combination of ENN and the GNSs 
strategy has achieved the best value in all evaluation criteria 
except MR compared to other examinations. It seems that the 
model has a better performance in increasing the volume of 
the knowledge base. Although applying the FCSA has a 
positive effect, does not has a significant performance due to 
the constant size of the due to the regularization is robust to 
overfitting and does not need any pre-training and extra 
optimization functions. It achieves state-of-the-art results on 
benchmark datasets. Besides, we propose two strategies, 
GNSs and FCSA, to augment datasets to overcome the 
heterogeneity of the dataset. In our analysis, we show the 
performance of applying the knowledge base, which the 
original triple replaces with the new one. Regarding the 
application of both strategies on the ENN, the same 
argument applies to the Wordnet11 dataset. As a conclusion 
from the experiments in Wordnet18, the number of added 
triples must be controlled. Obviously, by combining both 
strategies with the embedded neural network, it cannot 
allocate very low ranks to triples. On the other hand, it 
assigns the lower ranks to the outliers [5, 30]. It shows that 
generated positive triples may be helpful to bring 
information from other aspects. 

In contrast to 𝑀𝑅, 𝑀𝑅𝑅 is insensitive to outliers. The 
results also show that increasing the size of the knowledge 

leads to better 𝑀𝑅𝑅 results. This supports our hypothesis. 
Table 4 compares the proposed method with other states of 
arts. In this table, the types of optimizations used are 
specified to make better comparisons. The HolE and 
ComplEx implement each of the comparison methods 
individually and have performed different optimization 
functions, which have the results reported for TransE being 
different from one another and the original article.  So, it is 
difficult to determine precisely how much models with pre-

training gain over the other ones [12, 18].  
ENN has been able to independently handle the structure 

of the triple, without any pre-training and additional 

information to perform better. On the 𝑀𝑅𝑅 metric, ENN 
cannot achieve as good performance as the model with pre-
training. There are two noticeable phenomena in the result. 
First, ENN cannot assign a lower rank to the triples. We 
believe that this phenomenon is caused by the regularization 
of the models, even though the principle of it has the 
potential to represent real knowledge and to achieve 
knowledge graph completion.  Second, it shows that an 
augmented knowledge base affects weaker but consistent 
improvement on all metrics. 

The proposed method has a significant performance 
compared to non-pre-trained methods, and its results reflect 

the evaluation criteria of 𝑀𝑅, 𝐻𝑖𝑡@10, and 𝑀𝑅𝑅. ENN with 
GNSs and FCSA largely outperforms on MR and yields a 
score of 109 among all methods. Since ENN's Regularization 
cannot assign a lower rank to most of the triples, it can 
compete with the state-of-the-art model [31, 32].

 

Table 4. The comparison of results on Wordnet18 with previous work 
 

Methods Raw Filtered 

MR MRR Hit@1 Hit@3 hit@10 MR MRR Hit@1 hit@3 Hit@10 

ENN 120 0.65 37.42 70.9 85.18 115 0.696 46.24 86.64 93.29 

ENN+GNSs 116 0.664 42.98 82.02 91.08 113 0.703 50.54 90.1 94.92 

ENN + FCSA 117 0.659 39.92 75.22 90.6 111 0.68 46.8 87.2 93.67 

ENN + GNSs + FCSA 114 0.643 38.96 73.66 89.21 109 0.679 47.22 86.12 93.34 
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Table 5. The comparison of results on Wordnet18 with previous work 
 

Methods Raw Filtered Opt 

MR hit@10 MR hit@10 mrr  

TansE [13] 263 75.4 251 89.4 - None 

TransE - - - 94.3 0.495 Using Optimize function [12] 

TransH [10] 401 73.0 303 86.7 - None 

NTN [16] - - - 66.1 0.53 None 

ManifoldE Sphere [29] - 81.1 - 94.4 - Initiate embedding by [28] 

ManifoldE Hyperplane [29] - 81.4 - 93.7 - Initiate embedding by [28] 

TransR [14] 238 79.8 225 92.0 - Initiate embedding with the result of TransE 

TransR [14] - - - 94.9 0.605 using optimize function [8] 

CTransR (bern)  [14] 231 79.4 218 92.3 - Initiate embedding with the result of TransE 

TransD [9] 224 79.6 212 92.2 - Initiate embedding with the result of TransE 

TransG [27] 483 81.4 470 93.3 - Initiate embedding by  [28] 

TranSparse-DT [26] 234 81.4 211 94.3 - None 

HolE [18] - - - 94.9 0.938 using optimize function 

ComplEx [12] - - - 94.7 0.941 using optimize function 

ConvE [31] - - 504 94.2 0.955 Use dropout on the embeddings 

R-GCN[32] - - - 96.4 0.819 None 

TorusE [8] - - - 95.4 0.947 using optimize function 

KE-GCN[32] - -     

ENN 120 85.18 115 93.29 0.796 None 

ENN+GNSs 116 91.08 113 94.92 0.803 None 

ENN + FCSA 117 90.6 111 93.67 0.78 None 

ENN + GNSs + FCSA 114 89.21 109 93.34 0.679 None 

 

5. Conclusion and future studies 

This paper describes a model based on a triple structure for 

embedding entities and relations via an embedding neural 

network (ENN). We found that previous methods failed to 

overfit on infrequent relations. ENN strategies are consistent 

and reliable. In particular, GNSs and FCSA aren't model 

dependent, and they can be applied to any models. We 

believe this observation is essential to assess and prioritize 

directions for further research on the topic. 

In our future work, we will focus on improving the ENN, 

which needs to utilize loss function. Due to the significant 

results of the proposed strategies, we will consider other 

methods for generating new samples and employ them. 
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Abstract: Social networks have become a central part of our 

lives these days and have real effects on the world's events. 

However, social networks greatly boost spreading 

misinformation and rumors that are becoming more and more 

dangerous each day. As fighting rumors first requires 

detecting them, several researchers tried to propose novel 

approaches for automatic early detection of rumors. 

However, most of them rely on handcrafted content features 

which makes them prone to deception and threats the 

adaptability of the model. Furthermore, a great deal of work 

have concentrated on event-level rumor detection while it 

faces early detection with serious challenges. There are also 

deficiencies in proposed methods in terms of time and 

resource complexity. This study proposes a deep learning 

approach to automate the detection of rumors on Twitter. The 

proposed method relies on automatically extracted features 

through word and sentence embeddings along with profile 

and network-based features. It then uses Recurrent Neural 

Networks (RNN) leveraging Gated Recurrent Units (GRU) 

for detecting the veracity of a tweet. The proposed method 

also improves time efficiency. The achieved experimental 

evaluation results on RumorEval2019 dataset demonstrate 

that the proposed method outperforms other rival models on 

the same dataset in terms of both performance and time 

complexity. By the way, the proposed method is more 

resilient to deception by avoiding the use of handcrafted 

content features and leveraging features that are out of the 

control of the user. 

Keywords: Deception, Deep Learning, Rumor Detection, 

Social Network, Twitter 

 

1. Introduction 

The explosive growth of online social media is an evidence 

for their crucial role in spreading news in the modern society. 

Nowadays, a large number of users actively engage in 

producing or propagating news about different trending 

topics. The convenience of publishing news in online social 

networks causes also the spreading of misinformation and 

rumors. 

There have been numerous definitions for rumor in the 

literature, each offering its interpretation. However, the 

definition provided in [1] seems to be more popular which 

defines rumor as "a story or statement in general circulation 

without confirmation or certainty." Another essential 

research on rumor has been undertaken by [2], which defines 

three characteristics for rumors: 1) Rumors have a distinct 

mode of transmission, 2) Rumors always provide 

information about some particular person, happening, or 

condition, and 3) Rumors satisfy audiences. The second and 

the third characteristics refer to the fact that people feel 
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unsafe in the absence of information, and rumors satisfy them 

by providing information. Spreading rumors imposes 

potentially harmful effects on public perception and 

behavior. One can point to the alleged Russian interference 

in the 2016 US Presidential Election with the spread of 

rumors and misinformation through social media [3–5]. 

Online social networks facilitate rapid propagation of fake 

news and rumors which thereby greatly amplify the impact 

of harmful effects.  

The most effective and operational approach in rumor 

detection and debunking todays is manual detection, which 

is done by authoritative centers and websites like Snopes 

(www.snopes.com) and Politifact (www.politifact.com). 

However, although this approach seems to be very accurate, 

it is slow and ineffective with the nature of fast-spreading 

rumors in social networks. Another approach used these days 

is automatic detection using artificial intelligence, which 

leverages machine learning techniques to detect social 

network rumors. Although the performances of the proposed 

systems are lower than manual detection, the upside is the 

constant innovations that are making this approach a likely 

candidate to replace manual detection. Automatic rumor 

detection facilitates detecting and preventing rumors in early 

stages of spreading prior to affecting the public opinion. 

Although several researches have been conducted for 

detecting rumors, the previous methods mostly rely on 

handcrafted content features. Along with dynamic changing 

of social network conversations, the content of rumors and 

the signs of fake or verified news also change. Therefore, 

feature extraction process should be also dynamic in order to 

reflex the specifications of the rumors, which is not achieved 

in the case of developing detection model based on the 

handcrafted features. Furthermore, handcrafted features 

make the rumor detection system more susceptible to 

deception. Employing these features provides more chance 

to design fake news with appearance similar to verified news. 

In addition, handcrafted features could bias the prediction 

model without any explicit improvement in the performance. 

Again, most of the prior works operate at the event-level, 

meaning that it can only detect whether a general topic is a 

rumor or not and cannot decide about the veracity of a single 

post. Moreover, event-level rumor detection requires an 

extensive set of messages in each topic which is not available 

in the first stages of rumor propagation. Hence event-level 

models are hardly applicable for early detection. Moreover, 

the scalability of previously presented rumor detection 

systems is low due to extensive computational complexity. 

In this work, due to mentioned shortcomings of the previous 

works, we propose a deep learning approach for detecting 

rumors on Twitter. The proposed method operates at the 
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tweet level i.e., detecting rumor using a tweet and its 

responses. While handcrafted features can improve a deep 

learning system in doing its task, we do not directly use 

handcrafted content features and let the system extract them 

by itself through feeding it the raw text of tweets. Instead, 

word and sentence level embedding for content feature 

extraction are utilized which makes the model more resilient 

to user deception, more scalable to social network dynamics, 

and less susceptible to model biasing. Our insight also is that 

analyzing social and profile features is a rich information 

source for developing deception resilient models. This is 

because these features are independent from the content of 

the claims and are out of the direct control of the user that 

was neglected in most of researches. Therefore, we use social 

and profile features in our model. Lastly, we emphasize on 

the system's performance, taking the time efficiency and 

scalability of the system into account.  

The main contributions of this work can be summarized 

as: 

1. Avoiding the use of handcrafted content features for 

better dealing with the dynamic nature of social networks 

and providing more resiliency against the deception; 

2. Using profile and network features that provide the 

system with valuable information about the users and 

propagation state; 

3. Proposing a new deep learning model with RNN 

architecture leveraging GRU cells for automatic rumor 

tweet detection; 

4. Detection of rumors at the tweet level in order to facilitate 

early detection; 

5. Emphasis on performance, especially in the training 

phase, that make the system more scalable in comparison 

to the similar works. 

The proposed method is evaluated and compared using the 

RumorEval 2019 dataset. The overall performance of the 

system is first compared to the state of the art methods in 

terms of Macro F-score. The achieved results show that the 

proposed method outperforms nearly all similar methods. 

The experimental results also show the superiority of the 

proposed method in terms of time efficiency comparing the 

baseline. Furthermore, some experiments are conducted in 

order to prove the resiliency of the proposed method against 

the intended content alteration with the aim of deception. We 

believe that the proposed rumor detection model has enough 

capabilities to be applied efficiently in early, tweet-level 

rumor detection task with remarkable tolerance to deception. 

Section 2 of the paper will briefly introduce the concepts 

that were used in our research. Section 3 will discuss the 

researches that are similar and related to our work. The 

problem statement will be described in Section 4. Section 5 

is devoted to the proposed method description and its details. 

The evaluation process and the experimental results and 

comparisons are presented in Section 6, and finally Section 7 

will conclude the paper. 

 

2. Background 
In this section some preliminary concepts about RNNs and 

text embedding methods are provided.  

 

2.1. Recurrent neural network 

As described in [6], recurrent neural networks are a family of 

neural networks for processing sequential data. These 

networks arise from the idea of sharing parameters across 

different parts of a sequence, making them very efficient and 

effective in processing sequential data as well as in extraction 

and learning of sequential features. One of the most exciting 

features of RNNs is that they can process data of different 

length as an ability not seen in other types of neural networks 

which require fixed-size inputs. Another feature of these 

networks is the concept of memory, which arises from the 

fact that by sharing parameters and processing the data in 

sequence, each input will contribute to the model's output in 

a later stage, which acts as a memory. As also described in 

[7], one significant shortcoming of conventional RNN cells 

is that by applying Backpropagation through time, they 

cannot learn or extract dependencies in a long sequence due 

to the problem of vanishing or exploding gradients; This can 

be described as a sort of memory loss, which means 

conventional RNNs have a very short term memory. 

 

2.2. Bidirectional RNNs 

RNNs usually process data in a feed-forward approach, 

meaning at each timestep, the output is calculated using the 

information from the past, which is the hidden state and the 

current input [6]. However, in some cases giving the network 

information about the whole sequence (past and future 

timesteps) will help solving the problem. Bidirectional RNNs 

are the combination of two RNNs, one moving forward 

through time from the start of the sequence and the other 

moving backward through the time from the end of the 

sequence. In this way, the output at each timestep is 

calculated using the information from the past and the future, 

but more dependent on the data nearest to the current 

timestep. 

 

2.3. Long Short-Term Memory (LSTM) 

To combat the memory loss in conventional RNN cells, 

LSTM was proposed, which defines a pathway for long 

dependencies, which acts as long-term memory [6]. This 

pathway can be seen as a cell inside the LSTM cell with its 

parameters which can add data to the cell and remove 

unnecessary data when needed. By giving the network, the 

option of adding data to and removing it from this pathway, 

the network can memorize essential data in the sequence and 

forget unnecessary information, which has made LSTM cells 

a very successful architecture for solving problems, where 

the input is a sequence. 

 

2.4. Gated recurrent unit 

Although LSTMs are considered the go-to architecture when 

dealing with sequential data, they have a crucial shortcoming 

that arises from its too many parameters. These parameters 

burden the model, which has to do the standard calculations 

and with learning the parameters of the LSTM. Moreover, 

due to the high number of parameters, LSTMs are more 

susceptive to overfitting, which is a prevalent problem in 

neural networks and deep learning tasks. 

To combat the mentioned shortcomings, the GRU cell was 

proposed in [8], which is very similar to the LSTM cell but 

differs in that it combines some parts of the LSTM cell into 

a unified part and causes a reduction in the number of 

parameters compared to the LSTM cell. This modification 

has two benefits: 1) it gives the model less space for 

overfitting compared to LSTM, and 2) it puts less burden on 
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the model in terms of calculations that in turn makes it run 

faster. 

 

2.5. Text embedding 

In the field of natural language processing, which deals with 

human language, there is no straightforward way of using 

words in a neural network. One possible solution might be 

using one-hot encoding on a lengthy dictionary of words, but 

this approach has two problems: 1) it wastes memory and 

processing resources, which can be used elsewhere; (2) by 

giving the one-hot code based on the alphabetic order, this 

approach might give close codes to words with different 

meaning and remote codes to words with similar meaning 

(the distances are in terms of points in a hyperspace), which 

might give the model the wrong impression about the 

similarity of the words. 

Word embeddings were proposed to overcome the 

enumerated challenges by using dense vectors for word 

representation, reducing memory, and processing the needed 

resources. The proposed embeddings also put similar words 

in respect to their concepts and meaning in close vectors in 

terms of distance, giving the model the ability to understand 

those words' meanings. Google's word2vec [9] and 

Stanford's Glove [10] are examples of word embeddings. 

Although word embeddings are very useful, since the words 

in a language get their meaning in a sentence, they are not an 

optimal solution for sentence-level embeddings. One trivial 

solution for sentence-level embedding is using arithmetic 

operations to combine the word vectors of a sentence, but this 

approach can alter the sentence's meaning. In response to 

these challenges, sentence-level embeddings were proposed 

to turn a sentence into a dense vector preserving the meaning 

of sentences in the terms that similar sentences will be given 

close vectors. Universal sentence encoder (USE) [11] and 

Fast Sentence Embedding (FSE) are examples of popular 

sentence-level embeddings. 

 

3. Review of related works 
There are two different objectives in the automatic rumor 

detection literature, including event-level and tweet-level 

rumor detections. The purpose of event-level approach is to 

identify the veracity of a general topic related to an event 

represented by a set of conversations with similar topic. 

Formally, given an event E containing conversations C1 to Cn 

(i.e. E = {C1, …, Cn}) the label L(E) indicates whether the 

whole event is rumor or not. In contrast, in tweet-level 

approach, given a source tweet of each conversation, its 

responses, and some metadata about the tweets and users, the 

model should be able to decide whether the source tweet is 

rumor, non-rumor, or unverified. In fact, in tweet level view, 

for each conversation C, L(C) specifies the veracity of its 

single source tweet.  

One of the earliest attempts to automate rumor detection 

was undertaken by [12], in which the effectiveness of 

different feature categories was studied for identifying 

rumors. The proposed system can track known rumors but 

cannot detect new rumors on Twitter. 

The first attempt to detect new rumors has been performed 

in [13], which uses the fact that users respond to rumors by 

asking questions about them, which was also reported by 

[14]. The proposed system utilizes conventional machine 

learning for detection of rumors. However, their system 

relies on handcrafted content features. Moreover, it operates 

at the event-level mode.  

Another interesting work on automatic rumor detection 

based on conventional machine learning on Twitter is [15], 

which states that although users' stances used in [13] offers 

an indicator for detecting rumors, but detecting these stances 

itself is a big challenge. The proposed system leverages a few 

interesting and lesser-used features; however, it detects 

unverified stories and does not detect rumors in the context 

of false information. Moreover, the proposed system operates 

at the event-level, which was discussed before. 

One of the first works in detecting rumors leveraging deep 

learning techniques is [7], which proposes to use RNN 

architecture, containing LSTM and GRU cells in detection of 

rumors. The proposed system considers content data, but it 

operates at the event level. 

Yu et al. [16] have also employed deep learning techniques 

for rumor detection. They used Convolutional Neural 

Network (CNN) architecture, reasoning that the proposed 

system will be more suited due to the fact that RNN 

architecture is more biased towards the last elements of input 

while the indicators of rumor are not necessarily in the last 

elements of the input. They also point out that RNN 

architecture requires a lengthy input for reliable detection, 

while many microblog posts are short. Although their work 

is innovative in that few works are using CNN to detect 

rumors, but their system, like the ones before, works at the 

event level. 

The closest research to our work is [17], which was later 

refined and presented as the baseline for RumourEval 2019 

[18], and we also consider this research as the baseline for 

our work. Furthermore, working on this base code and the 

RumourEval framework makes evaluation of the work more 

straightforward and clear. In their work, the authors propose 

a system based on RNN architecture leveraging LSTM cells. 

One significant contribution of their work is that the 

proposed system uses some novel features as the feature 

vector, and it also detects rumors at the tweet level. However, 

their proposed system uses many handcrafted content 

features which makes it more susceptible to deception. In 

addition, it neglects social and profile features which can be 

potentially used for efficient rumor detection. 

Another crucial work similar to our work is [19], which is 

the winner of SemEval-2019 and the state of the art system. 

This system is trained with Twitter data and has an exciting 

innovation that is using fine-tuned word-level embedding 

specific for the task of rumor detection. Unfortunately, due 

to the unavailability of the source code and development 

details of this system, few comments on this work can be 

made. The proposed system again uses many handcrafted 

features that makes their system more susceptible to 

deception. Furthermore, their proposed system relies on 

some machine learning systems that are still in R&D phase 

and are considered as open problems in the field of machine 

learning and natural language processing. To be more 

specific, this work relies on: 1) a system for detection of parts 

of sentences like named entities, verbs, etc.; 2) a system for 

detection of user stances; 3) a system to detect the topic area 

of the rumor. Hence the overall performance of the proposed 

method significantly depends on the performance of these 

underlying systems.  
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Again, a research related to our work is [15] in which we 

used some of the features that they have proposed for the task 

of detection. However, our work is different from [15] in 

some issues. We are trying to detect false rumors contrary to 

their work, which can only detect unverified stories. Also we 

work at the tweet level while their research detects rumors at 

the event-level. 

Another interesting works in automatic rumor detection is 

[20], which takes a novel approach to detect rumors by 

leveraging spatial-temporal rumor aspects in social media. 

Other work is [21] that leverages multi-loss bidirectional 

RNNs for rumor detection. The work reported in [22] is also 

another exciting work in rumor detection that has utilized 

ensemble method for rumor detection. 

Table 1 summarizes some of the most important aspects of 

the more relevant researches to our work. As it can be 

inferred from Table 1, most of the previous important 

researches developed rumor detection models in event level, 

hence they cannot judge about the veracity of each individual 

tweet. Many papers employed handcrafted features which 

results in low generalization in detecting new rumor forms 

and make these systems more prone to deception. Some 

systems used user’s stance as a representative of the crowd 

wisdom about the specified tweet. Just one research has used 

the network and user profile features in detecting rumors. As 

a consequence, the proposed method is designed so that it 

operates in tweet level, it uses nearly all information sources 

including content, profile and network features along with 

users’ stances. This is while the proposed method does not 

inherit the weaknesses of using handcrafted features. 

 

4. Statement of the problem  
In this research we aim to automatically detect rumors in 

Twitter. We attempt to develop a rumor detection system 

which is resilient to deception. Moreover, the system should 

detect rumors at tweet-level. The metadata includes profile 

and network features. Profile features are used to determine 

the user’s credibility, while network features are used to 

show the state of the rumor propagation in the social network. 

While automatic rumor detection has attracted the 

attention of many researchers over the past few years, a huge 

bulk of studies rely on handcrafted features which leads the 

developed models susceptible to deception. In psychological 

studies, deception is defined as an intentional and knowing 

attempt of the writer of a message to create a false deduction 

or belief in the reader’s mind [23, 24]. Humans often do not 

detect fake contents, in most situations. It has been proved 

that people can distinguish a truthful statement from a lie 

with the accuracy of 54% which is just a bit above the random 

decision [25]. This fact highlights the role of automatic 

rumor detection under the intended deception process. When 

a statement is created with the aim of deceiving people, its 

content appearance should mimic a legitimate statement. 

Thus a rumor detection system should detect the veracity 

of a message regardless of its appearance in order to have 

resiliency to deception. The appearance of the message can 

be defined in terms of punctuations, letters cases, image 

inclusion, and so on. Since most of the handcrafted features 

used in rumor detection task are describing the message 

appearance, the resulting models are prone to deception. In 

this study we attempt to propose a model for rumor detection 

which can detect rumors efficiently, while neglecting the 

appearance based features.  

Furthermore, event-level approaches require large volume 

of messages in each topic which is not available in the first 

stages of rumor propagation. Thus, the aim of this research is 

developing a tweet-level rumor detection system that will be 

applicable for early detection. In Twitter, after a user posts a 

tweet, others can reply to it, and it is also possible to post a 

reply to a previous reply, and so on. This results in a tree 

structure of tweets and replies that is called a conversation. 

Each conversation can be broken up into several branches, 

each starting from the source tweet and ending at a tree leaf. 

It is possible to break the conversation into its branches by 

running a depth-first search on the tree, and each time the 

algorithm reaches a leaf, the current branch can be extracted 

by backtracking the steps. 

To better understand the concepts of branch and 

conversation, Figure 1 shows an example, in which a 

conversation is represented in two branches. One branch 

containing the source, User1 and User2 posts and another 

including the source plus User3 and User4 posts. 

 
Table 1. Important aspects of related researches 

 

Research 
Operation 

level 

Using handcrafted 

content features 
Using user’s stance 

Using profile 

features 

Using network 

features 

Yu et al. [1] Event Low Not used Not used Not used 

Zhao et al. [2] Event Medium Low(only inquires) Not used Not used 

Ma et al. [3] Event Low Not used Not used Not used 

Li et al. [4] Tweet High High (all possible stances) Yes Yes 

Kochkina et al. [5] Tweet High High (all possible stances) Not used Not used 

Huang et al. [6] Event None Not used Not used Yes 

Sujana et al. [7] Event None Not used Not used Not used 

Mouli Madhav Kotteti et al. [8] Event None Not used Not used 
only tweet time 

stamps 

Proposed method Tweet None High (all possible stances) Yes Yes 
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Figure 1. Branches of a conversation 

 

5. The proposed method 

In this section, we introduce the proposed method in detail. 

The section begins with the explanation of the system 

architecture and continues with the detail description of each 

individual phase. 

 

5.1. System architecture 

The proposed method is composed of three main phases: 

preprocessing, feature extraction, and modeling. The overall 

architecture of the proposed system is depicted in Figure 2. 

As it is shown in this figure, having a row conversation C, it 

is decomposed initially into the set of branches {b1, b2, … 

bk} where each branch bi is composed of the sequence of 

tweets ti,1, ti,2 , …., 
, ii b

t  in which ti,j is the ith tweet of the jth 

branch. Then different features are extracted from the tweet 

contents and metadata. After that feature vectors can be used 

to train the model in the training phase and predicting the 

veracity as label L(C) in the testing phase. 

 

5.2. Preprocessing  

Due to the tree’s nature, the conversation data processing 

with a neural network is particularly challenging. To combat 

this challenge, some researches, such as [5, 9], suggested 

representation of conversation in terms of its branches. 

Therefore, the conversation is fed to the network branch by 

branch. Figure 3 shows the prepressing phase, in which 

branches b1 to bk are first extracted and tweets of each 

branches are then extracted in terms of ,1 ,
,...,

i
i i b

t t  for each 

bi where 1 i k  . In this notation, k is the number of 

different branches in C and 
ib is the number of tweets in 

branch bi. 

 

5.3. Feature extraction  

Feature extraction phase is illustrated in Figure 4. For each 

tweet ti,j, the corresponding network, profile and content 

features are extracted respectively and concatenated to form 

the overall tweet feature vector 
,i jt . The network and profile 

features are characterizing the social context of the tweet and 

content features are representing the text of the tweet itself. 

The feature vector associated with tweets of a branch are then 

concatenated to form the branch feature vector 

,1 ,
{ ,..., }

i
i i i b

b t t and a conversation is finally represented as 

a set of branch feature vectors (i.e. 
1{ ,..., }kC b b ). One of 

the innovations of our work is the novel feature set proposed 

for detection of rumors. Although many of these features 

have been used before in rumor detection, we have not seen 

them used together in other previous works. The proposed 

method also relies on user’s stances based on the fact that the 

users' reactions to rumors are different from non-rumors, 

which was first pointed out in [10]. 

An important aspect of the proposed feature set is that we 

use word and sentence level embeddings for content feature 

extraction which makes the model more resilient to user 

deception. 

The feature set we use can be described in the following three 

categories: 

1. Profile features (the features of the user who posted the 

tweet): 

 Number of followers 

 Number of followings 

 Whether the account is verified or not 

 Number of total tweets 

2. Network features (the features related to state of the 

propagation): 

 Number of retweets of the tweet 

 Number of likes of the tweet 

 Whether the tweet is the source or response 

 The stance of each tweet towards the source tweet with 

values of Supporting, Denying, Querying, and 

Commenting 

3. Content features (the features of the tweet itself by 

dense vectors leveraging word and sentence level 

embeddings) 

 Avg2Vec, used in [5, 9], uses Google's word2vec to 

create a sentence level embedding for tweets by 

averaging between the word level embedding vectors of 

the words in the tweet. 

 Universal Sentence Encoder (USE), which is a sentence 

level embedding also introduced by Google. 

It is also worth mentioning that the features used in our 

work can be categorized in two set: 

1. Manually extracted features containing profile and 

network features; 

2. Automatically extracted features containing content 

features. 
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Figure 2. System architecture 

 

 
Figure 3. Preprocessing phase 

 

   
Figure 4. Feature extraction phase 

 

6. Modeling 

The core of the proposed system is the modeling phase that 

is comprised from training and testing phases. In training 

phase, the branch feature vectors along with the source tweet 

label are feed to RNN for learning. After training, the learnt 

model can be deployed in automatic rumor detection system 

as it is demonstrated in Figure 5. In this phase, given a 

conversation feature vector, the feature vector of each branch 

is extracted and inputted to RNN model. After predicting the 

corresponding labels for individual branches, a voting 

module is used to determine the final label for the 

conversation as the majority label predicted by its branches.  
We employed RNN deep learning architecture because the 
nature of the input data in the underlying system is a 
sequence. It means that we want the learning system to 
recognize the patterns and relations between consecutive 
words, sentences and tweets in processing a conversation. 
Since RNN is memory-based architecture and learns 
sequences well, it is appropriate for our purpose. 
Furthermore, RNNs support learning sequences with variant 
lengths which is the case in rumor detection systems for 
branches. Since the tweet branches may form as long 
sequences, memory based unites such as LSTM and GRU 
are needed for learning these sequences. Using GRUs is 

more preferable because of their speed and efficiency and 
also to give the model less space for overfitting, which 
contributes to the overall model performance. We also 
leverage bidirectional GRUs for two reasons: 1) giving the 
model more information at each time step; 2) reducing the 
model's bias towards the end of sequence by processing the 
sequence from both directions. 

The detail architecture of RNN units are revealed in 
Figure 6. The model is comprised of one bidirectional GRU 
Layer, and the output of this layer is passed to two dense 
layers with ELU (exponential linear units) function as their 
activation [26]. It is worth mentioning that before each layer, 
the input of that layer is normalized with the batch 
normalization layer. This has two effects: 
1.  The data is scaled and the training phase's noise is 

reduced, where in turn makes the training phase faster 
and more stable; 

2. By feeding data in different batches, it has a slight 
regularization effect on the model, which reduces the 
chance of overfitting. 

For improving the generalization of the network and avoid 
overfitting, L2-regularization mechanisms are adopted. The 
complexity of the network and subsequently the overfitting 
issue are controlled in this way. 

 

Raw 
Conversation 

(C) 
Preprocessing  

Feature 
Extraction 

Modeling L(C) 

Raw 
Conversation 

(C) 
Branch 

Extraction  
Tweet 

Extraction  

C = {b1, …, bk} 

 

Preprocessing 

Network Feature 
Extraction  

Tweet 
(ti,j) 

Profile Feature 
Extraction  

  Content 
 Feature 
 Extraction                                                                                        

USE  

Word2vec  

Tweet Feature 

Vector ( ) 

Feature 
Extraction 

 C = {b1, …, bk} 

1{ ,..., }kC b b  



Journal of Computer and Knowledge Engineering, Vol.5, No.2. 2022. 27 

 

 

 

 
 

Figure 5. Modeling phase 
 

 
 

Figure 6. The architecture of the RNN unit 

 

Due to social networks' dynamic nature, the rumor 

detection model should be adapted and retrained many times 

after deployment. To achieve this goal, we have leveraged 

CuDNN libraries in designing the model in order to improve 

the time complexity in the training phase. The use of CuDNN 

has one big downside: the loss of some layer features like 

dropout in GRU layers, but it helps a lot in the model's 

generalization. Therefore, there is a tradeoff between the 

time complexity and the generalization and hence we took 

the middle way through utilizing CuDNN. 

 

7. Experimental evaluations and results 

In this section after describing the evaluation configurations 

including the dataset specification and the system setup, the 

proposed rumor detection system is evaluated in terms of 

macro F-Score, time efficiency and deception resiliency. The 

experimental results are also compared to the results of the 

state of the art methods.  

 

7.1. Dataset 

The dataset used in this research is associated with 

RumorEval 2019 competitions which is a refined and 

updated version of the Pheme dataset [27]. This dataset is 

comprised of conversations categorized into topics, each 

topic containing conversations with one of the below labels: 

1. True: Conversations that are spreading verified 

information; 

2. False: Conversations that are spreading rumors; 

3. Unverified: Conversations that are spreading unverified 

information that was neither verified nor denied up to the 

time of their retrieval. 

Table 2 shows the distribution of conversations and 

branches between the training, development, and testing sets, 

while Table 3 and Table 4 show the distribution of labels in 

conversations and branches in different sets. Note that the 

development dataset in RumoreEval context is equivalent to 

validation dataset known in machine learning literature. 

 
Table 2. Distribution of conversations and branches 

 

 Train Development Test 

Conversation 297 28 56 

Branch 3245 768 1010 

  

Table 3. Label distribution in conversations 
 

 Train Development Test 

True 137 8 22 

False 62 12 30 

Unverified 98 8 4 

 
Table 4. Label distribution in branches 

 

 Train Development Test 

True 1470 124 341 

False 549 514 558 

Unverified 1226 130 111 

 
7.2. Setup 

All of the experiments were run on a single system with the 

same hardware setting for all of them. Table 5 shows the 

system details. 
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Table 5. System setup 
 

Processor Intel Core i7 6700HQ 

RAM 16GB DDR4 2133MHz 

GPU Nvidia GeForce GTX 980M 

 

One of the most important parts of every deep learning 

model is the hyper parameters setting presented in Table 6. 

Hyper parameters include parameters that define the model 

and cannot be learnt by the model during the training phase. 

In order to find the optimal hyper parameters, we leveraged 

Tree-structured Parzen Estimator (TPE) algorithm [11] 

implemented in python library called Hyperopt which helps 

automating some of the tasks in hyper parameter search and 

model tuning. TPE is a sequential model-based optimization 

approach, which sequentially estimates the conditional 

probability density function of the objective function based 

on hyperparameters. In each iteration, the next set of 

hyperparameters are configured based on their evaluation on 

the estimated probability model and the model is refined 

accordingly. Sequential model-based optimization is a 

formalization of Bayesian optimization which is more 

efficient than random or grid search in finding the best set of 

hyperparameters [11]. Table 6 shows the best hyper 

parameters found by TPE for the proposed system. 

 
Table 6. Hyper parameter setting 

 

Hyper Parameter Value 

Number of GRU Layers 1 

Number of GRU Units 400 

Number of hidden dense layers 2 

Number of dense units in 1st dense layer 600 

Number of dense units in 2nd dense layer 400 

Training Steps 50 

L2 Regularization Parameter in 1st dense layer 1e-4 

L2 Regularization Parameter in 2nd dense layer 1e-4 

L2 Regularization Parameter in output layer 1e-6 

L2 Regularization Parameter in GRU layer 1e-6 

Minibatch size 64 

Optimization Algorithm Adam 

 

7.3. Overall performance 

Table 7 shows the results of evaluation metrics of the 

proposed method as well as those in [5, 9] as the baseline. 

The performance is measured in terms of precision, recall, 

and F1-score. It can be deduced from the table that our model 

outperforms the baseline in the overall metric used by the 

RumourEval 2019 competitions (i.e., Macro-F1 Avg.). A 

more detailed look shows that the proposed method 

outperforms the baseline in the rue class but slightly lags 

behind it in the other classes. It is due to low false negative 

rate of the proposed method which is a critical necessity of a 

rumor detection system. The performance of the baseline can 

be attributed to many features, but as we will show later, this 

gives their model a significant disadvantage regarding 

resilience to deception.  

The results of all RumorEcval 2019 participants can be 

found in [9]. As it can be inferred from the table, the overall 

performance of the proposed method is better than other 

models. There are also some works like [4] that uses some 

auxiliary data for training. Utilizing auxiliary dataset gives 

the model some advantages and not only makes the 

comparison a little unfair, but also we believe it threatens the 

scalability of the method. When the model is trained and 

evaluated based on the auxiliary datasets, its performance is 

not guaranteed for rumor detection in other environments in 

which this data volume is not available.  

 
Table 7. Comparison to the baseline 

 

 Class Precision Recall F1 

Baseline [5, 9] 

True - - 0.31 

False - - 0.53 

Unverified - - 0.17 

Macro Avg. - - 0.33 

Proposed 

method 

True 0.85 0.37 0.51 

False 0.48 0.45 0.47 

Unverified 0.05 0.25 0.08 

Macro Avg. 0.46 0.36 0.35 

 

Table 8 shows the performance comparison of the 

proposed method with the most successful related models, 

which operate on RumorEval 2019 dataset. 

  
Table 8. Comparison to other models 

 

Model Name Macro-F1 score 

Baseline [5, 9] 0.33 

VANTA and Aono[12] 0.32 

WeST (CLEARumor) [13] 0.28 

GWU NLP LAB [14] 0.26 

BLCU NLP [15] 0.25 

FINKI NLP (reported in [9]) 0.33 

EventAI [4] 0.58 

Proposed method 0.35 

 

7.4. Resilience to deception 

Since many rumors are created with the aim of user 

deception, the appearance of the claim is designed to mimic 

a legitimated news post. A successful rumor detection 

system should not be sensitive to simple apparent signs. In 

the proposed method, we tried to develop a model that is 

resilient to these changes. To evaluate the models' resilience 

to deception, we propose changes to the tweet text, keeping 

in mind that it is entirely in the user's control and can be 

changed easily without changing the tweet's overall 

meaning. The applied changes, enumerated below, are 

minimal and do not affect the meaning of the text: 

1. Removing the periods or adding one if does not exists 

any; 

2. Removing question marks or adding one if does not 

exists any; 

3. Removing exclamation mark or adding one if does not 
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exists any; 

4. Removing pictures or adding one if does not exists any; 

5. Changing the capital ratio of the characters to a random 

value. 

We assume that these changes can simulate the changes 

that a rumor creator made intentionally in the rumor content 

so that it looks like a normal verified claim. These changes 

are chosen regarding the experiences reported in [5, 9], 
which is the only model that shared its details and code. After 

applying the changes on the test set, both models trained on 

the original training set (the proposed model and the baseline 

model) were rerun on the modified test set, and the results 

were compared to the original run. Since our model ignores 

all the mentioned handcrafted content features due to the use 

of embeddings for extracting features from the text, these 

changes do not affect the model's performance. In contrast, 

the predicted labels in works reported in [5, 9] were changed 

in 34% of the conversations after applying the modifications. 

It can be inferred from the experiment that even simple text 

changes can easily mislead the baseline model. 

Since the described issue arises due to the employment of 

handcrafted features, it seems that other researches that 

model the rumor based on these features (e.g., [4]) also suffer 

from the similar weaknesses. In fact, current experiment 

compares the resiliency of two categories of approaches to 

deception, the models based on automatic feature extracted 

and the models based on handcrafted features. To this end, 

the proposed method and the baseline are selected as 

representatives for these two categories of approaches, in the 

absence of source code of other related methods. 

This test shows the downside of handcrafted features, 

especially for content features, since they are in the control 

of the user and can be changed easily. For that reason, all the 

content features used in the proposed method are 1) the ones 

that are determined by the network and are not controlled by 

the user, or 2) the ones that are extracted using methods like 

embedding that focuse on the meaning instead of the looks 

which minimizes the user's influence on the model. 

 

7.5. Time efficiency  

Table 9 shows the training time of the proposed method and 

the baseline model. It can be seen that our model outperforms 

the baseline significantly in training time, giving it a valuable 

advantage for deployment. This means it saves much time in 

training, which leads to savings in resources and capital 

making it more suitable for deployment. 

Although, as discussed before, our model cannot use 

dropout in the GRU layer, which can give it a significant 

advantage in generalization, we showed that it outperforms 

the baseline while being much faster in training. 
 

Table 9. Time efficiency  
 

Model Training Time (seconds) 

Baseline [5, 9] 2406.13 

Proposed method 40.25 
 

7.6. The role of profile and network features 

Another exciting aspect that needs discussing is the proposed 

feature set. Regarding content features, we have already 

shown that using embeddings instead of handcrafted features 

gives our model a significant advantage regarding resilience 

to deception. Regarding other features, it can be deduced that 

all of the profile and network features are a part of the social 

network and they are out of the control of the user, especially 

for trending topics, and one or a group of users cannot 

meaningfully change them to mislead the model. 

We can also show that the proposed non-content features 

are needed to achieve the results shown in Table 7. Table 10 

compares the model's performance using the proposed 

feature set to the model using only the content features. It 

shows that the full feature set outperforms the content 

features, which in turn shows that network and profile 

features provide essential information for rumor detection. 

Another important aspect of our model is the use of GRU 

cells instead of LSTM. Although LSTMs are more common 

in RNN architecture, as discussed before, the use of GRU 

leads to reducing the training time and increasing the 

generalization.  

 
Table 10. The role of different feature sets 

 

Feature Set Macro-F1 Avg. 

Content Features only 0.31 

Full Feature Set 0.35 

 

Table 11 compares the proposed method with the same 

model with LSTMs instead of GRUs. It can be seen that the 

GRU model slightly outperforms the LSTM with fewer 

parameters and much faster run time. 

 
Table 11. The comparison of GRU and LSTM unites 

 

Model Macro-F1 

LSTM based model 0.34 

Proposed method (GRU) 0.35 

 

8. Conclusion 
While a considerable research effort has been done recently 
to develop automatic rumor detection models, most of prior 
approaches have had the problem of relying on handcrafted 
features. Using these features make the model more 
susceptible to deception and reduces the scalability of the 
system. Moreover, a great deal of work is devoted to event 
level rumor detection which is not applicable for early 
detection and prevention in real world. This research 
proposed a rumor detection system based on RNN model and 
GRU cells for specifying the veracity of tweets in Twitter 
network. One of the most important innovations of this 
research is a novel feature set that avoids the extraction of 
handcrafted content features and uses network and profile 
features that are out of users’ control. Considering these 
features makes the model more resilient against deception. 
We focused on efficiency and scalability, especially in the 
training phase, keeping in mind that social networks' 
dynamic nature requires the model to be retrained many 
times to adapt to the users and network behavioral changes, 
making our model more suitable for deployment.  

A number of experiments were conducted to analyze the 

effectiveness of the proposed rumor detection system. 

Experimental results show that the proposed method 

outperforms most similar research in terms of macro F-score. 
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It also revealed that the proposed system is less prone to 

deception. Furthermore, the results indicate the superiority 

of the proposed method comparing the baseline in terms of 

time efficiency. Consequently, the proposed rumor detection 

system is suitable for being applied efficiently in early tweet-

level rumor detection task with remarkable tolerance to 

deception. 

As the future work in our research direction, we tend to 

use pertained pre-trained contextual deep neural networks 

for both content embedding and tweet classification tasks in 

order to improve the overall performance. 
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Abstract: For more comprehensive security of a computer 

network as well as the use of firewall and anti-virus security 

equipment, intrusion detection systems (IDSs) are needed to 

detect the malicious activity of intruders. Therefore, the 

introduction of a high-precision intrusion detection system is 

critical for the network. Generally, the general framework of 

the proposed intrusion detection models is the use of text 

classification, and today deep neural networks (DNNs) are 

one of the top classifiers. A variety of DNN-based intrusion 

detection models have been proposed for software-defined 

networks (SDNs); however, these methods often report 

performance metrics solely on one well-known dataset. In 

this paper, we present a DNN-based IDS model with a 12-

layer arrangement which works well on three datasets, 

namely, NSL-KDD, KDD99, and UNSW-NB15. The 

layered layout of the proposed model is considered the same 

for all the three datasets, which is one of the strengths of the 

proposed model. To evaluate the proposed solution, six other 

DNN-based IDS models have been designed. The values of 

the evaluation metrics, including accuracy, precision, recall, 

F-measure, and loss function, show the superiority of the 

proposed model over these six models. In addition, the 

proposed model is compared with several recent articles in 

this field, and the superiority of the proposed solution is 

shown. 

Keywords: Intrusion Detection, Software-defined Network, 

Deep Learning, Network Security 

 

1. Introduction 

In computer systems and networks, the attackers exploit 

security vulnerabilities to attack the network; therefore, there 

is a need for some methods to detect intrusions into a 

computer system or network. An intrusion detection system 

(IDS) is the software or hardware that detects and reacts to 

intrusions. An IDS prevents illegal access and tampering 

with the resources of a computer system or network [1-3]. 

Generally, the IDS monitors the activities of the host 

computer or the entire network and reports the violations of 

management and security policies to the network 

administrator [4-6].  

With the growing use of the Internet, network traffic is 

becoming increasingly complex, and the challenge is 

becoming more difficult for IDS to detect attacks or 

anomalies more accurately and quickly. Therefore, 

researchers leverage machine learning techniques to improve 

the capability of IDSs. 

In the category of machine learning, artificial neural 

network (ANN) is one of the most widely used models. It is 
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a computational technique widely used in data processing, 

pattern recognition, and information classification. Deep 

learning, a subset of machine learning, attempts to extract 

high level features from the raw input using several hidden 

layers. Deep neural networks are used in the design of IDSs 

for software-defined networks (SDNs). 
In recent years, several approaches for intrusion detection 

have been proposed using machine learning techniques; 
however, each of the methods has its challenges and 
problems. For example, most studies have reported good 
accuracy rates, while they have not reported other metrics 
such as precision or recall. Some methods have reported 
relatively low values for these performance measures. 
Another weakness of these methods is that they work only 
on one dataset and do not evaluate their methods on larger 
and newer datasets. On the other hand, some studies have 
compared their methods with only simple classifiers. 
However, it is clear that this kind of comparison does not 
have the necessary quality. In this paper, we offer an 
intrusion detection method for software-based networks 
using deep neural networks; the proposed method achieves 
high performance on several datasets. 

The contributions of this work can be summarized as 

follows: 

 It provides a comprehensive and complete classification 

(Research Tree) in the field of intrusion detection 

systems. 

 It follows a deep learning approach to IDS using deep 

neural networks in software-defined networks. 

 It provides seven neural network-based IDS models and 

evaluates them on three datasets, namely NSL-KDD, 

KDD99, and UNSW-NB15. The best model, which has 

the best accuracy, precision, recall, and F-measure values 

on all datasets, is then introduced. 

 One of the strengths of this solution is that the layered 

layouts of the proposed models are the same for all three 

datasets. 

The paper then presents the theoretical background and 

research motivation, discusses the proposed model, 

evaluates the proposed model, and finally concludes the 

work. 
 

2. Research background 

In general, intrusion detection systems can be categorized in 

terms of various aspects, such as detection method (or 

analysis technique), type of architecture, how to respond and 

react to intrusion, information source, and many others [7-

12]. For example, intrusion detection systems can be divided 

into two types of continuous monitoring and periodic 

https://cke.um.ac.ir/
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analysis in terms of continuity [13-15]. They can also be 

divided into active and passive responses [16-19].  

Chalapathy and Chawla [7] categorized the deep learning-

based anomaly detection techniques using three criteria: 

application, type of anomaly, and type of model. Then they 

defined nine applications, that is, fraud detection, cyber 

intrusion detection, medical anomaly detection, sensor 

network anomaly detection, video surveillance, IoT big data 

anomaly detection, log anomaly detection, and industrial 

damage detection. They defined three types of anomalies: 

collective, contextual, and point. Moreover, they considered 

four types of detection models: unsupervised, semi-

supervised, hybrid, and one-class neural networks. 

Kwon et al. [9] classified the anomaly-based IDSs into 

two groups: programmed and self-learning. Then they 

classified the programmed IDSs into two categories of 

simple-rule and statistical-based, and they categorized the 

self-learning IDSs into four categories: cognition-based, 

computation-intelligence, data mining, and machine 

learning. In the next step, they classified the machine 

learning-based IDSs into six groups: Bayesian network, 

genetic algorithm, fuzzy logic, artificial neural network 

(ANN), supervised vector machine (SVM), and outlier 

detection. Furthermore, they defined two types of ANNs: 

supervised and unsupervised. The supervised ANN IDSs can 

be free-forward ANN or recurrent ANN. The unsupervised 

methods include deep learning, adaptive resonance theory, 

and self-organizing maps. Finally, the deep learning methods 

include AutoEncoder, sum-product network, recurrent 

neural network (RNN), Boltzmann machine (BM), 

convolutional neural network (CNN), and deep neural 

network (DNN). 

Lee et al. [18] categorized deep learning-based IDS schemes 

into nine classes: AutoEncoder-based, RBM-based, DBN-

based, DNN-based, CNN-based, GAN-based, LSTM-based, 

RNN-based, and hybrid. They then classified the 

AutoEncoder-based schemes into six groups: Stacked 

AutoEncoder, Denoising AutoEncoder, NonSymmetric 

AutoEncoder, Sparse AutoEncoder, Variational 

AutoEncoder, and Convolutional AutoEncoder. They also 

defined several hybrid schemes: AE+CNN, AE+DBN, 

AE+DNN, AE+GAN, AE+LSTM, CNN+LSTM, 

CNN+RNN, and DNN+RNN. 

Having reviewed various articles in the field of intrusion 

detection systems, we categorized these systems in different 

ways. In terms of continuality, we classified intrusion 

detection systems into two categories: continuous 

monitoring and periodic analysis. Concerning reaction to 

influence, we divided these systems into two groups: active 

response and passive response. Regarding the architecture, 

we divided the IDSs into two groups, centralized and 

distributed. In addition, we defined two types of real-time or 

offline forecasting.  

In terms of the knowledge base, we considered three 

classes: Boltzmann machine, descriptive languages, and 

expert systems. We classified the IDSs into three groups: one 

variable, multivariate, and time series model. Moreover, the 

IDS systems are categorized into two classes: anomaly-based 

and signature-based. We considered three signature-based 

techniques: data mining, state transition, and expert systems. 

Anomaly-based techniques are divided into two groups: 

self-learning, and programming. The self-learning 

techniques are cognition-based and relate to computation 

intelligence, data mining, or machine learning. The machine 

learning techniques can be semi-supervised, supervised, 

unsupervised, or reinforcement learning. Each of these 

techniques has so many subcategories. 

We summarize various categorizations in a tree named 

Research Tree in the field of intrusion detection systems. 

Figure 1. shows the comprehensive classification tree. 

In the following, we categorize previous research works 

into two main groups in terms of the model architecture: 1) 

works done on shallow architectures, 2) works done on deep 

architectures.  
 

 
 

Figure 1. Research Tree in the field of intrusion detection systems
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2.1. Shallow Learning IDSs 
Some intrusion detection methods use shallow architectures, 
such as support vector machine (SVM), decision tree (DT), 
random forests (RF), clustering, K nearest neighbor (KNN), 
particle swarm optimization (PSO), simulated annealing 
(SA), ANN, and ensemble methods [4, 20-27]. 

Lin et al. [4] used the SVM, the decision tree, and the 
simulated annealing and reached 99.96% accuracy. Wang et 
al. [23] used the SVM algorithm and reached 99.31% 
accuracy. Baek et al. [22] achieved an 88% accuracy rate 
using several simple classifications.  

These methods take advantage of the mentioned 
algorithms and use KDD99 or NSL-KDD datasets to 
evaluate their solutions and report good accuracy or 
precision rates. However, these methods report only one 
metric of accuracy or precision and no other metrics. They 
use only one dataset for evaluation, and they compare the 
results with only ordinary classifications. 
 

2.2. Deep Learning IDSs 
In this section, we describe intrusion detection models based 
on deep learning methods. 
 

A. Convolutional Neural Network (CNN) 
This category includes research works which have based 
their intrusion detection techniques on convolutional neural 
networks [28-32]. Zhu et al. [28] considered 6 layers of the 
neural networks and used the pooling layer among them. 
Moreover, they used a learning rate of 0.5 and achieved 
80.34% of Accuracy. Li et al. [29] used convolution 
architecture and data-to-image conversion techniques to 
detect intrusion but provided a relatively low accuracy rate 
(about 80%). Nguyen et al. [32] used a deep convolutional 
network and used 4 main layers of CNN networks. They 
reported 99.87% accuracy on the KDD99 dataset. 
 

B. Recursive Neural Network (RNN) or Gated Recurrent 

Unit RNN (GRU–RNN) 
Research works in this category have used recursive neural 
network techniques [33-37]. For example, Yin et al. [33] 
proposed a binary classification method based on a deep 
recursive neural network to detect intrusions. They first 
performed pre-processing (such as normalization) on the 
input dataset and then attempted to weigh the deep network 
layers using a recursive neural network with forward 
propagation, reporting 99.81% accuracy. Tang et al. [34] 
proposed a gated recurrent unit (GRU) over SDN-based 
networks. They compared their method with DNN classifiers 
having different layouts, support vector machines, and 
simple Bayesian, and reported 89% accuracy and 87% 
precision. Zhong et al. [37] presented an IDS for IoT servers 
using text-CNN and GRU methods. They reported the F-
score criterion on the KDD99 and ADFA-LD datasets. 
 

C. Long Short-Term Memory (LSTM) 
Ponkarthika and Saraswathy [38] developed an intrusion 
detection system based on the RNN and its specific type, and 
LSTM networks. They achieved 82% accuracy for the RNN 
and 83% accuracy for the LSTM on the KDD99 dataset with 
a learning rate of 200. 
 

D. CNN-RNN 

Vinayakumar et al. [39] proposed an intrusion detection 

technique using the convolutional network for feature 

extraction and the RNN network for classification. They 

proposed a CNN-based model and showed that the CNN 

network would perform better than MLP, CNN-LSTM, and 

CNN-GRU in extracting and presenting features from 

network traffic. Their model could report the highest 

accuracy and recall on single-layer CNN and the highest 

precision on almost all CNN combinations with other 

networks on the KDD99 dataset at 99.9%. Chawla et al. [40] 

proposed a technique using a combined convolutional 

network and GRU RNN; they also could achieve 81% 

accuracy on the ADFA-LD dataset with a learning rate of 

0.0001.  

 

E. CNN-LSTM 

The intrusion detection method proposed by Wang et al. [41] 

uses the convolution filter to extract the feature and the 

LSTM network for classification. That is, it uses CNN deep 

networks to learn low-level features and LSTM networks to 

learn high-level features. This method reported 99.89% 

accuracy on the ISCX2012 dataset. Furthermore, Hsu et al. 

[42] used a hybrid method based on LSTM and convolution 

network to detect intrusion and reported 94.12% accuracy on 

a larger dataset. Lee et al. [43] designed an intrusion 

detection system to prevent SSH and DDOS attacks in 

software-defined networks, which used four deep learning 

models, including MLP, CNN, LSTM, and SAE. Malik et al. 

[44] designed an Efficient Reconnaissance and Surveillance 

Detection in SDN using CNN and LSTM; however, they 

evaluated their model using only one dataset, namely 

CICIDS 2017. 

 

F. RNN-LSTM 

Jiang et al. [6] developed a multi-channel intelligent attack 

detection technique based on a combination of LSTM and 

RNN networks. In this LSTM-RNN architecture, multiple 

feature channels are given to the network input layer. Then, 

the LSTM layer, the Mean Pooling layer and finally the 

logistic regression layer are used. Finally, a majority vote is 

taken on the results obtained. Jiang et al. reported a detection 

rate of 99.23 and an accuracy of 98.94% on the NSL-KDD 

dataset. 
 

G. Auto Encoder  

The articles in this category [45-50] use deep Auto Encoder 

neural networks. Mohammadi and Namadchian [45] first 

performed normalization and then used a deep Auto Encoder 

method to reduce the error rate. Finally, on the NSL-KDD 

dataset, they achieved 92.72% accuracy and 98.11% 

detection rate in the classification of R2L attacks. 

Papamartzivanos et al. [49] provided a comprehensive 

framework based on self-taught learning and MAPE-K 

methodology. The framework included plan, monitor, 

analyze, and execute activities that are applied to a 

knowledge base. Their model was a Sparse Auto Encoder 

and a Feedforward Auto Encoder. Their tests on the KDD99 

and NSL-KDD datasets reported 99.8% and 99.6% accuracy. 
 

H. Deep Neural Network (DNN) 

The models in this category [5,51-58] use deep neural 

networks to detect network intrusions. In 2019, 

Vinayakumar et al. [5] proposed an IDS based on deep neural 

network and tested it on six datasets. The model layers 
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included the fully connected layer, the normalization layer, 

and the drop-out layer with a coefficient of 0.01. They used 

16 consecutive layers, several ReLU activation functions, 

and learning rates between 0.01 and 0.5. This model reported 

good accuracy on six well-known datasets (e.g. 96.3% on the 

CICIDS dataset or 93% on the KDD99 dataset). 
Tang et al. [51] also proposed a DNN-based intrusion 

detection method which was performed on the SDN 
environment and the NSL-KDD data set, and its experiments 
with a learning rate of 0.0001 reported an accuracy of 75.75. 
Using the Boltzmann neural network on the KDD99 dataset, 
Roy et al. [52] were able to report a very high 99.99% 
accuracy for two-class mode (attack or normal). 

Ustebay et al. [53] used both the deep neural network and 
the shallow neural network (SNN) to detect abnormalities. 
They used these two models to reduce the feature set. They 
also trained the models on the CICIDS2017 dataset and 
reported a 98.45% accuracy rate on the deep models. They 
showed that deep models would achieve higher accuracy, 
precision, and recall than shallow models. 

Vigneswaran et al. [54] evaluated DNN and SNN models 
on NIDS. They performed experiments on the DNN 
architecture with 1 to 5 layers at a learning rate of 0.1, 
considered 1000 Epochs on the KDD99 dataset, and finally 
compared the results with shallow machine learning 
algorithms. The results showed that the three-layer DNN had 
the best accuracy of 93% and precision of 99% among all 
these algorithms. 

Duy et al. [57] designed a framework called DIGFuPAS 
which creates attack examples and acts like deep learning-
based IDS in SDN in a  Black-Box manner. They used 
Wassertein Generative Adversarial (WGAN) Model, a 
generative model based on deep learning. Bouria and 
Guerroumi [58] presented an IDS based on a deep learning 
approach to strengthen SDN network security. The 
communication channel between the control layer and the 
infrastructure layer of the SDN is protected against various 
attacks. Moreover, they evaluated their model only on the 
CICIDS 2017 dataset. 

 

2.3. Software-Defined Networks 
Software-defined network is a new type of network 
architecture in which one or more central servers are 
responsible for controlling all network elements, whereas the 
rest of the elements only direct network traffic [59, 60]. 
Traditional networks were suitable for a static client-server 
structure. But today's modern networks, including data 
centers, cloud services, mobiles, and IoT devices, demand 
new requirements. 

As you know, in traditional networks, each network 
device calculates routes and makes decisions on network 
policies. However, in SDN networks, the network operating 
system (the controller) is responsible for deciding how to 
route packets and applying network policies. The most 
essential concept in SDN networks is to separate the control 
plane and data plane. While the control plane decides how to 
route the packets, the switches and routers merely forward 
packets and are not involved in decision-making.  

Apart from the controller and the network devices, some 

other components constitute the SDN architecture. For 

example, the SDN applications express their desired network 

behavior to the controller using some interfaces. Moreover, 

the OpenFlow protocol communicates between the control 

and the data planes. 

While SDN provides easy, flexible, and integrated 

management, it imposes several security issues. As the 

control logic in SDN is centralized, it is more vulnerable to 

cyber-attacks such as DDoS; therefore, the design of security 

appliances for SDN networks is crucial [61, 62]. 

 

3. The proposed model  

The proposed model consists of three phases: 1) 

preprocessing phase, 2) neural network design phase, and 3) 

intrusion detection phase. In the first phase, the necessary 

pre-processing is performed on the raw data collected from 

the SDN network traffic. In the second phase, the neural 

network is designed with the appropriate layer arrangement 

and the proper activating function. The model is trained on 

the training dataset with the required number of repetitions. 

In the third phase, the trained model is tested on a test dataset, 

and the performance of the model is evaluated using various 

metrics such as accuracy, precision, and recall. 

In deep learning, the goal of training is to increase the 

performance of the model using the defined training set. To 

measure the performance, we defined a loss function and 

reduced it in the hope that it would improve the overall 

performance of the model. While there are many loss 

functions to compute the distance between the true value and 

the estimated one, Cross entropy [3] is the most popular. In 

this research, we used the Cross entropy and the Adam 

optimizer for all three datasets. Cross entropy for a 

classification problem with 𝑛 classes is defined as (1): 
 

𝐶𝐸 = − ∑ 𝑡𝑖 𝑙𝑜𝑔(𝑝𝑖) ,𝑛
𝑖=1                                                     (1) 

 

where 𝑡𝑖 is the true value and 𝑝𝑖  is the probability for the 

𝑖𝑡ℎ class.  

In this research, we considered seven different 

configurations for the neural network and evaluated all these 

seven models on three datasets, NSL-KDD, KDD99, and 

UNSW-NB15. It should be noted that the architecture and 

layered layout of the proposed models are the same for all 

three datasets, which is one of the strengths of our solution. 

To achieve proper performance, many previous models 

[5,24,28,59] have offered different layout layers for each 

data set, but our proposed architecture achieved good 

performance for all three datasets without manipulation. 

Each of these seven models had a unique layout consisting 

of several layers, such as embedding, Dense, Drop out, and 

activation layers. The first model was a model based on 

dense layers and had nine layers. The second model was 

based on the convolutional neural network (CNN) and had 

the largest number of layers (22 layers). The third model was 

a 10-layer LSTM-CNN hybrid network. The fourth model 

was based on the dense network with the least number of 

layers. The fifth model, like the second one, was a CNN-

based model with a relatively large number of layers. The 

sixth model was based on the LSTM-CNN hybrid network 

and had 12 layers. Finally, the seventh model was based on 

the dense network and had 12 layers. The designs of these 

seven models are described in Table 1. The number of 

neurons in each layer is represented in parentheses. 
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Table 1. The layout of the seven proposed ANN-based IDSs 

 
Model 7 Model 6 Model 5 Model 4 Model 3 Model 2 Model 1 Layers 

Dense(64) Embedding Embedding Dense(128) Embedding Embedding Dense(128) Layer 1 

Dense(32) Dropout Dropout Dense(64) Dropout Dropout Dense(64) Layer 2 

Activation Conv(64) Conv(256) Dense(128) Conv(32) Conv(256) Dense(128) Layer 3 

Dropout Dropout Dense(100) Dense(64) Conv(64) Dense(100) Dropout Layer 4 

Dense(32) Dropout Dropout Dense(6) Conv(128) Dropout Dense(64) Layer 5 

Activation Conv(64) Conv(128) Dense(128) LSTM(128) Conv(128) Dropout Layer 6 

Dropout Dropout Dense(100) FC Dense(100) Dense(100) Dense(6) Layer 7 

Dense(32) LSTM(300) Dropout --- Dropout Dropout Dropout Layer 8 

Activation Dense(100) Conv(128) --- Dense(100) Conv(256) FC Layer 9 

Dropout Dropout Dense(100) --- FC Dense(100) --- Layer 10 

Dense(32) Dense(10) Dense(100) --- --- Dropout --- Layer 11 

FC FC Dropout --- --- Dense(200) --- Layer 12 

--- --- Dense(200) --- --- Dropout --- Layer 13 

--- --- Conv(32) --- --- Dense(100) --- Layer 14 

--- --- Conv(64) --- --- Conv(32) --- Layer 15 

--- --- Conv(128) --- --- Max-pool --- Layer 16 

--- --- Dense(100) --- --- Dropout --- Layer 17 

--- --- Dropout --- --- Dense(256) --- Layer 18 

--- --- Dense(256) --- --- Dropout --- Layer 19 

--- --- Dropout --- --- Dense(100) --- Layer 20 

--- --- FC --- --- Dropout --- Layer 21 

--- --- --- --- --- FC --- Layer 22 

We tested all seven proposed models against three datasets 

NSL-KDD, KDD99, and UNSW-NB15 and selected the best 

one (i.e., Model 7).  

The best-proposed model (Model 7) was a unique 12-layer 

deep neural network with the following layer topology: 

dense, dense, activation, drop out, dense, activation, drop 

out, dense, activation, drop out, dense, and finally activation 

or fully connected (FC) layer which is used to select the 

appropriate class using SoftMax or Tanh functions. From 

now on, we will call Model 7 the proposed model. The 

proposed model improves the evaluation metrics without 

changing the number and layout of layers on the three 

datasets. This is the superiority of our solution over other 

works, which provides a different network architecture for 

each dataset. 

However, it should be noted that since these three datasets 

are different in terms of the number of parameters and the 

number of output classes, our model also considers different 

parameters and final activation functions for selecting output 

classes. Also, the initial values for the dense layers are 

slightly different for each dataset. In the following, we will 

examine the layers of the proposed model. 

Dense Layer: The values of the dense layers in the 

proposed model are different for each dataset and depend on 

the number of dataset properties. For example, for the 

UNSW-NB15 dataset, 64 values are provided for the first 

layer. The activation function is also one of the best-tested 

functions for the neural network. The non-linear ReLU 

function is defined in  the following (2): 

 

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥),                                                      (2) 

 

where 𝑥 is the input. 

Drop out layer: The drop out layer accidentally removes 

and releases some neurons, preventing the network overfit. 

Therefore, it does not allow the network to retain data and to 

be disturbed in predicting the testing data. In the proposed 

model, a drop out layer with values of 0.15 to 0.5 is 

considered after each dense layer. 

Fully connected (FC) layer: A fully connected layer 

(unlike a dense layer) is a layer that connects to all the 

neurons in the previous layer. It considers the trained inputs 

in the previous layers and assigns them to the appropriate 

class using an activation function such as SoftMax or Tanh, 

as defined in (3) and (4). Figure 2 illustrates the proposed 

model diagram: 
 

𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑛

𝑗=1

,                                                    (3) 

 

𝑇𝑎𝑛ℎ(𝑥) =
𝑒2𝑥−1

𝑒2𝑥+1
,                                                               (4) 

 

where 𝑥 is the input.
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Dense(64)
...

Dense(32) Activation Dropout Dense(32) Activation Dropout Dense(32) Activation Dropout Dense(32) FC

 
Figure 2. The layer layout of the proposed solution 

 

The implementation of the proposed solution is described 

below. The data collected from the data sets of SDN 

networks were prepared and modeled. The layout, number, 

and type of network layers were set, the activation functions 

were selected, and the specified attack classes were 

converted into vectors. Then, the dataset was tagged with 

attack and non-attack labels. Finally, the input data, the 

output classes, layers, and weights of the data set in CSV 

format would make the DNN neural networks. We used 

TensorFlow and Keras deep learning package and Python 

programming language. To train the model faster and use 

powerful GPUs, we used the Google Colab service. We 

trained the model and the network with a suitable number of 

iterations and made sure of avoiding overfitting in each 

epoch. Finally, we tested the model using the test data set and 

evaluated the improvement of the model's performance in 

terms of accuracy, precision, recall, and cost function. 
 

4. The evaluation of the proposed model 

4.1. Datasets  

In this study, three datasets, including NSL-KDD, KDD99, 

and UNSW-NB15, were used as benchmarks to select the 

best model among seven models and to compare the 

proposed model with other methods. 
 

A. KDD99 dataset 

The KDD99 dataset is an old dataset containing 41 features 

and five different classes: normal, DoS, remote-to-local 

(R2L), user-to-root (U2R), and Prob. It includes 494,021 

records for training and 311,029 for testing sets. Some of the 

derived features include duration, protocol_type, service, 

src_bytes, dst_bytes, flag, urgent, and so on. One drawback 

of KDD99 is that the sets of classes in the training and testing 

sets are imbalanced. Moreover, there are many duplicates in 

the dataset. 

 

B. NSL-KDD dataset 

The NSL-KDD dataset is one of the most widely used 

datasets for intrusion detection research; it is a subset of the 

original KDD99 and is designed to solve some of the 

drawbacks of the KDD99 dataset. This dataset does not have 

duplicate records in the training and testing sets, and the 

number of records is considered more reasonable and 

appropriate. The feature set and the type of classes are the 

same as the original KDD99.  
 

C. UNSW-NB15 dataset 

UNSW-NB15 is a relatively new dataset with a hybrid of real 

normal activities and synthetic contemporary attacks. It has 

175,341 records in the train set and 82,332 records in the test 

set. The dataset has ten classes (normal and nine types of 

attacks). The attack types are DoS, backdoors, fuzzers, 

analysis, exploits, generic, shellcode, reconnaissance, and 

Worms. Moreover, there are 49 derived features. 
 

4.2. Evaluation Metrics 

The most important and widely used metrics to evaluate the 

quality of the results of intrusion detection methods are: 1) 

accuracy, 2) precision, 3) recall, 4) F-measure, and 5) loss 

function [49, 63-65]. At first, it is necessary to define the four 

basic terms used in the mentioned metrics [66]: 

 True Positive (TP) indicates the number of records in the 

dataset that our method correctly classified in the attack 

class.  

 True Negative (TN) is the number of records in the 

dataset that our method rightly classified in the normal 

category.  

 False Positive (FP) indicates the number of records in the 

dataset that our method incorrectly classified in the attack 

class.  

 False Negative (FN) is the number of records in the 

dataset that our method mistakenly classified in the 

normal category. 

In the following, we will explain the application of these 

basic terms in the mentioned evaluation metrics. 

Precision: This metric estimates the ratio of correctly 

identified attack records to the total number of detected 

attack records (5): 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                      (5) 

 

Recall: This metric estimates the ratio of correctly 

classified attack records to the total number of attack records 

(6): 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                          (6) 

 

Accuracy: This metric estimates the ratio of correctly 

classified records to the total records. In other words, the 

accuracy metric shows the percentage of the data that are 

correctly categorized in (7): 
 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                     (7) 

 

F-measure: This metric establishes a tradeoff between 

precision and recall. It is the harmonic mean of precision and 

recall (8): 
 

𝐹 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                    (8) 

 

Loss function: This metric indicates the amount of output 

error, and we can get good results by optimizing it [36, 51, 

67]. 

 

4.3. The evaluation of the Proposed Solution 

To implement the proposed models, we used the Jupyter 

Notebook in the free Google Colaboratory service. In 

particular, we used the Tensorflow 1.0 deep learning 

package [68] along with Keras Backend and the Adam 

optimizer with different learning rates. Moreover, we used 

the most popular cost function, that is, Cross Entropy. The 

seven neural network models were examined and evaluated 

on the three datasets with the same conditions. 
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Table 2.  The performance of the seven proposed models on the KDD99 dataset 
 

Metrics Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Accuracy 53.96 98.93 50.87 61.1 98.9 88.22 99.02 

Precision 83.79 88.67 78.54 98.27 88.38 63.17 99.14 

Recall 76.19 86.34 79 41.24 85.94 58.77 98.93 

F-measure 78.78 87.49 78.74 58.08 87.14 60 99.04 

Loss function 0.046 0.03 0.054 0.415 0.031 0.077 0.107 
 

 
Figure 3. The evaluation of the loss function of the seven proposed models on the KDD99 dataset 

 

A. The evaluation of the seven models on the KDD99 

dataset 
We examined all seven proposed models with the KDD99 
dataset. Table 2 shows the accuracy, precision, recall, F-
measure, and loss functions of all the models. The 
performance of Model 7 was better than the other models in 
terms of accuracy, precision, recall, and F-measure; 
however, the loss function of Model 7 was higher than most 
models. Model 2, with a value of 0.03, had the lowest loss 
function. 

Figure 3. shows the evaluation of the loss function on our 
seven models for the KDD99 dataset. In Model 7, the cost 
function for validation data (orange line) was approximately 
tangent to the cost function for training data (blue line). For 
other models, only training data were examined due to the 
imbalanced training and validation data.  

In Model 1, with increasing epochs, the error decreased 
but with fluctuations, which can be attributed to the lack of 
use of drop out layer for optimal control of overfitting. 
Model 2 had a stepped decrease. In the first repetitions, it had 
good learning from training data, however, in the subsequent 
repetitions, the learning rate decreased. It should be noted 
that this model had the best value of the loss function. 

Model 3 did not reach the minimum value of the loss 

function but had a good decreasing slope. The loss function 
of Model 4 not only decreased after a while, but also it 
showed an increase due to the high learning rate and 
inappropriate layer arrangement. The lower the learning rate, 
the greater the possibility of improving the loss function. The 
loss function of this model was the worst loss function 
among the design models. 

Model 5 initially had a sudden decrease and then reached 

a slow and relatively uniform decrease. The learning rate 

gradually improved better in this model. In Model 6, the 

overfitting fluctuations were uncontrolled, and the error 

increased and decreased abruptly. The sixth model worked 

well on the training data. However, after feeding new data, 

the loss function increased due to not using the drop out layer 

correctly.  

Model 7 (i.e., the best proposed model) did not have the 

least loss function among all the models, but it was able to 

control overfitting with the correct arrangement of layers. 

This model also performed well in the validation dataset. 

 

B. The evaluation of the seven models on the NSL-KDD 

dataset 

Table 3. shows the performance values of the seven models 

on the NSL-KDD dataset. It is quite clear that the proposed 
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solution (Model 7) performed much better than other models 

in all evaluation criteria, even in the loss function. As 

compared to other models, this showed the excellent 

performance of the proposed solution and the proper 

arrangement of the neural network layers in it. 

Considering Figure 4, it is clear that Model 7 greatly 

reduced the loss function. In fact, the loss function had a 

slight difference in both the training and validation datasets. 

If the loss function of the training data were close to the loss 

function of the validation data, it would be safe to say that 

the over-fitting is well controlled. The loss function in Model 

7 reached the lowest possible value among the seven models. 

One of the reasons for this smooth reduction of the loss 

function was the correct use of drop out layers between the 

dense layers. 

Model 1 had the lowest loss after model 7. The value of 

the loss function could be well reduced due to its good 

learning rate. Of course, the loss function fluctuated with the 

arrival of some new data, and the network controlled the 

fluctuations using the appropriate learning rate. The cost 

function of the second model initially decreased but 

remained constant after a few iterations. To solve this 

problem, the learning rate should be adjusted and reduced 

during the training steps.  

The layout of Model 3 was not able to reduce the loss 

function well. Model 4, like the third model, was subject to 

fluctuations in new train data. This indicated that the model 

had learned well from previous data; however, the error 

fluctuated with new data, which was not very acceptable. 

The loss function of Model 5 remained constant very soon 

and could not reduce the loss function more than this amount. 

Adjusting the input weights of the next layers was very 

important. In the fifth model, the input weights of the layers 

were not well adjusted and had been updated with a constant 

value, producing a fixed loss function. 

Model 6 did not perform well in this dataset. Increasing 

the learning rate initially reduced the loss function, but the 

error rate then increased. It seems that by reducing the 

learning rate in these models, we can solve this problem and 

improve the model performance. Thus, Model 7 in the NSL-

KDD dataset is undoubtedly the best-designed model 

according to the evaluation criteria under consideration.
 

Table 3. The performance of the seven proposed models on the NSL-KDD dataset 

Metrics Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Accuracy 71.75 95.95 96.53 67.08 95.95 61.32 99.39 

Precision 83.51 53.26 93.25 91.17 53.48 80.33 99.49 

Recall 69.79 53.23 70.23 78.4 53.44 84.11 99.33 

F-measure 75.63 53.24 79.98 83.89 53.46 81.74 99.41 

Loss function 0.068 0.088 0.084 0.094 0.088 0.076 0.022 

 
 

 

 
 

Figure 4. The evaluation of the loss function of the seven proposed models on the NSL-KDD dataset 
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C. The evaluation of the seven models on the UNSW-NB15 

dataset 

Table 4. shows the evaluation of our models on the UNSW-

NB15 dataset. Model 7 had the highest value in terms of 

accuracy and F-measure. In addition, this model achieved a 

recall of 99.98% (approximately one). Although the third 

and fourth models achieved 100% recall, other performance 

measures of these two models were lower than Model 7. 

However, the loss function of Model 7 was higher than 

Models 2, 4, 5, and 6. It is possible to reduce the error rate 

by changing the activation function for this dataset. 

However, changing the activation function is not acceptable, 

and we consider fixed activation functions for three datasets. 

Referring to Table 2, Table 3, and Table 4, it is clear that 

the highest value for accuracy metric (one of the most 

important evaluation metrics in intrusion detection systems) 

on all three datasets of KDD99, NSL-KDD, and UNSW-

NB15 belonged to the proposed model (Model 7). 

Figure 5 shows the loss functions of the seven models on 

the UNSW-NB15 dataset. It is clear that the first model 

increased the error instead of decreasing it and thus had the 

worst loss function among the seven models. It can be 

inferred that the final activation function of Model 1 failed 

to predict the correct class. Given that changing the 

activation may reduce the error, we did not change it in this 

study; in fact, we considered fixed activation functions for 

all three datasets. 

The loss function of the second model had a decreasing 

trend, which implies that the layer arrangement and the final 

activation function were chosen properly. The third model is 

almost the same as the second model and has the least loss 

value. The loss function in the fourth model continuously 

decreased; however, it did not reach the lowest level and was 

fixed at approximately 0.6881%. 

While the loss functions of the fifth and the sixth models 

performed similarly, the fifth model acted slightly better. 

The sixth model had a higher learning rate than the fifth 

model, but it controlled the overfitting better. The loss 

function of the proposed model also had a decreasing trend, 

but its error rate was higher than the other models.
 

Table 4. The performance of the seven proposed models on the UNSW-NB15 dataset 

Metrics Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Accuracy 4.3 64.04 55.05 55.04 64.02 66.45 68.11 

Precision 3.3 68.5 55.05 55.04 69.15 74.54 68.13 

Recall 2.2 65.56 100 100 64.55 59.36 99.98 

F-measure 2.2 66.59 71 70.99 66.11 66.06 80.97 

Loss function 8.86 0.632 0.34 0.688 0.635 0.739 7.16 

 

 

 
 

Figure 5. The evaluation of the loss function of the seven proposed models on the UNSW-NB15 dataset 
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D. Performance Comparison  

In this section, we will compare the results of our model with 

the findings offered by VinayaKumar et al. [5] in which 

excellent evaluation metrics values are obtained on six 

datasets.  

As shown in Figure 6, the proposed model performs better 

than VinayaKumar et al.’s work on the KDD99 dataset in 

terms of all evaluation metrics (accuracy, precision, recall, 

and F-measure). Figure 7 shows a comparison of the 

proposed method with VinayaKumar et al.’s method on the 

NSL-KDD dataset. The proposed method works much better 

than VinayaKumar et al.’s work. All four criteria in the 

proposed method are close to 100%, while in VinayaKumar 

et al.’s method they are about 80%. 

The proposed solution and the method offered by 

VinayaKumar et al. on the UNSW-NB15 dataset were also 

compared. Figure 8 shows that the accuracy of the proposed 

model is 68.11%, and the accuracy of the method of 

VinayaKumar et al. is 65.1%, and therefore the proposed 

solution works better. Regarding the Precision metric, 

VinayaKumar et al.'s method is 59.7%, and the proposed 

method is 68.13%. Also, in the recall metric, the proposed 

method performs much better than the method of 

VinayaKumar et al. 

It should be noted that the UNSW-NB15 dataset is one of 

the largest intrusion detection datasets, and the improvement 

obtained by the proposed method on this dataset is valuable. 

 

 
 

Figure 6. Comparison between the proposed model and 

VinayaKumar et al.’s work on the KDD99 dataset 

 

 
 

Figure 7. Comparison between the proposed model and 

VinayaKumar et al.’s work on the NSL-KDD dataset 

 
Figure 8. Comparison between the proposed model and 

VinayaKumar et al.’s work on the UNSW-NB15 dataset 

 

In the following, we will compare the performance of the 

proposed model with several other models. The models in 

[69-71] are evaluated using NSL-KDD. As can be seen in 

Table 5, the accuracy, precision, recall, and F-score of our 

model are better than these models in this dataset. The model 

in [37] reports the F-measure on the KDD99 dataset. 

However, as Table 5 shows, the F-measure of our model is 

greater than the F-measure of [37]. Finally, the model in [72] 

reports the precision equal to 93.41 on UNSW-NB15, which 

is greater than our precision score on this dataset. However, 

we should mention that our model, unlike [72], has 

acceptable performance on each of these three datasets. 
 

Table 5. Comparison between the proposed model and other state-

of-the-art models on the KDD99, NSL-KDD, and UNSW-NB15 

datasets 

DataSet 
KDD99 NSL-KDD UNSW-NB15 

References / Metrics 

Proposed 

Model 

Accuracy 99.02 99.39 68.11 

Precision 99.14 99.49 68.13 

Recall 98.93 99.33 99.98 

F-measure 99.04 99.41 80.97 

[69] 

Accuracy - 79.08 - 

Precision - 87.27 - 

Recall - 94.60 - 

F-measure - 91.47 - 

[72] 

Accuracy - - - 

Precision - - 93.41 

Recall - - - 

F-measure - - - 

[37] 

Accuracy - - - 

Precision - - - 

Recall - - - 

F-measure 94.50 - - 

[70] 

Accuracy - 90.73 - 

Precision - 86.38 - 

Recall - 93.17 - 

F-measure - 89.65 - 

[71] 

Accuracy - 86.70 - 

Precision - 89.36 - 

Recall - 86.70 - 

F-measure - 87.22 - 

 



Journal of Computer and Knowledge Engineering, Vol.5 , No.2. 2022. 41 

 

5. Conclusion and future work 

One of the challenges of SDN networks is to design an 

intrusion detection system that can prevent various types of 

attacks. While several methods have provided IDSs for 

SDNs, none of them has been able to achieve suitable 

performance values on different available datasets. 

In this study, to improve the security level of the network 

and prevent various attacks, we proposed an intrusion 

detection system based on a 12-layer deep neural network. 

This intrusion detection system was trained and tested on 

three SDN-specific datasets, namely NSL-KDD, KDD99, 

and UNSW-NB15. We evaluated our model over these 

datasets. The accuracy, precision, recall, and F-measure of 

the model on KDD99 were 99.02, 99.14, 98.93, and 99.04, 

respectively. These measures on the NSL-KDD dataset were 

99.39, 99.49, 99.33, and 99.41, respectively. Furthermore, 

the model on the UNSW-NB15 dataset reached good results. 

The results on the three datasets show that our model can 

reduce the loss function significantly. Moreover, we 

compared our model with six recent works. The experiment 

results showed the supremacy of the proposed model over 

these models.   

For future work, the authors plan to work on the following: 

 Working on different datasets. While only three widely 

used datasets are examined in this study, we can work on 

more than 20 publicly available SDN-specific datasets.  

 Implementing other neural network architectures, 

including CNNs, such as MobileNet, AlexNet, or LeNet. 

Another possible work is to ensemble the proposed 

model with other deep architectures or meta-heuristic 

algorithms such as particle swarm optimization (PSO) 

algorithm. 
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Meta-Learning for Medium-Shot Sparse Learning  

via Deep Kernels1* 
Research Article 

Zohreh Adabi-Firuzjaee1               Sayed Kamaledin Ghiasi-Shirazi2  
 

Abstract: Few-shot learning assumes that we have a very 

small dataset for each task and trains a model on the set of 

tasks. For real-world problems, however, the amount of 

available data is substantially much more; we call this a 

medium-shot setting, where the dataset often has several 

hundreds of data. Despite their high accuracy, deep neural 

networks have a drawback as they are black-box. Learning 

interpretable models has become more important over time. 

This study aims to obtain sample-based interpretability using 

the attention mechanism. The main idea is reducing the task 

training data into a small number of support vectors using 

sparse kernel methods, and the model then predicts the test 

data of the task based on these support vectors. We propose 

a sparse medium-shot learning algorithm based on a metric-

based Bayesian meta-learning algorithm whose output is 

probabilistic. Sparsity, along with uncertainty, effectively 

plays a key role in interpreting the model's behavior. In our 

experiments, we show that the proposed method provides 

significant interpretability by selecting a small number of 

support vectors and, at the same time, has a competitive 

accuracy compared to other less interpretable methods. 

Keywords: Bayesian Meta-learning, Medium-shot 

Learning, Sample-based Interpretability, Sparse Kernel, 

Attention 

 

1. Introduction 

So far, two approaches for deep learning have received more 

attention. The first approach is deep learning on a large 

dataset, which has been more successful than other machine 

learning methods in image, language, and signal processing 

[1]. In deep learning, as it is difficult for humans to analyze 

a huge amount of data, one tries to train deep neural networks 

with it so that the information in the data could be exploited 

through interaction with the model. We need a massive 

amount of data to use deep learning, but in most real-world 

problems the amount of labeled data is not enough to train a 

deep model. The second approach is known as few-shot 

learning [2]. It aims to make deep learning models like 

humans and learn new concepts well by seeing a few 

examples [3].  
In few-shot learning, the assumption is that the number of 

training data is very small. For example, in few-shot 
classification, the number of data for each class ranges 
between one and five. This assumption is contrary to the fact 
that in real-world problems, we easily have more data for 
each task, or it is even possible for the user to provide a few 
hundred samples. Therefore, many practical problems such 
as classification of medical images [4] and time series 
prediction are naturally in the medium-shot setting. Medium-
shot learning is an extension of few-shot learning in terms of 
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the number of data. In recent years, meta-learning methods 
have shown remarkable performance in solving few-shot 
learning problems [5]. In this paper, we consider meta-
learning methods for the case of medium-shot setting. 

Deep neural networks have attracted widespread attention 
due to their ability to obtain high accuracies in various 
problems. However, there is a serious debate about them 
related to interpretability [6]: to what extent and on what 
basis can we trust the response of neural networks? Because 
the nature of deep networks is black-box, many methods 
have been proposed to interpret neural networks and their 
decision-making [7]. In problems where the model has to 
make a decision, the user wants to know why the model has 
made this decision. The decision of the model can be 
described in different ways. One of these methods is that the 
model determines based on the data it has made its decision. 
Therefore, the user can determine the quality of a decision by 
examining the samples that the model has selected.  

The medium size of the data in the medium-shot setting 
provides us with the possibility and opportunity of 
interpretation based on the evaluation of the entire training 
data of the task. Our goal is to train a model in such a way 
that it determines which data have a more important role in 
its decision-making, and we consider these data as support 
vectors. Our idea to achieve this kind of interpretability is to 
follow the perspective of attention in deep learning. We want 
to learn which data to pay more attention to. For this purpose, 
we present an interpretable meta-learning algorithm. We start 
our work with Deep Kernel Transfer (DKT), a metric-based 
meta-learning algorithm [8]. DKT is a Gaussian process with 
a deep kernel, so it combines the representational power of 
neural networks and the reliable uncertainty of Gaussian 
processes simultaneously. To implement the attention 
mechanism, we use sparse kernel methods and extend the 
DKT algorithm to the medium-shot setting. By sparsifying 
the expansion of the decision function, we can have sample-
based interpretability with the selected data as support 
vectors. The resulting algorithm, Sparse DKT, reduces the 
data to a small number of support vectors for each task. In 
the Sparse DKT algorithm, only the support vectors at the 
test time directly influence the prediction of the test data 
label. The experimental results show that Sparse DKT, in 
addition to interpretability, has comparable accuracy to other 
state-of-the-art meta-learning methods, including the DKT 
algorithm. 

The main contributions of this article are: 

1. Introducing learning with the medium-shot setting and 

utilizing deep meta-learning algorithms for it; 
2. Learning a sample-based interpretable model using the 

attention mechanism; 
3. Applying sparse kernel methods for determining a small 
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subset of training data as support vectors. 
The remaining structure of this article is as follows: in 

section 2, the basic concepts about meta-learning, 
interpretability, attention perspective, sparse kernel, and 
related works are described. In section 3, the proposed 
algorithm is presented. The evaluation of the presented 
algorithm in classification will be in the section 4. In section 
5, conclusion and future works are presented. 

 

2. Preliminaries 

2.1. Meta-learning 
Meta-learning is one of the areas that has received attention 
in recent years [9-34]. In classic learning, in order to learn a 
task, the model is trained on the task data in such a way that 
it has a good generalization of the new data. The objective of 
meta-learning, also known as learning to learn, is to go to a 
higher level and understand how to solve tasks rather than 
just learning a single task (Figure 1). Humans face with 
different issues over time and develop better ways to deal 
with new ones by drawing on their experiences. Similar to 
humans, we should train the model on a set of tasks from the 
same distribution sequentially in meta-learning. By 
completing each task, we acquire metadata that the model can 
use to learn a new, unseen task more effectively and quickly. 

 

A. Meta-learning setup 
In meta-learning, as shown in Figure 2, instead of one task, 

we have a set of tasks, ℳ = {𝒟𝜏}𝜏=1
𝑇 , which are from the 

same distribution. According to Figure 2, for each task, 

indexed by τ, we have the data 𝒟𝜏 = {𝑋, 𝑦}, which can be 

divided into two parts, the train/support set, 𝐷𝜏
𝑡𝑟 , and the 

test/query set, 𝒟𝜏
𝑡𝑠. The test data that is used for meta-test is 

denoted by the asterisk symbol as 𝒟∗ = {𝒟∗
𝑡𝑟 , 𝒟∗

𝑡𝑠}.  
 

B. Few-shot learning 
Few-shot learning refers to tasks with a few training data. For 
example, in the few-shot classification represented as N way 
- K shot, N is the number of classes in the task, and K (usually 
considered 1 or 5) training samples are available for each 
class (Figure 2 shows 3 way- 2 shot classification). Few-shot 
learning aims to make deep neural networks capable of 
learning a new concept by observing a small number of 
training samples. The small amount of training data makes it 
infeasible to train the deep neural network, but the meta-
learning approach has achieved significant improvements in 
few-shot learning. Deep meta-learning learns a model that 
can solve a new task despite the small training data. Medium-
shot learning is a generalization of few-shot learning, so we 
employ the meta-learning framework.

 
 

Figure 1. Difference between a) learning and b) meta-learning. In learning, training on a task data is done to generalize new data from the 

same dataset. In meta-learning, we train the model on a set of tasks sequentially. By learning to learn, we can solve the new task more 

efficiently and quickly. 

 

 
 

Figure 2. An example of a meta-learning setup for few-shot learning. The set of tasks ℳ = {𝒟𝜏}𝜏=1
𝑇  is divided into two parts, meta-train 

and meta-test. The data of each task has train and test sets, 𝐷𝜏
𝑡𝑟 and 𝐷𝜏

𝑡𝑠 respectively 
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2.2. Interpretability in Deep Neural Networks 

In deep learning, there are two main classes of approaches to 

explain the prediction of a model: feature-based and sample-

based. In the feature-based approach, features from the input 

image that have a greater impact on the model's prediction 

are identified [35, 36]. The idea of [36] in few-shot learning 

has been applied in [37] to provide interpretable feature-

based meta-learning.  

In the sample-based approach, the data that have the most 

impact on the network's decision-making for test data are 

identified as samples to interpret its prediction (Figure 3) 

[38, 39]. ProtoAttend [40] trains a network that compares the 

input data with training data to predict it based on the 

attention mechanism and learn an attention weight that 

demonstrates the degree of similarity between them. To 

interpret the model's decision for the input data, the data 

whose weight is not zero affect the model's prediction and 

are selected as prototypes. Because there are a lot of data in 

deep learning and it is difficult to compare them all, a subset 

of the data is typically chosen as a candidate set, and 

attention weight is only learned for the candidate set. In 

contrast, the number of data is not large in medium-shot 

setting, and since we can evaluate all the training data, 

sample-based interpretability is possible. In order to achieve 

this, we proceed according to the attention point of view. 

 

 
 

Figure 3. In sample-based interpretability, the training data that 

the model used to determine the label for the input data are 

specified. 

 

A. Sample-based interpretability through Attention 

Using the attention perspective, we can learn a model with 

sample-based interpretability [41]. Simply it means to 

compare the input data with the training data and give greater 

weight to the training data that is more similar to the input 

data when determining its label. To compare the data 

properly, we need to learn a metric space in which similar 

data are placed close together, and dissimilar data are far 

apart. This method is used in the metric-based meta-learning 

algorithms presented for few-shot learning [14–16]. In these 

papers, since the number of training samples is small, there 

is no need for sample-based interpretability, and the main 

objective is to increase accuracy. Since we have more data in 

medium-shot learning, sample-based interpretability 

becomes important; in some applications, explaining the 

model's behavior with a small number of samples makes it 

easier for humans to understand and evaluate the model. 

 

B. Attention and kernel methods 

The attention mechanism and kernel methods are closely 

related [42–45]. It can be said that the idea of attention in 

deep learning is derived from kernel methods [42]. Kernel 

methods have a kernel function 𝑘(𝒙, 𝒙′) that determines the 

degree of similarity [46]. Linear kernel, polynomial, RBF 

(Radial Basis Function), and exponential are the well-known 

kernel functions. Learning the kernel function corresponds 

to learning its parameters, e.g., in the RBF kernel  

 

𝑘(𝒙, 𝒙′) = 𝑠 ∗ exp⁡{−
1

𝑙
||𝒙 − 𝒙′||

2
}                                  (1) 

 

the parameters 𝝓 = {𝑙, 𝑠} are learned during training. 

In deep kernel learning or DKL [47–50], we first use a 

deep neural network to obtain data representations, then 

apply a kernel function to them. The new deep kernel is  

 

𝑘(𝒙, 𝒙′) = 𝑘̃𝝓(𝑓𝜽(𝒙), 𝑓𝜽(𝒙
′))                                           (2) 

 

where 𝑘̃𝝓(𝒙, 𝒙
′) is the kernel function with parameter 𝝓 and 

𝑓𝜽 is a deep neural network. DKL involves jointly learning 

kernel and network parameters. For example, optimization 

of the parameters in the regression of {𝑋, 𝒚}𝑛=1
𝑁  with noise 

variance 𝜎2 is based on the log marginal likelihood,  

 

𝑙𝑜𝑔 𝑝(𝒚|𝑋) = 
 

1

2
{−𝒚⊤[𝐾 + 𝜎2𝐼]−1𝒚 − 𝑙𝑜𝑔|𝐾 + 𝜎2𝐼| + N⁡𝑙𝑜g(2π)} 

(3) 

where 𝐾 is the kernel matrix on the training data. 

 

2.3. Deep Kernel Transfer 

Deep Kernel Transfer or DKT falls into the category of 

metric-based meta-learning [8]. This class of algorithms tries 

to learn a metric space to compare representations based on 

a distance measure [14–16]. DKT is a combination of 

MAML (Model-Agnostic Meta-Learning) and DKL for few-

shot learning. MAML [21] is based on the idea of [13] 

without using an additional model as a meta-learner, learns a 

meta-parameter as an initialization for the parameters of the 

network. The meta-parameter adapts quickly to the data of 

the new task without overfitting due to a few training data.  

The computational graph of the MAML is shown in Figure 

4a Using SGD (Stochastic Gradient Descent) optimization 

on the task training data, the MAML algorithm obtains task-

specific parameter 𝝓𝜏 from the meta-parameter 𝜽. The inner 

loop (adaptation loop) of the MAML has a parametric form, 

so in the outer loop, we encounter the second gradient of 𝜽 

with respect to the optimization path in the inner loop. 

The idea of DKT is to replace the inner loop computation 

with a Gaussian process, which has a non-parametric form. 

Therefore, as shown in Figure 4b, adaptation to the task is 

eliminated. Similar to the DKL, a Gaussian process is 

applied to the representations. DKT computes the marginal 

likelihood (3) on the data of each task and optimizes the 

parameters 𝜽 and 𝝓. By meta-learning a deep kernel on a set 

of tasks, we have a kernel that can be transferred to a new 
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task without needing adaptation. By replacing the inner loop 

with the Gaussian process, the DKT algorithm provides a 

computational simplification for the MAML. Furthermore, it 

is regarded as a Bayesian meta-learning. In the regression 

and image classification in few-shot settings, DKT has 

achieved higher accuracy than MAML and other few-shot 

learning methods. 

 

2.4. Sparse kernel methods  

SVM (Support Vector Machine) is a popular sparse kernel 

method [51]. The Sparsity of SVM results from zeroing 

coefficient 𝛼 for part of the data during the quadratic 

optimization, which determines a subset of data as support 

vectors. In few-shot learning, the MetaOptNet [30] has used 

SVM to simplify the inner loop of MAML to obtain the task-

specific parameter without SGD optimization and not to 

encounter the second derivative in meta-parameter 

optimization (Figure 4c). 
 

 
Figure 4. Computational graph of a) MAML, b) DKT, c) 

MetaOptNet, and d) Sparse DKT (ours). In a), adapting to the task 

is equivalent to obtaining the task-specific parameter 𝝓𝜏. In b), 

meta-parameters 𝜽 and 𝝓 without adapting to the task are updated 

based on the marginal likelihood of the Gaussian process on the 

entire data. In c), the task-specific parameter 𝝓𝜏 is computed by 

applying SVM to the training data of the task. In d), adapting to 

the task is equivalent to specifying the support vectors, a small 

subset of the task training data 

 

The disadvantage of SVM in the MetaOptNet algorithm is 

that it becomes less effective in sparsifying as the data 

increases. Another disadvantage of SVM compared to the 

Gaussian process [52] is that it is not probabilistic. In 

contrast, the Gaussian process is not inherently sparse; the 

kernel matrix is calculated between the test data and all 𝑛 

training data at test time. Several sparse approximations have 

been proposed to overcome the computational and memory 

complexity in the Gaussian process [53, 54]. Almost all of 

these approximation methods specify a criterion to determine 

the significance of the data and greedily select a subset of the 

data of size 𝑚 ≪ 𝑛 to be used in the kernel matrix 

approximation. The main goal of methods in  [55–59] is to 

reduce the computational complexity of the Gaussian 

process by assuming that there is a set of support vectors. 

The criteria to determine the support vectors in these 

methods are usually considered for adding data to this set, so 

the number of support vectors is defined as a fixed 

hyperparameter. However, since these vectors are supposed 

to have the most impact on the model's prediction, we are 

looking for support vectors to be automatically selected with 

a small number and high accuracy. Additionally, in the 

medium-shot learning, the number of data selected as 

support vectors should depend on the task. Therefore, in the 

proposed algorithm, intending to achieve sample-based 

interpretability using Gaussian processes, we leverage the 

sparse Bayesian approach, which we will explain in the 

following section. 

 

3. Sparse DKT for medium-shot learning 
This section presents our meta-learning algorithm, Sparse 
DKT, for medium-shot learning. To achieve sample-based 
interpretability, we need to determine the importance of data 
in data modeling and prediction. We measure the degree of 
importance with the kernel function, so we use DKT. We 
modify this algorithm to attain sample-based interpretability 
and apply attention to it in two ways: attention in adaptation 
and attention in prediction. Attention in adaptation is 
independent of the test data and is performed only on the 
training data. The Sparse Gaussian process is trained on the 
task data; In other words, it adapts to it, and the result of this 
adaptation is the identification of support vectors.  

In contrast, attention in prediction depends on the test data 
but uses only support vectors from the entire training data. 
Due to the usage of Gaussian processes, we already have 
attention in prediction; that is, support vectors affect test 
label prediction based on how similar they are to it. We 
discuss the proposed algorithm for regression, but it can be 
easily generalized for classification. 
 

3.1. Sparse Gaussian process as Adaptation 

In the sparse Bayesian learning framework, Tipping 

introduces the RVM algorithm (Relevance Vector Machine) 

[60]. The advantage of this algorithm we adopted for our 

proposed algorithm is that it automatically selects the data 

that play the main role in data modeling when adapting to the 

task. 

This algorithm is essentially a Gaussian process. Assume 

that we have data = {𝑋, 𝒚} , including the inputs 𝑋 = {𝒙𝑗}𝑗=1
𝑛

 

and the labels 𝒚 = {𝑦𝑗}𝑗=1
𝑛

. Labels have Gaussian noise 𝜖𝑗 ∼

𝒩(0, 𝜎2) added to latent function 𝑓(𝒙) according to 𝑦(𝒙𝑗) =

𝑓(𝒙𝑗) + 𝜖𝑗. The prior knowledge on the function 𝑓(𝒙) is a 

Gaussian process 𝒢𝒫(𝜇, 𝑘𝝓) with mean 𝜇 and kernel 

function 𝑘𝝓. The mean is usually considered zero. 

We can rewrite the latent function 𝒇 in the parametric form 

𝒇 = 𝐾𝒘 in the equation 𝒚 = 𝒇 + 𝝐. 𝐾 is the covariance 

matrix based on the kernel function 𝑘𝝓(𝒙, 𝒙
′). In the 

Gaussian process, the weight 𝒘 has a Gaussian distribution 

𝒩(0, 𝛼0
−1𝐼), where 𝛼0 is a hyperparameter. In RVM, 

Gaussian distribution 𝑝(𝒘|𝜶) = 𝒩(0, 𝐴−1) is considered 

for weights, where 𝐴 = 𝑑𝑖𝑎𝑔(𝜶) is a diagonal covariance 

matrix. As a result, RVM is a Gaussian process with kernel 
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function: 
 

𝑐(𝒙, 𝒙′) = ∑
1

𝛼𝑖
𝑘𝝓(𝒙, 𝒙𝑖)𝑘𝝓(𝒙

′, 𝒙𝑖)
𝑛
𝑖=1                               (4) 

 

where 𝑘𝝓(𝒙, 𝒙𝑖) is equal to the kernel function that is 

defined based on the training data 𝒙𝑖. 𝑐(𝒙, 𝒙
′) is an expansion 

of the product of values of the kernel function 𝑘𝝓(𝒙, 𝒙𝑖) in 

which all data contribute. The kernel function of the data that 

will be included in the expansion is determined by 

coefficient 𝛼𝑖. When 𝛼𝑖 goes to infinity, the kernel function 

corresponding to 𝒙𝑖 data is removed; as a result, the 

expansion 𝑐(𝒙, 𝒙′) becomes sparse. The covariance matrix 

of RVM can be expressed as  
𝐶 = 𝐾𝐴−1𝐾⊤. 

The next step is that based on Bayes Equation 5, and 

having likelihood 𝑝(𝒚|𝒘) = 𝒩(𝒇, 𝜎2𝐼),  
 

𝑝(𝒘|𝜶, 𝒚) =
𝑝(𝒚|𝒘)𝑝(𝒘|𝜶)

𝑝(𝒚)
                                                 (5) 

 

obtain the posterior distribution of the weight, 
 

𝑝(𝒘|𝜶, 𝒚) = 𝒩(𝝁, Σ) 
 

𝝁 = 𝜎−2Σ𝐾⊤𝒚 
 

Σ = (𝐴 + 𝜎−2𝐾⊤𝐾)−1. 

(6) 

RVM training is similar to Gaussian process training; We 

optimize the logarithm of the marginal likelihood (7) with 

respect to the hyperparameters 𝜶 and 𝜎2. 
 

𝑝(𝒚) = 𝒩(0, 𝐶 + 𝜎2𝐼) 
 

log 𝑝(𝒚) = 
 

−1/2{𝒚⊤[𝐶 + 𝜎2𝐼]−1𝒚 + 𝑙𝑜𝑔|𝐶 + 𝜎2𝐼| + 𝑛𝑙𝑜𝑔2𝜋} 
(7) 

By deriving the Equation 7 with respect to 𝜶 and 𝜎2 and 

setting them equal to zero, optimization equations are 

obtained as follows: 
 

𝛼𝑖
𝑛𝑒𝑤 =

𝛾𝑖

𝜇𝑖
2 

𝛾𝑖 = 1 − 𝛼𝑖Σ𝑖𝑖  
 

(𝜎−2)𝑛𝑒𝑤 =
||𝒚 − 𝐾𝝁⁡||2

𝑛 − Σ𝑗𝛾𝑗
 

(8) 

where 𝛴𝑖𝑖  is the 𝑖-th diagonal component of the covariance 

matrix Σ in (6). 𝛾𝑖 ∈ [0,1] indicates how much the data 

contributed to the determination of 𝑤𝑖 . To get 𝜶 and 𝜎2, we 

can use an iterative algorithm. During training, many 𝛼𝑖 
become infinite, which causes variance and mean 

corresponding to their weights to be zero. When weight 𝑤𝑖  

becomes zero, the kernel function at 𝒙𝑖 does not contribute 

to describing the data so that it can be removed from the 

model. The data that have non-zero weight are considered as 

support vectors. Another method to train RVM is to use the 

Expectation-Maximization algorithm [61]. In this study, we 

use the sequential algorithm proposed in the [62] (The 

authors of [62] published their code in MATLAB, and we re-

implemented it with Python. 

http://www.miketipping.com/sparsebayes.htm). In this 

algorithm, the set of support vectors is initially empty, and 

important data are added to this set sequentially. The 

computational cost of RVM is significantly decreased by 

using this addition method, which is better for learning in the 

medium-shot setting. 

 
3.2. Sparse DKT algorithm 

The Sparse DKT algorithm using RVM as the inner loop, on 

the one hand, is a simplification for the MAML; on the other 

hand, it adds interpretability to the DKT. According to 

Figure 4, the difference between DKT and Sparse DKT is the 

addition of the adaptation loop. Unlike MetaOptNet, in 

Sparse DKT, the parameters of the kernel function are part 

of the meta-parameters and are updated by loss of each task. 

Sparse DKT Pseudocode is given in Algorithm 1. In meta-

training, what is important for us from utilizing the RVM 

algorithm as the inner loop of Sparse DKT is to obtain 𝜶. We 

are interested in learning which data are most important in 

describing the whole data and consequently in the model's 

prediction. The Sparse DKT algorithm selects the data whose 

𝛼 coefficient is not infinite as task support vectors. In the 

outer loop, they are used in the optimization with RVM 

marginal likelihood (7). 
 

Algorithm 1. Sparse Deep Kernel Transfer (Sparse DKT) 

Require: ℳ = {𝒟𝜏}𝜏=1
𝑇  meta-train tasks 

Require: 𝝓 kernel hyperparameters, 𝜽 neural network 
weights 
Require: 𝛽1, 𝛽2 step size 

  while not done do 1: 

      Sample 𝒟𝜏 from ℳ 2: 

      SV= RVM(𝒟𝜏)  //Obtain support vectors of 𝒟𝜏  

      with RVM 
3: 

      //Use marginal likelihood to update parameters 4: 

      ℒτ = −𝑙𝑜𝑔⁡𝑝(𝒚|𝑋,𝝓, 𝜽)    //Eq (7) 5: 

      𝝓 ← 𝝓− 𝛽1∇𝝓ℒτ , 𝜽 ← 𝜽 − 𝛽2∇𝜽ℒτ   6: 

  end while 7: 

function RVM(𝒟)       8: 

    //Automatically select support vectors  

    //of the dataset 𝒟                                                                       
9: 

     Initialize 𝜶 and 𝜎2 10: 

     while not converged: 11: 

         Update 𝝁 and Σ      //Eq (6) 12: 

         Update 𝜶 and 𝜎2    // (8) 13: 

     return  support vectors from 𝒟 for finite 𝛼𝑖    
                  values 

14: 

 end function     15: 

At the meta-test time, for the test task with data 𝒟∗
𝑡𝑟 =

{𝑋, 𝒚} and 𝒟∗
𝑡𝑠, the support vectors of the task are first 

selected from the training data 𝒟∗
𝑡𝑟 by running RVM. In 

addition to the support vectors, the mean and covariance of 

the posterior weight distribution are also obtained, which we 

use in the RVM prediction distribution, 

𝑝(𝑦∗|𝑋, 𝒚, 𝒙∗) = 𝒩(𝜇∗, 𝜎∗
2) 

 

𝜇∗ = 𝒌∗𝝁,⁡⁡⁡⁡⁡⁡⁡⁡⁡𝝁 = 𝜎−2Σ⁡𝐾𝑚𝑛𝑦 
 

𝜎∗
2 =⁡𝜎2 + 𝒌∗Σ⁡𝒌∗, Σ = (𝐴 + 𝜎−2𝐾𝑚𝑛𝐾𝑛𝑚)

−1 

(9) 

where 𝒌∗ is the covariance between 𝒙∗ ∈ 𝒟∗
𝑡𝑠 and 𝑚 

support vectors. 𝐾𝑚𝑛 is the covariance between support 

vectors and training data. 
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4. Experiments 

We run classification tests using common datasets in few-

shot learning in a medium-shot setting to evaluate the Sparse 

DKT algorithm. The number of samples has been chosen in 

such a way that we get out of the few-shot mode. We used 

PyTorch and GPyTorch [63] for the implementation of the 

Sparse DKT. 

To compare Sparse DKT with DKT, Feature Transfer, 

MAML, and MetaOptNet, we have considered Omniglot, 

CUB-200, and miniImageNet dataset for image 

classification (Figure 5). 

  

 
 

Figure 5. Images from datasets used in classification 

 

Omniglot consists alphabet of 50 languages and has 20 
hand-written samples for each character. CUB-200 contains 
200 classes of different bird species. MiniImageNet has 100 
classes which is a subset of ImageNet classes. Each class has 
600 images. We run 2-way and 5-way classifications test. As 
in the DKT paper, classification is done one-versus-rest 
(Figure 6), i.e., for each class, we consider a binary Gaussian 
process model with labels {-1,1} and apply the sigmoid 
function to its output in order to have a probabilistic 
interpretation (for MetaOptNet, we also used binary SVMs 
for multi-class classification in experiments). The model 
whose output has the highest probability determines the class 
of the test data. We used a linear kernel in experiments and 
a deep neural network that has a similar architecture to the 
network used in the DKT paper (Figure 7). 

In Feature Transfer, a network and classifier are first 
trained on samples for the training classes. When fine-
tuning, the network parameters are fixed, and a new classifier 
is trained on the test classes. MAML depends on the number 
of gradient steps in the inner loop and has low accuracy at a 
few steps. Increasing the gradient steps also leads to an 
increase in computation and memory consumption. In order 
to be able to test MAML in 10 steps adaptation, we used its 
first order approximation [28]. Table 1 shows the result of 
Omniglot 5 way- 15 shot classification. 

 
 

Figure 6. One-versus-rest scheme. Each model is a binary 

classifier for input data with labels {-1, 1}. For a probabilistic 

output, a sigmoid function 𝜎 is applied to it. 

 

 
 

Figure 7. The CNN used as a backbone for classification. It 

consists of 4 convolutional layers, each consisting of a 2D 

convolution, a batch-norm layer, and a ReLU non-linearity. 

 

Table 1. Average accuracy and standard deviation on Omniglot 

classification with average number of support vectors 
 

SVs Omniglot 5 way - 15 shot Method 

- 99.36±0.08 Feature Transfer 

- 95.80±0.312 MAML 

75 99.52±0.211 DKT 

13 99.46±0.141 MetaOptNet 

6 99.33±0.1 Sparse DKT 

 

Sparse DKT is more accurate than MetaOptNet and close 

to DKT, while DKT uses all training data of 5 classes as 

support vectors for its prediction. MAML can achieve more 

accuracy at the cost of more adaptation steps. Table 2 shows 

the classification results of CUB and miniImageNet. Due to 

the limited resources in this section, we had to run 2-way 

classification. The number of task training data in CUB and 

miniImageNet is 50 and 125, respectively. Feature transfer 

overfits in the few-shot setting. However, it was able to get 

higher accuracy than other methods in our experiments. We 

believe that the accuracy of Feature Transfer decreases when 

the new task's classes diverge more from the training classes. 

We leave further investigations to future works. 

Sparse DKT is more interpretable and has higher accuracy 

than MetaOptNet, with a smaller number of support vectors. 

The efficiency of MetaOptNet in sparsity decreases with the 

increase of training data due to the weakness of SVM. In 

miniImageNet classification, the proposed method has 

selected 14 support vectors on average from 250 data, while 

MetaOptNet has selected 76 support vectors. Additionally, 

the experiments on these different datasets show that the 

number of support vectors for each application depends on 

intra-class and inter-class similarity. The metric space 

learned by the Sparse DKT to separate classes affects the 

number of support vectors. 

In Figure 8, we have given an example of testing the 

trained model with the Sparse DKT and DKT on a 2 way – 

50 shot classification task from the CUB meta-test dataset. 
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In this task, Sparse DKT has the same accuracy as DKT. In 

Figure 9, task training data are shown, and the data that are 

support vectors have been marked with a red line around the 

image. 

 
Table 2. Average Accuracy and Standard Deviation on CUB and miniImageNet Classification with Average number of Support Vectors 

 

SVs miniImageNet 2 way - 125 shot SVs CUB 2 way - 50 shot Method 

- 93.13±0.530 - 95.23±0.381 Feature Transfer 

- 85.63±0.176 - 92.33±1.069 MAML 

250 92.0±0.4 100 93.98±0.448 DKT 

76 89.70±0.56 33 92.27±1.313 MetaOptNet 

14 91.08±0.913 21 93.75±0.909 Sparse DKT 

 

 
Figure 8. Comparing a) Sparse DKT and b) DKT accuracies on a CUB meta-test task. Sparse DKT has the same accuracy as DKT. 

 

 
Figure 9. Sample-based interpretability of Sparse DKT in CUB 2 way – 50 shot. Support vectors of the two classes (a, b), highlighted 

with a red square, are the basis of the model's prediction. 
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Figure 10. Comparing kernels of a) Sparse DKT and b) DKT: a) the most similar support vectors to test image, b) the most similar 

training data to test images. The green line above the images on the right, shows that they have the same label as the test image. 

 

We compared the learned kernels of Sparse DKT and 

DKT in Figure 10. For Sparse DKT similarity of test images 

to support vectors is computed. In each row, the images are 

sorted in the order of the most similar from left to right. The 

green and red lines on top of the right image, show whether 

the labels of the right images are the same or different from 

those of the test image. The vertical green line in the test 

image indicates that the model accurately predicted the label. 

The Sparse DKT kernel can detect the similarity well, even 

though the number of support vectors is very small.

 

5. Conclusion 

In this study, we introduced medium-shot learning as a 

generalization of few-shot learning for real-world 

applications. Considering that interpretability in deep 

learning models is becoming increasingly more important, 

especially in sensitive scenarios, sample-based 

interpretability can be easily obtained by reducing the data to 

a small number of support vectors in medium-shot learning. 

We considered sparse kernel methods from an attention-

based perspective to have sample-based interpretability. The 

proposed Sparse DKT algorithm leverages Sparse Gaussian 

processes in the meta-learning framework and selects the 

most important training data as support vectors. At the test 

time, it makes the predictions based on support vectors. 

The impact of marginal likelihood in the trade-off between 

accuracy and the number of support vectors, as well as the 

impact of more task training data, is one of the key areas for 

future work. Using improved versions of RVM [64, 65] 

would be effective in increasing the accuracy of Sparse DKT. 

Since SVM in MetaOptNet is less effective in sparsifying, 

When data increases, we can use GLASSO [66], which also 

has a probabilistic solution, as an alternative to SVM in 

MetaOptNet. Another future work is investigating 

variational sparse Gaussian processes [67–70] that use 

variational inference for increasing the lower bound of the 

marginal likelihood algorithm. We can use the combination 

of point processes [71] with it to determine the support 

vectors in sparse variational Gaussian processes. 
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Abstract: Coronavirus 2019 (COVID-19), as a common 
infectious disease, is spreading rapidly and uncontrollably 
worldwide. Therefore, early detection of mortality 
considering the symptoms that appear in patients with 
Coronavirus is important. The main aim of this study is 
investigating the effect of data preprocessing methods on the 
efficiency of data mining approaches. In this study, we 
propose a hybrid method based on the Covid-19 dataset to 
predict the mortality of 1255 patients with coronavirus that 
has three main steps. In the first step, preprocessing methods 
such as imputing missing values, data balancing, 
normalization, and filter-based feature selection are used on 
raw data. Then the classification algorithms are applied to 
the data and finally, the evaluation is done. The results of the 
proposed method show its effectiveness in predicting 
mortality from coronavirus disease. Therefore, doctors and 
treatment staff can use this model to early diagnose of factors 
affecting the mortality of patients and with timely treatment, 
the mortality rate due to Covid-19 is reduced. 
Keywords: COVID-19, Artificial Intelligence, Data Mining, 
Feature Selection, Mortality Detection, Preprocessing, 
KNIME Tool 
 

1. Introduction 
CORONAVIRUS (COVID-19) is an infectious disease 
caused by the SARS-CoV-2 virus. The virus was first 
reported by the World Health Organization (WHO) in a 
Chinese city in late 2019, it was named the 2019 coronavirus 
or COVID-19. Although accurate and comprehensive 
information is not available due to the novelty of this virus, 
so far the disease has shown itself in the form of respiratory 
symptoms [1, 2]. Anyone can get Covid-19 disease and 
become seriously ill or die at any age. This disease is a new 
phenomenon and at the moment it is not possible to give a 
definite opinion about the fatality of this disease. But 
statistics show that the death ration is around 2%, but 
according to the WHO, this number can change [3, 4].  

Today, due to the spread of knowledge and more complex 
decision-making processes, the use of information systems, 
especially AI systems in decision-making is more important. 
AI is one of the broadest branches of computer science 
related to the construction of intelligent machines [5]. In the 
field of health, AI uses sophisticated algorithms and software 
to analyze complex medical data. The main purpose of 
artificial intelligence programs in the field of health and 
medicine is analyzing techniques to prevent and treat disease 
[6]. AI is used for a variety of therapeutic and research 
purposes, such as diagnosis, management of chronic 
diseases, and medical and pharmaceutical services. With the 
spread of the coronavirus, AI is widely used in the diagnosis 
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and treatment of this disease, and researchers have been able 
to help medical science by using various techniques, 
including data mining. Clinical Decision Support Systems 
(CDSS) are introduced as computer programs that use ML 
algorithms, and AI, to help physicians make accurate and 
appropriate decisions [7-9]. Therefore, our goal is to develop 
and evaluate a new CDSS based on techniques to predict the 
mortality of patients with COVID-19 disease based on the 
decision tree, Random forest, MLP, KNN, SVM, and Fuzzy 
rules algorithms. 

Using the collected raw data cannot provide acceptable 
and reliable results. Therefore, they need to be preprocessed 
before using. We propose a hybrid method based on the 
Covid-19 dataset to predict the mortality of patients. The 
proposed model has three steps. At first, we correct 
incomplete information by using missing value estimation 
techniques. We use the KNN Imputer to fill missing values. 
This method preserves the value and diversity of the dataset 
while being more accurate and efficient than using other 
methods. Then we normalize the data so that everyone is in 
the bound of 0 to 1. Also, since the data we are examining 
are unbalanced, the SMOTE technique is applied for 
balancing the distribution of data classes. SMOTE has the 
advantage of not creating duplicate data points, but rather 
synthetic data points that differ slightly from the original data 
points. Next, a filter-based feature selection method called 
“relief method” is used to select the best features that have 
the greatest impact on the performance of classification 
algorithms. After data preprocessing, data mining algorithms 
are applied and evaluated according to different criteria. 
Then, using statistical methods, the data mining algorithms 
are ranked and the best algorithm is selected. 

The rest of the article is organized as follows. Some of the 
researches in this field are presented in Section 2. In Section 
3, the proposed prediction model is covered. The evaluation 
and experimental results are provided in Section 4, along 
with a comparative analysis of the classification algorithms. 
Conclusions and future works will be presented in the last 
section of this paper. 
 

2. Related works 
Many methods have been recently proposed for COVID-19 
diagnosis using data mining tools and machine learning 
algorithms to automate and help with the diagnosis and 
treatment of this disease. Some studies and diagnostic 
methods regarding COVID-19 are briefly described here.  

To analyze and predict the growth of COVID-19 infection 
worldwide, the authors presented an improved mathematical 
model in [10]. This model is based on machine learning used 
to predict the spread of disease and is based on a cloud 
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computing platform. The results of the study show that the 
use of the Weibull model based on repetitive weighting can 
make more accurate statistical predictions and the weaker the 
fit model, the non-optimal decision and the health status will 
be poor. In [11], the authors used the SVM algorithm for 
predicting severe conditions of COVID-19. In their proposed 
prediction model, they searched and discovered the features 
that had the greatest impact on the diagnosis of mild or 
severe disease. The model for predicting severe disease 
conditions presented by the authors had an almost optimal 
accuracy. [12] analyzed three different classification 
algorithms such as Random Forest (RF), logistic regression 
(LR) to predict the severity of the disease in patients with 
coronavirus disease at King Fahad Hospital. They used the 
SMOTE method for balancing the data in the preprocessing 
phase. The models are implemented in Python language. For 
partitioning the data, a 10-fold cross-validation technique is 
used. Experiments are performed on the original dataset and 
the SMOTE-transformed dataset. The results of their 
experiments showed that the efficiency of the RF algorithm 
is better than other classification algorithms. [13] presented 
a model to predict the recovery from Covid-19. They applied 
data mining models such as decision trees, SVM, LR, and 
KNN to the data of patients with Covid-19 in South Korea. 
Data mining algorithms are applied directly to the dataset 
using python programming language to develop the models. 
This model is for predicting the minimum and the maximum 
number of days for recovery of COVID-19 patients and those 
at high risk for the recovery of COVID-19. The results of 
their research showed that the decision tree algorithm is more 
effective in predicting the possibility of recovery of infected 
patients.  

An Efficient Deep Learning Technique for the screening 
of COVID-19 can be seen in [15]. The authors propose a 
vote-based design and cross-data set analysis. This approach 
is evaluated on two of the largest COVID-19 CT analysis 
datasets with patient-based division. A cross-data set review 
is also introduced to evaluate the robustness of the models in 
a more realistic scenario in which the data come from 
different distributions. The model is implemented in Python 
language. The results show that the methods that aim at 
COVID-19 detection in CT images have to be improved 
significantly to be considered as a clinical option. 

 Nikooghadam et al. [16] used a hybrid approach to predict 
and diagnose the coronavirus. The authors presented their 
proposed method in two steps. In the first step, they used the 
relief feature selection method to preprocess the data and 
select the effective features in the decision-making. Next, 
they used the ensemble-based classifier, in which the base 
classifier algorithms are combined to make the diagnosis 
with more accuracy. Basic classifiers include decision trees, 
KNN, combined with a random forest algorithm in the 
stacking section. To execute the proposed model, data 
mining tools including Rapid Miner and Python are used. 
The results proved that the combination of these algorithms 
can have a good effect on classification performance. In [17], 
it was tried to predict the mortality of COVID-19 disease in 
patients. In this study, they first identified the factors 
contributing to patient mortality. For this purpose, they 
reviewed various studies, and based on known factors, a 

variety of classification algorithms such as SVM, random 
forest, J48, MLP, and KNN were applied to predict the 
mortality of COVID-19 disease. They used Weka v3.9.2 
software to analyze the data, identify the importance of each 
factor, and implement prediction models. According to the 
results, the random forest algorithm is superior to other 
algorithms. In all research studied in this article, methods 
based on AI and data mining algorithms have been used to 
diagnose COVID-19 disease and predict its mortality, but 
what matters is the preprocessing and management of raw 
data. This study comprehensively examines data 
preprocessing methods and before applying data mining 
algorithms to the data, preprocessing methods were used. 
This step increases the efficiency of classification 
algorithms. 

 

3. The proposed prediction model 
The proposed model is a machine learning model that 
predicts mortality from COVID-19 in three main stages. 
Initially, raw data sets are collected for all those who are 
referred for the PCR-COVID-19 diagnostic test. Then, from 
the collected data, positive and negative diagnostic tests are 
separated. To predict mortality, only data that are in the 
positive diagnostic test category are needed. In the 
following, the raw data collected from the medical records 
of patients with COVID-19 disease are preprocessed. To 
reduce the dimensions of data and eliminate redundant 
features that increase the computational load and reduce the 
performance of classification algorithms, the feature 
selection method was used. The feature selection method 
used in this paper is based on the filter method and the reason 
for choosing this method is that filter-based feature selection 
methods are not exposed to "overfitting" and impose less 
computational load on the system. 

After preparing the data, in the second stage, some 
machine learning methods are developed and used in a 
prospective study to predict the mortality of patients. Finally, 
different models for external validation are evaluated and 
ranked based on statistical methods and the best model is 
selected. Each step is explained as follows. Figure 1 briefly 
describes the methodology. 
 

3.1. Dataset 
The dataset in this study is collected from the database of 
Imam Khomeini Hospital in Ilam. These data are related to 
those who are referred to the hospital for the PCR-COVID-
19 test from February 7, 2020, to December 20, 2021. Out of 
a total of 6854 suspected cases of covid-19, 1853 positive 
cases of covid-19, 2472 negative cases, and 2529 uncertain 
cases are identified. Among the 1853 positive samples, 
unknown cases, discharge or death from the emergency 
room, missing data > 70%, noise, and abnormal values 
outside the defined time period were removed from the 
dataset, and 1225 cases were registered in the database. This 
dataset contains 54 features that include clinical features (14 
features), history of personal diseases (7 features), patient’s 
demographic (5 features), laboratory results (26 features), 
remedies (one feature), and an output variable (0: Life and 1: 
Death). Table 1 presents a list of features of Covid-19 
dataset.
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Figure 1. Overall methodology for COVID-19 mortality prediction 

 
Table 1. List of features of Covid-19 dataset 

 

No Feature name 
Variable 

type 
No Feature name 

Variable 

type 

1 Length of hospitalization Polynomial 28 alcohol addiction Binominal 

2 Age Polynomial 29 Creatinine Polynomial 

3 Height Polynomial 30 Red-cell count Polynomial 

4 Weight Polynomial 31 White-cell count Polynomial 

5 Blood Type Polynomial 32 Hematocrit Polynomial 

6 Gender Binominal 33 Hemoglobin Polynomial 

7 Cough Binominal 34 Platelet count Polynomial 

8 Contusion Binominal 35 Absolute lymphocyte Polynomial 

9 Nausea Binominal 36 Absolute neutrophil Polynomial 

10 Vomit Binominal 37 Calcium Polynomial 

11 Headache Binominal 38 Phosphorus Polynomial 

12 Gastrointestinal symptoms Binominal 39 Magnesium Polynomial 

13 Muscular pain Binominal 40 Sodium Polynomial 

14 Chill Binominal 41 Potassium Polynomial 

15 Hypersensitive troponin Binominal 42 Blood ureanitrogen Polynomial 

16 Fever Binominal 43 Total bilirubin Polynomial 

17 Oxygen therapy Polynomial 44 Aspartate ami1transferase Polynomial 

18 Dyspnea Binominal 45 ICU Binominal 

19 Loss of taste Binominal 46 Albumin Polynomial 

20 Loss of smell Binominal 47 Glucose Polynomial 

21 Runny 1ise Binominal 48 Lactate dehydrogenase Polynomial 

22 Sore throat Binominal 49 Activated partial Binominal 

23 Other underline disease Binominal 50 Prothrombin time Polynomial 

24 Cardiac disease Binominal 51 Alkaline phosphatase Polynomial 

25 Hypertension Binominal 52 C-reactive protein Polynomial 

26 Diabetes Binominal 53 Erythrocyte sedimentation Polynomial 

27 Smoking Binominal 54 Death Binominal 

 

3.2. Data pre-processing 

The COVID-19 raw dataset contains some errors that can 

negatively affect the effectiveness of data mining models. 

Hence, to obtain the best results, we remove duplicate values 

from all attributes and convert raw data into numerical 

features. Then, we conduct some well-defined preprocessing 

methods to achieve the best models.  

Imputing Missing Values: When working with a dataset, 

we may encounter observations in which one or more 

variables or attributes have no value. This problem often 
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occurs if not enough care is taken when collecting data. In 

such cases, we say that the observations have a "missing 

value" or the dataset suffers from the obstacle of missing 

data. To impute missing values, there are many methods such 

as replacing the mode, mean or mean of a group [18, 19].  

In the dataset used in this study, there are missing values 

that need to be managed. If we want to remove all the 

observations that have missing values from the dataset, we 

may face a lack of information. To address the obstacle of 

missing values, we delete the observations in which the 

number of missing values is high. Therefore, considering 

that the total number of data columns (features) is 54, we 

remove the observations in which more than 70% of the 

features are without value and replace the remaining missing 

values with the mean value of 5 nearest neighbors measured 

by Euclidean distance (KNN Imputer) of the non-missing 

values in the column. The idea in KNN Imputer method is to 

identify "k" similar samples in the dataset. Then we use these 

"k" samples to estimate the amount of missing data points. 

The missing values in each sample are estimated using the 

mean value of k of the nearest neighbors measured by 

Euclidean distance in the dataset. In this paper, we set the 

value of "k" to be 5. 

There are different methods to handle missing data. These 

methods can waste valuable data or reduce the diversity of 

the dataset. In contrast, the KNN Imputer preserves the value 

and diversity of the dataset while being more accurate and 

efficient than using other methods. 

Data Balancing: Unbalanced data class distribution 

occurs when the number of samples related to one class is 

significantly less than the number of samples belonging to 

another class. This will reduce the efficiency of machine 

learning algorithms [20]. Hence, various techniques have 

been introduced to deal with the problem of unbalanced data 

such as under-sampling, over-sampling, and Synthetic 

Minority Oversampling Technique (SMOTE) [21, 22]. We 

used different methods to balance the data and got the best 

result from the SMOTE method. 

SMOTE is an algorithm that performs data augmentation 

by creating artificial data points based on original data 

points. SMOTE selects a random sample from minority 

class and determine k nearest neighbors for this sample. 

Then a vector between the current sample and a chosen 

neighbor is determined. The synthetic instances are 

generated by multiplying this vector with a random number 

between 0 and 1. The advantage of SMOTE is that 

duplicates are not generated and the data points generated are 

slightly different from the original data points. Therefore, in 

this study, to balance the "death" class of patients with 

COVID-19, we applied the SMOTE method. Before 

balancing the data, the death class contained only 176 

records (13%), while after balancing the data, the death class 

contained 748 records. 

Normalization: Data normalization is one of the main 

phases of data mining. When data have different scales, they 

have an adverse effect on each other and the algorithm at 

different change intervals. So the data should be in an equal 

range with each other. Each of the data recorded in the 

database will change between 0 and 1 [23]. This allows the 

data to be shorter in the domain and the model to be better 

trained. There are several techniques for normalization. In 

this study, Min-Max Normalization technique is used to 

normalize the data as follows [24]. 

 

𝑥 =
𝑥−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                                                                (1) 

 

In this formula, Xmin and Xmax are equal to the minimum 

and maximum values of the data in the database, 

respectively. 

Relief Feature Selection: The relief method is a filter-

based feature selection algorithm that uses a statistical 

solution to select features [14]. In this method, at each step, 

a sample is randomly selected from the samples in the data 

set. Then, for each of the features of this sample, it finds the 

nearest Hit and the nearest Miss according to the Euclidean 

criterion. The nearest Hit is the sample that has the smallest 

Euclidean distance among other samples with the same class 

as the selected sample. The nearest Miss is the sample with 

the smallest Euclidean distance among samples from the 

opposite class to the selected sample. 

 

Wi = Wi − (xi − nearHiti)
2 +  (xi − nearMissi)

2           (2) 

 

As shown in Equation 2, if the difference between a 

feature in the selected sample and the same feature in the 

sample of the same class is greater than the difference 

between the same feature in the selected sample and the same 

feature in the sample of the same class, weight (degree of 

importance) of this feature is reduced and vice versa. 

By weighting the features, those that have a greater impact 

on the classification accuracy are identified. In order to select 

the most suitable features, we rank them according to their 

weight value. In this study, according to the various 

experiments, we selected 20 of the best features that had a 

higher rating and applied them to different data mining 

algorithms to predict the mortality of Covid-19 patients and 

evaluated the performance criteria of the algorithms.  

 

4. Data mining models 

In this subsection, some of the AI algorithms used to develop 

the CDSS system in this study are introduced. Each of the 

data mining algorithms introduced in this section is 

implemented in the original and balanced dataset and their 

evaluation results are compared. All methods are 

implemented in the KNIME Analytics Platform. 

 

4.1. Decision tree 

In data mining, the decision tree is a predictive model that is 

used for both regression and classification models [25]. In 

the decision tree structure, the prediction obtained from the 

tree is explained as a sequence of rules. The decision tree 

algorithm classifies the samples so that the classes are 

actually at the end of the leaf nodes. Each path from the root 

to a decision tree leaf expresses a rule, and finally, the leaf is 

labeled with the class in which the most records belong. The 

decision tree is used in problems that can be posed in such a 

way that they provide a single answer in the form of a group 

or class name [26]. In this study, two types of decision trees 

C4.5 [27] and Random forest [28] are used for the 

implementation of a decision tree on data from Covid-19 

patients. Figure 2 shows the snapshot from the KNIME 

workflow of C4.5.
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Figure 2. KNIME workflow of C4.5

4.2. Support Vector Machine (SVM) 

SVM is mostly used in classification problems. The basis of 

the SVM classifier is the linear classification of data. In the 

SVM algorithm, each data sample is drawn as a point in the 

n-dimensional space on the scatter diagram of the data (n is 

the number of features of a data sample) and the value of 

each feature related to the data determines one of the 

components of the coordinates of the point on the diagram. 

Then, by drawing a straight line, it categorizes different and 

distinct data. In the linear division of data, the line is selected 

that has a more reliable margin [29]. 

 

4.3. Logistic regression 

Logistic regression is a statistical regression model for two-

way dependent variables. Being two-way means that a 

random event occurs in two possible situations like death or 

life, which are variables with two positions. Logistic 

regression can be seen as a special case of the general linear 

model and linear regression. Logistic regression model is 

based on completely different hypotheses from linear 

regression about the relationship between variables. These 

variables can be dependent or independent. We use logistic 

regression when we want to measure the relationship 

between an independent variable with continuous values and 

a dependent variable with qualitative values [30]. 

 

4.4. K-Nearest Neighbor (KNN) 

This algorithm classifies a test sample based on k 

neighboring neighbors. Train samples are presented as 

vectors in multidimensional feature space. The space is 

partitioned into areas with train samples. A point in space 

belongs to the class in which most of the training points 

belong to that class within the closest instance to k [31]. This 

study uses the Euclidean distance to find the nearest 

neighbors. The test sample is presented as a vector in the 

feature space and the Euclidean distance of the test vector 

with the total training vectors is calculated and the closest 

training sample to k is selected.  
 

4.5. Multi-Layer Perceptron (MLP) 

MLP is a feed-forward neural network that consists of three 

main layers: input layer, hidden layer, and output layer. Each 

layer contains a group of nerve cells that are connected in a 

directional graph to all the neurons in other layers. The MLP 

network establishes a non-linear connection between the 

input and output vectors using an activator function. In the 

training phase, training information is given to the 

perceptron, then the network weights are adjusted to 

minimize errors between the output and the target [32]. 

 

4.6. Fuzzy rules 

This algorithm receives numerical data as input and 

generates fuzzy rules based on the fuzzy intervals generated 

in the higher dimensional space [33]. Fuzzy intervals are 

defined by trapezoidal fuzzy membership functions for each 

dimension. To generate fuzzy rules, the input numeric 

columns are used as the first section of the rules and the last 

column, which is the target data in the classification, is 

introduced as the output of the rules. This column contains 

class information and can contain degrees between 0 and 1 

[34]. The model output port contains the fuzzy rule model, 

which can be used for prediction in the Fuzzy Rule Predictor 

node. The number of fuzzy rules generated in this study is 

209. 

 

5. Evaluation and results 

To evaluate different ML algorithms for predicting the 

mortality of patients, several performance metrics such as the 

ROC Curve as well as the accuracy, precision, sensitivity, 

specificity, and F-measure are used [35]. Table 2 shows the 

calculations of measures. Furthermore, the 10-fold cross-

validation method is used to measure the efficiency of 

algorithms. 

 
Table 2. Definition of performance metrics 

 

Performance Metrics Definitions 

Precision TP/ (TP + FP) 

Specificity / true negative 

rate (TNR) 
TN/ (TN + FP) 

Sensitivity/ true positive 

rate (TPR) or Recall 
TP/ (TP + FN) 

Accuracy (TP + TN)/ (TP + TN + FP + FN) 

F-measure 
(2 ×Precision ×Recall)/ 

(Precision + Recall) 
 

* True Positive (TP), True Negative (TN), False Positive (FP), 
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False Negative (FN) 

 

5.1. Predictive models for COVID-19 

This subsection evaluates the performance of ML algorithms 

in predicting early mortality from COVID-19 disease. These 

algorithms include the decision tree, Random forest, SVM, 

MLP, KNN, and Fuzzy rules. The most important measure 

for determining the efficiency of a classification algorithm is 

classification accuracy. But in real problems, the 

classification accuracy measure is not a good measure for 

evaluating the efficiency of classification algorithms, 

because, concerning classification accuracy, the values of 

records of different categories are considered the same. 

Therefore, in problems dealing with unbalanced categories, 

other measures are used. 

Table 3 presents the test results based on performance 

measures, accuracy, precision, sensitivity (recall), 

specificity, and F-measure without the use of data 

preprocessing techniques. The data used to evaluate 

performance is not normalized and also a large amount of 

data information have been removed from the dataset due to 

missing values. The important point is that the data is labeled 

unbalanced, and the number of data labeled "death" is much 

less than the number of data labeled "life".  

According to the results presented in Table 3, the decision 

tree (C4.5) algorithm performs better than other algorithms 

in terms of precision and F-measure criteria with values of 

56.4% and 54.7%, respectively. The MLP algorithm has a 

higher recall rate than other algorithms with a value of 

56.6%. Considering the specificity criterion, the logistic 

regression algorithm is superior to other algorithms. This 

algorithm achieved 93.6% specificity of the dataset shown in 

Table 3. In addition, the fuzzy rule base algorithm has the 

highest classification accuracy of 86.7% compared to other 

ML algorithms. 

Figure 3 shows the performance results of the models. As 

can be seen, examining this chart cannot accurately show 

which algorithm is more efficient than the others. Since ML 

algorithms are compared based on five different criteria, it is 

not possible to choose the best algorithm with the highest 

performance. In this paper, we used Friedman's statistical 

test to compare the performance of ML algorithms based on 

different evaluation factors. This statistical test ranks the 

algorithms with a significance level of 0.05. Figure 4 shows 

the comparison results of Friedman test. The value of 𝑃 - 

𝑣𝑎𝑙𝑢𝑒 <0.05 indicates that there is a significant difference in 

performance between the algorithms. 

 

 

Table 3. Performance evaluation results without preprocessing 

 

Model Precision Recall Specificity F-score Accuracy 

Decision tree (C4.5) 0.564 0.534 0.902 0.547 0.861 

Random forest 0.430 0.386 0.926 0.407 0.823 

SVM 0.287 0.412 0.375 0.336 0.457 

Logistic regression 0.323 0.355 0.936 0.341 0.849 

MLP 0.511 0.566 0.893 0.535 0.856 

KNN 0.462 0.485 0.912 0.471 0.826 

Fuzzy Rules 0.342 0.462 0.924 0.395 0.867 

  

 
 

Figure 3. Comparison of performance measure of ML algorithms (without preprocessing) 

 

  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Decision tree

(C4.5)

Random forestSVMLogistic

regression

MLPKNNFuzzy Rules

Precision Recall Specificity F-measure Accuracy



Journal of Computer and Knowledge Engineering, Vol.5, No.2. 2022. 63 

 

 

According to Figure 4, the decision tree (C4.5) algorithm 

with a rank 7.6 generally performs better than other 

algorithms. According to the results shown in Table 3 and 

Figure 4, when preprocessing is not performed on data 

related to patients with Covid-19, mortality is predicted with 

low quality, and the results obtained cannot be effective and 

reliable in the decision and treatment processes. 

Table 4 shows the results of comparing the performance 

of ML algorithms after the preprocessing stage of raw data 

obtained from patients with Covid-19 disease. The numerical 

results show that the performance of ML algorithms has 

improved significantly. All algorithms are applied to 

preprocess datasets and, by considering all measures, they 

have better results than before. Table 4 shows that the KNN 

algorithm works better than other ML algorithms with 94.2% 

and 92.2% in terms of precision and F-measure, respectively. 

Moreover, this algorithm has a higher classification accuracy 

of 97.1% than others. The Random forest algorithm is the 

best in terms of specificity criteria. The value of specificity 

for this algorithm is 98.6%. The recall criterion in the Fuzzy 

Rules base algorithm is 91.6%, which has the highest value 

compared to other algorithms.  

Figure 5 shows a bar chart of comparing ML algorithms 

in terms of accuracy, precision, sensitivity (recall), 

specificity, and F-measure. By looking at this diagram, it is 

not possible to determine which algorithm generally 

performs better than other algorithms. Figure 6 shows the 

mean rank of ML algorithms based on the Friedman test.  

As shown in Figure 6, the KNN algorithm has the highest 

performance. This algorithm ranks first with a rank of 1.4. 

Then the Random forest algorithm has the best performance. 

The SVM algorithm with the rank of 6.6 is the weakest 

algorithm investigated in this study.  

Figure 7 compares the performance metrics of the KNN 

algorithm before and after pre-processing. As we can see, the 

efficiency of KNN algorithm is significantly improved after 

data preprocessing. In this algorithm, the precision criterion 

has increased from 0.462 to 0.942. Moreover, the recall 

criterion has improved and has increased about 0.42. 

Appropriate pre-processing on the Covid-19 dataset has also 

had a good impact on the specificity and accuracy criteria 

and has improved the efficiency of the KNN algorithm by 

0.07 and 0.15, respectively. 

In addition to the performance evaluation criteria 

presented in Table I, the ROC curve is plotted for each of the 

ML algorithms used in this study. Figure 8 shows the ROC 

curves. In the ROC curve, the best classification 

performance will occur at the point with coordinates (0, 1), 

where we have the lowest error rate and the highest 

sensitivity rate. This point represents the perfect 

classification. As shown in Figure 8, the ROC curve is the 

best for the KNN algorithm because the curve is close to 1.

 

 
 

Figure 4. The mean rank of ML algorithms based on the Friedman test (without preprocessing) 

 
Table 4. Performance evaluation results with preprocessing 

 

Model Precision Recall Specificity F-score Accuracy 

Decision tree (C4.5) 0.941 0.791 0.961 0.863 0.858 

Random forest 0.895 0.881 0.986 0.903 0.888 

SVM 0.743 0.792 0.921 0.767 0.821 

Logistic regression 0.768 0.763 0.954 0.776 0.938 

MLP 0.905 0.839 0.947 0.858 0.896 

KNN 0.942 0.903 0.982 0.922 0.971 

Fuzzy Rules 0.790 0.916 0.978 0.848 0.965 
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Figure 5. Comparison of performance measure of ML algorithms (with preprocessing) 

 

 
 

Figure 6. The mean rank of ML algorithms based on the Friedman test (with preprocessing) 

 

 
 

Figure 7. The performance metrics for K-NN before and after pre-processing 
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Figure 8. ROC curve for ML algorithms 

 

6. Conclusion and future studies   

COVID-19 is a viral disease that was declared an 

international public health emergency by the World Health 

Organization (WHO). The increase in mortality due to 

COVID-19 disease caused concerns among countries and 

economic, social, and educational problems. Early diagnosis 

of mortality from Covid-19 helps physicians to easily make 

clinical decisions as well as reduce diagnostic errors. In this 

study, different machine learning classification algorithms 

were tested on COVID-19 data to predict the death of 

infected patients and compared them based on different 

performance criteria. To increase the performance of these 

algorithms, the data were preprocessed before the 

experiment. The experimental results showed that the KNN 

algorithm is more efficient than other algorithms. In the 

future, we should use other feature selection methods to 

reduce data volume and increase the efficiency of 

classification algorithms. 
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