

Journal of

COMPUTER AND KNOWLEDGE

ENGINEERING
Ferdowsi University of Mashhad ISSN: 2717-4123

General Director: S. A. Hosseini Seno

Editor-in-Chief: M. Kahani

Publisher: Ferdowsi University of Mashhad

Editorial Board:
Mahmoud Naghibzadeh Professor Ferdowsi University of Mashhad, Iran

Mohammad H Yaghmaee-Moghaddam Professor Ferdowsi University of Mashhad, Iran

Dick H Epema Professor Delft Technical University, the Netherlands

Rahmat Budiarto Professor University Utara Malaysia, Malaysia

Mohsen Kahani Professor Ferdowsi University of Mashhad, Iran

Mohammad R Akbarzadeh-Tootoonchi Professor Ferdowsi University of Mashhad, Iran

Madjid Fathi Professor University of Siegen, Germany

Hossein Nezamabadi-pour Professor Bahonar University of Kerman, Iran

Ahmad Ghafarian Professor University of North Georgia, USA

Hamid Reza Pourreza Professor Ferdowsi University of Mashhad, Iran

Hadi Sadoghi-Yazdi Professor Ferdowsi University of Mashhad, Iran

Seyed Amin Hosseini Seno Associate Professor Ferdowsi University of Mashhad, Iran

Abedin Vahedian-Mazloum Associate Professor Ferdowsi University of Mashhad, Iran

Ebrahim Bagheri Associate Professor Ryerson University, Canada

Hossein Asadi Associate Professor Sharif University of Technology, Iran

Mahdi Kargahi Associate Professor University of Tehran, Iran

Hamid Reza Ekbia Associate Professor Indiana University, USA

Seyed Hassan Mirian Hosseinabadi Associate Professor Sharif University of Technology, Iran

Abbas Ghaemi Bafghi Associate Professor Ferdowsi University of Mashhad, Iran

Farhad Mahdipour Associate Professor Kyushu University, Japan

 Administrative Director: T. Hooshmand

Journal of Computer and Knowledge Engineering

Faculty of Engineering, Ferdowsi University of Mashhad

P. O. Box. 91775-1111, Mashhad, I.R. IRAN

Tel: +98 51 38806024, Fax: +98 51 38763301, Email: cke@um.ac.ir, Site: cke.um.ac.ir

mailto:cke@um.ac.ir
file:///C:/Users/user/AppData/Local/Temp/cke.um.ac.ir

CONTENTS

Exploring Effective Features in ADHD

Diagnosis among Children through

EEG/Evoked Potentials using Machine

Learning Techniques

 Faezeh Rohani- Kamrad Khoshhal Roudposhti-

Hamidreza Taheri-Ali Mashhadi

Andreas Mueller

1

Embedding Knowledge Graph through

Triple Base Neural Network and Positive

Samples

 Sogol Haghani - Mohammad Reza Keyvanpour 11

Efficient and Deception Resilient Rumor

Detection in Twitter

 Milad Radnejad - Zahra Zojaji

Behrouz Tork Ladani

21

A Deep Neural Network Architecture for

Intrusion Detection in Software-Defined

Networks

 Somayeh Jafari Horestani

Somayeh Soltani -Seyed Amin Hosseini Seno
31

Meta-Learning for Medium-Shot Sparse

Learning via Deep Kernels

 Zohreh Adabi-Firuzjaee

Sayed Kamaledin Ghiasi-Shirazi

45

The Impact of Preprocessing Techniques

for Covid-19 Mortality Prediction

 Soodeh Hosseini - Zahra Asghari Varzaneh 57

Journal of Computer and Knowledge Engineering, Vol. 5, No. 2, 2022. (1-10) 1

DOI: 10.22067/cke.2022.70922.1014

Exploring Effective Features in ADHD Diagnosis among Children

through EEG/Evoked Potentials using Machine Learning

Techniques*

 Research Article

Faezeh Rohani1 Kamrad Khoshhal Roudposhti2 Hamidreza Taheri3 Ali Mashhadi4 Andreas Mueller5

Abstract: With the aid of intelligent system approaches, the

present study aimed at extracting and investigating effective

features for detecting Attention-Deficit/Hyperactivity

Disorder (ADHD) in children. With this end in view, 103

children, aged from 6 to 10, were recruited for this study,

among which 49 cases were assigned to the treatment group

(ADHD children) and the remaining 54 cases to the control

group (healthy children). The disorder diagnosis was

performed using the well-known, relevant psychological

questionnaires and clinical interviews with expert

psychologists. Data collection consisted of EEG signals in

eyes open and eyes closed states, as well as GO/NOGO task

for about 3 hours for every participant. The extracted features

consisted of the amplitudes and latency in Event-Related

Potential (ERP) and the power spectrum in the sleep mode

signals. Approximately 826 features of 19 channels were

extracted in the standard 10-20 system and different task

conditions. A set of features were selected with the aid of the

feature selection methods, and then the selected features

were analyzed by neuroscientists, and the irrelevant ones

were removed. Next, the classification methods and their

performance evaluation were applied. Finally, the best

results in terms of the corresponding feature vector and

classification method were presented. The healthy and

ADHD groups were classified with 75.8% accuracy using

the Support Vector Machine (SVM) method. The results

showed that the use of selection of effective features with the

aid of intelligent system techniques under the supervision of

experts leads us to reach robust biomarkers in the detection

of disorders.

Keywords: Attention Deficit Hyperactivity Disorder

(ADHD), EEG/Evoked Potentials, Feature Extraction,

Feature Selection

1. Introduction

Psychiatric disorders are complex because psychological,

biological, and genetic factors influence cognition, emotions,

and behavior in certain areas [1]. With questionnaires and

clinical interviews, it has been found that the diagnosis of

disorders relies on mental descriptions and external

observations. Therefore, such diagnoses are prone to error

due to the complexity of psychiatric disorders, intrinsic

mentality, and even the use of the Diagnostic and Statistical

Manual of Mental Disorders, 5th Edition: DSM-5 [2]

diagnostic guide. Accordingly, researchers have made

* Manuscript received: 12 June 2021, Revised, 26 June 2021, Accepted, 10 September 2021.
1. PhD Candidate, Department of Computer Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
2. Corresponding author. Assistant Professor, Department of Computer Engineering, Lahijan Branch, Islamic Azad University, Lahijan,

Iran. Email: kamrad@liau.ac.ir.
3. Professor, Department of Motor Behavior, Ferdowsi University of Mashhad, Mashhad, Iran.
4. Professor, Department of Clinical Psychology, Ferdowsi University of Mashhad, Mashhad, Iran.
5. Professor in Brain and Trauma Foundation, Grisons/Switzerland, Chur, Switzerland.

significant efforts to obtain biological markers of mental

disorders [3-10]. Most of these markers are genetic,

biochemical, blood epigenetic, and blood plasmatic [11, 12].

However, some of these markers are

electroencephalographic letters, induced potentials, and

magnetic resonance imaging [13]. Unhealthy groups and

healthy individuals have complex characteristics and are

difficult to detect using individual markers. Henceforth, the

symptoms of the diagnosis can be obtained by different

neurobiological pathways [14]. Attention-Deficit

Hyperactivity Disorder (ADHD), a neurological disorder,

affects an estimated 4% to 12% of school-aged children

worldwide [15]. Based on DSM-5, this disorder consists of

three types, namely hyperactive and impulsive, inattentive,

and combined [2].

The present study investigated and extracted the

Electroencephalography (EEG) and Event-Related Potential

(ERP) features that have been studied concerning the EEG

and ERP indicators and brain function of ADHDs [16-19].

The principal advantage of using ERP includes the

possibility of nonaggressive cognitive processes in

milliseconds [20]. In recent years, machine learning methods

have been widely used in the medicine and health realms [21-

23]. Nevertheless, in psychiatry, due to limitations such as

the absence of data, fear of distancing from diagnostic

measures, and inadequate knowledge, this technique has

been applied less frequently. However, the needs suggest

that the combinatorial biomarkers have better performance

compared with individual values [24].

Extensive research at the Switzerland Brain and Trauma

Foundation has shown that biological boundaries can be

traced through the stimulated potential to create biological

markers (a measurable indicator for biological conditions)

[25]. Moreover, in this research center, psychological

neuroscience is used as an indicator to identify a specific

disorder in the brain. The foundation also believes that none

of the markers can help the diagnosis alone but that the

diagnosis must be made through the proper usage of a set of

these markers [6]. In this view, researchers using machine

learning methods for the separation of ADHD and control

groups in adults (74 cases in the ADHD group, 74 cases

between 18-50 years old in the control group) observed that

with GO/NOGO task, the accuracy of the Support Vector

Machine (SVM) method was 92 % [6].

In another study, researchers using machine learning

https://cke.um.ac.ir/
https://cke.um.ac.ir/article_42826.html
https://cke.um.ac.ir/article_42826.html
https://orcid.org/0000-0001-9633-3114

2 Hamidreza Taheri et. al.: Exploring Effective Features in ADHD…

methods on 117 adults (67 particiants in the ADHD group

and 50 participants in the control group) showed that the

classification accuracy for separating groups was about

69.2% in Visual Continuous Performance Test (VCPT)

mode and 72.6 and 70.9% in eyes closed and eyes open

states. However, in the form of scoring, the results showed

up to 82.3 % change [26].

Oztoprak et al., using the time-frequency amplitude

characteristics of EPR with strop test, classified the ADHD

and control groups with 100% accuracy using the SVM

method. This accuracy was for 3 to 5 features in the delta

frequency band. In their study, all participants were male and

in the age range of 6 to 12 years old, and the sample included

44 cases in the ADHD group and 38 cases in the control

group [27].

Helgadotter et al. had 310 participants in the ADHD group

and 351 participants in the control group, aged from 5.8 to

14. Their method accuracy rate was about 81% when

analyzed by age and 73% the other way round (i.e., not based

on age) [3].

Heinrich et al. investigated the neural mechanisms of

motor control using the potentials in combination with MRI,

obtaining a classification rate of 90% in a linear analysis. The

study suggested that both cognitive and motor inhibition

should be regarded as fundamental problems in children with

ADHD [28].

Meuller et al. used machine learning techniques to

separate ADHD from healthy participants. Their

experimental EEG and ERP data were collected from 181

ADHD and 147 healthy participants. Spectral power, ERP

amplitude, and latency measures were extracted and used as

a feature vector for the input of their machine-learning

framework. ADHD patients and healthy participants were

classified by logistic regression model with accuracy values

between 72% and 76%, while their specificity values slightly

decreased over time (between 64% and 67%) [29].

During the review of the related literature, various studies

have reported good EEG classification capability and ERP.

These methods had different accuracy rates according to the

selection of different effective features, their numbers of

features, and the applied classification technique. Therefore,

the number of features and the type of features are effective

in obtaining accuracy. With this end in view, this study aims

at extracting effective features to diagnose ADHD in

children under the supervision of neuroscientists. Figure 1

shows the workflow of the current study.

Figure 1. Workflow of the research framework. ECEO denotes EEG signals from eyes closed and eyes open states

Journal of Computer and Knowledge Engineering, Vol.5 , No.2. 2022. 3

2. Data collection

2.1. Participants

The participants consisted of 103 participants from 7 to 10

years old. According to the DSM-5, 49 participants were

diagnosed with ADHD (22 females, 27 males), and the

remaining 54 participants were healthy participants (24

females,30 males). The ADHD participants were recruited

from clinics, and the members of the control group were

selected from summer leisure classes of Ferdowsi University

of Mashhad, Iran. Deprivation criteria in this study were an

IQ scoring below 75, epilepsy, and comorbidities disorder

with ADHD. Control patients who consumed a drug were not

included in the study. The ADHD patients who had

medication under the supervision of their doctors did not take

drugs before testing. Therefore, all the participants did not

receive any medication at the time of testing.

2.2. Procedure

Data was collected in the motor behavior lab at Ferdowsi

University from July 2019 to February 2020. All ADHD

participants were screened medically by medical doctors. As

the first step in this project, parents filled out a set of such

questionnaires as Child Behavior Checklist (CBCL),

AMEN, ADHD, Cognitive Change Index (CCI), and the

Swanson, Nolan, and Pelham (SNAP). For the IQ test, the

Riven test was applied [30]. Participants were tested in a

single session for about 3 hours, including recording their

EEGs/ERPs and taking the IQ tests. The parents were aware

of this study and agreed to use clinical data for research

purposes. They had signed consent forms before the start of

the study.

2.3. EEG and ERP task

EEG was recorded for 10 minutes (5 minutes with eyes

closed and 5 minutes with eyes opened), and ERP was

recorded for 20 minutes. The ERP test was Go/NOGO task

that contained 400 trials. This task had four conditions,

namely A-A (animal-animal), A-P (animal-plant), P-H

(Plant-Human), and P-P (plant-plant). Each condition

involved 100 trials. The task had novel sounds along with

human images in the P-H state. The details of this task are

provided in [5].

2.4. Data recording and pre-processing

The EEG was recorded with the aid of the “NeuroAmp®

x23” and “ERPrec software” (BEE Medic GmbH,

Switzerland). The Raw EEG was analyzed by Matlab. The

sampling rate of the input signals was 500 HZ, and it was

referenced with linked-earlobes and filtered by band-pass

between 0.5 and 50 HZ with a 45-55 Hz notch filter. The

Electro-Cap electrode application system (19channel,

Electro-Cap, International Inc, USA) that worked with the

international 10-20 system was used in the present study.

The impedance for all electrodes was not more than five

kOhm. Neuronal activity of 19 brain channels including Fp1,

Fp2, F3, F4, F7, F8, F8, Fz, C3, C4, Cz, T3, T4, T5, T6, P6,

P3, P4, Pz, O1, and O2 and linked earlobes and such

frequency bands as Delta (0.5-4 Hz), Theta (4-8 Hz), Alpha

(8-12 Hz), Beta (12-30), and Gamma (30-50 Hz) were

recorded.

For artifact removing, the starting raw EEGs were first

removed. Then eye-blink and horizontal eye movements

were detected, with the aid of independent component

analysis (ICA) decomposition removed from the EEGs. The

remaining artifacts were removed from the slow (e.g., sweat

artifact)/fast (e.g., muscle artifacts) wave correction (i.e.,

excessive activity in the 0-3 Hz and 20-50 Hz frequency

bands). Finally, the amplitudes range of more than 100 µV

were removed.

3. Method

3.1. Feature extraction

In signal processing, features are generally divided into the

time, frequency, and time-frequency domains. The time-

domain characteristics refer to directly extracted features

from the signal itself without altering such signal spaces as

mean, standard deviation, energy and power, entropy,

skewness, kurtosis, auto-regressive coefficient, zero-

crossing percentile, and Hjorth parameters [31-39].

The purpose of applying a mathematical transformation to

a signal is to obtain additional information that is not

available in the original raw signal. However, time domain-

based analysis of the signals is popular, but in many cases,

the useful information of the signal lies in its frequency

content, which is called the signal spectrum. Simply, the

spectrum of a signal represents the frequencies’ amplitude in

that signal. Examples of approaches for extracting frequency

range features are the Fourier transform, Short-Term Fourier

Transform (STFT), spectral entropy, spectral centroid,

spectral spread, spectral roll-off, harmonic parameters, and

power spectral density [40- 43].

 According to the description of the extraction feature,

the features extracted in this study included the density

spectrum of 5 frequency bands and 17 channels of EEGs in

eyes closed and eyes opened states. The spectral power

density was a description of power distributed over the

frequencies in the limited data set signal, so the power

spectrum density unit was the power in each frequency unit

(watts per Hz). The density spectrum indicates at what

frequencies the signal strength changes are weaker and at

what frequencies they are stronger.

Amplitude and latency peaks were extracted for ERP in

eight task conditions for the 17 channels [5]. The conditions

included four main states (A-A, A-P, P-P, and P-H) and four

mixture conditions amid all states (A-A/P, A-P-A-A, P-P/H,

P-H-P-P). For ERP, usually, the first, second, and third peaks

from the curves would be extracted.

The VCPT has two stimuli, and usually, the features

should be extracted on the second stimulus, and the events

and peaks are examined after the second stimulus

appearance. In this case, the peaks will be considered after

the second stimulus appearance and are positive or negative.

The first positive peak is called P100, the second P200, and

the third P300. The first negative peak is called N100, and

the second negative peak is called N200, and this cycle, as

shown in Figure 2 [44], continues. Therefore, knowing that

the second stimulus appears in 1,400 milliseconds, the signal

analysis time interval can be from 1,300 to 2,400

milliseconds, and in cases where it is necessary to check the

events of the first stimulus, the time interval is between 300

4 Hamidreza Taheri et. al.: Exploring Effective Features in ADHD…

to 1,100. Besides, to align all the signals, a baseline is set in

the range of 1,300 to 1,400 milliseconds.

Figure 2. A waveform showing several ERP components,

including the N100 (labeled N1) and P300 (labeled P3). Note that

the ERP is plotted with negative voltages upward, a common but

not universal practice in ERP research.

In ERP, to obtain the appropriate peaks, the average ERP

diagrams were considered for all participants. Moreover, to

obtain the lowest and highest points along with the signals,

curves of the time window, which are one of the features of

ERP components, were considered. The size of the time

window was fixed at 45% of the time interval from the

highest peak to the adjacent peak in the average main ERP

curve. To reach the main peak in this time window, different

methods such as measuring the area under the ERP curves in

the time window range or measuring the curve in the

specified time window are applied. In this study, the curve

range method has been used. Another list of features,

including arousal index, reaction time, theta/beta ratio,

C3/C4 index, and omission and commission error, was also

extracted. Features related to reaction time, commission, and

omission are behavioral parameters compared with other

features that are characteristic of the brain.

One of the major points in extracting features is to identify

the important frequency bands for specific disorders. Based

on the past studies, it has been found that the significant

frequency bands in the diagnosis of ADHD are F3, F4, F8,

Fz, C3, C4, Cz, Cz, T5, T6, P2, O1, and O2. However, since

the purpose of the study was to obtain more variant

characteristics, all frequency bands except FP1 and FP2 (due

to artifact in the data and meanness in ADHD) were

examined. The importance of the features is described in the

feature selection part below.

3.2. Feature selection

A set of features has been extracted from the EEG/ERP

signals, and it is evident that all of these features did not

relate to ADHD. Thus, it was necessary to reduce features to

achieve effective features, prevent over-fitting, and reduce

computational efforts [45]. Therefore, in this study, to limit

the number of features, a combinational approach using

intelligent feature selection methods with a neuroscientist’s

supervision was proposed. Based on this approach, several

feature selection methods have been used to select different

sets of effective features. Then neuroscientists examined the

selected features and selected a set of effective features.

One of the feature selection methods that was used in the

present study was the combined Hybrid Structured sparse

learning method [46]. This method is the same as the

regression of Least-squares, which contains two regulating

modes, L1-norm and L2.1-norm, as follows:

𝐽(𝑊) = ‖𝑋𝑇𝑊 − 𝑌‖2 + 𝛾1‖𝑊‖1.1 + 𝛾2‖𝑊‖2.1𝑤
𝑚𝑖𝑛 (1)

Equation 1 is a target function in which 𝑋 =
[𝑥1. 𝑥2 … . 𝑥𝑛] ∈ 𝑅𝑑×𝑛 where n training samples and d

features are applied, and 𝑌 = [𝑦1 . 𝑦2 … . 𝑦𝑐] ∈ 𝑅𝑛×𝑐 where

c is the number of classes for each 𝑥i training data. By

finding the optimal values of the parameters γ1 and γ2, the

optimal coefficient matrix for each feature of 𝑥𝑖 can be

obtained. To get the best k features, the features would be

sorted based on their effectiveness, and then the k feature is

selected with the highest rank.

The sequential floating forward selection (SFFS) [47] is

another implemented feature selection method in the present

study. This algorithm finds an optimal subset of features by

addition (adding a new feature to the subset of previously

selected features) and subtraction (removing a feature from

the subset of previously selected features).
Therefore, amongst all the features selected by automatic

methods, after being analyzed by an expert, a set of features

were finally selected. Table 1 shows the group of features.

Table 1. The group of features

Group Features name

EC/EO/VCPT Arousal index

EC/EO/VCPT Theta/beta ratio

EC/EO frequency spectra (coherence)

Behavioral in

VCPT

Omission errors

Commission errors

Reaction time

ERP

Min amplitudes

Max amplitudes

Min latency

Max latency

3.3. Classification

Supervised machine learning methods work in such a way

that in them, a set of input vectors such as 𝑋 = {𝑥𝑛} and the

corresponding output vector 𝑇 = {𝑡𝑛} are given. The goal for

the machine, using those training data for the new 𝑥 input, is

to be able to predict t [48]. In this regard, two distinct modes

can be considered. Regression, in which 𝑡 is a continuous

variable and classification and belongs to a discrete set. In

the learning process, the system first needs to be trained, and

then in the testing process, the trained system is used to

predict the output concerning the new input values. Support

Vector Machine (SVM) is a well-known supervised machine

learning method and one of the simplest types of SVMs (i.e.,

linear SVM), which finds a hyperplane that separates sets of

positive and negative samples with the maximum distance.

A couple of the most accurate approaches, SVM and

ensemble classification models, were used and reported in

this study.

3.4. Cross-validation and evaluation

In the supervised learning methods, there are two sets of data

https://en.wikipedia.org/wiki/N100_(neuroscience)
https://en.wikipedia.org/wiki/P300_(neuroscience)

Journal of Computer and Knowledge Engineering, Vol.5 , No.2. 2022. 5

(i.e., train data set and the test data set), which are managed

in different ways for validation. Here, the K-fold method was

used for validation. K-fold cross-validation is one of the

most common methods of validating machine learning

systems. In this method, the whole set of data is divided into

K equal parts. Form the K parts, K-1 parts are used as a set

of training data, based on which the model is constructed,

and with the remaining part, the testing process is performed.

The number of repetitions of this process will be K times

such that each K part is used only once for evaluation, and

the accuracy for the model is calculated each time. In this

evaluation method, the final accuracy of the system will be

equal to the average of all obtained K accuracies [49].

Confusion matrix: This matrix shows how the

classification technique works. This is according to the

separate input datasets for different class categories [50]. In

what follows, TP, TN, FN, and FP and their relationships in

the present study are explained.

 True Negative (TN) = correctly rejected. This rate

indicates the number of records whose true category has

been negative, and the classifier has identified them as

negative. In this study, it is the correct diagnosis of the

control group, the participants who have been correctly

diagnosed as healthy ones.

 False Positive (FP) = incorrectly identified. The

misdiagnosis with ADHD, meaning control group

participants who have been misdiagnosed with ADHD.

 False Negative (FN) = incorrectly rejected. The

misdiagnosis of the control group. That is the participants

who were ADHD but were misdiagnosed as healthy ones.

 True Positive (TP) = correctly identified. Correct

diagnosis of ADHD, participants who were in the ADHD

group and were diagnosed with ADHD.

Accuracy: The most important criterion for determining

the performance of the classification technique is the

accuracy criterion. This measure computes the total accuracy

of a classification and illustrates that the designed

classification correctly classifies a few percent of the entire

set of experimental records. The accuracy of the

classification based on the concepts expressed in the

confusion matrix is calculated by the following equation:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Scoring: The main scoring criterion is to evaluate the

performance of the Receiver Operating Characteristic (ROC)

area under the receiver operating characteristic curve (AUC).

This criterion shows the overall performance of a model by

combining the actual-positive rate (sensitivity) and the false

positive rate (1-specificity). For binary classifiers, the AUC

value varies from 0.5 to 1, in which 1 indicates the full

performance of a classifier [51].

4. Results

The effectiveness of the proposed method in this paper has

been investigated with the aid of data collected from control

group children and children with ADHD. In all classification

processes, the 5-fold cross-validation approach was applied

to validate the model, and for evaluation, accuracy criteria

from the confusion matrix of each classifier were calculated.

To stabilize the final output of the classifiers and provide a

reliable answer based on the evaluation criteria, the results

were an average of 10-trial classification.

In the first step, the data was presented directly to the

classifiers without selecting the subset of features. In the

second step, the data was first presented to the feature

selection algorithms and then to the classifiers. After

obtaining their accuracies, the features were checked by the

neuroscience specialist, and then the features were given to

the classifiers again. The final output is shown in Table 2.

The total number of features was 826, the number of features

in each section was 30, 5, and 37, and finally, the number of

effective features that have been obtained in combination

methods was about 113 features.

Based on the results, all of the selected methods and

features were not approved by the specialist, so according to

the expert’s opinion and previous studies, combining the

features was necessary to obtain the appropriate accuracy to

separate the control group from the ADHD group. Moreover,

based on the results, 37 features were approved by experts

[9, 52] for the data of this study that had an accuracy of

61.9%, which slightly showed the specific characteristics of

this research data.

Table 2. The performance of different feature selection techniques and classifier models

o Features Feature Selection Model TP TN FP FN ACC AUC
Expert

Approved

826 No Feature Selection Tree 80 67 20 33 73.8 0.74 -

826 No Feature Selection
Ensemble RUS

Boosted tree
85 61 15 39 73.8 0.68 -

113 Combine SVM-Linear 83 67 17 23 75.8 0.75 Yes

37 Neuroscience
Ensemble Subspace

Discriminant
69 54 31 46 61.9 0.58 Yes

30
Hybrid Structured Sparse Learning

(HSSL)
Logistic Regression 81 88 19 12

84.5
0.90 -

5
Sequential Floating

Forward Selection (sffsAB)
Cosine KNN 96 59 4 41

78.6
0.83 -

64
Sequential Floating

Forward Selection Standard (SffsSt)

Ensemble Subspace

Discriminant
70 76 30 24 70.9 0.75 -

6 Hamidreza Taheri et. al.: Exploring Effective Features in ADHD…

Figure 3. ROC score of the selected method

The methods which used the feature selection method of

HSSL and SFFS with 84.5% and 78.6% accuracy were not

approved by the neuroscientist, and to the best of

neuroscientist’s knowledge, most of the selected features

were not relevant to the diagnosis of ADHD. Therefore,

under the supervision of the neuroscientist, a small number

of significant features were selected as effective features.

By combining the features obtained from the selection

methods that have been approved by the specialists and the

proposed and approved features of the neuroscientist

concerning the significance of ADHD and behavioral

features, 113 features were obtained with a 75.8% accuracy

rate. As shown in Table 2, using the SVM method, the

correct detection rate of ADHD (TP) and control (TN) were

83% and 67%, respectively. Accordingly, the misdiagnosis

of ADHD (FP) and control (FN) groups were 17% and 33%,

respectively. Figure 3 shows the ROC diagram of the

classifier result.

5. Discussion

In this paper, all the mentioned features were extracted from

the raw signal in the closed and open eye modes, as well as

ERP and behavioral features. To select the best features, we

used the methods of selecting the feature of the HSSL and

SFFS. The method of extracting and selecting the feature

vector from raw signals significantly impacts the obtained

results. Consequently, we tried to use brain signal processing

and extract the best features in diagnosing ADHD in the first

stage. Then those features were approved by a specialist.

In the present study, features included the theta, beta, and

alpha frequency bands of Pz, O1, O2, T5, T6, C6, Cz, Fz,

C3, C4, F3, F4, and F8 electrodes, the maximum and

minimum latencies, and the highest and lowest domains in

ERP. The effective features were obtained through feature

selection methods with the approval of neuroscientists, and

finally, for classification, the linear SVM was used. The

feature vector with 113 features, which was obtained with a

combination strategy, was used for the classification process

by the SVM method. The obtained result showed that the

accuracy of the proposed approach was 75.8%.

Due to changes in brain functionality and the instability of

their brain signals, the diagnosis of ADHD in children aged

6 to 10 is very limited in the literature. Therefore, to compare

with previous studies, the same research method and

executive protocol must be applied to record data. This is a

research constraint that limits comparison with accessible

studies. TableIII summarizes the studies conducted on the

diagnosis of ADHD in children.

As shown in Table 3, different methods have been used in

different studies for data collection. Moreover, the applied

tests and the data registration conditions were different. One

of the advantages of the present study is using all conditions

in one setting: raw signal and ERP signal.

Some studies like [3], have only used closed-eye data for

diagnosis and analysis, in which case the type of data and the

number of participants examined affected the results. In [3],

due to the large number of participants, one of the prominent

features was the age of the participants, while the number of

participants of the present study was fewer, and all

conditions, that is, raw signal (eyes closed and eyes opened)

and the event-dependent potential were used.

In some studies like [27], only male participants were

recruited, and ERP was also performed by color strop test. In

such studies, with about 3 to 5 behavioral features (omission

and commission error), an accuracy of 99.5% was achieved.

With respect to what experts claim, this number of features

is not acceptable and comparable with the present study. In

this study, with a few features, the observed accuracy was

above 80%. However, some of the features were approved

by the experts as criteria for ADHD detection.

 In [56], to diagnose ADHD through the pre-forehead

cortex, NIRS data, strop test, and behavioral data were

collected where with the aid of SVM, the accuracy rate was

86%. The difference between this method and the one in the

current study is the type of data collection procedure

followed.

Journal of Computer and Knowledge Engineering, Vol.5 , No.2. 2022. 7

Table 3. Studies conducted on the diagnosis of ADHD in children. SVM-RFE denotes support vector machine

recursive feature.

Data

collection

method

Device and system Selected feature(s)

Feature

selection

method

Classification

method
Accuracy

Age/

gender

Number

of

participants

Ref.

ERP with

Stroop

task

64 electrode

10-10 system

Three features

(behavioral

features) include

omission,

commission, errors

(SVM-

RFE)
SVM 99.5%.

6 to 12

Boy

70 ADHD

37 Control
[27]

ERP

Go/No Go

19 channel

10-20 system

Mitsar 201

Theta/beta ratio

Theta at Cz

Beta at Cz

Omission errors

No

Statistical

analysis

with

Ancona

58-63%

85%

7 to 16

Boy/

girl

62 ADHD

39 Control
[54]

ERP

Go/No Go

14 channels (Fz, F3,

F4, Cz, C3, C4, Pz,

P3, P4, Oz, O3, O4,

and M1-M2 for the

left and right

mastoids),

10-20 system Ant

company

ERP

Spectral

perturbation

Inter-trial coherence

Time locked on

each stimulus

Omission,

commission errors

reaction time

No
statistical

analysis
-

8 to 12

Boy/girl

7 ADHD

7 Control
[55]

Reverse

Stroop

task

10-20 system

NIRSi system

Reaction time

Behavioral
No SVM 86%

~10

Boy/girl

108 ADHD

108

Control

[56]

Eyes

Closed

EEG

17 electrodes: Fz,

F3, F4, F7, F8, Cz,

C3, C4, T3, T4, T5,

T6, Pz, P3, P4, O1

and O2

NicoletOne

20 features

Age dependent

Coherence Power,

Relative power

No SVM 76%

5.8 to

14

Boy/girl

310 ADHD

350

Control

[3]

ERP

Go/No Go

and

TMS data

BrainAmp

10-20 system
ERP

statistical

analysis

with

Ancona

Statistical

analysis
90%

9 to 14

Boy/girl

19 ADHD

21 Control
[28]

6. Conclusion

In this study, with the aid of intelligent techniques under a

neuroscientist’s supervision for diagnosing ADHD, a new

strategy was proposed to select effective EEG/ERP-based

features. A new dataset was also collected for applying and

evaluating the proposed method. The limitations of previous

researches were discussed it was tried to improve them. The

automatic feature selection techniques usually try to find a

set of features that increase the accuracy measurement. Since

the number of samples is limited, the automatic techniques

can be affected by the experimental-based artifacts and can

find some irrelevant features that can increase the system’s

accuracy for that specific dataset but might not work in

others. Thus, we have proposed an expert’s supervision-

based feature selection technique to achieve an acceptable

result with the expert’s approval. In this study, due to the

characteristics of the data, the effective feature was

confirmed by experts. As experts stated, integrating all

dimensions (including lifestyle, questionnaire, interview,

and psychiatric examination) is essential in the diagnostic

process [57]. In short, the results are promising and can be

expended by taking into account such factors as the effects

of age on more data samples. By increasing the number of

features, the feature selection techniques show a weak

performance or will be a time-consuming task. Thus, using

optimization methods for the mentioned purpose can be a

proper solution for future related works.

Declaration of competing interest

The authors have no conflict of interest to disclose.

7. Acknowledgements

A special thanks goes to the Brain and Trauma Foundation

in Switzerland, headed by Dr. Andreas Mueller and his

coworker Gian Candrian, who supported the study of

Switzerland Opportunity, the HBI Foundation, and the

BioMed Institute, which provided the hardware and software

needed to record the signal. We also appreciate the Ferdowsi

University School of Sports Science and Soroush

Psychological Clinic for their help in collecting data and

selecting samples. Without the support of these groups, the

current research would not be possible at its best quality. We

also appreciate all the children and their parents who

patiently accompanied us.

7. References

[1] Guntern, G. "Auto‐ organization in human

systems", Behavioral Science, Vol. 27(4), pp. 323-337,

1982.

[2] Association, A.P., "Diagnostic and statistical manual of

mental disorders (DSM-5®)", American Psychiatric

Pub, 2013.

[3] Helgadóttir, H., Gudmundsson, Ó. Ó., Baldursson, G.,

Magnússon, P., Blin, N., Brynjólfsdóttir, B., ... &

Johnsen, K., "Electroencephalography as a clinical tool

8 Hamidreza Taheri et. al.: Exploring Effective Features in ADHD…

for diagnosing and monitoring attention deficit

hyperactivity disorder: a cross-sectional study", BMJ

open, Vol. 5(1), 2015.

[4] Müller, A., Candrian, G., Kropotov, J., "ADHS-

Neurodiagnostik in der Praxis", Springer-Verlag, 2011.

[5] Mueller, A., Candrian, G., Kropotov, J. D., Ponomarev,

V. A., & Baschera, G. M., "Classification of ADHD

patients on the basis of independent ERP components

using a machine learning system", In Nonlinear

biomedical physics, Vol. 4, No. 1, pp. 1-12, BioMed

Central, June, 2010.

[6] Mueller, A., Candrian, G., Grane, V. A., Kropotov, J. D.,

Ponomarev, V. A., & Baschera, G. M., "Discriminating

between ADHD adults and controls using independent

ERP components and a support vector machine: a

validation study", Nonlinear biomedical physics, Vol.

5(1), pp. 1-18, 2011.

[7] Dubreuil-Vall L, Ruffini G, Camprodon J. A., "Deep

learning convolutional neural networks discriminate

adult adhd from healthy individuals on the basis of

event-related spectral eeg", Frontiers in neuroscience.

Apr 9;14:251, 2020.

[8] Furlong S, Cohen J. R, Hopfinger, J., Snyder, J.,

Robertson, M. M., Sheridan, M. A., "Resting-state EEG

Connectivity in Young Children with ADHD", Journal

of Clinical Child & Adolescent Psychology, Aug 18:1-7,

2020.

[9] Kaiser A, Aggensteiner PM, Holtmann M, Fallgatter A,

Romanos M, Abenova K, Alm B, Becker K, Döpfner M,

Ethofer T, Freitag CM. "EEG Data Quality:

Determinants and Impact in a Multicenter Study of

Children, Adolescents, and Adults with Attention-

Deficit/Hyperactivity Disorder (ADHD)", Brain

Sciences, Feb, Vol. 11(2), pp. 214, 2021.

[10] Tosun M. Effects of spectral features of EEG signals

recorded with different channels and recording statuses

on ADHD classification with deep learning. Physical

and Engineering Sciences in Medicine. May 27:1-0,

2021.

[11] Cubero-Millán, I., Ruiz-Ramos, M. J., Molina-Carballo,

A., Martínez-Serrano, S., Fernández-López, L.,

Machado-Casas, I., ... & Muñoz-Hoyos, A., BDNF

concentrations and daily fluctuations differ among

ADHD children and respond differently to

methylphenidate with no relationship with depressive

symptomatology. Psychopharmacology, Vol. 234(2),

pp. 267-279, 2017.

[12] Wang, L. J., Li, S. C., Lee, M. J., Chou, M. C., Chou, W.

J., Lee, S. Y., & Kuo, H. C., "Blood-bourne MicroRNA

biomarker evaluation in attention-deficit/hyperactivity

disorder of Han Chinese individuals: an exploratory

study", Frontiers in psychiatry, 9, 2018.

[13] Kropotov, J. D., Grin-Yatsenko, V. A., Ponomarev, V.

A., Chutko, L. S., Yakovenko, E. A., & Nikishena, I. S.,

"ERPs correlates of EEG relative beta training in ADHD

children", International journal of

psychophysiology, Vol. 55(1), pp. 23-34, 2005.

[14] Insel, T. R., & Cuthbert, B. N., "Brain disorders?

Precisely", Science, Vol. 348(6234), pp. 499-500, 2015.

[15] Krieger, V., & Amador-Campos, J. A., Assessment of

executive function in ADHD adolescents: contribution

of performance tests and rating scales. Child

Neuropsychology, Vol. 24(8), pp. 1063-1087, 2018.

[16] Yang, M. T., Hsu, C. H., Yeh, P. W., Lee, W. T., Liang,

J. S., Fu, W. M., & Lee, C. Y., "Attention deficits

revealed by passive auditory change detection for pure

tones and lexical tones in ADHD children", Frontiers in

human neuroscience, Vol. 9, pp. 470, 2015.

[17] Lenartowicz, A., & Loo, S. K., "Use of EEG to diagnose

ADHD", Current psychiatry reports, Vol. 16(11), pp.

498, 2014.

[18] Kakuszi, B., Tombor, L., Papp, S., Bitter, I., & Czobor,

P., "Altered response-preparation in patients with adult

ADHD: A high-density ERP study", Psychiatry

Research: Neuroimaging, Vol. 249, pp. 57-66, 2016.

[19] Snyder, S. M., Rugino, T. A., Hornig, M., & Stein, M.

A., "Integration of an EEG biomarker with a clinician's

ADHD evaluation", Brain and behavior, Vol. 5(4),

e00330, 2015.

[20] Banaschewski, T., & Brandeis, D., "Annotation: what

electrical brain activity tells us about brain function that

other techniques cannot tell us–a child psychiatric

perspective", Journal of child Psychology and

Psychiatry, Vol. 48(5), pp. 415-435, 2007.

[21] Khalifa, M., "Health Analytics Types, Functions and

Levels: A Review of Literature", ICIMTH, pp. 137-140,

2007.

[22] Meskó, B., Hetényi, G., & Győrffy, Z., "Will artificial

intelligence solve the human resource crisis in

healthcare?", BMC health services research, Vol. 18(1),

pp. 1-4, 2018.

[23] Islam, M. S., Hasan, M. M., Wang, X., & Germack, H.

D., "A systematic review on healthcare analytics:

application and theoretical perspective of data mining",

In Healthcare, Vol. 6, No. 2, pp. 54, Multidisciplinary

Digital Publishing Institute, june, 2018.

[24] Jollans, L., & Whelan, R., "Neuromarkers for mental

disorders: harnessing population

neuroscience", Frontiers in psychiatry, Vol. 9, pp. 242,

2018.

[25] Mandal, A. https://www.news-medical.net/health/What-

is-a-Biomarker.aspx.

[26] Tenev, A., Markovska-Simoska, S., Kocarev, L., Pop-

Jordanov, J., Müller, A., & Candrian, G., "Machine

learning approach for classification of ADHD

adults", International Journal of

Psychophysiology, Vol. 93(1), pp. 162-166, 2014.

[27] Öztoprak, H., Toycan, M., Alp, Y. K., Arıkan, O.,

Doğutepe, E., & Karakaş, S., "Machine-based

classification of ADHD and nonADHD participants

using time/frequency features of event-related

neuroelectric activity", Clinical Neurophysiology, Vol.

128(12), pp. 2400-2410, 2017.

[28] Heinrich, H., Hoegl, T., Moll, G. H., & Kratz, O., "A

bimodal neurophysiological study of motor control in

attention-deficit hyperactivity disorder: a step towards

core mechanisms?", Brain, Vol. 137(4), pp. 1156-1166,

2014.

[29] Müller A, Vetsch S, Pershin I, Candrian G, Baschera

GM, Kropotov JD, Kasper J, Rehim HA, Eich D.,

"EEG/ERP-based biomarker/neuroalgorithms in adults

with ADHD: Development, reliability, and application

in clinical practice", The World Journal of Biological

Psychiatry, May 7, 2019.

Journal of Computer and Knowledge Engineering, Vol.5 , No.2. 2022. 9

[30] Raven, J., Court, J. H., "Manual for Raven's progressive

matrices and vocabulary Scales", 1991, San Antonio,

TX: Harcourt Assessment, 2003, updated 2004.

[31] Zoubek, L., Charbonnier, S., Lesecq, S., Buguet, A., &

Chapotot, F., "Feature selection for sleep/wake stages

classification using data driven methods", Biomedical

Signal Processing and Control, Vol. 2(3), pp. 171-179,

2007.

[32] Tzanetakis, G., & Cook, P., "Musical genre

classification of audio signals", IEEE Transactions on

speech and audio processing, Vol. 10(5), pp. 293-302,

2002.

[33] Tsallis, C., Mendes, R., & Plastino, A. R., "The role of

constraints within generalized nonextensive

statistics", Physica A: Statistical Mechanics and its

Applications, Vol. 261(3-4), pp. 534-554, 1998.

[34] Mormann, F., Andrzejak, R. G., Elger, C. E., &

Lehnertz, K., "Seizure prediction: the long and winding

road", Brain, Vol. 130(2), pp. 314-333, 2007.

[35] Shannon, C. E., "A mathematical theory of

communication", ACM SIGMOBILE mobile computing

and communications review, Vol. 5(1), pp. 3-55, 2001.

[36] Rényi, A., "On measures of entropy and information.

In Proceedings of the Fourth Berkeley Symposium on

Mathematical Statistics and Probability", Volume 1:

Contributions to the Theory of Statistics. The Regents of

the University of California, 1961.

[37] Nai-Jen, H., & Palaniappan, R., "Classification of

mental tasks using fixed and adaptive autoregressive

models of EEG signals", In The 26th Annual

International Conference of the IEEE Engineering in

Medicine and Biology Society, Vol. 1, pp. 507-510,

IEEE,September, 2004.

[38] Bai, J., & Ng, S., "Tests for skewness, kurtosis, and

normality for time series data", Journal of Business &

Economic Statistics, Vol. 23(1), pp. 49-60, 2005.

[39] Ansari-Asl, K., Chanel, G., & Pun, T., "A channel

selection method for EEG classification in emotion

assessment based on synchronization likelihood",

In 2007 15th European Signal Processing

Conference, pp. 1241-1245, IEEE, September, 2007.

[40] Tang, W. C., Lu, S. W., Tsai, C. M., Kao, C. Y., & Lee,

H. H., "Harmonic parameters with HHT and wavelet

transform for automatic sleep stages

scoring", REM, Vol. 365, pp. 8-6, 2007.

[41] Peeters, G., Giordano, B. L., Susini, P., Misdariis, N., &

McAdams, S., "The timbre toolbox: Extracting audio

descriptors from musical signals", The Journal of the

Acoustical Society of America, Vol. 130(5), pp. 2902-

2916, 2011.

[42] Kıymık, M. K., Güler, İ., Dizibüyük, A., & Akın, M.,

"Comparison of STFT and wavelet transform methods

in determining epileptic seizure activity in EEG signals

for real-time application", Computers in biology and

medicine, Vol. 35(7), pp. 603-616, 2005.

[43] Percival, D. B., Walden, A. T., "Wavelet methods for

time series analysis", Cambridge university press; 2000.

[44] Kaiser, A., Aggensteiner, P. M., Baumeister, S., Holz,

N. E., Banaschewski, T., & Brandeis, D., "Earlier versus

later cognitive event-related potentials (ERPs) in

attention-deficit/hyperactivity disorder (ADHD): a

meta-analysis", Neuroscience & Biobehavioral

Reviews, Vol. 112, pp. 117-134, 2020.

[45] Jenke, R., Peer, A., & Buss, M., "Feature extraction and

selection for emotion recognition from EEG", IEEE

Transactions on Affective computing, Vol. 5(3), pp. 327-

339, 2014.

[46] Park, K. S., Choi, H., Lee, K. J., Lee, J. Y., An, K. O., &

Kim, E. J., "Emotion recognition based on the

asymmetric left and right activation", International

Journal of Medicine and Medical Sciences, Vol. 3(6),

pp. 201-209, 2011.

[47] Ververidis, D., & Kotropoulos, C., "Fast and accurate

sequential floating forward feature selection with the

Bayes classifier applied to speech emotion

recognition", Signal processing, Vol. 88(12), pp. 2956-

2970, 2008.

[48] Bishop, C. M., & Tipping, M., "Variational relevance

vector machines", arXiv preprint arXiv,1301.3838,

2013.

[49] Borra, S., & Di Ciaccio, A., "Measuring the prediction

error. A comparison of cross-validation, bootstrap and

covariance penalty methods", Computational statistics

& data analysis, Vol. 54(12), pp. 2976-2989, 2010.

[50] Fawcett, T., "An introduction to ROC analysis", Pattern

recognition letters, Vol. 27(8), pp. 861-874, 2006.

[51] Hajian-Tilaki, K., "Receiver operating characteristic

(ROC) curve analysis for medical diagnostic test

evaluation", Caspian journal of internal medicine, Vol.

4(2), pp. 627, 2013.

[52] Kropotov JD. Quantitative EEG, event-related potentials

and neurotherapy. Academic Press; 2010.

[53] Thome, J., Ehlis, A. C., Fallgatter, A. J., Krauel, K.,

Lange, K. W., Riederer, P., & Gerlach, M., "Biomarkers

for attention-deficit/hyperactivity disorder (ADHD)", A

consensus report of the WFSBP task force on biological

markers and the World Federation of ADHD. The World

Journal of Biological Psychiatry, Vol. 13(5), pp. 379-

400, 2012.

[54] Ogrim, G., Kropotov, J., & Hestad, K., "The QEEG

theta/beta ratio in ADHD and normal controls:

sensitivity, specificity, and behavioral

correlates", Psychiatry Research, Vol. 198(3), pp. 482-

488, 2012.

[55] Baijot, S., Cevallos, C., Zarka, D., Leroy, A., Slama, H.,

Colin, C., & Cheron, G., "EEG dynamics of a go/nogo

task in children with ADHD", Brain sciences, Vol.

7(12), pp. 167, 2017.

[56] Yasumura, A., Omori, M., Fukuda, A., Takahashi, J.,

Yasumura, Y., Nakagawa, E., ... & Inagaki, M.,

"Applied machine learning method to predict children

with ADHD using prefrontal cortex activity: a

multicenter study in Japan", Journal of attention

disorders, Vol. 24(14), pp. 2012-2020, 2020.

[57] Bzdok, D., & Yeo, B. T., "Inference in the age of big

data: Future perspectives on

neuroscience", Neuroimage, Vol. 155, pp. 549-564,

2017.

10 Hamidreza Taheri et. al.: Exploring Effective Features in ADHD…

Journal of Computer and Knowledge Engineering, Vol. 5, No. 2, 2022. (11-20) 11

DOI: 10.22067/cke.2022.73802.1038

Embedding Knowledge Graph through Triple Base Neural Network

and Positive Samples*
Research Article

Sogol Haghani1 Mohammad Reza Keyvanpour2

Abstract: Representation learning on a knowledge graph

aims to capture patterns in the knowledge graph as low-

dimensional dense distributed representation vectors in the

continuous semantic space, which is a powerful technique

for predicting missing links in knowledge bases. The

problem of knowledge base completion can be viewed as

predicting new triples based on the existing ones. One of the

prominent approaches in knowledge base completion is the

embedding model. Currently, the majority of existing

knowledge graph embedding models cannot deal with

unbalanced entities and relations. In this paper, a new

embedding model is proposed, with a general solution

instead of using the additional corpus. First, a triple-based

neural network is presented to maximize the likelihood of the

knowledge bases finding a low-dimensional embedding

space. Second, two procedures to generate positive triples

are proposed. They produce positive triples and add them to

the training data. The policies can capture rare triples, and

simultaneously remain efficient to compute. Experiments

show that the embedded model proposed in this paper has

superior performance.

Keywords: Knowledge Graphs, Link Prediction, Positive

Samples, Embedding Neural Network, Graph Mining

1. Introduction

Knowledge bases like Wordnet [1], YAGO [2], or the

Google Knowledge Graph are useful resources used in many

AI tasks, which present ways to organize, manage, and

retrieve all digital knowledge. A knowledge base can be

represented as a set of (head, relation, and tail) triples. Any

information can reach from the knowledge base through

triples or concatenation of them [3, 4]. Although

completeness, accuracy, and high quality of data are the

parameters that guarantee their advantage of them, they

suffer from incompleteness and a lack of reasoning

capability [3]. The problem of knowledge base completion

can be viewed as predicting new triples based on the existing

ones [6].

One of the promising approaches to knowledge base

completion is to embed their entities and relations into low-

dimensional vector spaces. The methods define a score

function and assign a score to the triple [5, 6]. For any

unobserved triple, its plausibility can be predicted by using

the learned embedding and the score function. The high-

value score will assign to the probable triple [5].

Despite the substantial efforts and great successes in the

research, the effectiveness of the embedding methods has not

been directly compared. They mostly use various pre-

training methods to initialize the embedding vector space. It

is still unclear that which pre-training method should be

* Manuscript received: 22 November 2021, Revised, 07 July 2022; Accepted: 03 October 2022.
1. Master, Department of Computer Engineering, Alzahra University, Tehran, Iran.
2. Corresponding author. Professor, Department of Computer Engineering, Alzahra University, Tehran, Iran.

Email: Keyvanpour@alzahra.ac.ir

employed, though it has a considerable effect on the results

[7, 8]. Another issue is heterogeneous and unbalanced

entities and relations in the knowledge base. Heterogeneity

may affect overfitting on simple triples or underfitting on

rare ones. A simple triple is the one in which its elements

appear in most other triples, while rare triples lack their

entities and relations of looking most [9]. In Fig.1 triple

(𝐹, 𝑙𝑖𝑣𝑒_𝑖𝑛, 𝐸) is such a rare triple that the rate of relation

𝑙𝑖𝑣𝑒_𝑖𝑛 is lower than the other, or triple (𝐺, 𝑓𝑎𝑡ℎ𝑒𝑟_𝑜𝑓, 𝐻)

is the other kind rare one, which the degree of 𝐻 is low in

comparison to 𝐺. Alternatively, triple (𝐹 , 𝑏𝑜𝑟𝑛_𝑖𝑛 , 𝐷) is

such a simple one. Although embedding methods have a

strong ability to model knowledge graphs, it remains

challenging faced with heterogeneous data [10].

Figure 1. Example of rare and simple triple

The goal of this study is to introduce a novel algorithm

that does not require pre-training and can perform and

compete while it can deal with unbalanced entities and

relations. To that end, two methods are proposed.

First, we propose a new triple-based embedding neural

network, to encode the knowledge base to the embedding

vector space for entities and relations which maximizes the

likelihood of the whole knowledge base. It is a customized,

objective function using Stochastic Gradient Descent (SGD)

motivated by prior work on natural language processing to

the triple structure [11]. The proposed triple-based

embedding neural network was used to capture the semantic

and syntactic structure of the knowledge base. It takes a

knowledge graph as input and produces latent

representations for entities and relations. On this subject, we

showed that the triple-based embedding neural network used

in knowledge base completion obtains proper results in

comparison to the state of the arts.

Second, since the embedding models lack in predicting

rare triples, two different procedures are introduced to

augment the knowledge base to overcome this deficiency. To

address this issue, positive triples are generated during the

training with a semi-learned embedding vector. Generated

triples are added to the training data based on the rate of

appearing in previous training data. The rarer triple, the

https://cke.um.ac.ir/
https://cke.um.ac.ir/article_42935.html

12 Sogol Haghani et. al.: Embedding Knowledge Graph through …

higher the chance of being in the training set. Each procedure

uses a specific mechanism in adding positive triples to the

training data.

 GNSs (Generate New Samples) generate positive triples

after 𝛿 iteration of learning triple-based embedding

neural network, then add them to the training set. The rest

of the iterations are worked with the new augmented

training set.

 FCSA (Flip Coin Simulated Annealing) decides to

generate new triples or use the training sample in the

learning process. At the beginning of the process, it rarely

generates new triples, and by the time when the

embedding vectors learn, it can generate more new

triples.

We demonstrate their usefulness by applying them to our

triple based neural network. Our extensive experiments on

two benchmark datasets show that they achieve superior

performance over competitive baselines in two knowledge

base completion tasks.

The rest of the paper is structured as follows. Section 2

reviews literature on knowledge base embedding. Section 3

presents our approach. Section 4 presents empirical results.

Finally, section 5 includes the conclusion and plan of further

work.

2. Related works

Various models have been proposed for knowledge graph

completion through the link prediction task. Embedding the

knowledge graph into a low-dimensional continuous vector

space is one of the assuring approaches [12]. Various types

of knowledge graph embedding models have been proposed,

and they learn the relation between entities using observed

triple in the knowledge graph. These models can be

classified into three classes: translation-based models,

bilinear models, and compositional models [6]. Before

proceeding, mathematical notations need to be defined. h, r,

and t denote a head entity, relation, and tail entity,

respectively.

The bold letters 𝑒ℎ, 𝑒𝑟 , and 𝑒𝑡 denote embeddings of h, r,

and t, respectively, on an embedding space ℝ𝑑. E and R

represent sets of entities and relations, respectively.

Translation-based models

The existing translation-based model treats the triple as a

relation-specific translation from the head entity to the tail

entity. The entity vector obtains the optimal value during the

training process by score function, while the relation is

regarded as an operator or a translator [5, 12]. Meanwhile,

TransE has been introduced as a pioneer in this approach

[13]. It is assumed that there is 𝑒ℎ + 𝑒𝑟 ≈ 𝑒𝑡 equation for

each valid triple which assumes that the tail embedding 𝑒𝑡

should be in the neighborhood of 𝑒ℎ + 𝑒𝑟. TransE is used 𝐿2

to learn embedding vectors. It is not only a simple model but

also has a high degree of scalability for modeling complex

patterns by embedding dimensions. TransH [10], TransD [9],

and TransR [14] are other translation methods. For instance,

TransH is a transitional projection. TransD is similar to it,

with the difference that it uses the identity matrix of 𝑑 × 𝑘

size. The dimensionality of the entity and relation vector is

considered differently. TransR also uses a rotation

transformation for the train. CTransR [14] and TransSparse

[9] are an extension of TransR. CTransR considers

correlations under each relation type by clustering diverse

head-tail pairs into groups and learning distinct relation

vectors for each group. TransSparse focuses on solving the

imbalance issues in knowledge graphs, which are ignored by

previous translation models. The imbalance means that the

number of head entities and that of tail entities in relation

could be different.

Bilinear models

The DistMult [15] is based on a bilinear model where each

relation is represented by a diagonal rather than a full matrix.

It learns a tensor that is symmetric in the subject and object,

while datasets contain mostly non-symmetric triples.

ComplEx [12] solves the same issue of DistMult by the idea

that multiplication of complex values is not symmetric.

ComplEx represents a real-valued tensor 𝑋 ∈ ℝ𝑁1×𝑁2×𝑁3 as

the real part of the sum of R complex-valued rank one tensors

𝑢𝑟
(1)

⨂ 𝑢𝑟
(2)

⊗ 𝑢𝑟
(1)

where 𝑟 ∈ {1, … , 𝑅} and 𝑢𝑟
(𝑚)

∈ 𝐶𝑁𝑚

𝑓𝑟(ℎ, 𝑡) = 𝑅𝑒(∑ 𝑢𝑟
(1)

⨂ 𝑢𝑟
(2) ⊗ 𝑢𝑟

(1)𝑅
𝑟=1) (6)

where 𝑢𝑟
(1)

 is the complex conjugate of 𝑢𝑟
(1)

. Bilinear

models have more redundancy than translation-based models

and so easily become overfitted. Hence, embedding spaces

are limited to low-dimensional space. SimplE [34] are all

proved to be fully expressive when embedding dimensions

fulfill some requirements. The full expressiveness means

these models can express all the ground truth which exists in

the data, including complex relations. However, these

requirements are hardly fulfilled in practical use. RotatE [35]

represents relations as rotations in a complex latent space,

with h, r, and t all belonging to 𝐶𝑑. The r embedding is a

rotation vector: in all its elements, the complex component

conveys the rotation along that axis, whereas the real

component is always equal to 1. The rotation r is applied to

h by operating an element-wise product (once again noted

with ⊙ in 1). L1 norm is used for measuring the distance

from t. The authors demonstrate that rotation allows

modeling correctly numerous relational patterns, such as

symmetry/anti-symmetry, inversion, and composition.

Compositional models

In the LP field, KG embeddings are usually learned jointly

with the weights and biases of the layers; these shared

parameters make these models more expressive, but

potentially heavier, harder to train, and more prone to

overfitting [33]. NTN [16] is one of the most well-known

methods in knowledge base completion. The model uses a

three-way tensor in its score function. In other words, NTN

can replace the standard neural network layer with a three-

way tensor layer. Also, using 𝑡𝑎𝑛ℎ for applying the non-

linear actions, the score function can be calculated as

follows:

𝑓𝑟(ℎ, 𝑡) = 𝑢𝑟
T𝑓(𝑒ℎ

T 𝑊𝑟
[1:k]

𝑒𝑡 + 𝑊𝑟,1𝑒ℎ + 𝑊𝑟,2𝑒𝑡 + 𝑏𝑟) (7)

where 𝑊𝑟
[1:k]

 ∈ ℝ𝒅×𝒅×𝒌 is a tensor and 𝑊𝑟,1, 𝑊𝑟,2 ∈

 ℝ𝒌×𝒅 are weight matrices and 𝑏𝑟 ∈ ℝ𝒌 is the bias vector.

Despite the fascinating performance, this method is very

complicated, and the evaluation results show that

representations vectors with the pre-train can reach such a

function [17].

HOLE [18] is another method known in this field. This

Journal of Computer and Knowledge Engineering, Vol.5 , No.2. 2022. 13

method has high performance compared to the others. The

reason for this function is that it can be applied to a circle of

correlation in the score function to represent the space of

entities and relations. This method uses a pre-train to create

the initial representation space, which causes representation

vectors to not have random values at the beginning of the

training process and, conversely, have an appropriate

initialization.

ConvE [31] performs a global 2D convolution operation

on the subject entity and relation embedding vectors after

they are reshaped to matrices and concatenated. The obtained

feature maps are flattened and transformed through a linear

layer, and the inner product is taken with all object entity

vectors to generate a score for each triple. Whilst results

achieved by ConvE are impressive, the reshaping and

concatenating of vectors as well as using 2D convolution on

word embeddings is unintuitive. The R-GCN uses a graph

convolutional network to obtain an embedding of the triples,

then applies DistMult [15] to compute a score for the

embeddings.

As pointed out in [8], pre-training is an open question

where it is still unclear which pre-training method should be

employed. There is no standard, and no priority has been

mentioned for it.

3. Our approach

In this section, we first propose how the triple-based

embedding neural network is worked to represent entities

and relations. Second, the detail of generating positive triples

and two procedures of how to apply them in learning is

provided.

3.1. Triple-Based Embedding Neural Network

Figure 2 shows a perspective of the Triple-based Embedding

Neural Network's layers. It consists of three layers. As seen

in the figure, the first layer is composed of two parts

connected by the weight matrices to the hidden layer. The

upper part of the layer is a one-hot vector of the head entity,

and the bottom is a one-hot vector of the relation. The hidden

layer is a sum of the projection vectors of head and relation.

The number of neurons in the last layer is also equal to |E|,

which is equal to the size of the upper part of the first layer.

This layer describes the probability of tail with the given of

the head and relation. In other words, not only the last layer

is not the output but also the embedding vectors are its rows

of weight matrices.

Figure 2. Triple Based Embedding Neural Network

Three weight matrices 𝑊ℎ, 𝑊𝑟 and 𝑊𝑡 after training have

optimal weights, and each rows of 𝑊ℎ
T, 𝑊𝑡 and 𝑊𝑟

T are a

embedding vector for entities 𝑒ℎ, 𝑒𝑡 and relation 𝑒𝑟 [11, 13].

The overall process of learning embedded neural network

has been presented in algorithm 1.

The purpose of the Triple-based embedding neural

network is to estimate the maximum likelihood of a

knowledge base. Accordingly, as shown in algorithm 1 the

main loop of learning tries to maximize its likelihood by

considering all training triples of the knowledge base. A loss

function should minimize the error by considering corrupted

triples [3].

It should be noted that the purpose of the method is to

learn latent representations, not probable distribution

between two entities. Conditional probability 𝑃𝑟(𝑡|ℎ, 𝑟) is

considered for triple (ℎ , 𝑟 , 𝑡). The goal is to set the

parameter 𝜃 to maximize the probability of the knowledge

base (8).

arg max
 𝜃

∏ 𝑃𝑟(𝑡|ℎ, 𝑟; 𝜃)𝑡𝑟𝑖𝑝𝑙𝑒 ∈𝑇 (8)

𝑇 is the list of observed triples or training sets. 𝑃𝑟(𝑇 =
 1|(ℎ, 𝑟 , 𝑡)) is the probability that the triple (ℎ , 𝑟 , 𝑡) exists

in the training set, or, more precisely, a triple has been

observed.

Conversely, the probability of 𝑃𝑟(𝑇 = 0|(ℎ , 𝑟 , 𝑡)) =
 1 − 𝑃𝑟(𝑇 = 1|(ℎ, 𝑟 , 𝑡)) indicates that a triple has not

been observed. With these assumptions, the goal is to find

the parameters that maximize the likelihood of seeing all the

observed triples in the training set:

arg max
𝜃

∏ 𝑃𝑟(𝑇 = 1|(ℎ, 𝑟, 𝑡); 𝜃)

𝑡𝑟𝑖𝑝𝑙𝑒 ∈𝑇

≈ arg max 𝑙𝑜𝑔
𝜃

∏ 𝑃𝑟(𝑇 = 1|(ℎ, 𝑟, 𝑡); 𝜃)𝑡𝑟𝑖𝑝𝑙𝑒 ∈𝑇

= arg max
𝜃

∑ 𝑙𝑜𝑔 𝑃𝑟(𝑇 = 1|(ℎ, 𝑟, 𝑡); 𝜃)

𝑡𝑟𝑖𝑝𝑙𝑒 ∈𝑇

(9)

The sigmoid function is used to determine the value of

𝑃𝑟(𝑇 = 1|(ℎ, 𝑟, 𝑡); 𝜃), which is defined as:

𝑃𝑟(𝑇 = 1|(ℎ, 𝑟, 𝑡); 𝜃) =
1

1+𝑒−𝑧

 (10)

and it is expected to meet the objective shown in the

14 Sogol Haghani et. al.: Embedding Knowledge Graph through …

formula 11 [11].

arg max
𝜃

∑ 𝑙𝑜𝑔𝑡𝑟𝑖𝑝𝑙𝑒 ∈𝑇 =
1

1+𝑒−𝑧 (11)

To the triple based embedded neural network structure, the

parameter 𝑧 is defined as follows:

𝑧 = (𝑒ℎ + 𝑒𝑟). 𝑒𝑡 (12)

𝑒ℎ , 𝑒𝑟 , and 𝑒𝑡 are embedded vectors. They are for ℎ𝑒𝑎𝑑,

𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, and 𝑡𝑎𝑖𝑙 respectively. These are the rows of

𝑊ℎ
T, 𝑊𝑟 and 𝑊𝑟

T weight matrices. Figure 3Error! Reference

source not found.. illustrates the explanation of the equation

12 in vector space. According to the cosine similarity, the

smaller the angle between 𝑒ℎ + 𝑒𝑟 and 𝒆𝒕, maximize the dot

product [13]. Due to Figure 3Error! Reference source not

found.. it is desirable that the sum of 𝒆𝒉 and 𝒆𝒓 be parallel

with 𝑒𝑡 [11].

Figure 3. An overview of the relation between 𝑒ℎ , 𝑒𝑟 , and 𝑒𝑡

vectors

Due to the structure of Triple-based embedding neural

network, corrupted triples are used in learning. The table of

corrupted triples with uniform distribution is created []. As

shown in 1 the table is generated before the main loop. The

relevant question is, can a corrupted generated triple be an

observed one. In response, it should be stated that there is no

claim to the injection of noise in the learning procedures.

Owing to the high dimensionality of entities and their

relations, the probability of being a missing triple is low [11].

Finally, gradient descent is used to update the weights. As

shown in Algorithm 1, all weight matrices are randomly

initialized. By the continuation of the training, optimized

weights are obtained.

TransE is one of the popular models on large datasets due

to its scalability. Similar to TransE, the time complexity of

Triple based neural network is 𝑂(𝑑), where 𝑑 is the size of

embedding vectors, it is more efficient than ConvE, NTN,

and the neural network models [4].

3.2. Generate positive triples

In this section, we start by explaining why to generate

positive triples and then describe how to construct them. In

the next two sections, the two distinct procedures of how to

apply them in the learning model will be illustrated.
Triples are highly heterogeneous in knowledge bases [5].

The diversity is evident both in the type of relation and in the
entities. Most of the presented embedding methods are
incapable of dealing with such heterogeneity [9]. Therefore,
rare entities and relations get an argument. We try to
augment rare ones to get a consistent knowledge base. To the
best of our knowledge, there has not been an attempt to
petition to gain consistent a knowledge base. Inspired by
machine vision, data augmentation is used to imbalance
classification. Hence, it is being tried to create new images

from existing ones and add to the unbalanced classes [20,
21]. Such a mechanism is needed to balance the knowledge
base, though creating new triples from existing ones is not
possible in this manner.

To address this problem, we adopted the idea of sequence
modeling which is stated that the learning model randomly
predicts the next sequence at first, and with learning, the
model can correctly predict the following one [22]. In these
circumstances, the triple-based embedding neural network is
allowed to be learned: the model can generate new triples
even as the weight matrices are updating. In other words,
after several repetitions, the embedding vectors were found
to have reasonably optimized: they were able to predict new
instances.

For each entity, all possible triples are created, which it
has located as head or tail, and the probability of being a true
triple is calculated. Then N top of the probable triples is
nominated to be used in the learning model. These
candidates are chosen concerning their rareness: the rarer
relation and entity, the more chance to be selected. In other
words, a triple has a higher chance of being selected when
the head, tail, or relation has been less commonly observed
in the training set. The pseudo-code on how to Generate
Positive Triples has been shown in Algorithm 2. In the
following sections, two strategies named GNSs and FCSA
describe explaining how to use new triples in the learning
model.

A. GNSs
Figure 4 shows the whole process of when to apply GNSs.

In the GNSs strategy, the learning procedure stops after 𝛿
repetitions, and the model starts generating new positive
triples. These are created by the updated weights matrices
and then add to the training set. Then, the learning model
continues training with a new training set. In other words, the
new set has the original triples and the new positive triples,
which predicts by the semi-learned model. Entities and
relations in which there is a higher chance of prediction

regarding node reverse degree
1

deg (𝑒𝑛𝑡𝑖𝑡𝑦)
 and relation

repetition
1

|relation|
 can benefit from the algorithm. The more

infrequent relation and entity, the more chance to predict. In
other words, a triple has a higher chance of being selected

when ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙 or 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 has been less commonly
observed in the training set. In the opinion of the results of
the experiments, selecting a part of the probable triples will
increase the performance of the method. According to a
thumb rule, the size of the new samples should not be in such
a way that eliminates the effect of the original samples.

Journal of Computer and Knowledge Engineering, Vol.5, No.2. 2022. 15

Figure 4. An overview of applying GNSs strategy

Figure 5. An overview of applying FCSA strategy

The time complexity of finding positive triple is 𝑂(𝑑), and

it repeated to z times where 𝑧 ≪ |𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎|. As the

size of generated positive triples is much less than the

training data and they are calculated once in the training, it

remains efficient to apply this procedure to the learning.

B. FCSA

The fundamental idea of FCSA is illustrated in Figure 5.

During training, FCSA decides whether a new true triple will

be generated or use the original one. In contrast with GNS,

the training procedure never pauses. For every sample, we

propose to flip a coin and use the true triple or generate the

probable one. At the beginning of training, sampling from

the model would yield a random triple since the model is not

well trained. So, selecting more often, the original samples

should help. We thus propose to use a schedule to help the

model to generate new triples when it becomes more learned.

A sigmoid function is used to decide when new triples can

be generated:

𝜖 =
1

1+𝑒𝑧 (13)

𝑧 = 𝑡𝑜𝑡𝑎𝑙 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑟𝑎𝑡𝑖𝑜𝑛

It states that the chances of choosing a new triple are

higher at the closure of the learning process and expects the

model to sample reasonable triples [22]. If a new sample is

selected, FCSA will replace the original. FCSA’s goal is to

explore newer spaces. As in GNSs, the greater chance is

given to probable triples which are more heterogeneous

when selecting alternative triples. As the size of training sets

remains constant the time complexity of FCSA is 𝑂(𝑑).

4. Experiments

This section proposes an experimental comparison of the

proposed method and demonstrates that it can compete with

current state-of-the-art methods [3, 18]. The evaluations are

based on Wordnet11 and Wordnet18.

4.1. Datasets and metrics

To evaluate the proposed method, two datasets Wordnet11

[16] and Wordnet18 [13] were used: both are state-of-the-art

methods. The statistics of these data sets are given in Table

1.

Wordnet11 and Wordnet18 are not only different from

each other regarding the size of entities and relations, but

also in the structure of the test and the validation set. Each

dataset and assessment criteria are described individually in

the following sections.

 Wordnet11: Positive and negative samples are indicated

in the triple format with a label in test and validation sets.

In other words, triples with negative and positive labels

are wrong and right triples respectively. Negative triples

are constructed from the corruption of positive ones.

Test methodology

Due to the structure of the dataset, link prediction became a

binary classification issue. For each relation, a threshold 𝜃𝑟

was determined for evaluation by the validation set.

Therefore, the probability of each triple in the test set was

compared with its relation threshold: this determined the

decision to put a positive or negative label [16].

Evaluation criteria

Accuracy is a criterion for evaluating this data set, as shown

in Equation 14 [23].

Accuracy =
𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑡𝑛+𝑓𝑝+𝑓𝑛
 (14)

 Wordnet18: In this dataset, all triples were positive.

Therefore, the test methodology and evaluation criteria

were based on the triple's rank.

Test methodology

The rank of the triple was calculated following what is

mentioned in [13]. Accordingly, for each examination

sample, the tail of the triple was replaced with all entities,

and the probability for each of them was calculated. The

same procedure is also applied to the head entity. Finally,

two lists of all created triples were sorted in descending order

by their probability. This procedure is called raw mode,

which is composed of all possible triples. Another mode is

called filtered, in which all created triples that exist in the

training, test, and validation sets are removed except the one

that should be evaluated [13].

16 Sogol Haghani et. al.: Embedding Knowledge Graph through …

Table 1. Statistics of the experimental datasets used in this study (and previous works). #Entity is the number of entities, #Relation is the

number of relation types, and #Train, #Validation and #Test are the numbers of triples in the training, validation and test sets,

respectively

Datasets #Entity #Relation #Train #Validation #Test

Wordnet11 38,696 11 112,581 2,609 10,544

Wordnet18 40,943 18 141,442 5,000 5,000

Evaluation criteria

𝑀𝑅, 𝑀𝑅𝑅, and 𝐻𝑖𝑡@𝑘 are the evaluation criteria used for

Wordnet18. The mean of the triple's rank is called the mean

rank 𝑀𝑅. 𝑀𝑅 is in the range of [1 , ∞). As 𝑀𝑅 gets close

to 1, it shows that the proposed method can predict triples at

lower ranks [5] which indicates the efficiency of the method.

𝑀𝑅 =
∑ 𝑟𝑎𝑛𝑘𝑖

|𝑁|
 (15)

The Mean Reciprocal Rank (MRR) is a statistical measure

for evaluating each process that presents a list of possible

responses to a sample of questions that are arranged with the

correct probability. After calculating the rank of all triples,

the MRR is calculated as follows:

𝑀𝑅𝑅 =
1

|𝑁|
∑

1

𝑟𝑎𝑛𝑘𝑖

|𝑁|
𝑖=1 (16)

𝑀𝑅𝑅 is in the range of [0, 1]. 𝐻𝑖𝑡@𝑘, like the mean rank

criterion, is used to evaluate the prediction of links in the

knowledge base. The triple is considered as predicted when

the rank is less or equal to 𝐾. Finally, the ratio of predicted

triples to the total has been shown as the criterion of 𝐻𝑖𝑡@𝑘

(17).

𝐻𝑖𝑡@𝑘 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑖𝑝𝑙𝑒𝑠 𝑡ℎ𝑎𝑡 𝑟𝑎𝑛𝑘𝑠 𝑙𝑒𝑠𝑠 𝑜𝑟 𝑒𝑞𝑢𝑎𝑙 𝑡ℎ𝑎𝑛 𝐾

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑙𝑙 𝑇𝑟𝑖𝑝𝑙𝑒𝑠
 (17)

𝐻𝑖𝑡@𝑘 is in the range of [0, 1]. As the value of this

criterion is higher, it shows that most of the triples get a rank

lower or equal to 𝑘 [18].

4.2. Experimental setup

In training the triple-based embedding neural network, two

learning rates 𝛼 and 𝛽 are used for entity and relation

respectively. The learning rate is validated in

{ 0.001, 0.01, 0.03, 0.05, 0.07, 0.1, 0.15} and the learning

rate 𝛼 are 0.03 and 0.07 in Wordnet11 and Wordnet18

respectively. Also, the learning rate 𝛽, among the values

{0.001, 0.005, 0.01, 0.05, 0.1}, 0.005, and 0.001 is

validated for Wordnet11 and Wordnet18 respectively. The

reason for adding the 𝛽 learning rate is that the error

calculated from the model is added to the relationship

weights at a different rate. Since the entity-to-relation ratio

is very heterogeneous, two learning parameters are needed to

tune the neural network. The appropriate number of negative

samples for learning triple base neural network is considered

𝑘𝑛𝑠 = 1 and 𝑘𝑛𝑠 = 5 in Wordnet11 and Wordnet18 [16].

Furthermore, the number of positive triples in the training

process in the GNSs strategy is estimated at 500 and 1500

in Wordnet11 and Wordnet18, respectively. By increasing

large numbers of positive triples noise can spread. While, the

less samples impact minor effect on results. In GNSs the 𝛿 is

equal to 3/4 total iteration for each data set.

4.3. Baselines

This paper compared several state-of-the art relational

learning approaches. TransE, TransR, R-GCN, NTN,

ComplEx, ConvE and R-GCN comprise our baselines. The

results of TransE, R-GCN, TranSparse-DT, and ComplEx

are reported from [12] and the results of TransR and NTN

from [36], and the rest are from [31]. They are current, state-

of-the-art methods and they use the same evaluation

protocol.

4.4. Results

To specify the effect of each method, four distinct

examinations are presented:

1. ENN: Train Triple-based Embedding Neural Network

Without Any Strategy;

2. ENN + GNSs: Train Triple-based Embedding Neural

Network with GNSs;

3. ENN + FCSA: Train Triple-based Embedding Neural

Network with FCSA;

4. ENN + GNSs + FCSA: Train Triple-based Embedding

Neural Network with both GNSs and FCSA strategies

4.4. Results on Wordnet11

The results of the four examinations are provided in Figure

6. To illustrate the different aspects of the neural network's

capabilities and proposed strategies, these examinations are

presented. We also consider the results by the label of

relation, classifying each relation according to its labels. It

can be seen from Figure 6. that ENN detects their accuracy

less than others, such as the domain topic and the domain

region, by applying the strategies, the accuracy of each has

increased about 7%. Also, the relations chart shows that the

amount of heterogeneity of the relations causes the strategies

to have an effect on the accuracy of each relation. For

instance, the synset domain topic relation that the ENN

estimates its accuracy more than domain topic and domain

region, with applying the strategies the results show less

improvement compared the two mentioned. Even in some

relations, there is no increase in accuracy. In member

holonym and member meronym relations, the accuracy of the

ENN is greater than applying strategies (these relations have

the highest accuracy among them). The difference is about

0.5%. This phenomenon shows the decreasing effect of

original samples or existence noise in applying strategies.

However, it is worth noting that such decreasing is negligible

in comparison with the increase of accuracy in other

relations.

Journal of Computer and Knowledge Engineering, Vol.5, No.2. 2022. 17

Figure 6. Accuracy of each relation with 4 different tests

The results demonstrate that ENN associated with GNSs

is more accurate in comparison with ENN + FCSA. Not only
ENN + GNSs consider the training set at the end but also a
new training set has been given to the triple-based
embedding neural network. Comparing the superiority of the
applying FCSA strategy is to reduce the error in high-
frequency relations such as member holonym and member
meronym. In this regard, it can be ensured that the accuracy
of applying FCSA is not as good a less adverse effect, and is

relatively more stable. The ENN has an accuracy of 87.3%
and by applying strategies GNSs and FCSA, the accuracy

increases about 1 and 2 percent, and this demonstrates that
the proposed strategies have a positive effect on the
performance of the method. Applying strategies at the same
time performs inversely and does not increase accuracy. The
cause of this deterioration is related to various aspects. First,
by performing FCSA, choosing new samples occurs more
when the model is close to the end of the training. If applying
FCSA occurs with GNSs, it is probable that some of the new
positive samples generated by GNSs will be changed again
with FCSA and will be reduced the effect of the GNSs
strategy. Also, simultaneously applying these two strategies
will cause the original samples at the end of training more
faded, and the actual samples do not have their effect [24,
25].
In table 2, all four our distinct examination accuracy with the
previously reported results on Wordnet11 are compared.
Besides their accuracy, the optimization function that they
use for pre-training is shown. Some models have used
optimization functions to avoid overfitting. For instance, the

NTN method achieves the accuracy of 70.6 without any pre-
training, while initializing the embeddings with an
unsupervised semantic word vector the accuracy increases to

86.6. Table 2 shows the same result for TransE. Pre-training
is used to prevent overfitting, mainly on simple relations.
Each model uses distinct methodologies, which makes the
comparison not reasonably fair. However, as pointed out by
[10] and [34], averaging the pre-trained word vectors for
initializing entity vectors is an open problem, and it is not
always beneficial since entity names in many domain-
specific knowledge bases are not lexically meaningful.
However, a comparison has not been made on their
performance independently.

According to Table 2, ENN has a high accuracy compared

to methods with the same conditions (without any

optimization). It shows that the triple-based embedding

neural network is robust to overfitting. Also, applying the

GNSs strategy has the highest efficiency among all previous

states of the arts. It does not only increase the performance

but also it is not domain-specific and does not need external

data.

Table 1. Link prediction results on Wordnet11

Methods Acc% Opt

NTN [16] 70.06 None

NTN [16] 86.2

Initiate with unsupervised

semantic word

vectors

TransE(unif) [10] 75.85 None

TransE(bern) [10] 75.82 None

TransE [8] 85.2
Initiate embedding with

word2vec

TransH(unif) [10] 77.7 None

TransH (bern) [10] 78.8 None

TranSparse-DT

[26]
87.1 None

TransD [9] 86.4
Initiate embedding with the

result of TransE

TransR [14] 85.9
Initiate embedding with the

result of TransE

CTransR (bern)

[14]
85.7

Initiate embedding with the

result of TransE

TransG [27] 87.4 Initiate embedding by [28]

ENN 87.3 None

ENN+GNSs 89.4 None

ENN + FCSA 88.2 None

ENN + GNSs +

FCSA
87.4 None

Analysis of Generate Positive triples. In this section, the

effectiveness of the generated positive examples is analyzed.

In this regard, some of the positive samples generated in

procedure GNSs are given in Table 3. As shown in table 3,

the bold tails are also in the test data set. Adding these

positive samples and fine-tuning the triple based neural

18 Sogol Haghani et. al.: Embedding Knowledge Graph through …

network with the new training dataset will increase the

accuracy and improve the ranks of the test samples.

Table 3. Samples of Generated New Samples

Generated Positive triples in GNSs

(__chromatic_color_,1 _has_instance, __pink_4)

(__chromatic_color_,1 _has_instance, __red_1)

(__period_1, _has_instance, __bronze_age_1)

(__period_1, _has_instance, __civilisation_2)

(__period_1, _has_instance, __june_1)

(__astronomy_1, _domain_region, __apex_2)

(__astronomy_1, _domain_region, __zenith_1)

(__astronomy_1, _domain_region, __outer_planet_1)

(__family_lobeliaceae_1,_member_meronym,

__dicot_family_1)

(__japan_2, _has_part, __hondo_1)

Although triples like
(__period_1,_has_instance,__june_1) and
(__chromatic_color_,1 _has_instance, __pink_4) not in the
test data set, their tails are in the same community with
examples like (__period_1, _has_instance, __season_5) and
(__chromatic_color_1, _has_instance, __yellow_2)
respectively, as a result, according to Figure 6, they have
affected the performance of the relationship.

4.5. Results on Wordnet18
This section evaluates and represents results on Wordnet18
in two levels. First, results from the four examinations are
presented, then a comprehensive analysis of the results of a
variety of evaluation criteria with the other state-of-the-art
methods is provided. Table 3 shows the result of four
different examinations. In this table, the results are displayed
in two raw and filtered modes with evaluation criteria.

𝑀𝑅 is quite sensitive to the outliers. From Table 3, we see
that different strategies do not have much effect on the
outliers and make significant changes. Unlike Wordnet11,
applying both of the strategies has decreased the value of

𝑀𝑅, which indicates it has advantages in some ways. The

lower value of 𝑀𝑅, the more desirable. One of the matters is
to reduce the rank of the outliers. Although the effect is not

striking, cannot ignore. The 𝐻𝑖𝑡@𝑘 criterion is a significant
benchmark, due to it helps to understand the capability of
assigning better ranks to each triple. It is essential to be

assured, how many potential triples in the 𝐾 first choices are
predicted. Hence, the examinations have been evaluated by

𝐾 = 1, 3, 10 [18]. As illustrated in Table 3, over more than

90% of samples are predicted with 𝑘 = 10. Even in the

strictest mode, which 𝑘 = 1, more than half of the samples
predict as the first prediction option. An assessment with

𝑘 = 3 is the balance between a flexible and yet rigorous
one. However, more than two-thirds of the test cases have

been predicted. The combination of ENN and the GNSs
strategy has achieved the best value in all evaluation criteria
except MR compared to other examinations. It seems that the
model has a better performance in increasing the volume of
the knowledge base. Although applying the FCSA has a
positive effect, does not has a significant performance due to
the constant size of the due to the regularization is robust to
overfitting and does not need any pre-training and extra
optimization functions. It achieves state-of-the-art results on
benchmark datasets. Besides, we propose two strategies,
GNSs and FCSA, to augment datasets to overcome the
heterogeneity of the dataset. In our analysis, we show the
performance of applying the knowledge base, which the
original triple replaces with the new one. Regarding the
application of both strategies on the ENN, the same
argument applies to the Wordnet11 dataset. As a conclusion
from the experiments in Wordnet18, the number of added
triples must be controlled. Obviously, by combining both
strategies with the embedded neural network, it cannot
allocate very low ranks to triples. On the other hand, it
assigns the lower ranks to the outliers [5, 30]. It shows that
generated positive triples may be helpful to bring
information from other aspects.

In contrast to 𝑀𝑅, 𝑀𝑅𝑅 is insensitive to outliers. The
results also show that increasing the size of the knowledge

leads to better 𝑀𝑅𝑅 results. This supports our hypothesis.
Table 4 compares the proposed method with other states of
arts. In this table, the types of optimizations used are
specified to make better comparisons. The HolE and
ComplEx implement each of the comparison methods
individually and have performed different optimization
functions, which have the results reported for TransE being
different from one another and the original article. So, it is
difficult to determine precisely how much models with pre-

training gain over the other ones [12, 18].
ENN has been able to independently handle the structure

of the triple, without any pre-training and additional

information to perform better. On the 𝑀𝑅𝑅 metric, ENN
cannot achieve as good performance as the model with pre-
training. There are two noticeable phenomena in the result.
First, ENN cannot assign a lower rank to the triples. We
believe that this phenomenon is caused by the regularization
of the models, even though the principle of it has the
potential to represent real knowledge and to achieve
knowledge graph completion. Second, it shows that an
augmented knowledge base affects weaker but consistent
improvement on all metrics.

The proposed method has a significant performance
compared to non-pre-trained methods, and its results reflect

the evaluation criteria of 𝑀𝑅, 𝐻𝑖𝑡@10, and 𝑀𝑅𝑅. ENN with
GNSs and FCSA largely outperforms on MR and yields a
score of 109 among all methods. Since ENN's Regularization
cannot assign a lower rank to most of the triples, it can
compete with the state-of-the-art model [31, 32].

Table 4. The comparison of results on Wordnet18 with previous work

Methods Raw Filtered

MR MRR Hit@1 Hit@3 hit@10 MR MRR Hit@1 hit@3 Hit@10

ENN 120 0.65 37.42 70.9 85.18 115 0.696 46.24 86.64 93.29

ENN+GNSs 116 0.664 42.98 82.02 91.08 113 0.703 50.54 90.1 94.92

ENN + FCSA 117 0.659 39.92 75.22 90.6 111 0.68 46.8 87.2 93.67

ENN + GNSs + FCSA 114 0.643 38.96 73.66 89.21 109 0.679 47.22 86.12 93.34

Journal of Computer and Knowledge Engineering, Vol.5 , No.2. 2022. 19

Table 5. The comparison of results on Wordnet18 with previous work

Methods Raw Filtered Opt

MR hit@10 MR hit@10 mrr

TansE [13] 263 75.4 251 89.4 - None

TransE - - - 94.3 0.495 Using Optimize function [12]

TransH [10] 401 73.0 303 86.7 - None

NTN [16] - - - 66.1 0.53 None

ManifoldE Sphere [29] - 81.1 - 94.4 - Initiate embedding by [28]

ManifoldE Hyperplane [29] - 81.4 - 93.7 - Initiate embedding by [28]

TransR [14] 238 79.8 225 92.0 - Initiate embedding with the result of TransE

TransR [14] - - - 94.9 0.605 using optimize function [8]

CTransR (bern) [14] 231 79.4 218 92.3 - Initiate embedding with the result of TransE

TransD [9] 224 79.6 212 92.2 - Initiate embedding with the result of TransE

TransG [27] 483 81.4 470 93.3 - Initiate embedding by [28]

TranSparse-DT [26] 234 81.4 211 94.3 - None

HolE [18] - - - 94.9 0.938 using optimize function

ComplEx [12] - - - 94.7 0.941 using optimize function

ConvE [31] - - 504 94.2 0.955 Use dropout on the embeddings

R-GCN[32] - - - 96.4 0.819 None

TorusE [8] - - - 95.4 0.947 using optimize function

KE-GCN[32] - -

ENN 120 85.18 115 93.29 0.796 None

ENN+GNSs 116 91.08 113 94.92 0.803 None

ENN + FCSA 117 90.6 111 93.67 0.78 None

ENN + GNSs + FCSA 114 89.21 109 93.34 0.679 None

5. Conclusion and future studies

This paper describes a model based on a triple structure for

embedding entities and relations via an embedding neural

network (ENN). We found that previous methods failed to

overfit on infrequent relations. ENN strategies are consistent

and reliable. In particular, GNSs and FCSA aren't model

dependent, and they can be applied to any models. We

believe this observation is essential to assess and prioritize

directions for further research on the topic.

In our future work, we will focus on improving the ENN,

which needs to utilize loss function. Due to the significant

results of the proposed strategies, we will consider other

methods for generating new samples and employ them.

6. References

[1] Miller, G. A., "WordNet: a lexical database for

English," Communications of the ACM, pp. 39-41,

1995.

[2] Suchanek, F. M., Kasneci, G., and Weikum, G., "Yago:

a core of semantic knowledge," 2007.

[3] Nickel, M., Murphy, K., Tresp, V., and Gabrilovich, E.,

"A review of relational machine learning for knowledge

graphs," Proceedings of the IEEE, Vol. 104, No. 1, pp.

11-33, 2015.

[4] Sadeghi, A., Graux, D., and Lehmann, J., "MDE: Multi

Distance Embeddings for Link Prediction in

Knowledge Graphs," arXiv preprint arXiv:1905.10702,

2019.

[5] Cai, H., Zheng, V. W., and Chang, K., "A

comprehensive survey of graph embedding: Problems,

techniques and applications," IEEE Transactions on

Knowledge and Data Engineering, p. IEEE, 2018.

[6] Ebisu, T., and Ichise, R., "Toruse: Knowledge graph

embedding on a lie group," in Thirty-Second AAAI

Conference on Artificial Intelligence, 2018.

[7] Mighan, Sima Naderi, Mohsen Kahani, and Fateme

Pourgholamali. "POI Recommendation Based on

Heterogeneous Graph Embedding." 2019 9th

International Conference on Computer and Knowledge

Engineering (ICCKE). IEEE, 2019.

[8] Nguyen, D. Q., Sirts, K., Qu, L., and Johnson, M.,

"STransE: a novel embedding model of entities and

relationships in knowledge bases," in Proceedings of

NAACL-HLT, 2016.

[9] Ji, G., Liu, K., He, S., and Zhao, J., "Knowledge graph

completion with adaptive sparse transfer matrix," in

Thirtieth AAAI Conference on Artificial Intelligence,

2016.

[10] Wang, Z., Zhang, J., Feng, J., and Chen, Z.,

"Knowledge Graph Embedding by Translating on

Hyperplanes," in AAAI, 2014.

[11] Li, Zhifei, Hai Liu, Zhaoli Zhang, Tingting Liu, and

Neal N. Xiong. "Learning knowledge graph embedding

with heterogeneous relation attention networks." IEEE

Transactions on Neural Networks and Learning

Systems, 2021.

[12] Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., and

Bouchard, G., "Complex embeddings for simple link

prediction," in International Conference on Machine

Learning, 2016.

[13] Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J.,

and Yakhnenko, O., "Translating embeddings for

modeling multi-relational data," in Advances in neural

information processing systems, 2013.

[14] Lin, Y., Liu, Z., Sun, M., Liu, Y., and Zhu, X.,

"Learning Entity and Relation Embeddings for

Knowledge Graph Completion," in AAAI, 2015.

[15] Yang, B., Yih, W.-t., He, X., Gao, J., and Deng, L.,

"Embedding entities and relations for learning and

inference in knowledge bases," arXiv preprint

arXiv:1412.6575, 2014.

20 Sogol Haghani et. al.: Embedding Knowledge Graph through …

[16] Socher, R., Chen, D., Manning, C. D., and Ng, A.,

"Reasoning with neural tensor networks for knowledge

base completion," in Advances in neural information

processing systems, 2013.

[17] Abedini, F., Menhaj, M. B., and Keyvanpour, M. R.,

"Neuron Mathematical Model Representation of Neural

Tensor Network for RDF Knowledge Base

Completion," Journal of Computer & Robotics, Vol. 10,

No. 1, pp. 1-10, 2017.

[18] Nickel, M., Rosasco, L., Poggio, T. A., and others,

"Holographic Embeddings of Knowledge Graphs,"

AAAI, pp. 1955-1961, 2016.

[19] Haghani, S., and Keyvanpour, M. R., "moLink:

Modeling link representation of knowledge base," in

Information and Knowledge Technology (IKT), 2017

9th International Conference on, 2018.

[20] Cao, X., Wei, Y., Wen, F., and Sun, J., "Face alignment

by explicit shape regression," International Journal of

Computer Vision, Vol. 107, No. 2, pp. 177-190, 2014.

[21] Cui, X., Goel, V., and Kingsbury, B., "Data

augmentation for deep neural network acoustic

modeling," IEEE/ACM Transactions on Audio, Speech

and Language Processing (TASLP), Vol. 23, No. 9, pp.

1469-1477, 2015.

[22] Bengio, Y., Courville, A., and Vincent, P.,

"Representation learning: A review and new

perspectives," IEEE transactions on pattern analysis

and machine intelligence, Vol. 35, No. 8, pp. 1798-

1828, 2013.

[23] Haghani, S., and Keyvanpour, M. R., "A systemic

analysis of link prediction in social network," Artificial

Intelligence Review, Vol. 52, pp. 1961-1995, 2019.

[24] Keyvanpour, M., Kholghi, M., and Haghani, S.,

"Hybrid of Active Learning and Dynamic Self-Training

for Data Stream Classification," International Journal

of Information & Communication Technology

Research, Vol. 9, No. 4, 2017.

[25] Zhu, J., Jia, Y., Xu, J., and others, "Modeling the

Correlations of Relations for Knowledge Graph

Embedding," J. Comput. Sci. & Technol, Vol. 33, No.

2, 2018.

[26] Chang, L., Zhu, M., Gu, T., Bin, C., Qian, J., and Zhang,

J., "Knowledge Graph Embedding by Dynamic

Translation," IEEE Access, Vol. 5, pp. 20898-20907,

2017.

[27] Xiao, H., Huang, M., and Zhu, X., "TransG: A

generative model for knowledge graph embedding," in

Proceedings of the 54th Annual Meeting of the

Association for Computational Linguistics, 2016.

[28] Glorot, X., and Bengio, Y., "Understanding the

difficulty of training deep feedforward neural

networks," in Proceedings of the thirteenth

international conference on artificial intelligence and

statistics, 2010.

[29] Xiao, H., Huang, M., and Zhu, X., "From one point to a

manifold: Knowledge graph embedding for precise link

prediction," arXiv preprint arXiv:1512.04792, 2015.

[30] Rosso, Paolo, Dingqi Yang, and Philippe Cudré-

Mauroux. "Beyond triplets: hyper-relational knowledge

graph embedding for link prediction." Proceedings of

The Web Conference 2020.

[31] Dettmers, T., Minervini, P., Stenetorp, P., and Riedel,

S., "Convolutional 2d knowledge graph embeddings,"

in Thirty-Second AAAI Conference on Artificial

Intelligence, 2018.

[32] Schlichtkrull, M. a. K. T. N., Bloem, P., van den Berg,

R., Titov, I., and Welling, M., "Modeling relational data

with graph convolutional networks," in European

Semantic Web Conference, 2018.

[33] Yu, Donghan, et al. "Knowledge embedding based

graph convolutional network." Proceedings of the Web

Conference 2021. 2021

[34] Kazemi, Seyed Mehran, and David Poole. "Simple

embedding for link prediction in knowledge

graphs." Advances in neural information processing

systems 31, 2018.

[35] Sun, Zhiqing, et al. "Rotate: Knowledge graph

embedding by relational rotation in complex

space." arXiv preprint arXiv:1902.10197, 2019.

[36] Nguyen, Dat Quoc. "An overview of embedding models

of entities and relationships for knowledge base

completion." arXiv preprint arXiv:1703.08098, 2017

Journal of Computer and Knowledge Engineering, Vol. 5, No. 2, 2022. (21-30) 21

DOI: 10.22067/cke.2022.75685.1054

Efficient and Deception Resilient Rumor Detection in Twitter*
Research Article

Milad Radnejad1 Zahra Zojaji2 Behrouz Tork Ladani3

Abstract: Social networks have become a central part of our

lives these days and have real effects on the world's events.

However, social networks greatly boost spreading

misinformation and rumors that are becoming more and more

dangerous each day. As fighting rumors first requires

detecting them, several researchers tried to propose novel

approaches for automatic early detection of rumors.

However, most of them rely on handcrafted content features

which makes them prone to deception and threats the

adaptability of the model. Furthermore, a great deal of work

have concentrated on event-level rumor detection while it

faces early detection with serious challenges. There are also

deficiencies in proposed methods in terms of time and

resource complexity. This study proposes a deep learning

approach to automate the detection of rumors on Twitter. The

proposed method relies on automatically extracted features

through word and sentence embeddings along with profile

and network-based features. It then uses Recurrent Neural

Networks (RNN) leveraging Gated Recurrent Units (GRU)

for detecting the veracity of a tweet. The proposed method

also improves time efficiency. The achieved experimental

evaluation results on RumorEval2019 dataset demonstrate

that the proposed method outperforms other rival models on

the same dataset in terms of both performance and time

complexity. By the way, the proposed method is more

resilient to deception by avoiding the use of handcrafted

content features and leveraging features that are out of the

control of the user.

Keywords: Deception, Deep Learning, Rumor Detection,

Social Network, Twitter

1. Introduction

The explosive growth of online social media is an evidence

for their crucial role in spreading news in the modern society.

Nowadays, a large number of users actively engage in

producing or propagating news about different trending

topics. The convenience of publishing news in online social

networks causes also the spreading of misinformation and

rumors.

There have been numerous definitions for rumor in the

literature, each offering its interpretation. However, the

definition provided in [1] seems to be more popular which

defines rumor as "a story or statement in general circulation

without confirmation or certainty." Another essential

research on rumor has been undertaken by [2], which defines

three characteristics for rumors: 1) Rumors have a distinct

mode of transmission, 2) Rumors always provide

information about some particular person, happening, or

condition, and 3) Rumors satisfy audiences. The second and

the third characteristics refer to the fact that people feel

* Manuscript Received: 06 March 2022; Revised, 22 September 2022. Accepted, 26 September 2022.
1. MSc. Of Information Technology, Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran,
2. Corresponding author, Assistant Professor, Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran.

Email: z.zojaji@eng.ui.ac.ir.
3. Professor, Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran.

unsafe in the absence of information, and rumors satisfy them

by providing information. Spreading rumors imposes

potentially harmful effects on public perception and

behavior. One can point to the alleged Russian interference

in the 2016 US Presidential Election with the spread of

rumors and misinformation through social media [3–5].

Online social networks facilitate rapid propagation of fake

news and rumors which thereby greatly amplify the impact

of harmful effects.

The most effective and operational approach in rumor

detection and debunking todays is manual detection, which

is done by authoritative centers and websites like Snopes

(www.snopes.com) and Politifact (www.politifact.com).

However, although this approach seems to be very accurate,

it is slow and ineffective with the nature of fast-spreading

rumors in social networks. Another approach used these days

is automatic detection using artificial intelligence, which

leverages machine learning techniques to detect social

network rumors. Although the performances of the proposed

systems are lower than manual detection, the upside is the

constant innovations that are making this approach a likely

candidate to replace manual detection. Automatic rumor

detection facilitates detecting and preventing rumors in early

stages of spreading prior to affecting the public opinion.

Although several researches have been conducted for

detecting rumors, the previous methods mostly rely on

handcrafted content features. Along with dynamic changing

of social network conversations, the content of rumors and

the signs of fake or verified news also change. Therefore,

feature extraction process should be also dynamic in order to

reflex the specifications of the rumors, which is not achieved

in the case of developing detection model based on the

handcrafted features. Furthermore, handcrafted features

make the rumor detection system more susceptible to

deception. Employing these features provides more chance

to design fake news with appearance similar to verified news.

In addition, handcrafted features could bias the prediction

model without any explicit improvement in the performance.

Again, most of the prior works operate at the event-level,

meaning that it can only detect whether a general topic is a

rumor or not and cannot decide about the veracity of a single

post. Moreover, event-level rumor detection requires an

extensive set of messages in each topic which is not available

in the first stages of rumor propagation. Hence event-level

models are hardly applicable for early detection. Moreover,

the scalability of previously presented rumor detection

systems is low due to extensive computational complexity.

In this work, due to mentioned shortcomings of the previous

works, we propose a deep learning approach for detecting

rumors on Twitter. The proposed method operates at the

https://cke.um.ac.ir/
https://cke.um.ac.ir/article_42912.html
mailto:z.zojaji@eng.ui.ac.ir
https://orcid.org/0000-0003-0921-0170

22 Zahra Zojaji et. al.: Efficient and Deception Resilient Rumor …

tweet level i.e., detecting rumor using a tweet and its

responses. While handcrafted features can improve a deep

learning system in doing its task, we do not directly use

handcrafted content features and let the system extract them

by itself through feeding it the raw text of tweets. Instead,

word and sentence level embedding for content feature

extraction are utilized which makes the model more resilient

to user deception, more scalable to social network dynamics,

and less susceptible to model biasing. Our insight also is that

analyzing social and profile features is a rich information

source for developing deception resilient models. This is

because these features are independent from the content of

the claims and are out of the direct control of the user that

was neglected in most of researches. Therefore, we use social

and profile features in our model. Lastly, we emphasize on

the system's performance, taking the time efficiency and

scalability of the system into account.

The main contributions of this work can be summarized

as:

1. Avoiding the use of handcrafted content features for

better dealing with the dynamic nature of social networks

and providing more resiliency against the deception;

2. Using profile and network features that provide the

system with valuable information about the users and

propagation state;

3. Proposing a new deep learning model with RNN

architecture leveraging GRU cells for automatic rumor

tweet detection;

4. Detection of rumors at the tweet level in order to facilitate

early detection;

5. Emphasis on performance, especially in the training

phase, that make the system more scalable in comparison

to the similar works.

The proposed method is evaluated and compared using the

RumorEval 2019 dataset. The overall performance of the

system is first compared to the state of the art methods in

terms of Macro F-score. The achieved results show that the

proposed method outperforms nearly all similar methods.

The experimental results also show the superiority of the

proposed method in terms of time efficiency comparing the

baseline. Furthermore, some experiments are conducted in

order to prove the resiliency of the proposed method against

the intended content alteration with the aim of deception. We

believe that the proposed rumor detection model has enough

capabilities to be applied efficiently in early, tweet-level

rumor detection task with remarkable tolerance to deception.

Section 2 of the paper will briefly introduce the concepts

that were used in our research. Section 3 will discuss the

researches that are similar and related to our work. The

problem statement will be described in Section 4. Section 5

is devoted to the proposed method description and its details.

The evaluation process and the experimental results and

comparisons are presented in Section 6, and finally Section 7

will conclude the paper.

2. Background
In this section some preliminary concepts about RNNs and

text embedding methods are provided.

2.1. Recurrent neural network

As described in [6], recurrent neural networks are a family of

neural networks for processing sequential data. These

networks arise from the idea of sharing parameters across

different parts of a sequence, making them very efficient and

effective in processing sequential data as well as in extraction

and learning of sequential features. One of the most exciting

features of RNNs is that they can process data of different

length as an ability not seen in other types of neural networks

which require fixed-size inputs. Another feature of these

networks is the concept of memory, which arises from the

fact that by sharing parameters and processing the data in

sequence, each input will contribute to the model's output in

a later stage, which acts as a memory. As also described in

[7], one significant shortcoming of conventional RNN cells

is that by applying Backpropagation through time, they

cannot learn or extract dependencies in a long sequence due

to the problem of vanishing or exploding gradients; This can

be described as a sort of memory loss, which means

conventional RNNs have a very short term memory.

2.2. Bidirectional RNNs

RNNs usually process data in a feed-forward approach,

meaning at each timestep, the output is calculated using the

information from the past, which is the hidden state and the

current input [6]. However, in some cases giving the network

information about the whole sequence (past and future

timesteps) will help solving the problem. Bidirectional RNNs

are the combination of two RNNs, one moving forward

through time from the start of the sequence and the other

moving backward through the time from the end of the

sequence. In this way, the output at each timestep is

calculated using the information from the past and the future,

but more dependent on the data nearest to the current

timestep.

2.3. Long Short-Term Memory (LSTM)

To combat the memory loss in conventional RNN cells,

LSTM was proposed, which defines a pathway for long

dependencies, which acts as long-term memory [6]. This

pathway can be seen as a cell inside the LSTM cell with its

parameters which can add data to the cell and remove

unnecessary data when needed. By giving the network, the

option of adding data to and removing it from this pathway,

the network can memorize essential data in the sequence and

forget unnecessary information, which has made LSTM cells

a very successful architecture for solving problems, where

the input is a sequence.

2.4. Gated recurrent unit

Although LSTMs are considered the go-to architecture when

dealing with sequential data, they have a crucial shortcoming

that arises from its too many parameters. These parameters

burden the model, which has to do the standard calculations

and with learning the parameters of the LSTM. Moreover,

due to the high number of parameters, LSTMs are more

susceptive to overfitting, which is a prevalent problem in

neural networks and deep learning tasks.

To combat the mentioned shortcomings, the GRU cell was

proposed in [8], which is very similar to the LSTM cell but

differs in that it combines some parts of the LSTM cell into

a unified part and causes a reduction in the number of

parameters compared to the LSTM cell. This modification

has two benefits: 1) it gives the model less space for

overfitting compared to LSTM, and 2) it puts less burden on

Journal of Computer and Knowledge Engineering, Vol.5 , No.2. 2022. 23

the model in terms of calculations that in turn makes it run

faster.

2.5. Text embedding

In the field of natural language processing, which deals with

human language, there is no straightforward way of using

words in a neural network. One possible solution might be

using one-hot encoding on a lengthy dictionary of words, but

this approach has two problems: 1) it wastes memory and

processing resources, which can be used elsewhere; (2) by

giving the one-hot code based on the alphabetic order, this

approach might give close codes to words with different

meaning and remote codes to words with similar meaning

(the distances are in terms of points in a hyperspace), which

might give the model the wrong impression about the

similarity of the words.

Word embeddings were proposed to overcome the

enumerated challenges by using dense vectors for word

representation, reducing memory, and processing the needed

resources. The proposed embeddings also put similar words

in respect to their concepts and meaning in close vectors in

terms of distance, giving the model the ability to understand

those words' meanings. Google's word2vec [9] and

Stanford's Glove [10] are examples of word embeddings.

Although word embeddings are very useful, since the words

in a language get their meaning in a sentence, they are not an

optimal solution for sentence-level embeddings. One trivial

solution for sentence-level embedding is using arithmetic

operations to combine the word vectors of a sentence, but this

approach can alter the sentence's meaning. In response to

these challenges, sentence-level embeddings were proposed

to turn a sentence into a dense vector preserving the meaning

of sentences in the terms that similar sentences will be given

close vectors. Universal sentence encoder (USE) [11] and

Fast Sentence Embedding (FSE) are examples of popular

sentence-level embeddings.

3. Review of related works
There are two different objectives in the automatic rumor

detection literature, including event-level and tweet-level

rumor detections. The purpose of event-level approach is to

identify the veracity of a general topic related to an event

represented by a set of conversations with similar topic.

Formally, given an event E containing conversations C1 to Cn

(i.e. E = {C1, …, Cn}) the label L(E) indicates whether the

whole event is rumor or not. In contrast, in tweet-level

approach, given a source tweet of each conversation, its

responses, and some metadata about the tweets and users, the

model should be able to decide whether the source tweet is

rumor, non-rumor, or unverified. In fact, in tweet level view,

for each conversation C, L(C) specifies the veracity of its

single source tweet.

One of the earliest attempts to automate rumor detection

was undertaken by [12], in which the effectiveness of

different feature categories was studied for identifying

rumors. The proposed system can track known rumors but

cannot detect new rumors on Twitter.

The first attempt to detect new rumors has been performed

in [13], which uses the fact that users respond to rumors by

asking questions about them, which was also reported by

[14]. The proposed system utilizes conventional machine

learning for detection of rumors. However, their system

relies on handcrafted content features. Moreover, it operates

at the event-level mode.

Another interesting work on automatic rumor detection

based on conventional machine learning on Twitter is [15],

which states that although users' stances used in [13] offers

an indicator for detecting rumors, but detecting these stances

itself is a big challenge. The proposed system leverages a few

interesting and lesser-used features; however, it detects

unverified stories and does not detect rumors in the context

of false information. Moreover, the proposed system operates

at the event-level, which was discussed before.

One of the first works in detecting rumors leveraging deep

learning techniques is [7], which proposes to use RNN

architecture, containing LSTM and GRU cells in detection of

rumors. The proposed system considers content data, but it

operates at the event level.

Yu et al. [16] have also employed deep learning techniques

for rumor detection. They used Convolutional Neural

Network (CNN) architecture, reasoning that the proposed

system will be more suited due to the fact that RNN

architecture is more biased towards the last elements of input

while the indicators of rumor are not necessarily in the last

elements of the input. They also point out that RNN

architecture requires a lengthy input for reliable detection,

while many microblog posts are short. Although their work

is innovative in that few works are using CNN to detect

rumors, but their system, like the ones before, works at the

event level.

The closest research to our work is [17], which was later

refined and presented as the baseline for RumourEval 2019

[18], and we also consider this research as the baseline for

our work. Furthermore, working on this base code and the

RumourEval framework makes evaluation of the work more

straightforward and clear. In their work, the authors propose

a system based on RNN architecture leveraging LSTM cells.

One significant contribution of their work is that the

proposed system uses some novel features as the feature

vector, and it also detects rumors at the tweet level. However,

their proposed system uses many handcrafted content

features which makes it more susceptible to deception. In

addition, it neglects social and profile features which can be

potentially used for efficient rumor detection.

Another crucial work similar to our work is [19], which is

the winner of SemEval-2019 and the state of the art system.

This system is trained with Twitter data and has an exciting

innovation that is using fine-tuned word-level embedding

specific for the task of rumor detection. Unfortunately, due

to the unavailability of the source code and development

details of this system, few comments on this work can be

made. The proposed system again uses many handcrafted

features that makes their system more susceptible to

deception. Furthermore, their proposed system relies on

some machine learning systems that are still in R&D phase

and are considered as open problems in the field of machine

learning and natural language processing. To be more

specific, this work relies on: 1) a system for detection of parts

of sentences like named entities, verbs, etc.; 2) a system for

detection of user stances; 3) a system to detect the topic area

of the rumor. Hence the overall performance of the proposed

method significantly depends on the performance of these

underlying systems.

24 Zahra Zojaji et. al.: Efficient and Deception Resilient Rumor …

Again, a research related to our work is [15] in which we

used some of the features that they have proposed for the task

of detection. However, our work is different from [15] in

some issues. We are trying to detect false rumors contrary to

their work, which can only detect unverified stories. Also we

work at the tweet level while their research detects rumors at

the event-level.

Another interesting works in automatic rumor detection is

[20], which takes a novel approach to detect rumors by

leveraging spatial-temporal rumor aspects in social media.

Other work is [21] that leverages multi-loss bidirectional

RNNs for rumor detection. The work reported in [22] is also

another exciting work in rumor detection that has utilized

ensemble method for rumor detection.

Table 1 summarizes some of the most important aspects of

the more relevant researches to our work. As it can be

inferred from Table 1, most of the previous important

researches developed rumor detection models in event level,

hence they cannot judge about the veracity of each individual

tweet. Many papers employed handcrafted features which

results in low generalization in detecting new rumor forms

and make these systems more prone to deception. Some

systems used user’s stance as a representative of the crowd

wisdom about the specified tweet. Just one research has used

the network and user profile features in detecting rumors. As

a consequence, the proposed method is designed so that it

operates in tweet level, it uses nearly all information sources

including content, profile and network features along with

users’ stances. This is while the proposed method does not

inherit the weaknesses of using handcrafted features.

4. Statement of the problem
In this research we aim to automatically detect rumors in

Twitter. We attempt to develop a rumor detection system

which is resilient to deception. Moreover, the system should

detect rumors at tweet-level. The metadata includes profile

and network features. Profile features are used to determine

the user’s credibility, while network features are used to

show the state of the rumor propagation in the social network.

While automatic rumor detection has attracted the

attention of many researchers over the past few years, a huge

bulk of studies rely on handcrafted features which leads the

developed models susceptible to deception. In psychological

studies, deception is defined as an intentional and knowing

attempt of the writer of a message to create a false deduction

or belief in the reader’s mind [23, 24]. Humans often do not

detect fake contents, in most situations. It has been proved

that people can distinguish a truthful statement from a lie

with the accuracy of 54% which is just a bit above the random

decision [25]. This fact highlights the role of automatic

rumor detection under the intended deception process. When

a statement is created with the aim of deceiving people, its

content appearance should mimic a legitimate statement.

Thus a rumor detection system should detect the veracity

of a message regardless of its appearance in order to have

resiliency to deception. The appearance of the message can

be defined in terms of punctuations, letters cases, image

inclusion, and so on. Since most of the handcrafted features

used in rumor detection task are describing the message

appearance, the resulting models are prone to deception. In

this study we attempt to propose a model for rumor detection

which can detect rumors efficiently, while neglecting the

appearance based features.

Furthermore, event-level approaches require large volume

of messages in each topic which is not available in the first

stages of rumor propagation. Thus, the aim of this research is

developing a tweet-level rumor detection system that will be

applicable for early detection. In Twitter, after a user posts a

tweet, others can reply to it, and it is also possible to post a

reply to a previous reply, and so on. This results in a tree

structure of tweets and replies that is called a conversation.

Each conversation can be broken up into several branches,

each starting from the source tweet and ending at a tree leaf.

It is possible to break the conversation into its branches by

running a depth-first search on the tree, and each time the

algorithm reaches a leaf, the current branch can be extracted

by backtracking the steps.

To better understand the concepts of branch and

conversation, Figure 1 shows an example, in which a

conversation is represented in two branches. One branch

containing the source, User1 and User2 posts and another

including the source plus User3 and User4 posts.

Table 1. Important aspects of related researches

Research
Operation

level

Using handcrafted

content features
Using user’s stance

Using profile

features

Using network

features

Yu et al. [1] Event Low Not used Not used Not used

Zhao et al. [2] Event Medium Low(only inquires) Not used Not used

Ma et al. [3] Event Low Not used Not used Not used

Li et al. [4] Tweet High High (all possible stances) Yes Yes

Kochkina et al. [5] Tweet High High (all possible stances) Not used Not used

Huang et al. [6] Event None Not used Not used Yes

Sujana et al. [7] Event None Not used Not used Not used

Mouli Madhav Kotteti et al. [8] Event None Not used Not used
only tweet time

stamps

Proposed method Tweet None High (all possible stances) Yes Yes

Journal of Computer and Knowledge Engineering, Vol.5, No.2. 2022. 25

Figure 1. Branches of a conversation

5. The proposed method

In this section, we introduce the proposed method in detail.

The section begins with the explanation of the system

architecture and continues with the detail description of each

individual phase.

5.1. System architecture

The proposed method is composed of three main phases:

preprocessing, feature extraction, and modeling. The overall

architecture of the proposed system is depicted in Figure 2.

As it is shown in this figure, having a row conversation C, it

is decomposed initially into the set of branches {b1, b2, …

bk} where each branch bi is composed of the sequence of

tweets ti,1, ti,2 , ….,
, ii b

t in which ti,j is the ith tweet of the jth

branch. Then different features are extracted from the tweet

contents and metadata. After that feature vectors can be used

to train the model in the training phase and predicting the

veracity as label L(C) in the testing phase.

5.2. Preprocessing

Due to the tree’s nature, the conversation data processing

with a neural network is particularly challenging. To combat

this challenge, some researches, such as [5, 9], suggested

representation of conversation in terms of its branches.

Therefore, the conversation is fed to the network branch by

branch. Figure 3 shows the prepressing phase, in which

branches b1 to bk are first extracted and tweets of each

branches are then extracted in terms of ,1 ,
,...,

i
i i b

t t for each

bi where 1 i k  . In this notation, k is the number of

different branches in C and
ib is the number of tweets in

branch bi.

5.3. Feature extraction

Feature extraction phase is illustrated in Figure 4. For each

tweet ti,j, the corresponding network, profile and content

features are extracted respectively and concatenated to form

the overall tweet feature vector
,i jt . The network and profile

features are characterizing the social context of the tweet and

content features are representing the text of the tweet itself.

The feature vector associated with tweets of a branch are then

concatenated to form the branch feature vector

,1 ,
{ ,..., }

i
i i i b

b t t and a conversation is finally represented as

a set of branch feature vectors (i.e.
1{ ,..., }kC b b). One of

the innovations of our work is the novel feature set proposed

for detection of rumors. Although many of these features

have been used before in rumor detection, we have not seen

them used together in other previous works. The proposed

method also relies on user’s stances based on the fact that the

users' reactions to rumors are different from non-rumors,

which was first pointed out in [10].

An important aspect of the proposed feature set is that we

use word and sentence level embeddings for content feature

extraction which makes the model more resilient to user

deception.

The feature set we use can be described in the following three

categories:

1. Profile features (the features of the user who posted the

tweet):

 Number of followers

 Number of followings

 Whether the account is verified or not

 Number of total tweets

2. Network features (the features related to state of the

propagation):

 Number of retweets of the tweet

 Number of likes of the tweet

 Whether the tweet is the source or response

 The stance of each tweet towards the source tweet with

values of Supporting, Denying, Querying, and

Commenting

3. Content features (the features of the tweet itself by

dense vectors leveraging word and sentence level

embeddings)

 Avg2Vec, used in [5, 9], uses Google's word2vec to

create a sentence level embedding for tweets by

averaging between the word level embedding vectors of

the words in the tweet.

 Universal Sentence Encoder (USE), which is a sentence

level embedding also introduced by Google.

It is also worth mentioning that the features used in our

work can be categorized in two set:

1. Manually extracted features containing profile and

network features;

2. Automatically extracted features containing content

features.

26 Zahra Zojaji et. al.: Efficient and Deception Resilient Rumor …

Figure 2. System architecture

Figure 3. Preprocessing phase

Figure 4. Feature extraction phase

6. Modeling

The core of the proposed system is the modeling phase that

is comprised from training and testing phases. In training

phase, the branch feature vectors along with the source tweet

label are feed to RNN for learning. After training, the learnt

model can be deployed in automatic rumor detection system

as it is demonstrated in Figure 5. In this phase, given a

conversation feature vector, the feature vector of each branch

is extracted and inputted to RNN model. After predicting the

corresponding labels for individual branches, a voting

module is used to determine the final label for the

conversation as the majority label predicted by its branches.
We employed RNN deep learning architecture because the
nature of the input data in the underlying system is a
sequence. It means that we want the learning system to
recognize the patterns and relations between consecutive
words, sentences and tweets in processing a conversation.
Since RNN is memory-based architecture and learns
sequences well, it is appropriate for our purpose.
Furthermore, RNNs support learning sequences with variant
lengths which is the case in rumor detection systems for
branches. Since the tweet branches may form as long
sequences, memory based unites such as LSTM and GRU
are needed for learning these sequences. Using GRUs is

more preferable because of their speed and efficiency and
also to give the model less space for overfitting, which
contributes to the overall model performance. We also
leverage bidirectional GRUs for two reasons: 1) giving the
model more information at each time step; 2) reducing the
model's bias towards the end of sequence by processing the
sequence from both directions.

The detail architecture of RNN units are revealed in
Figure 6. The model is comprised of one bidirectional GRU
Layer, and the output of this layer is passed to two dense
layers with ELU (exponential linear units) function as their
activation [26]. It is worth mentioning that before each layer,
the input of that layer is normalized with the batch
normalization layer. This has two effects:
1. The data is scaled and the training phase's noise is

reduced, where in turn makes the training phase faster
and more stable;

2. By feeding data in different batches, it has a slight
regularization effect on the model, which reduces the
chance of overfitting.

For improving the generalization of the network and avoid
overfitting, L2-regularization mechanisms are adopted. The
complexity of the network and subsequently the overfitting
issue are controlled in this way.

Raw
Conversation

(C)
Preprocessing

Feature
Extraction

Modeling L(C)

Raw
Conversation

(C)
Branch

Extraction
Tweet

Extraction

C = {b1, …, bk}

Preprocessing

Network Feature
Extraction

Tweet
(ti,j)

Profile Feature
Extraction

 Content
 Feature
 Extraction

USE

Word2vec

Tweet Feature

Vector ()

Feature
Extraction

 C = {b1, …, bk}

1{ ,..., }kC b b

Journal of Computer and Knowledge Engineering, Vol.5, No.2. 2022. 27

Figure 5. Modeling phase

Figure 6. The architecture of the RNN unit

Due to social networks' dynamic nature, the rumor

detection model should be adapted and retrained many times

after deployment. To achieve this goal, we have leveraged

CuDNN libraries in designing the model in order to improve

the time complexity in the training phase. The use of CuDNN

has one big downside: the loss of some layer features like

dropout in GRU layers, but it helps a lot in the model's

generalization. Therefore, there is a tradeoff between the

time complexity and the generalization and hence we took

the middle way through utilizing CuDNN.

7. Experimental evaluations and results

In this section after describing the evaluation configurations

including the dataset specification and the system setup, the

proposed rumor detection system is evaluated in terms of

macro F-Score, time efficiency and deception resiliency. The

experimental results are also compared to the results of the

state of the art methods.

7.1. Dataset

The dataset used in this research is associated with

RumorEval 2019 competitions which is a refined and

updated version of the Pheme dataset [27]. This dataset is

comprised of conversations categorized into topics, each

topic containing conversations with one of the below labels:

1. True: Conversations that are spreading verified

information;

2. False: Conversations that are spreading rumors;

3. Unverified: Conversations that are spreading unverified

information that was neither verified nor denied up to the

time of their retrieval.

Table 2 shows the distribution of conversations and

branches between the training, development, and testing sets,

while Table 3 and Table 4 show the distribution of labels in

conversations and branches in different sets. Note that the

development dataset in RumoreEval context is equivalent to

validation dataset known in machine learning literature.

Table 2. Distribution of conversations and branches

 Train Development Test

Conversation 297 28 56

Branch 3245 768 1010

Table 3. Label distribution in conversations

 Train Development Test

True 137 8 22

False 62 12 30

Unverified 98 8 4

Table 4. Label distribution in branches

 Train Development Test

True 1470 124 341

False 549 514 558

Unverified 1226 130 111

7.2. Setup

All of the experiments were run on a single system with the

same hardware setting for all of them. Table 5 shows the

system details.

Conversation
Feature Vector

(C)

RNN Model

RNN Model

Voting
Module

L()

L()

L(C)

Modeling

Branch
label
(L1)

In
p
u

t
la

y
er

Branch feature
vector M

as
k

in
g
 l

ay
er

B
at

ch
 N

o
rm

al
iz

at
io

n
 l

ay
er

B
id

ir
ec

ti
o
n

al
 G

R
U

B
at

ch
 N

o
rm

al
iz

at
io

n
 l

ay
er

D
en

se
 l

ay
er

R
N

N
 I

n
p

u
t

la
y

er
 M

o
d

el
 M

as
k

in
g

la

y
er

B
at

ch
 N

o
rm

al
iz

at
io

n

D
en

se
 l

ay
er

28 Zahra Zojaji et. al.: Efficient and Deception Resilient Rumor …

Table 5. System setup

Processor Intel Core i7 6700HQ

RAM 16GB DDR4 2133MHz

GPU Nvidia GeForce GTX 980M

One of the most important parts of every deep learning

model is the hyper parameters setting presented in Table 6.

Hyper parameters include parameters that define the model

and cannot be learnt by the model during the training phase.

In order to find the optimal hyper parameters, we leveraged

Tree-structured Parzen Estimator (TPE) algorithm [11]

implemented in python library called Hyperopt which helps

automating some of the tasks in hyper parameter search and

model tuning. TPE is a sequential model-based optimization

approach, which sequentially estimates the conditional

probability density function of the objective function based

on hyperparameters. In each iteration, the next set of

hyperparameters are configured based on their evaluation on

the estimated probability model and the model is refined

accordingly. Sequential model-based optimization is a

formalization of Bayesian optimization which is more

efficient than random or grid search in finding the best set of

hyperparameters [11]. Table 6 shows the best hyper

parameters found by TPE for the proposed system.

Table 6. Hyper parameter setting

Hyper Parameter Value

Number of GRU Layers 1

Number of GRU Units 400

Number of hidden dense layers 2

Number of dense units in 1st dense layer 600

Number of dense units in 2nd dense layer 400

Training Steps 50

L2 Regularization Parameter in 1st dense layer 1e-4

L2 Regularization Parameter in 2nd dense layer 1e-4

L2 Regularization Parameter in output layer 1e-6

L2 Regularization Parameter in GRU layer 1e-6

Minibatch size 64

Optimization Algorithm Adam

7.3. Overall performance

Table 7 shows the results of evaluation metrics of the

proposed method as well as those in [5, 9] as the baseline.

The performance is measured in terms of precision, recall,

and F1-score. It can be deduced from the table that our model

outperforms the baseline in the overall metric used by the

RumourEval 2019 competitions (i.e., Macro-F1 Avg.). A

more detailed look shows that the proposed method

outperforms the baseline in the rue class but slightly lags

behind it in the other classes. It is due to low false negative

rate of the proposed method which is a critical necessity of a

rumor detection system. The performance of the baseline can

be attributed to many features, but as we will show later, this

gives their model a significant disadvantage regarding

resilience to deception.

The results of all RumorEcval 2019 participants can be

found in [9]. As it can be inferred from the table, the overall

performance of the proposed method is better than other

models. There are also some works like [4] that uses some

auxiliary data for training. Utilizing auxiliary dataset gives

the model some advantages and not only makes the

comparison a little unfair, but also we believe it threatens the

scalability of the method. When the model is trained and

evaluated based on the auxiliary datasets, its performance is

not guaranteed for rumor detection in other environments in

which this data volume is not available.

Table 7. Comparison to the baseline

 Class Precision Recall F1

Baseline [5, 9]

True - - 0.31

False - - 0.53

Unverified - - 0.17

Macro Avg. - - 0.33

Proposed

method

True 0.85 0.37 0.51

False 0.48 0.45 0.47

Unverified 0.05 0.25 0.08

Macro Avg. 0.46 0.36 0.35

Table 8 shows the performance comparison of the

proposed method with the most successful related models,

which operate on RumorEval 2019 dataset.

Table 8. Comparison to other models

Model Name Macro-F1 score

Baseline [5, 9] 0.33

VANTA and Aono[12] 0.32

WeST (CLEARumor) [13] 0.28

GWU NLP LAB [14] 0.26

BLCU NLP [15] 0.25

FINKI NLP (reported in [9]) 0.33

EventAI [4] 0.58

Proposed method 0.35

7.4. Resilience to deception

Since many rumors are created with the aim of user

deception, the appearance of the claim is designed to mimic

a legitimated news post. A successful rumor detection

system should not be sensitive to simple apparent signs. In

the proposed method, we tried to develop a model that is

resilient to these changes. To evaluate the models' resilience

to deception, we propose changes to the tweet text, keeping

in mind that it is entirely in the user's control and can be

changed easily without changing the tweet's overall

meaning. The applied changes, enumerated below, are

minimal and do not affect the meaning of the text:

1. Removing the periods or adding one if does not exists

any;

2. Removing question marks or adding one if does not

exists any;

3. Removing exclamation mark or adding one if does not

Journal of Computer and Knowledge Engineering, Vol.5, No.2. 2022. 29

exists any;

4. Removing pictures or adding one if does not exists any;

5. Changing the capital ratio of the characters to a random

value.

We assume that these changes can simulate the changes

that a rumor creator made intentionally in the rumor content

so that it looks like a normal verified claim. These changes

are chosen regarding the experiences reported in [5, 9],
which is the only model that shared its details and code. After

applying the changes on the test set, both models trained on

the original training set (the proposed model and the baseline

model) were rerun on the modified test set, and the results

were compared to the original run. Since our model ignores

all the mentioned handcrafted content features due to the use

of embeddings for extracting features from the text, these

changes do not affect the model's performance. In contrast,

the predicted labels in works reported in [5, 9] were changed

in 34% of the conversations after applying the modifications.

It can be inferred from the experiment that even simple text

changes can easily mislead the baseline model.

Since the described issue arises due to the employment of

handcrafted features, it seems that other researches that

model the rumor based on these features (e.g., [4]) also suffer

from the similar weaknesses. In fact, current experiment

compares the resiliency of two categories of approaches to

deception, the models based on automatic feature extracted

and the models based on handcrafted features. To this end,

the proposed method and the baseline are selected as

representatives for these two categories of approaches, in the

absence of source code of other related methods.

This test shows the downside of handcrafted features,

especially for content features, since they are in the control

of the user and can be changed easily. For that reason, all the

content features used in the proposed method are 1) the ones

that are determined by the network and are not controlled by

the user, or 2) the ones that are extracted using methods like

embedding that focuse on the meaning instead of the looks

which minimizes the user's influence on the model.

7.5. Time efficiency

Table 9 shows the training time of the proposed method and

the baseline model. It can be seen that our model outperforms

the baseline significantly in training time, giving it a valuable

advantage for deployment. This means it saves much time in

training, which leads to savings in resources and capital

making it more suitable for deployment.

Although, as discussed before, our model cannot use

dropout in the GRU layer, which can give it a significant

advantage in generalization, we showed that it outperforms

the baseline while being much faster in training.

Table 9. Time efficiency

Model Training Time (seconds)

Baseline [5, 9] 2406.13

Proposed method 40.25

7.6. The role of profile and network features

Another exciting aspect that needs discussing is the proposed

feature set. Regarding content features, we have already

shown that using embeddings instead of handcrafted features

gives our model a significant advantage regarding resilience

to deception. Regarding other features, it can be deduced that

all of the profile and network features are a part of the social

network and they are out of the control of the user, especially

for trending topics, and one or a group of users cannot

meaningfully change them to mislead the model.

We can also show that the proposed non-content features

are needed to achieve the results shown in Table 7. Table 10

compares the model's performance using the proposed

feature set to the model using only the content features. It

shows that the full feature set outperforms the content

features, which in turn shows that network and profile

features provide essential information for rumor detection.

Another important aspect of our model is the use of GRU

cells instead of LSTM. Although LSTMs are more common

in RNN architecture, as discussed before, the use of GRU

leads to reducing the training time and increasing the

generalization.

Table 10. The role of different feature sets

Feature Set Macro-F1 Avg.

Content Features only 0.31

Full Feature Set 0.35

Table 11 compares the proposed method with the same

model with LSTMs instead of GRUs. It can be seen that the

GRU model slightly outperforms the LSTM with fewer

parameters and much faster run time.

Table 11. The comparison of GRU and LSTM unites

Model Macro-F1

LSTM based model 0.34

Proposed method (GRU) 0.35

8. Conclusion
While a considerable research effort has been done recently
to develop automatic rumor detection models, most of prior
approaches have had the problem of relying on handcrafted
features. Using these features make the model more
susceptible to deception and reduces the scalability of the
system. Moreover, a great deal of work is devoted to event
level rumor detection which is not applicable for early
detection and prevention in real world. This research
proposed a rumor detection system based on RNN model and
GRU cells for specifying the veracity of tweets in Twitter
network. One of the most important innovations of this
research is a novel feature set that avoids the extraction of
handcrafted content features and uses network and profile
features that are out of users’ control. Considering these
features makes the model more resilient against deception.
We focused on efficiency and scalability, especially in the
training phase, keeping in mind that social networks'
dynamic nature requires the model to be retrained many
times to adapt to the users and network behavioral changes,
making our model more suitable for deployment.

A number of experiments were conducted to analyze the

effectiveness of the proposed rumor detection system.

Experimental results show that the proposed method

outperforms most similar research in terms of macro F-score.

30 Zahra Zojaji et. al.: Efficient and Deception Resilient Rumor …

It also revealed that the proposed system is less prone to

deception. Furthermore, the results indicate the superiority

of the proposed method comparing the baseline in terms of

time efficiency. Consequently, the proposed rumor detection

system is suitable for being applied efficiently in early tweet-

level rumor detection task with remarkable tolerance to

deception.

As the future work in our research direction, we tend to

use pertained pre-trained contextual deep neural networks

for both content embedding and tweet classification tasks in

order to improve the overall performance.

9. References

[1] Yu, F., Liu, Q., Wu, S., et al., "A Convolutional

Approach for Misinformation Identification", In: IJCAI

International Joint Conference on Artificial

Intelligence, pp. 3901-3907, 2017.

[2] Zhao, Z., Resnick, P., Mei, Q., "Enquiring minds: Early

detection of rumors in social media from enquiry posts",

In: WWW 2015 - Proceedings of the 24th International

Conference on World Wide Web, pp. 1395-1405, 2015.

[3] Ma, J., Gao, W., Mitra, P., et al., "Detecting rumors

from microblogs with recurrent neural networks", In:

IJCAI International Joint Conference on Artificial

Intelligence, pp. 3818-3824, 2016.

[4] Li, Q., Zhang, Q., Si, L., "eventAI at SemEval-2019

Task 7: Rumor Detection on Social Media by

Exploiting Content", User Credibility and Propagation

Information, 2019.

[5] Kochkina, E., Liakata, M., Augenstein, I., Turing at

SemEval-2017 Task 8: Sequential Approach to Rumour

Stance Classification with Branch-LSTM, 2018.

[6] Huang, Q., Zhou, C., Wu, J., et al., "Deep spatial–

temporal structure learning for rumor detection on

Twitter. Neural Comput Appl",

https://doi.org/10.1007/s00521-020-05236-4, 2020.

[7] Sujana, Y., Li, J., Kao, H-Y., "Rumor Detection on

{T}witter Using Multiloss Hierarchical {B}i{LSTM}

with an Attenuation Factor", Aacl, 2020.

[8] Kotteti, C. M. M., Dong, X., Qian, L., "Ensemble deep

learning on time-series representation of tweets for

rumor detection in social media", Appl Sci 10:.

https://doi.org/10.3390/app10217541, 2020.

[9] Gorrell, G., Kochkina, E., Liakata, M., et al., "SemEval-

2019 Task 7: RumourEval", Determining Rumour

Veracity and Support for Rumours, 2019.

[10] Mendoza, M., Poblete, B., Castillo, C., Twitter under

crisis: Can we trust what we RT? In: SOMA 2010 -

Proceedings of the 1st Workshop on Social Media

Analytics, 2010.

[11] Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.,

"Algorithms for hyper-parameter optimization", In:

Advances in Neural Information Processing Systems

24: 25th Annual Conference on Neural Information

Processing Systems 2011, NIPS, 2011.

[12] Vanta, T., Aono, M., "Stance Classification and Rumor

Analysis: Using New Dialog-Act Features and

Augmenting Input Tweets", In: 2020 7th International

Conference on Advance Informatics: Concepts, Theory

and Applications (ICAICTA). IEEE, pp 1–6, 2020.

[13] Baris, I., Schmelzeisen, L., Staab, S., CLEARumor at

SemEval-2019 Task 7: ConvoLving ELMo Against

Rumors, 2019.

[14] Hamidian, S., Diab, M., GWU NLP at SemEval-2019

Task 7: Hybrid Pipeline for Rumour Veracity and

Stance Classification on Social Media,2019.

[15] Yang, R., Xie, W., Liu, C., Yu, D., BLCU_NLP at

SemEval-2019 Task 7: An Inference Chain-based GPT

Model for Rumour Evaluation,2019.

Journal of Computer and Knowledge Engineering, Vol. 5, No. 2, 2022. (31-44) 31

DOI: 10.22067/cke.2022.75815.1055

A Deep Neural Network Architecture for Intrusion Detection in

Software-Defined Networks*
Research Article

Somayeh Jafari Horestani1 Somayeh Soltani2 Seyed Amin Hosseini Seno3

Abstract: For more comprehensive security of a computer

network as well as the use of firewall and anti-virus security

equipment, intrusion detection systems (IDSs) are needed to

detect the malicious activity of intruders. Therefore, the

introduction of a high-precision intrusion detection system is

critical for the network. Generally, the general framework of

the proposed intrusion detection models is the use of text

classification, and today deep neural networks (DNNs) are

one of the top classifiers. A variety of DNN-based intrusion

detection models have been proposed for software-defined

networks (SDNs); however, these methods often report

performance metrics solely on one well-known dataset. In

this paper, we present a DNN-based IDS model with a 12-

layer arrangement which works well on three datasets,

namely, NSL-KDD, KDD99, and UNSW-NB15. The

layered layout of the proposed model is considered the same

for all the three datasets, which is one of the strengths of the

proposed model. To evaluate the proposed solution, six other

DNN-based IDS models have been designed. The values of

the evaluation metrics, including accuracy, precision, recall,

F-measure, and loss function, show the superiority of the

proposed model over these six models. In addition, the

proposed model is compared with several recent articles in

this field, and the superiority of the proposed solution is

shown.

Keywords: Intrusion Detection, Software-defined Network,

Deep Learning, Network Security

1. Introduction

In computer systems and networks, the attackers exploit

security vulnerabilities to attack the network; therefore, there

is a need for some methods to detect intrusions into a

computer system or network. An intrusion detection system

(IDS) is the software or hardware that detects and reacts to

intrusions. An IDS prevents illegal access and tampering

with the resources of a computer system or network [1-3].

Generally, the IDS monitors the activities of the host

computer or the entire network and reports the violations of

management and security policies to the network

administrator [4-6].

With the growing use of the Internet, network traffic is

becoming increasingly complex, and the challenge is

becoming more difficult for IDS to detect attacks or

anomalies more accurately and quickly. Therefore,

researchers leverage machine learning techniques to improve

the capability of IDSs.

In the category of machine learning, artificial neural

network (ANN) is one of the most widely used models. It is

* Manuscript received: 13 March 2022; Revised, 01 July 2022, Accepted, 01 August 2022.
1. MSc, Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
2. Corresponding Author, PhD, Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.

Email: somayeh.soltani@mail.um.ac.ir
3. Associate Professor, Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.

a computational technique widely used in data processing,

pattern recognition, and information classification. Deep

learning, a subset of machine learning, attempts to extract

high level features from the raw input using several hidden

layers. Deep neural networks are used in the design of IDSs

for software-defined networks (SDNs).
In recent years, several approaches for intrusion detection

have been proposed using machine learning techniques;
however, each of the methods has its challenges and
problems. For example, most studies have reported good
accuracy rates, while they have not reported other metrics
such as precision or recall. Some methods have reported
relatively low values for these performance measures.
Another weakness of these methods is that they work only
on one dataset and do not evaluate their methods on larger
and newer datasets. On the other hand, some studies have
compared their methods with only simple classifiers.
However, it is clear that this kind of comparison does not
have the necessary quality. In this paper, we offer an
intrusion detection method for software-based networks
using deep neural networks; the proposed method achieves
high performance on several datasets.

The contributions of this work can be summarized as

follows:

 It provides a comprehensive and complete classification

(Research Tree) in the field of intrusion detection

systems.

 It follows a deep learning approach to IDS using deep

neural networks in software-defined networks.

 It provides seven neural network-based IDS models and

evaluates them on three datasets, namely NSL-KDD,

KDD99, and UNSW-NB15. The best model, which has

the best accuracy, precision, recall, and F-measure values

on all datasets, is then introduced.

 One of the strengths of this solution is that the layered

layouts of the proposed models are the same for all three

datasets.

The paper then presents the theoretical background and

research motivation, discusses the proposed model,

evaluates the proposed model, and finally concludes the

work.

2. Research background

In general, intrusion detection systems can be categorized in

terms of various aspects, such as detection method (or

analysis technique), type of architecture, how to respond and

react to intrusion, information source, and many others [7-

12]. For example, intrusion detection systems can be divided

into two types of continuous monitoring and periodic

https://cke.um.ac.ir/
https://cke.um.ac.ir/article_42707.html
https://orcid.org/0000-0001-7152-7334

32 Somayeh Soltani et. al.: A Deep Neural Network Architecture for …

analysis in terms of continuity [13-15]. They can also be

divided into active and passive responses [16-19].

Chalapathy and Chawla [7] categorized the deep learning-

based anomaly detection techniques using three criteria:

application, type of anomaly, and type of model. Then they

defined nine applications, that is, fraud detection, cyber

intrusion detection, medical anomaly detection, sensor

network anomaly detection, video surveillance, IoT big data

anomaly detection, log anomaly detection, and industrial

damage detection. They defined three types of anomalies:

collective, contextual, and point. Moreover, they considered

four types of detection models: unsupervised, semi-

supervised, hybrid, and one-class neural networks.

Kwon et al. [9] classified the anomaly-based IDSs into

two groups: programmed and self-learning. Then they

classified the programmed IDSs into two categories of

simple-rule and statistical-based, and they categorized the

self-learning IDSs into four categories: cognition-based,

computation-intelligence, data mining, and machine

learning. In the next step, they classified the machine

learning-based IDSs into six groups: Bayesian network,

genetic algorithm, fuzzy logic, artificial neural network

(ANN), supervised vector machine (SVM), and outlier

detection. Furthermore, they defined two types of ANNs:

supervised and unsupervised. The supervised ANN IDSs can

be free-forward ANN or recurrent ANN. The unsupervised

methods include deep learning, adaptive resonance theory,

and self-organizing maps. Finally, the deep learning methods

include AutoEncoder, sum-product network, recurrent

neural network (RNN), Boltzmann machine (BM),

convolutional neural network (CNN), and deep neural

network (DNN).

Lee et al. [18] categorized deep learning-based IDS schemes

into nine classes: AutoEncoder-based, RBM-based, DBN-

based, DNN-based, CNN-based, GAN-based, LSTM-based,

RNN-based, and hybrid. They then classified the

AutoEncoder-based schemes into six groups: Stacked

AutoEncoder, Denoising AutoEncoder, NonSymmetric

AutoEncoder, Sparse AutoEncoder, Variational

AutoEncoder, and Convolutional AutoEncoder. They also

defined several hybrid schemes: AE+CNN, AE+DBN,

AE+DNN, AE+GAN, AE+LSTM, CNN+LSTM,

CNN+RNN, and DNN+RNN.

Having reviewed various articles in the field of intrusion

detection systems, we categorized these systems in different

ways. In terms of continuality, we classified intrusion

detection systems into two categories: continuous

monitoring and periodic analysis. Concerning reaction to

influence, we divided these systems into two groups: active

response and passive response. Regarding the architecture,

we divided the IDSs into two groups, centralized and

distributed. In addition, we defined two types of real-time or

offline forecasting.

In terms of the knowledge base, we considered three

classes: Boltzmann machine, descriptive languages, and

expert systems. We classified the IDSs into three groups: one

variable, multivariate, and time series model. Moreover, the

IDS systems are categorized into two classes: anomaly-based

and signature-based. We considered three signature-based

techniques: data mining, state transition, and expert systems.

Anomaly-based techniques are divided into two groups:

self-learning, and programming. The self-learning

techniques are cognition-based and relate to computation

intelligence, data mining, or machine learning. The machine

learning techniques can be semi-supervised, supervised,

unsupervised, or reinforcement learning. Each of these

techniques has so many subcategories.

We summarize various categorizations in a tree named

Research Tree in the field of intrusion detection systems.

Figure 1. shows the comprehensive classification tree.

In the following, we categorize previous research works

into two main groups in terms of the model architecture: 1)

works done on shallow architectures, 2) works done on deep

architectures.

Figure 1. Research Tree in the field of intrusion detection systems

Journal of Computer and Knowledge Engineering, Vol.5 , No.2. 2022. 33

2.1. Shallow Learning IDSs
Some intrusion detection methods use shallow architectures,
such as support vector machine (SVM), decision tree (DT),
random forests (RF), clustering, K nearest neighbor (KNN),
particle swarm optimization (PSO), simulated annealing
(SA), ANN, and ensemble methods [4, 20-27].

Lin et al. [4] used the SVM, the decision tree, and the
simulated annealing and reached 99.96% accuracy. Wang et
al. [23] used the SVM algorithm and reached 99.31%
accuracy. Baek et al. [22] achieved an 88% accuracy rate
using several simple classifications.

These methods take advantage of the mentioned
algorithms and use KDD99 or NSL-KDD datasets to
evaluate their solutions and report good accuracy or
precision rates. However, these methods report only one
metric of accuracy or precision and no other metrics. They
use only one dataset for evaluation, and they compare the
results with only ordinary classifications.

2.2. Deep Learning IDSs
In this section, we describe intrusion detection models based
on deep learning methods.

A. Convolutional Neural Network (CNN)
This category includes research works which have based
their intrusion detection techniques on convolutional neural
networks [28-32]. Zhu et al. [28] considered 6 layers of the
neural networks and used the pooling layer among them.
Moreover, they used a learning rate of 0.5 and achieved
80.34% of Accuracy. Li et al. [29] used convolution
architecture and data-to-image conversion techniques to
detect intrusion but provided a relatively low accuracy rate
(about 80%). Nguyen et al. [32] used a deep convolutional
network and used 4 main layers of CNN networks. They
reported 99.87% accuracy on the KDD99 dataset.

B. Recursive Neural Network (RNN) or Gated Recurrent

Unit RNN (GRU–RNN)
Research works in this category have used recursive neural
network techniques [33-37]. For example, Yin et al. [33]
proposed a binary classification method based on a deep
recursive neural network to detect intrusions. They first
performed pre-processing (such as normalization) on the
input dataset and then attempted to weigh the deep network
layers using a recursive neural network with forward
propagation, reporting 99.81% accuracy. Tang et al. [34]
proposed a gated recurrent unit (GRU) over SDN-based
networks. They compared their method with DNN classifiers
having different layouts, support vector machines, and
simple Bayesian, and reported 89% accuracy and 87%
precision. Zhong et al. [37] presented an IDS for IoT servers
using text-CNN and GRU methods. They reported the F-
score criterion on the KDD99 and ADFA-LD datasets.

C. Long Short-Term Memory (LSTM)
Ponkarthika and Saraswathy [38] developed an intrusion
detection system based on the RNN and its specific type, and
LSTM networks. They achieved 82% accuracy for the RNN
and 83% accuracy for the LSTM on the KDD99 dataset with
a learning rate of 200.

D. CNN-RNN

Vinayakumar et al. [39] proposed an intrusion detection

technique using the convolutional network for feature

extraction and the RNN network for classification. They

proposed a CNN-based model and showed that the CNN

network would perform better than MLP, CNN-LSTM, and

CNN-GRU in extracting and presenting features from

network traffic. Their model could report the highest

accuracy and recall on single-layer CNN and the highest

precision on almost all CNN combinations with other

networks on the KDD99 dataset at 99.9%. Chawla et al. [40]

proposed a technique using a combined convolutional

network and GRU RNN; they also could achieve 81%

accuracy on the ADFA-LD dataset with a learning rate of

0.0001.

E. CNN-LSTM

The intrusion detection method proposed by Wang et al. [41]

uses the convolution filter to extract the feature and the

LSTM network for classification. That is, it uses CNN deep

networks to learn low-level features and LSTM networks to

learn high-level features. This method reported 99.89%

accuracy on the ISCX2012 dataset. Furthermore, Hsu et al.

[42] used a hybrid method based on LSTM and convolution

network to detect intrusion and reported 94.12% accuracy on

a larger dataset. Lee et al. [43] designed an intrusion

detection system to prevent SSH and DDOS attacks in

software-defined networks, which used four deep learning

models, including MLP, CNN, LSTM, and SAE. Malik et al.

[44] designed an Efficient Reconnaissance and Surveillance

Detection in SDN using CNN and LSTM; however, they

evaluated their model using only one dataset, namely

CICIDS 2017.

F. RNN-LSTM

Jiang et al. [6] developed a multi-channel intelligent attack

detection technique based on a combination of LSTM and

RNN networks. In this LSTM-RNN architecture, multiple

feature channels are given to the network input layer. Then,

the LSTM layer, the Mean Pooling layer and finally the

logistic regression layer are used. Finally, a majority vote is

taken on the results obtained. Jiang et al. reported a detection

rate of 99.23 and an accuracy of 98.94% on the NSL-KDD

dataset.

G. Auto Encoder

The articles in this category [45-50] use deep Auto Encoder

neural networks. Mohammadi and Namadchian [45] first

performed normalization and then used a deep Auto Encoder

method to reduce the error rate. Finally, on the NSL-KDD

dataset, they achieved 92.72% accuracy and 98.11%

detection rate in the classification of R2L attacks.

Papamartzivanos et al. [49] provided a comprehensive

framework based on self-taught learning and MAPE-K

methodology. The framework included plan, monitor,

analyze, and execute activities that are applied to a

knowledge base. Their model was a Sparse Auto Encoder

and a Feedforward Auto Encoder. Their tests on the KDD99

and NSL-KDD datasets reported 99.8% and 99.6% accuracy.

H. Deep Neural Network (DNN)

The models in this category [5,51-58] use deep neural

networks to detect network intrusions. In 2019,

Vinayakumar et al. [5] proposed an IDS based on deep neural

network and tested it on six datasets. The model layers

34 Somayeh Soltani et. al.: A Deep Neural Network Architecture for …

included the fully connected layer, the normalization layer,

and the drop-out layer with a coefficient of 0.01. They used

16 consecutive layers, several ReLU activation functions,

and learning rates between 0.01 and 0.5. This model reported

good accuracy on six well-known datasets (e.g. 96.3% on the

CICIDS dataset or 93% on the KDD99 dataset).
Tang et al. [51] also proposed a DNN-based intrusion

detection method which was performed on the SDN
environment and the NSL-KDD data set, and its experiments
with a learning rate of 0.0001 reported an accuracy of 75.75.
Using the Boltzmann neural network on the KDD99 dataset,
Roy et al. [52] were able to report a very high 99.99%
accuracy for two-class mode (attack or normal).

Ustebay et al. [53] used both the deep neural network and
the shallow neural network (SNN) to detect abnormalities.
They used these two models to reduce the feature set. They
also trained the models on the CICIDS2017 dataset and
reported a 98.45% accuracy rate on the deep models. They
showed that deep models would achieve higher accuracy,
precision, and recall than shallow models.

Vigneswaran et al. [54] evaluated DNN and SNN models
on NIDS. They performed experiments on the DNN
architecture with 1 to 5 layers at a learning rate of 0.1,
considered 1000 Epochs on the KDD99 dataset, and finally
compared the results with shallow machine learning
algorithms. The results showed that the three-layer DNN had
the best accuracy of 93% and precision of 99% among all
these algorithms.

Duy et al. [57] designed a framework called DIGFuPAS
which creates attack examples and acts like deep learning-
based IDS in SDN in a Black-Box manner. They used
Wassertein Generative Adversarial (WGAN) Model, a
generative model based on deep learning. Bouria and
Guerroumi [58] presented an IDS based on a deep learning
approach to strengthen SDN network security. The
communication channel between the control layer and the
infrastructure layer of the SDN is protected against various
attacks. Moreover, they evaluated their model only on the
CICIDS 2017 dataset.

2.3. Software-Defined Networks
Software-defined network is a new type of network
architecture in which one or more central servers are
responsible for controlling all network elements, whereas the
rest of the elements only direct network traffic [59, 60].
Traditional networks were suitable for a static client-server
structure. But today's modern networks, including data
centers, cloud services, mobiles, and IoT devices, demand
new requirements.

As you know, in traditional networks, each network
device calculates routes and makes decisions on network
policies. However, in SDN networks, the network operating
system (the controller) is responsible for deciding how to
route packets and applying network policies. The most
essential concept in SDN networks is to separate the control
plane and data plane. While the control plane decides how to
route the packets, the switches and routers merely forward
packets and are not involved in decision-making.

Apart from the controller and the network devices, some

other components constitute the SDN architecture. For

example, the SDN applications express their desired network

behavior to the controller using some interfaces. Moreover,

the OpenFlow protocol communicates between the control

and the data planes.

While SDN provides easy, flexible, and integrated

management, it imposes several security issues. As the

control logic in SDN is centralized, it is more vulnerable to

cyber-attacks such as DDoS; therefore, the design of security

appliances for SDN networks is crucial [61, 62].

3. The proposed model

The proposed model consists of three phases: 1)

preprocessing phase, 2) neural network design phase, and 3)

intrusion detection phase. In the first phase, the necessary

pre-processing is performed on the raw data collected from

the SDN network traffic. In the second phase, the neural

network is designed with the appropriate layer arrangement

and the proper activating function. The model is trained on

the training dataset with the required number of repetitions.

In the third phase, the trained model is tested on a test dataset,

and the performance of the model is evaluated using various

metrics such as accuracy, precision, and recall.

In deep learning, the goal of training is to increase the

performance of the model using the defined training set. To

measure the performance, we defined a loss function and

reduced it in the hope that it would improve the overall

performance of the model. While there are many loss

functions to compute the distance between the true value and

the estimated one, Cross entropy [3] is the most popular. In

this research, we used the Cross entropy and the Adam

optimizer for all three datasets. Cross entropy for a

classification problem with 𝑛 classes is defined as (1):

𝐶𝐸 = − ∑ 𝑡𝑖 𝑙𝑜𝑔(𝑝𝑖) ,𝑛
𝑖=1 (1)

where 𝑡𝑖 is the true value and 𝑝𝑖 is the probability for the

𝑖𝑡ℎ class.

In this research, we considered seven different

configurations for the neural network and evaluated all these

seven models on three datasets, NSL-KDD, KDD99, and

UNSW-NB15. It should be noted that the architecture and

layered layout of the proposed models are the same for all

three datasets, which is one of the strengths of our solution.

To achieve proper performance, many previous models

[5,24,28,59] have offered different layout layers for each

data set, but our proposed architecture achieved good

performance for all three datasets without manipulation.

Each of these seven models had a unique layout consisting

of several layers, such as embedding, Dense, Drop out, and

activation layers. The first model was a model based on

dense layers and had nine layers. The second model was

based on the convolutional neural network (CNN) and had

the largest number of layers (22 layers). The third model was

a 10-layer LSTM-CNN hybrid network. The fourth model

was based on the dense network with the least number of

layers. The fifth model, like the second one, was a CNN-

based model with a relatively large number of layers. The

sixth model was based on the LSTM-CNN hybrid network

and had 12 layers. Finally, the seventh model was based on

the dense network and had 12 layers. The designs of these

seven models are described in Table 1. The number of

neurons in each layer is represented in parentheses.

Journal of Computer and Knowledge Engineering, Vol.5 , No.2. 2022. 35

Table 1. The layout of the seven proposed ANN-based IDSs

Model 7 Model 6 Model 5 Model 4 Model 3 Model 2 Model 1 Layers

Dense(64) Embedding Embedding Dense(128) Embedding Embedding Dense(128) Layer 1

Dense(32) Dropout Dropout Dense(64) Dropout Dropout Dense(64) Layer 2

Activation Conv(64) Conv(256) Dense(128) Conv(32) Conv(256) Dense(128) Layer 3

Dropout Dropout Dense(100) Dense(64) Conv(64) Dense(100) Dropout Layer 4

Dense(32) Dropout Dropout Dense(6) Conv(128) Dropout Dense(64) Layer 5

Activation Conv(64) Conv(128) Dense(128) LSTM(128) Conv(128) Dropout Layer 6

Dropout Dropout Dense(100) FC Dense(100) Dense(100) Dense(6) Layer 7

Dense(32) LSTM(300) Dropout --- Dropout Dropout Dropout Layer 8

Activation Dense(100) Conv(128) --- Dense(100) Conv(256) FC Layer 9

Dropout Dropout Dense(100) --- FC Dense(100) --- Layer 10

Dense(32) Dense(10) Dense(100) --- --- Dropout --- Layer 11

FC FC Dropout --- --- Dense(200) --- Layer 12

--- --- Dense(200) --- --- Dropout --- Layer 13

--- --- Conv(32) --- --- Dense(100) --- Layer 14

--- --- Conv(64) --- --- Conv(32) --- Layer 15

--- --- Conv(128) --- --- Max-pool --- Layer 16

--- --- Dense(100) --- --- Dropout --- Layer 17

--- --- Dropout --- --- Dense(256) --- Layer 18

--- --- Dense(256) --- --- Dropout --- Layer 19

--- --- Dropout --- --- Dense(100) --- Layer 20

--- --- FC --- --- Dropout --- Layer 21

--- --- --- --- --- FC --- Layer 22

We tested all seven proposed models against three datasets

NSL-KDD, KDD99, and UNSW-NB15 and selected the best

one (i.e., Model 7).

The best-proposed model (Model 7) was a unique 12-layer

deep neural network with the following layer topology:

dense, dense, activation, drop out, dense, activation, drop

out, dense, activation, drop out, dense, and finally activation

or fully connected (FC) layer which is used to select the

appropriate class using SoftMax or Tanh functions. From

now on, we will call Model 7 the proposed model. The

proposed model improves the evaluation metrics without

changing the number and layout of layers on the three

datasets. This is the superiority of our solution over other

works, which provides a different network architecture for

each dataset.

However, it should be noted that since these three datasets

are different in terms of the number of parameters and the

number of output classes, our model also considers different

parameters and final activation functions for selecting output

classes. Also, the initial values for the dense layers are

slightly different for each dataset. In the following, we will

examine the layers of the proposed model.

Dense Layer: The values of the dense layers in the

proposed model are different for each dataset and depend on

the number of dataset properties. For example, for the

UNSW-NB15 dataset, 64 values are provided for the first

layer. The activation function is also one of the best-tested

functions for the neural network. The non-linear ReLU

function is defined in the following (2):

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥), (2)

where 𝑥 is the input.

Drop out layer: The drop out layer accidentally removes

and releases some neurons, preventing the network overfit.

Therefore, it does not allow the network to retain data and to

be disturbed in predicting the testing data. In the proposed

model, a drop out layer with values of 0.15 to 0.5 is

considered after each dense layer.

Fully connected (FC) layer: A fully connected layer

(unlike a dense layer) is a layer that connects to all the

neurons in the previous layer. It considers the trained inputs

in the previous layers and assigns them to the appropriate

class using an activation function such as SoftMax or Tanh,

as defined in (3) and (4). Figure 2 illustrates the proposed

model diagram:

𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑛

𝑗=1

, (3)

𝑇𝑎𝑛ℎ(𝑥) =
𝑒2𝑥−1

𝑒2𝑥+1
, (4)

where 𝑥 is the input.

36 Somayeh Soltani et. al.: A Deep Neural Network Architecture for …

Dense(64)
...

Dense(32) Activation Dropout Dense(32) Activation Dropout Dense(32) Activation Dropout Dense(32) FC

Figure 2. The layer layout of the proposed solution

The implementation of the proposed solution is described

below. The data collected from the data sets of SDN

networks were prepared and modeled. The layout, number,

and type of network layers were set, the activation functions

were selected, and the specified attack classes were

converted into vectors. Then, the dataset was tagged with

attack and non-attack labels. Finally, the input data, the

output classes, layers, and weights of the data set in CSV

format would make the DNN neural networks. We used

TensorFlow and Keras deep learning package and Python

programming language. To train the model faster and use

powerful GPUs, we used the Google Colab service. We

trained the model and the network with a suitable number of

iterations and made sure of avoiding overfitting in each

epoch. Finally, we tested the model using the test data set and

evaluated the improvement of the model's performance in

terms of accuracy, precision, recall, and cost function.

4. The evaluation of the proposed model

4.1. Datasets

In this study, three datasets, including NSL-KDD, KDD99,

and UNSW-NB15, were used as benchmarks to select the

best model among seven models and to compare the

proposed model with other methods.

A. KDD99 dataset

The KDD99 dataset is an old dataset containing 41 features

and five different classes: normal, DoS, remote-to-local

(R2L), user-to-root (U2R), and Prob. It includes 494,021

records for training and 311,029 for testing sets. Some of the

derived features include duration, protocol_type, service,

src_bytes, dst_bytes, flag, urgent, and so on. One drawback

of KDD99 is that the sets of classes in the training and testing

sets are imbalanced. Moreover, there are many duplicates in

the dataset.

B. NSL-KDD dataset

The NSL-KDD dataset is one of the most widely used

datasets for intrusion detection research; it is a subset of the

original KDD99 and is designed to solve some of the

drawbacks of the KDD99 dataset. This dataset does not have

duplicate records in the training and testing sets, and the

number of records is considered more reasonable and

appropriate. The feature set and the type of classes are the

same as the original KDD99.

C. UNSW-NB15 dataset

UNSW-NB15 is a relatively new dataset with a hybrid of real

normal activities and synthetic contemporary attacks. It has

175,341 records in the train set and 82,332 records in the test

set. The dataset has ten classes (normal and nine types of

attacks). The attack types are DoS, backdoors, fuzzers,

analysis, exploits, generic, shellcode, reconnaissance, and

Worms. Moreover, there are 49 derived features.

4.2. Evaluation Metrics

The most important and widely used metrics to evaluate the

quality of the results of intrusion detection methods are: 1)

accuracy, 2) precision, 3) recall, 4) F-measure, and 5) loss

function [49, 63-65]. At first, it is necessary to define the four

basic terms used in the mentioned metrics [66]:

 True Positive (TP) indicates the number of records in the

dataset that our method correctly classified in the attack

class.

 True Negative (TN) is the number of records in the

dataset that our method rightly classified in the normal

category.

 False Positive (FP) indicates the number of records in the

dataset that our method incorrectly classified in the attack

class.

 False Negative (FN) is the number of records in the

dataset that our method mistakenly classified in the

normal category.

In the following, we will explain the application of these

basic terms in the mentioned evaluation metrics.

Precision: This metric estimates the ratio of correctly

identified attack records to the total number of detected

attack records (5):

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (5)

Recall: This metric estimates the ratio of correctly

classified attack records to the total number of attack records

(6):

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (6)

Accuracy: This metric estimates the ratio of correctly

classified records to the total records. In other words, the

accuracy metric shows the percentage of the data that are

correctly categorized in (7):

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (7)

F-measure: This metric establishes a tradeoff between

precision and recall. It is the harmonic mean of precision and

recall (8):

𝐹 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (8)

Loss function: This metric indicates the amount of output

error, and we can get good results by optimizing it [36, 51,

67].

4.3. The evaluation of the Proposed Solution

To implement the proposed models, we used the Jupyter

Notebook in the free Google Colaboratory service. In

particular, we used the Tensorflow 1.0 deep learning

package [68] along with Keras Backend and the Adam

optimizer with different learning rates. Moreover, we used

the most popular cost function, that is, Cross Entropy. The

seven neural network models were examined and evaluated

on the three datasets with the same conditions.

Journal of Computer and Knowledge Engineering, Vol.5 , No.2. 2022. 37

Table 2. The performance of the seven proposed models on the KDD99 dataset

Metrics Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Accuracy 53.96 98.93 50.87 61.1 98.9 88.22 99.02

Precision 83.79 88.67 78.54 98.27 88.38 63.17 99.14

Recall 76.19 86.34 79 41.24 85.94 58.77 98.93

F-measure 78.78 87.49 78.74 58.08 87.14 60 99.04

Loss function 0.046 0.03 0.054 0.415 0.031 0.077 0.107

Figure 3. The evaluation of the loss function of the seven proposed models on the KDD99 dataset

A. The evaluation of the seven models on the KDD99

dataset
We examined all seven proposed models with the KDD99
dataset. Table 2 shows the accuracy, precision, recall, F-
measure, and loss functions of all the models. The
performance of Model 7 was better than the other models in
terms of accuracy, precision, recall, and F-measure;
however, the loss function of Model 7 was higher than most
models. Model 2, with a value of 0.03, had the lowest loss
function.

Figure 3. shows the evaluation of the loss function on our
seven models for the KDD99 dataset. In Model 7, the cost
function for validation data (orange line) was approximately
tangent to the cost function for training data (blue line). For
other models, only training data were examined due to the
imbalanced training and validation data.

In Model 1, with increasing epochs, the error decreased
but with fluctuations, which can be attributed to the lack of
use of drop out layer for optimal control of overfitting.
Model 2 had a stepped decrease. In the first repetitions, it had
good learning from training data, however, in the subsequent
repetitions, the learning rate decreased. It should be noted
that this model had the best value of the loss function.

Model 3 did not reach the minimum value of the loss

function but had a good decreasing slope. The loss function
of Model 4 not only decreased after a while, but also it
showed an increase due to the high learning rate and
inappropriate layer arrangement. The lower the learning rate,
the greater the possibility of improving the loss function. The
loss function of this model was the worst loss function
among the design models.

Model 5 initially had a sudden decrease and then reached

a slow and relatively uniform decrease. The learning rate

gradually improved better in this model. In Model 6, the

overfitting fluctuations were uncontrolled, and the error

increased and decreased abruptly. The sixth model worked

well on the training data. However, after feeding new data,

the loss function increased due to not using the drop out layer

correctly.

Model 7 (i.e., the best proposed model) did not have the

least loss function among all the models, but it was able to

control overfitting with the correct arrangement of layers.

This model also performed well in the validation dataset.

B. The evaluation of the seven models on the NSL-KDD

dataset

Table 3. shows the performance values of the seven models

on the NSL-KDD dataset. It is quite clear that the proposed

38 Somayeh Soltani et. al.: A Deep Neural Network Architecture for …

solution (Model 7) performed much better than other models

in all evaluation criteria, even in the loss function. As

compared to other models, this showed the excellent

performance of the proposed solution and the proper

arrangement of the neural network layers in it.

Considering Figure 4, it is clear that Model 7 greatly

reduced the loss function. In fact, the loss function had a

slight difference in both the training and validation datasets.

If the loss function of the training data were close to the loss

function of the validation data, it would be safe to say that

the over-fitting is well controlled. The loss function in Model

7 reached the lowest possible value among the seven models.

One of the reasons for this smooth reduction of the loss

function was the correct use of drop out layers between the

dense layers.

Model 1 had the lowest loss after model 7. The value of

the loss function could be well reduced due to its good

learning rate. Of course, the loss function fluctuated with the

arrival of some new data, and the network controlled the

fluctuations using the appropriate learning rate. The cost

function of the second model initially decreased but

remained constant after a few iterations. To solve this

problem, the learning rate should be adjusted and reduced

during the training steps.

The layout of Model 3 was not able to reduce the loss

function well. Model 4, like the third model, was subject to

fluctuations in new train data. This indicated that the model

had learned well from previous data; however, the error

fluctuated with new data, which was not very acceptable.

The loss function of Model 5 remained constant very soon

and could not reduce the loss function more than this amount.

Adjusting the input weights of the next layers was very

important. In the fifth model, the input weights of the layers

were not well adjusted and had been updated with a constant

value, producing a fixed loss function.

Model 6 did not perform well in this dataset. Increasing

the learning rate initially reduced the loss function, but the

error rate then increased. It seems that by reducing the

learning rate in these models, we can solve this problem and

improve the model performance. Thus, Model 7 in the NSL-

KDD dataset is undoubtedly the best-designed model

according to the evaluation criteria under consideration.

Table 3. The performance of the seven proposed models on the NSL-KDD dataset

Metrics Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Accuracy 71.75 95.95 96.53 67.08 95.95 61.32 99.39

Precision 83.51 53.26 93.25 91.17 53.48 80.33 99.49

Recall 69.79 53.23 70.23 78.4 53.44 84.11 99.33

F-measure 75.63 53.24 79.98 83.89 53.46 81.74 99.41

Loss function 0.068 0.088 0.084 0.094 0.088 0.076 0.022

Figure 4. The evaluation of the loss function of the seven proposed models on the NSL-KDD dataset

Journal of Computer and Knowledge Engineering, Vol.5 , No.2. 2022. 39

C. The evaluation of the seven models on the UNSW-NB15

dataset

Table 4. shows the evaluation of our models on the UNSW-

NB15 dataset. Model 7 had the highest value in terms of

accuracy and F-measure. In addition, this model achieved a

recall of 99.98% (approximately one). Although the third

and fourth models achieved 100% recall, other performance

measures of these two models were lower than Model 7.

However, the loss function of Model 7 was higher than

Models 2, 4, 5, and 6. It is possible to reduce the error rate

by changing the activation function for this dataset.

However, changing the activation function is not acceptable,

and we consider fixed activation functions for three datasets.

Referring to Table 2, Table 3, and Table 4, it is clear that

the highest value for accuracy metric (one of the most

important evaluation metrics in intrusion detection systems)

on all three datasets of KDD99, NSL-KDD, and UNSW-

NB15 belonged to the proposed model (Model 7).

Figure 5 shows the loss functions of the seven models on

the UNSW-NB15 dataset. It is clear that the first model

increased the error instead of decreasing it and thus had the

worst loss function among the seven models. It can be

inferred that the final activation function of Model 1 failed

to predict the correct class. Given that changing the

activation may reduce the error, we did not change it in this

study; in fact, we considered fixed activation functions for

all three datasets.

The loss function of the second model had a decreasing

trend, which implies that the layer arrangement and the final

activation function were chosen properly. The third model is

almost the same as the second model and has the least loss

value. The loss function in the fourth model continuously

decreased; however, it did not reach the lowest level and was

fixed at approximately 0.6881%.

While the loss functions of the fifth and the sixth models

performed similarly, the fifth model acted slightly better.

The sixth model had a higher learning rate than the fifth

model, but it controlled the overfitting better. The loss

function of the proposed model also had a decreasing trend,

but its error rate was higher than the other models.

Table 4. The performance of the seven proposed models on the UNSW-NB15 dataset

Metrics Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Accuracy 4.3 64.04 55.05 55.04 64.02 66.45 68.11

Precision 3.3 68.5 55.05 55.04 69.15 74.54 68.13

Recall 2.2 65.56 100 100 64.55 59.36 99.98

F-measure 2.2 66.59 71 70.99 66.11 66.06 80.97

Loss function 8.86 0.632 0.34 0.688 0.635 0.739 7.16

Figure 5. The evaluation of the loss function of the seven proposed models on the UNSW-NB15 dataset

40 Somayeh Soltani et. al.: A Deep Neural Network Architecture for …

D. Performance Comparison

In this section, we will compare the results of our model with

the findings offered by VinayaKumar et al. [5] in which

excellent evaluation metrics values are obtained on six

datasets.

As shown in Figure 6, the proposed model performs better

than VinayaKumar et al.’s work on the KDD99 dataset in

terms of all evaluation metrics (accuracy, precision, recall,

and F-measure). Figure 7 shows a comparison of the

proposed method with VinayaKumar et al.’s method on the

NSL-KDD dataset. The proposed method works much better

than VinayaKumar et al.’s work. All four criteria in the

proposed method are close to 100%, while in VinayaKumar

et al.’s method they are about 80%.

The proposed solution and the method offered by

VinayaKumar et al. on the UNSW-NB15 dataset were also

compared. Figure 8 shows that the accuracy of the proposed

model is 68.11%, and the accuracy of the method of

VinayaKumar et al. is 65.1%, and therefore the proposed

solution works better. Regarding the Precision metric,

VinayaKumar et al.'s method is 59.7%, and the proposed

method is 68.13%. Also, in the recall metric, the proposed

method performs much better than the method of

VinayaKumar et al.

It should be noted that the UNSW-NB15 dataset is one of

the largest intrusion detection datasets, and the improvement

obtained by the proposed method on this dataset is valuable.

Figure 6. Comparison between the proposed model and

VinayaKumar et al.’s work on the KDD99 dataset

Figure 7. Comparison between the proposed model and

VinayaKumar et al.’s work on the NSL-KDD dataset

Figure 8. Comparison between the proposed model and

VinayaKumar et al.’s work on the UNSW-NB15 dataset

In the following, we will compare the performance of the

proposed model with several other models. The models in

[69-71] are evaluated using NSL-KDD. As can be seen in

Table 5, the accuracy, precision, recall, and F-score of our

model are better than these models in this dataset. The model

in [37] reports the F-measure on the KDD99 dataset.

However, as Table 5 shows, the F-measure of our model is

greater than the F-measure of [37]. Finally, the model in [72]

reports the precision equal to 93.41 on UNSW-NB15, which

is greater than our precision score on this dataset. However,

we should mention that our model, unlike [72], has

acceptable performance on each of these three datasets.

Table 5. Comparison between the proposed model and other state-

of-the-art models on the KDD99, NSL-KDD, and UNSW-NB15

datasets

DataSet
KDD99 NSL-KDD UNSW-NB15

References / Metrics

Proposed

Model

Accuracy 99.02 99.39 68.11

Precision 99.14 99.49 68.13

Recall 98.93 99.33 99.98

F-measure 99.04 99.41 80.97

[69]

Accuracy - 79.08 -

Precision - 87.27 -

Recall - 94.60 -

F-measure - 91.47 -

[72]

Accuracy - - -

Precision - - 93.41

Recall - - -

F-measure - - -

[37]

Accuracy - - -

Precision - - -

Recall - - -

F-measure 94.50 - -

[70]

Accuracy - 90.73 -

Precision - 86.38 -

Recall - 93.17 -

F-measure - 89.65 -

[71]

Accuracy - 86.70 -

Precision - 89.36 -

Recall - 86.70 -

F-measure - 87.22 -

Journal of Computer and Knowledge Engineering, Vol.5 , No.2. 2022. 41

5. Conclusion and future work

One of the challenges of SDN networks is to design an

intrusion detection system that can prevent various types of

attacks. While several methods have provided IDSs for

SDNs, none of them has been able to achieve suitable

performance values on different available datasets.

In this study, to improve the security level of the network

and prevent various attacks, we proposed an intrusion

detection system based on a 12-layer deep neural network.

This intrusion detection system was trained and tested on

three SDN-specific datasets, namely NSL-KDD, KDD99,

and UNSW-NB15. We evaluated our model over these

datasets. The accuracy, precision, recall, and F-measure of

the model on KDD99 were 99.02, 99.14, 98.93, and 99.04,

respectively. These measures on the NSL-KDD dataset were

99.39, 99.49, 99.33, and 99.41, respectively. Furthermore,

the model on the UNSW-NB15 dataset reached good results.

The results on the three datasets show that our model can

reduce the loss function significantly. Moreover, we

compared our model with six recent works. The experiment

results showed the supremacy of the proposed model over

these models.

For future work, the authors plan to work on the following:

 Working on different datasets. While only three widely

used datasets are examined in this study, we can work on

more than 20 publicly available SDN-specific datasets.

 Implementing other neural network architectures,

including CNNs, such as MobileNet, AlexNet, or LeNet.

Another possible work is to ensemble the proposed

model with other deep architectures or meta-heuristic

algorithms such as particle swarm optimization (PSO)

algorithm.

6. Reference

[1] Heady, R., Luger, G., Maccabe, A., and Servilla, M.,

"The architecture of a network level intrusion detection

system", Los Alamos National Lab., 1990.

[2] Panda, M., Abraham, A., and Patra, M. R., "A hybrid

intelligent approach for network intrusion detection",

Procedia Engineering, Vol. 30, pp. 1-9, 2012.

[3] Sheikhan, M., and Bostani, H., "A hybrid intrusion

detection architecture for internet of things", in 2016 8th

International Symposium on Telecommunications

(IST), IEEE, pp. 601-606, 2016.

[4] Lin, S.-W., Ying, K.-C., Lee, C.-Y., and Lee, Z.-J., "An

intelligent algorithm with feature selection and decision

rules applied to anomaly intrusion detection", Applied

Soft Computing, Vol. 12, No. 10, pp. 3285-3290, 2012.

[5] Vinayakumar, R., Alazab, M., Soman, K.,

Poornachandran, P., Al-Nemrat, A., and Venkatraman,

S., "Deep learning approach for intelligent intrusion

detection system", IEEE Access, Vol. 7, pp. 41525-

41550, 2019.

[6] Jiang, F., et al., "Deep learning based multi-channel

intelligent attack detection for data security", IEEE

transactions on Sustainable Computing, Vol. 5, No. 2,

pp. 204-212, 2018.

[7] Chalapathy, R., and Chawla, S., "Deep learning for

anomaly detection: A survey", arXiv preprint

arXiv,1901.03407, 2019.

[8] Sultana, N., Chilamkurti, N., Peng, W., and Alhadad,

R., "Survey on SDN based network intrusion detection

system using machine learning approaches", Peer-to-

Peer Networking and Applications, Vol. 12, No. 2, pp.

493-501, 2019.

[9] Kwon, D., Kim, H., Kim, J., Suh, S. C., Kim, I., and

Kim, K. J., "A survey of deep learning-based network

anomaly detection", Cluster Computing, Vol. 22, No. 1,

pp. 949-961, 2019.

[10] Chaabouni, N., Mosbah, M., Zemmari, A., Sauvignac,

C., and Faruki, P., "Network intrusion detection for IoT

security based on learning techniques", IEEE

Communications Surveys & Tutorials, Vol. 21, No. 3,

pp. 2671-2701, 2019.

[11] Zhong, G., Ling, X., and Wang, L. N., "From shallow

feature learning to deep learning: Benefits from the

width and depth of deep architectures", Wiley

Interdisciplinary Reviews: Data Mining and

Knowledge Discovery, Vol. 9, No. 1, pp. e1255, 2019.

[12] Hodo, E., Bellekens, X., Hamilton, A., Tachtatzis, C.,

and Atkinson, R., "Shallow and deep networks intrusion

detection system: A taxonomy and survey", arXiv

preprint arXiv, 1701.02145, 2017.

[13] Lansky, J., Ali, S., Mohammadi, M., Majeed, M. K.,

Karim, SH., Rashidi, S., Hosseinzadeh, M., Rahmani,

AM., "Deep learning-based intrusion detection

systems: a systematic review", IEEE Access. No. 14,

Vol. 9, pp. 101574-99, Jul, 2021.

[14] Ahmad Z., Shahid Khan, A., Wai Shiang, C., Abdullah,

J., Ahmad, F., "Network intrusion detection system: A

systematic study of machine learning and deep learning

approaches", Transactions on Emerging

Telecommunications Technologies, Vol. 32(1), pp.

e4150, Jan, 2021.

[15] Kocher, G., Kumar, G., "Machine learning and deep

learning methods for intrusion detection systems: recent

developments and challenges", Soft Computing, Vol.

25(15), pp. 9731-63, Aug, 2021.

[16] Jasim, A. D., "A survey of intrusion detection using

deep learning in internet of things", Iraqi Journal For

Computer Science and Mathematics,Vol. 3(1), pp. 83-

93, Jan 30, 2022.

[17] Alsoufi, M. A., Razak, S., Siraj, M. M., Nafea, I.,

Ghaleb, F. A., Saeed, F., Nasser, M., "Anomaly-based

intrusion detection systems in iot using deep learning:

A systematic literature review", Applied Sciences, No.

9, Vol. 11(18), pp. 8383, sep, 2021.

[18] Lee, S. W., Mohammadi, M., Rashidi, S., Rahmani, A.

M., Masdari, M., Hosseinzadeh, M., "Towards secure

intrusion detection systems using deep learning

techniques: Comprehensive analysis and review",

Journal of Network and Computer Applications, Aug

No. 1, Vol. 187, pp. 103111, Aug, 2021.

[19] Ahmed, M., Shatabda, S., Islam, A. K., Robin, M.,

Islam, T., "Intrusion detection system in software-

defined networks using machine learning and deep

learning techniques–a comprehensive survey", 2021.

[20] Wang, G., Hao, J., Ma, J., and Huang, L., "A new

approach to intrusion detection using Artificial Neural

Networks and fuzzy clustering", Expert systems with

applications, Vol. 37, No. 9, pp. 6225-6232, 2010.

[21] Aburomman, A. A., and Reaz, M. B. I., "A novel SVM-

kNN-PSO ensemble method for intrusion detection

system", Applied Soft Computing, Vol. 38, pp. 360-372,

42 Somayeh Soltani et. al.: A Deep Neural Network Architecture for …

2016.

[22] Baek, S., Kwon, D., Kim, J., Suh, S. C., Kim, H., and

Kim, I., "Unsupervised labeling for supervised anomaly

detection in enterprise and cloud networks", in 2017

IEEE 4th International Conference on Cyber Security

and Cloud Computing (CSCloud), IEEE, pp. 205-210,

2017.

[23] Wang, H., Gu, J., and Wang, S., "An effective intrusion

detection framework based on SVM with feature

augmentation", Knowledge-Based Systems, Vol. 136,

pp. 130-139, 2017.

[24] Aljawarneh, S., Aldwairi, M., and Yassein, M. B.,

"Anomaly-based intrusion detection system through

feature selection analysis and building hybrid efficient

model", Journal of Computational Science, Vol. 25, pp.

152-160, 2018.

[25] Pham, N. T., Foo, E., Suriadi, S., Jeffrey, H., and Lahza,

H. F. M., "Improving performance of intrusion

detection system using ensemble methods and feature

selection", in Proceedings of the Australasian

Computer Science Week Multiconference, pp. 1-6,

2018.

[26] He, D., Chen, X., Zou, D., Pei, L., and Jiang, L., "An

improved kernel clustering algorithm used in computer

network intrusion detection", in 2018 IEEE

International Symposium on Circuits and Systems

(ISCAS), IEEE, pp. 1-5, 2018.

[27] Song, J., Takakura, H., Okabe, Y., and Kwon, Y.,

"Unsupervised anomaly detection based on clustering

and multiple one-class SVM", IEICE transactions on

communications, Vol. 92, No. 6, pp. 1981-1990, 2009.

[28] Zhu, M., Ye, K., and Xu, C.-Z., "Network anomaly

detection and identification based on deep learning

methods", in International Conference on Cloud

Computing Springer, pp. 219-234, 2018.

[29] Li, Z., Qin, Z., Huang, K., Yang, X., and Ye, S.,

"Intrusion detection using convolutional neural

networks for representation learning", in International

conference on neural information processing, Springer,

Vol. ???, pp. 858-866, 2017.

[30] Liu, Y., Liu, S., and Zhao, X., "Intrusion detection

algorithm based on convolutional neural network",

DEStech Transactions on Engineering and Technology

Research, No. iceta, 2017.

[31] Potluri, S., Ahmed, S., and Diedrich, C., "Convolutional

neural networks for multi-class intrusion detection

system", in International Conference on Mining

Intelligence and Knowledge Exploration, Springer, pp.

225-238, 2018.

[32] Nguyen, S. -N., Nguyen, V.-Q., Choi, J., and Kim, K.,

"Design and implementation of intrusion detection

system using convolutional neural network for DoS

detection", in Proceedings of the 2nd international

conference on machine learning and soft computing,

pp. 34-38, 2018.

[33] Yin, C., Zhu, Y., Fei, J., and He, X., "A deep learning

approach for intrusion detection using recurrent neural

networks", Ieee Access, Vol. 5, pp. 21954-21961, 2017.

[34] Tang, T. A., Mhamdi, L., McLernon, D., Zaidi, S. A.

R., and Ghogho, M., "Deep recurrent neural network for

intrusion detection in sdn-based networks", in 2018 4th

IEEE Conference on Network Softwarization and

Workshops (NetSoft), IEEE, pp. 202-206, 2018.

[35] Vinayakumar, R., Soman, K., and Poornachandran, P.,

"A comparative analysis of deep learning approaches

for network intrusion detection systems (N-IDSs): deep

learning for N-IDSs", International Journal of Digital

Crime and Forensics (IJDCF), Vol. 11, No. 3, pp. 65-

89, 2019.

[36] Chockwanich, N., and Visoottiviseth, V.,

"Intrusion detection by deep learning with tensorflow",

in 2019 21st International Conference on Advanced

Communication Technology (ICACT), IEEE, pp. 654-

659, 2019.

[37] Zhong, M., Zhou, Y., Chen, G., "Sequential model

based intrusion detection system for IoT servers using

deep learning methods. Sensors", No. 5, Vol. 21(4), pp.

1113, Feb, 2021.

[38] Ponkarthika, M., and Saraswathy, V., "Network

intrusion detection using deep neural networks", Asian

Journal of Science and Technology, Vol. 2, No. 2, pp.

665-673, 2018.

[39] Vinayakumar, R., Soman, K., and

Poornachandran, P., "Applying convolutional neural

network for network intrusion detection", in 2017

International Conference on Advances in Computing,

Communications and Informatics (ICACCI), IEEE, pp.

1222-1228, 2017.

[40] Chawla, A., Lee, B., Fallon, S., and Jacob, P., "Host

based intrusion detection system with combined

CNN/RNN model", in Joint European Conference on

Machine Learning and Knowledge Discovery in

Databases, Springer, pp. 149-158, 2018.

[41] Wang, W., et al., "HAST-IDS: Learning hierarchical

spatial-temporal features using deep neural networks to

improve intrusion detection", IEEE access, Vol. 6, pp.

1792-1806, 2017.

[42] Hsu, C.-M., Hsieh, H.-Y., Prakosa, S. W., Azhari, M.

Z., and Leu, J.-S., "Using long-short-term memory

based convolutional neural networks for network

intrusion detection", in International wireless internet

conference, Springer, pp. 86-94, 2018.

[43] Lee T. H., Chang, L. H., Syu, C. W., "Deep learning

enabled intrusion detection and prevention system over

SDN networks", In2020 IEEE International

Conference on Communications Workshops (ICC

Workshops), Jun 7, pp. 1-6, IEEE, 2020.

[44] Malik, J., Akhunzada, A., Bibi, I., Imran, M.,

Musaddiq, A., Kim, S. W., "Hybrid deep learning: An

efficient reconnaissance and surveillance detection

mechanism in SDN", IEEE Access. No. 16, Vol. 8, pp.

134695-706, Jul, 2020.

[45] Mohammadi, S., and Namadchian, A., "A new deep

learning approach for anomaly base IDS using memetic

classifier", International Journal of Computers

Communications & Control, Vol. 12, No. 5, pp. 677-

688, 2017.

[46] Niyaz, Q., "Design and Implementation of a Deep

Learning based Intrusion Detection System in

Software-Defined Networking Environment",

University of Toledo, 2017.

[47] Shone, N., Ngoc, T. N., Phai, V. D., and Shi, Q., "A

deep learning approach to network intrusion detection",

IEEE transactions on emerging topics in computational

Journal of Computer and Knowledge Engineering, Vol.5 , No.2. 2022. 43

intelligence, Vol. 2, No. 1, pp. 41-50, 2018.

[48] Farahnakian, F., and Heikkonen, J., "A deep auto-

encoder based approach for intrusion detection system",

in 2018 20th International Conference on Advanced

Communication Technology (ICACT), IEEE, pp. 178-

183, 2018.

[49] Papamartzivanos, D., Mármol, F. G., and Kambourakis,

G., "Introducing deep learning self-adaptive misuse

network intrusion detection systems", IEEE Access,

Vol. 7, pp. 13546-13560, 2019.

[50] A. Abusitta, M. Bellaiche, M. Dagenais, and T. Halabi,

"A deep learning approach for proactive multi-cloud

cooperative intrusion detection system", Future

Generation Computer Systems, Vol. 98, pp. 308-318,

2019.

[51] Tang, T. A., Mhamdi, L., McLernon, D., Zaidi, S. A.

R., and Ghogho, M., "Deep learning approach for

network intrusion detection in software defined

networking", in 2016 international conference on

wireless networks and mobile communications

(WINCOM), IEEE, pp. 258-263, 2016.

[52] Roy, S. S., Mallik, A., Gulati, R., Obaidat, M. S., and

Krishna, P. V., "A deep learning based artificial neural

network approach for intrusion detection", in

International Conference on Mathematics and

Computing, Springer, pp. 44-53, 2017.

[53] Ustebay, S., Turgut, Z., and Aydin, M. A., "Cyber

attack detection by using neural network approaches:

shallow neural network, deep neural network and

autoencoder," in International conference on computer

networks, Springer,pp. 144-155, 2019.

[54] Vigneswaran, R. K., Vinayakumar, R., Soman, K., and

Poornachandran, P., "Evaluating shallow and deep

neural networks for network intrusion detection

systems in cyber security", in 2018 9th International

conference on computing, communication and

networking technologies (ICCCNT), IEEE, pp. 1-6,

2018.

[55] Javeed, D., Gao, T., Khan, M.T., Ahmad, I., "A hybrid

deep learning-driven SDN enabled mechanism for

secure communication in Internet of Things (IoT)",

Sensors, No. 18, Vol. 21(14), pp. 4884, Jul, 2021.

[56] Hande, Y., Muddana, A., "Intrusion detection system

using deep learning for software defined networks

(SDN)", In2019 International Conference on Smart

Systems and Inventive Technology (ICSSIT) 2019 Nov

27, pp. 1014-1018, IEEE, 2019.

[57] Duy, P. T., Khoa, N. H., Nguyen, A. G., Pham, V. H.,

"DIGFuPAS: Deceive IDS with GAN and Function-

Preserving on Adversarial Samples in SDN-enabled

networks", Computers & Security, No. 1, Vol. 109, pp.

102367, Oct, 2021.

[58] Boukria, S., Guerroumi, M., "Intrusion detection system

for SDN network using deep learning approach",

In2019 International Conference on Theoretical and

Applicative Aspects of Computer Science (ICTAACS),

Dec 15, Vol. 1, pp. 1-6, IEEE, 2019.

[59] Seyedkolaei, A. A., Seno, S. A. H., Moradi, A., and

Budiarto, R., "Cost-Effective Survivable Controller

Placement in Software-Defined Networks", IEEE

Access, Vol. 9, pp. 129130-129140, 2021.

[60] Prajapati, A., Sakadasariya, A., and Patel, J., "Software

defined network: Future of networking", in 2018 2nd

International Conference on Inventive Systems and

Control (ICISC), IEEE, pp. 1351-1354, 2018.

[61] Khairi, M. H., Ariffin, S. H., Latiff, N. A., Abdullah, A.,

and Hassan, M., "A review of anomaly detection

techniques and distributed denial of service (DDoS) on

software defined network (SDN)", Engineering,

Technology & Applied Science Research, Vol. 8, No. 2,

pp. 2724-2730, 2018.

[62] Shaghaghi, A., Kaafar, M. A., Buyya, R., and Jha, S.,

"Software-defined network (SDN) data plane security:

issues, solutions, and future directions", Handbook of

Computer Networks and Cyber Security, pp. 341-387,

2020.

[63] Ludwig, S. A., "Intrusion detection of multiple attack

classes using a deep neural net ensemble", in 2017 IEEE

Symposium Series on Computational Intelligence

(SSCI), IEEE, pp. 1-7, 2017.

[64] Faker, O., and Dogdu, E., "Intrusion detection using big

data and deep learning techniques", in Proceedings of

the 2019 ACM Southeast Conference, pp. 86-93, 2019.

[65] Rawat, S., Srinivasan, A., Ravi, V., Ghosh, U.,

"Intrusion detection systems using classical machine

learning techniques vs integrated unsupervised feature

learning and deep neural network", Internet Technology

Letters, Jan, Vol. 5(1), pp. e232, 2022.

[66] Powers, D. M., "Evaluation: from precision, recall and

F-measure to ROC, informedness, markedness and

correlation", arXiv preprint arXiv, 2010.16061, 2020.

[67] Revathi, S., and Malathi, A., "A detailed analysis on

NSL-KDD dataset using various machine learning

techniques for intrusion detection", International

Journal of Engineering Research & Technology

(IJERT), Vol. 2, No. 12, pp. 1848-1853, 2013.

[68] Abadi, M., et al., "Tensorflow: A system for large-scale

machine learning", in 12th {USENIX} symposium on

operating systems design and implementation ({OSDI}

16), pp. 265-283, 2016.

[69] Saritha Reddy, A., Ramasubba Reddy, B., Suresh Babu,

A., "An Improved Intrusion Detection System for SDN

using Multi-Stage Optimized Deep Forest Classifier",

International Journal of Computer Science & Network

Security, Vol. 22(4), pp. 374-86, 2022.

[70] Fu, Y., Du, Y., Cao, Z., Li, Q., Xiang, W. A., "Deep

Learning Model for Network Intrusion Detection with

Imbalanced Data", Electronics, Mar 14, Vol. 11(6), pp.

898, 2022.

[71] Imrana, Y., Xiang, Y., Ali, L., Abdul-Rauf, Z., "A

bidirectional LSTM deep learning approach for

intrusion detection", Expert Systems with Applications,

Dec 15, Vol. 185, pp. 115524, 2021.

[72] Toldinas, J., Venčkauskas, A., Damaševičius, R.,

Grigaliūnas, Š., Morkevičius, N., Baranauskas, E., "A

novel approach for network intrusion detection using

multistage deep learning image recognition",

Electronics, Aug 1, Vol. 10(15), pp. 1854, 2021.

44 Somayeh Soltani et. al.: A Deep Neural Network Architecture for …

Journal of Computer and Knowledge Engineering, Vol. 5, No. 2, 2022. (45-56) 45

DOI: 10.22067/cke.2022.77529.1060

Meta-Learning for Medium-Shot Sparse Learning

via Deep Kernels1*
Research Article

Zohreh Adabi-Firuzjaee1 Sayed Kamaledin Ghiasi-Shirazi2

Abstract: Few-shot learning assumes that we have a very

small dataset for each task and trains a model on the set of

tasks. For real-world problems, however, the amount of

available data is substantially much more; we call this a

medium-shot setting, where the dataset often has several

hundreds of data. Despite their high accuracy, deep neural

networks have a drawback as they are black-box. Learning

interpretable models has become more important over time.

This study aims to obtain sample-based interpretability using

the attention mechanism. The main idea is reducing the task

training data into a small number of support vectors using

sparse kernel methods, and the model then predicts the test

data of the task based on these support vectors. We propose

a sparse medium-shot learning algorithm based on a metric-

based Bayesian meta-learning algorithm whose output is

probabilistic. Sparsity, along with uncertainty, effectively

plays a key role in interpreting the model's behavior. In our

experiments, we show that the proposed method provides

significant interpretability by selecting a small number of

support vectors and, at the same time, has a competitive

accuracy compared to other less interpretable methods.

Keywords: Bayesian Meta-learning, Medium-shot

Learning, Sample-based Interpretability, Sparse Kernel,

Attention

1. Introduction

So far, two approaches for deep learning have received more

attention. The first approach is deep learning on a large

dataset, which has been more successful than other machine

learning methods in image, language, and signal processing

[1]. In deep learning, as it is difficult for humans to analyze

a huge amount of data, one tries to train deep neural networks

with it so that the information in the data could be exploited

through interaction with the model. We need a massive

amount of data to use deep learning, but in most real-world

problems the amount of labeled data is not enough to train a

deep model. The second approach is known as few-shot

learning [2]. It aims to make deep learning models like

humans and learn new concepts well by seeing a few

examples [3].
In few-shot learning, the assumption is that the number of

training data is very small. For example, in few-shot
classification, the number of data for each class ranges
between one and five. This assumption is contrary to the fact
that in real-world problems, we easily have more data for
each task, or it is even possible for the user to provide a few
hundred samples. Therefore, many practical problems such
as classification of medical images [4] and time series
prediction are naturally in the medium-shot setting. Medium-
shot learning is an extension of few-shot learning in terms of

* Manuscript received; 05 July 2022, Revised, 06 October 2022, Accepted, 09 October 2022.
1. PhD student, Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
2. Corresponding author, Assistant Professor, Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.

Email: k.ghiasi@um.ac.ir

the number of data. In recent years, meta-learning methods
have shown remarkable performance in solving few-shot
learning problems [5]. In this paper, we consider meta-
learning methods for the case of medium-shot setting.

Deep neural networks have attracted widespread attention
due to their ability to obtain high accuracies in various
problems. However, there is a serious debate about them
related to interpretability [6]: to what extent and on what
basis can we trust the response of neural networks? Because
the nature of deep networks is black-box, many methods
have been proposed to interpret neural networks and their
decision-making [7]. In problems where the model has to
make a decision, the user wants to know why the model has
made this decision. The decision of the model can be
described in different ways. One of these methods is that the
model determines based on the data it has made its decision.
Therefore, the user can determine the quality of a decision by
examining the samples that the model has selected.

The medium size of the data in the medium-shot setting
provides us with the possibility and opportunity of
interpretation based on the evaluation of the entire training
data of the task. Our goal is to train a model in such a way
that it determines which data have a more important role in
its decision-making, and we consider these data as support
vectors. Our idea to achieve this kind of interpretability is to
follow the perspective of attention in deep learning. We want
to learn which data to pay more attention to. For this purpose,
we present an interpretable meta-learning algorithm. We start
our work with Deep Kernel Transfer (DKT), a metric-based
meta-learning algorithm [8]. DKT is a Gaussian process with
a deep kernel, so it combines the representational power of
neural networks and the reliable uncertainty of Gaussian
processes simultaneously. To implement the attention
mechanism, we use sparse kernel methods and extend the
DKT algorithm to the medium-shot setting. By sparsifying
the expansion of the decision function, we can have sample-
based interpretability with the selected data as support
vectors. The resulting algorithm, Sparse DKT, reduces the
data to a small number of support vectors for each task. In
the Sparse DKT algorithm, only the support vectors at the
test time directly influence the prediction of the test data
label. The experimental results show that Sparse DKT, in
addition to interpretability, has comparable accuracy to other
state-of-the-art meta-learning methods, including the DKT
algorithm.

The main contributions of this article are:

1. Introducing learning with the medium-shot setting and

utilizing deep meta-learning algorithms for it;
2. Learning a sample-based interpretable model using the

attention mechanism;
3. Applying sparse kernel methods for determining a small

https://cke.um.ac.ir/
https://cke.um.ac.ir/article_42709.html
mailto:k.ghiasi@um.ac.ir
https://orcid.org/0000-0001-6043-1820

46 Sayed Kamaledin Ghiasi-Shirazi et. al: Meta-Learning for Medium-Shot …

subset of training data as support vectors.
The remaining structure of this article is as follows: in

section 2, the basic concepts about meta-learning,
interpretability, attention perspective, sparse kernel, and
related works are described. In section 3, the proposed
algorithm is presented. The evaluation of the presented
algorithm in classification will be in the section 4. In section
5, conclusion and future works are presented.

2. Preliminaries

2.1. Meta-learning
Meta-learning is one of the areas that has received attention
in recent years [9-34]. In classic learning, in order to learn a
task, the model is trained on the task data in such a way that
it has a good generalization of the new data. The objective of
meta-learning, also known as learning to learn, is to go to a
higher level and understand how to solve tasks rather than
just learning a single task (Figure 1). Humans face with
different issues over time and develop better ways to deal
with new ones by drawing on their experiences. Similar to
humans, we should train the model on a set of tasks from the
same distribution sequentially in meta-learning. By
completing each task, we acquire metadata that the model can
use to learn a new, unseen task more effectively and quickly.

A. Meta-learning setup
In meta-learning, as shown in Figure 2, instead of one task,

we have a set of tasks, ℳ = {𝒟𝜏}𝜏=1
𝑇 , which are from the

same distribution. According to Figure 2, for each task,

indexed by τ, we have the data 𝒟𝜏 = {𝑋, 𝑦}, which can be

divided into two parts, the train/support set, 𝐷𝜏
𝑡𝑟 , and the

test/query set, 𝒟𝜏
𝑡𝑠. The test data that is used for meta-test is

denoted by the asterisk symbol as 𝒟∗ = {𝒟∗
𝑡𝑟 , 𝒟∗

𝑡𝑠}.

B. Few-shot learning
Few-shot learning refers to tasks with a few training data. For
example, in the few-shot classification represented as N way
- K shot, N is the number of classes in the task, and K (usually
considered 1 or 5) training samples are available for each
class (Figure 2 shows 3 way- 2 shot classification). Few-shot
learning aims to make deep neural networks capable of
learning a new concept by observing a small number of
training samples. The small amount of training data makes it
infeasible to train the deep neural network, but the meta-
learning approach has achieved significant improvements in
few-shot learning. Deep meta-learning learns a model that
can solve a new task despite the small training data. Medium-
shot learning is a generalization of few-shot learning, so we
employ the meta-learning framework.

Figure 1. Difference between a) learning and b) meta-learning. In learning, training on a task data is done to generalize new data from the

same dataset. In meta-learning, we train the model on a set of tasks sequentially. By learning to learn, we can solve the new task more

efficiently and quickly.

Figure 2. An example of a meta-learning setup for few-shot learning. The set of tasks ℳ = {𝒟𝜏}𝜏=1
𝑇 is divided into two parts, meta-train

and meta-test. The data of each task has train and test sets, 𝐷𝜏
𝑡𝑟 and 𝐷𝜏

𝑡𝑠 respectively

Journal of Computer and Knowledge Engineering, Vol.5, No.2. 2022. 47

2.2. Interpretability in Deep Neural Networks

In deep learning, there are two main classes of approaches to

explain the prediction of a model: feature-based and sample-

based. In the feature-based approach, features from the input

image that have a greater impact on the model's prediction

are identified [35, 36]. The idea of [36] in few-shot learning

has been applied in [37] to provide interpretable feature-

based meta-learning.

In the sample-based approach, the data that have the most

impact on the network's decision-making for test data are

identified as samples to interpret its prediction (Figure 3)

[38, 39]. ProtoAttend [40] trains a network that compares the

input data with training data to predict it based on the

attention mechanism and learn an attention weight that

demonstrates the degree of similarity between them. To

interpret the model's decision for the input data, the data

whose weight is not zero affect the model's prediction and

are selected as prototypes. Because there are a lot of data in

deep learning and it is difficult to compare them all, a subset

of the data is typically chosen as a candidate set, and

attention weight is only learned for the candidate set. In

contrast, the number of data is not large in medium-shot

setting, and since we can evaluate all the training data,

sample-based interpretability is possible. In order to achieve

this, we proceed according to the attention point of view.

Figure 3. In sample-based interpretability, the training data that

the model used to determine the label for the input data are

specified.

A. Sample-based interpretability through Attention

Using the attention perspective, we can learn a model with

sample-based interpretability [41]. Simply it means to

compare the input data with the training data and give greater

weight to the training data that is more similar to the input

data when determining its label. To compare the data

properly, we need to learn a metric space in which similar

data are placed close together, and dissimilar data are far

apart. This method is used in the metric-based meta-learning

algorithms presented for few-shot learning [14–16]. In these

papers, since the number of training samples is small, there

is no need for sample-based interpretability, and the main

objective is to increase accuracy. Since we have more data in

medium-shot learning, sample-based interpretability

becomes important; in some applications, explaining the

model's behavior with a small number of samples makes it

easier for humans to understand and evaluate the model.

B. Attention and kernel methods

The attention mechanism and kernel methods are closely

related [42–45]. It can be said that the idea of attention in

deep learning is derived from kernel methods [42]. Kernel

methods have a kernel function 𝑘(𝒙, 𝒙′) that determines the

degree of similarity [46]. Linear kernel, polynomial, RBF

(Radial Basis Function), and exponential are the well-known

kernel functions. Learning the kernel function corresponds

to learning its parameters, e.g., in the RBF kernel

𝑘(𝒙, 𝒙′) = 𝑠 ∗ exp⁡{−
1

𝑙
||𝒙 − 𝒙′||

2
} (1)

the parameters 𝝓 = {𝑙, 𝑠} are learned during training.

In deep kernel learning or DKL [47–50], we first use a

deep neural network to obtain data representations, then

apply a kernel function to them. The new deep kernel is

𝑘(𝒙, 𝒙′) = 𝑘̃𝝓(𝑓𝜽(𝒙), 𝑓𝜽(𝒙
′)) (2)

where 𝑘̃𝝓(𝒙, 𝒙
′) is the kernel function with parameter 𝝓 and

𝑓𝜽 is a deep neural network. DKL involves jointly learning

kernel and network parameters. For example, optimization

of the parameters in the regression of {𝑋, 𝒚}𝑛=1
𝑁 with noise

variance 𝜎2 is based on the log marginal likelihood,

𝑙𝑜𝑔 𝑝(𝒚|𝑋) =

1

2
{−𝒚⊤[𝐾 + 𝜎2𝐼]−1𝒚 − 𝑙𝑜𝑔|𝐾 + 𝜎2𝐼| + N⁡𝑙𝑜g(2π)}

(3)

where 𝐾 is the kernel matrix on the training data.

2.3. Deep Kernel Transfer

Deep Kernel Transfer or DKT falls into the category of

metric-based meta-learning [8]. This class of algorithms tries

to learn a metric space to compare representations based on

a distance measure [14–16]. DKT is a combination of

MAML (Model-Agnostic Meta-Learning) and DKL for few-

shot learning. MAML [21] is based on the idea of [13]

without using an additional model as a meta-learner, learns a

meta-parameter as an initialization for the parameters of the

network. The meta-parameter adapts quickly to the data of

the new task without overfitting due to a few training data.

The computational graph of the MAML is shown in Figure

4a Using SGD (Stochastic Gradient Descent) optimization

on the task training data, the MAML algorithm obtains task-

specific parameter 𝝓𝜏 from the meta-parameter 𝜽. The inner

loop (adaptation loop) of the MAML has a parametric form,

so in the outer loop, we encounter the second gradient of 𝜽

with respect to the optimization path in the inner loop.

The idea of DKT is to replace the inner loop computation

with a Gaussian process, which has a non-parametric form.

Therefore, as shown in Figure 4b, adaptation to the task is

eliminated. Similar to the DKL, a Gaussian process is

applied to the representations. DKT computes the marginal

likelihood (3) on the data of each task and optimizes the

parameters 𝜽 and 𝝓. By meta-learning a deep kernel on a set

of tasks, we have a kernel that can be transferred to a new

48 Sayed Kamaledin Ghiasi-Shirazi et. al: Meta-Learning for Medium-Shot …

task without needing adaptation. By replacing the inner loop

with the Gaussian process, the DKT algorithm provides a

computational simplification for the MAML. Furthermore, it

is regarded as a Bayesian meta-learning. In the regression

and image classification in few-shot settings, DKT has

achieved higher accuracy than MAML and other few-shot

learning methods.

2.4. Sparse kernel methods

SVM (Support Vector Machine) is a popular sparse kernel

method [51]. The Sparsity of SVM results from zeroing

coefficient 𝛼 for part of the data during the quadratic

optimization, which determines a subset of data as support

vectors. In few-shot learning, the MetaOptNet [30] has used

SVM to simplify the inner loop of MAML to obtain the task-

specific parameter without SGD optimization and not to

encounter the second derivative in meta-parameter

optimization (Figure 4c).

Figure 4. Computational graph of a) MAML, b) DKT, c)

MetaOptNet, and d) Sparse DKT (ours). In a), adapting to the task

is equivalent to obtaining the task-specific parameter 𝝓𝜏. In b),

meta-parameters 𝜽 and 𝝓 without adapting to the task are updated

based on the marginal likelihood of the Gaussian process on the

entire data. In c), the task-specific parameter 𝝓𝜏 is computed by

applying SVM to the training data of the task. In d), adapting to

the task is equivalent to specifying the support vectors, a small

subset of the task training data

The disadvantage of SVM in the MetaOptNet algorithm is

that it becomes less effective in sparsifying as the data

increases. Another disadvantage of SVM compared to the

Gaussian process [52] is that it is not probabilistic. In

contrast, the Gaussian process is not inherently sparse; the

kernel matrix is calculated between the test data and all 𝑛

training data at test time. Several sparse approximations have

been proposed to overcome the computational and memory

complexity in the Gaussian process [53, 54]. Almost all of

these approximation methods specify a criterion to determine

the significance of the data and greedily select a subset of the

data of size 𝑚 ≪ 𝑛 to be used in the kernel matrix

approximation. The main goal of methods in [55–59] is to

reduce the computational complexity of the Gaussian

process by assuming that there is a set of support vectors.

The criteria to determine the support vectors in these

methods are usually considered for adding data to this set, so

the number of support vectors is defined as a fixed

hyperparameter. However, since these vectors are supposed

to have the most impact on the model's prediction, we are

looking for support vectors to be automatically selected with

a small number and high accuracy. Additionally, in the

medium-shot learning, the number of data selected as

support vectors should depend on the task. Therefore, in the

proposed algorithm, intending to achieve sample-based

interpretability using Gaussian processes, we leverage the

sparse Bayesian approach, which we will explain in the

following section.

3. Sparse DKT for medium-shot learning
This section presents our meta-learning algorithm, Sparse
DKT, for medium-shot learning. To achieve sample-based
interpretability, we need to determine the importance of data
in data modeling and prediction. We measure the degree of
importance with the kernel function, so we use DKT. We
modify this algorithm to attain sample-based interpretability
and apply attention to it in two ways: attention in adaptation
and attention in prediction. Attention in adaptation is
independent of the test data and is performed only on the
training data. The Sparse Gaussian process is trained on the
task data; In other words, it adapts to it, and the result of this
adaptation is the identification of support vectors.

In contrast, attention in prediction depends on the test data
but uses only support vectors from the entire training data.
Due to the usage of Gaussian processes, we already have
attention in prediction; that is, support vectors affect test
label prediction based on how similar they are to it. We
discuss the proposed algorithm for regression, but it can be
easily generalized for classification.

3.1. Sparse Gaussian process as Adaptation

In the sparse Bayesian learning framework, Tipping

introduces the RVM algorithm (Relevance Vector Machine)

[60]. The advantage of this algorithm we adopted for our

proposed algorithm is that it automatically selects the data

that play the main role in data modeling when adapting to the

task.

This algorithm is essentially a Gaussian process. Assume

that we have data = {𝑋, 𝒚} , including the inputs 𝑋 = {𝒙𝑗}𝑗=1
𝑛

and the labels 𝒚 = {𝑦𝑗}𝑗=1
𝑛

. Labels have Gaussian noise 𝜖𝑗 ∼

𝒩(0, 𝜎2) added to latent function 𝑓(𝒙) according to 𝑦(𝒙𝑗) =

𝑓(𝒙𝑗) + 𝜖𝑗. The prior knowledge on the function 𝑓(𝒙) is a

Gaussian process 𝒢𝒫(𝜇, 𝑘𝝓) with mean 𝜇 and kernel

function 𝑘𝝓. The mean is usually considered zero.

We can rewrite the latent function 𝒇 in the parametric form

𝒇 = 𝐾𝒘 in the equation 𝒚 = 𝒇 + 𝝐. 𝐾 is the covariance

matrix based on the kernel function 𝑘𝝓(𝒙, 𝒙
′). In the

Gaussian process, the weight 𝒘 has a Gaussian distribution

𝒩(0, 𝛼0
−1𝐼), where 𝛼0 is a hyperparameter. In RVM,

Gaussian distribution 𝑝(𝒘|𝜶) = 𝒩(0, 𝐴−1) is considered

for weights, where 𝐴 = 𝑑𝑖𝑎𝑔(𝜶) is a diagonal covariance

matrix. As a result, RVM is a Gaussian process with kernel

Journal of Computer and Knowledge Engineering, Vol.5 , No.2. 2022. 49

function:

𝑐(𝒙, 𝒙′) = ∑
1

𝛼𝑖
𝑘𝝓(𝒙, 𝒙𝑖)𝑘𝝓(𝒙

′, 𝒙𝑖)
𝑛
𝑖=1 (4)

where 𝑘𝝓(𝒙, 𝒙𝑖) is equal to the kernel function that is

defined based on the training data 𝒙𝑖. 𝑐(𝒙, 𝒙
′) is an expansion

of the product of values of the kernel function 𝑘𝝓(𝒙, 𝒙𝑖) in

which all data contribute. The kernel function of the data that

will be included in the expansion is determined by

coefficient 𝛼𝑖. When 𝛼𝑖 goes to infinity, the kernel function

corresponding to 𝒙𝑖 data is removed; as a result, the

expansion 𝑐(𝒙, 𝒙′) becomes sparse. The covariance matrix

of RVM can be expressed as
𝐶 = 𝐾𝐴−1𝐾⊤.

The next step is that based on Bayes Equation 5, and

having likelihood 𝑝(𝒚|𝒘) = 𝒩(𝒇, 𝜎2𝐼),

𝑝(𝒘|𝜶, 𝒚) =
𝑝(𝒚|𝒘)𝑝(𝒘|𝜶)

𝑝(𝒚)
 (5)

obtain the posterior distribution of the weight,

𝑝(𝒘|𝜶, 𝒚) = 𝒩(𝝁, Σ)

𝝁 = 𝜎−2Σ𝐾⊤𝒚

Σ = (𝐴 + 𝜎−2𝐾⊤𝐾)−1.

(6)

RVM training is similar to Gaussian process training; We

optimize the logarithm of the marginal likelihood (7) with

respect to the hyperparameters 𝜶 and 𝜎2.

𝑝(𝒚) = 𝒩(0, 𝐶 + 𝜎2𝐼)

log 𝑝(𝒚) =

−1/2{𝒚⊤[𝐶 + 𝜎2𝐼]−1𝒚 + 𝑙𝑜𝑔|𝐶 + 𝜎2𝐼| + 𝑛𝑙𝑜𝑔2𝜋}
(7)

By deriving the Equation 7 with respect to 𝜶 and 𝜎2 and

setting them equal to zero, optimization equations are

obtained as follows:

𝛼𝑖
𝑛𝑒𝑤 =

𝛾𝑖

𝜇𝑖
2

𝛾𝑖 = 1 − 𝛼𝑖Σ𝑖𝑖

(𝜎−2)𝑛𝑒𝑤 =
||𝒚 − 𝐾𝝁⁡||2

𝑛 − Σ𝑗𝛾𝑗

(8)

where 𝛴𝑖𝑖 is the 𝑖-th diagonal component of the covariance

matrix Σ in (6). 𝛾𝑖 ∈ [0,1] indicates how much the data

contributed to the determination of 𝑤𝑖 . To get 𝜶 and 𝜎2, we

can use an iterative algorithm. During training, many 𝛼𝑖
become infinite, which causes variance and mean

corresponding to their weights to be zero. When weight 𝑤𝑖

becomes zero, the kernel function at 𝒙𝑖 does not contribute

to describing the data so that it can be removed from the

model. The data that have non-zero weight are considered as

support vectors. Another method to train RVM is to use the

Expectation-Maximization algorithm [61]. In this study, we

use the sequential algorithm proposed in the [62] (The

authors of [62] published their code in MATLAB, and we re-

implemented it with Python.

http://www.miketipping.com/sparsebayes.htm). In this

algorithm, the set of support vectors is initially empty, and

important data are added to this set sequentially. The

computational cost of RVM is significantly decreased by

using this addition method, which is better for learning in the

medium-shot setting.

3.2. Sparse DKT algorithm

The Sparse DKT algorithm using RVM as the inner loop, on

the one hand, is a simplification for the MAML; on the other

hand, it adds interpretability to the DKT. According to

Figure 4, the difference between DKT and Sparse DKT is the

addition of the adaptation loop. Unlike MetaOptNet, in

Sparse DKT, the parameters of the kernel function are part

of the meta-parameters and are updated by loss of each task.

Sparse DKT Pseudocode is given in Algorithm 1. In meta-

training, what is important for us from utilizing the RVM

algorithm as the inner loop of Sparse DKT is to obtain 𝜶. We

are interested in learning which data are most important in

describing the whole data and consequently in the model's

prediction. The Sparse DKT algorithm selects the data whose

𝛼 coefficient is not infinite as task support vectors. In the

outer loop, they are used in the optimization with RVM

marginal likelihood (7).

Algorithm 1. Sparse Deep Kernel Transfer (Sparse DKT)

Require: ℳ = {𝒟𝜏}𝜏=1
𝑇 meta-train tasks

Require: 𝝓 kernel hyperparameters, 𝜽 neural network
weights
Require: 𝛽1, 𝛽2 step size

 while not done do 1:

 Sample 𝒟𝜏 from ℳ 2:

 SV= RVM(𝒟𝜏) //Obtain support vectors of 𝒟𝜏

 with RVM
3:

 //Use marginal likelihood to update parameters 4:

 ℒτ = −𝑙𝑜𝑔⁡𝑝(𝒚|𝑋,𝝓, 𝜽) //Eq (7) 5:

 𝝓 ← 𝝓− 𝛽1∇𝝓ℒτ , 𝜽 ← 𝜽 − 𝛽2∇𝜽ℒτ 6:

 end while 7:

function RVM(𝒟) 8:

 //Automatically select support vectors

 //of the dataset 𝒟
9:

 Initialize 𝜶 and 𝜎2 10:

 while not converged: 11:

 Update 𝝁 and Σ //Eq (6) 12:

 Update 𝜶 and 𝜎2 // (8) 13:

 return support vectors from 𝒟 for finite 𝛼𝑖
 values

14:

 end function 15:

At the meta-test time, for the test task with data 𝒟∗
𝑡𝑟 =

{𝑋, 𝒚} and 𝒟∗
𝑡𝑠, the support vectors of the task are first

selected from the training data 𝒟∗
𝑡𝑟 by running RVM. In

addition to the support vectors, the mean and covariance of

the posterior weight distribution are also obtained, which we

use in the RVM prediction distribution,

𝑝(𝑦∗|𝑋, 𝒚, 𝒙∗) = 𝒩(𝜇∗, 𝜎∗
2)

𝜇∗ = 𝒌∗𝝁,⁡⁡⁡⁡⁡⁡⁡⁡⁡𝝁 = 𝜎−2Σ⁡𝐾𝑚𝑛𝑦

𝜎∗
2 =⁡𝜎2 + 𝒌∗Σ⁡𝒌∗, Σ = (𝐴 + 𝜎−2𝐾𝑚𝑛𝐾𝑛𝑚)

−1

(9)

where 𝒌∗ is the covariance between 𝒙∗ ∈ 𝒟∗
𝑡𝑠 and 𝑚

support vectors. 𝐾𝑚𝑛 is the covariance between support

vectors and training data.

50 Sayed Kamaledin Ghiasi-Shirazi et. al: Meta-Learning for Medium-Shot …

4. Experiments

We run classification tests using common datasets in few-

shot learning in a medium-shot setting to evaluate the Sparse

DKT algorithm. The number of samples has been chosen in

such a way that we get out of the few-shot mode. We used

PyTorch and GPyTorch [63] for the implementation of the

Sparse DKT.

To compare Sparse DKT with DKT, Feature Transfer,

MAML, and MetaOptNet, we have considered Omniglot,

CUB-200, and miniImageNet dataset for image

classification (Figure 5).

Figure 5. Images from datasets used in classification

Omniglot consists alphabet of 50 languages and has 20
hand-written samples for each character. CUB-200 contains
200 classes of different bird species. MiniImageNet has 100
classes which is a subset of ImageNet classes. Each class has
600 images. We run 2-way and 5-way classifications test. As
in the DKT paper, classification is done one-versus-rest
(Figure 6), i.e., for each class, we consider a binary Gaussian
process model with labels {-1,1} and apply the sigmoid
function to its output in order to have a probabilistic
interpretation (for MetaOptNet, we also used binary SVMs
for multi-class classification in experiments). The model
whose output has the highest probability determines the class
of the test data. We used a linear kernel in experiments and
a deep neural network that has a similar architecture to the
network used in the DKT paper (Figure 7).

In Feature Transfer, a network and classifier are first
trained on samples for the training classes. When fine-
tuning, the network parameters are fixed, and a new classifier
is trained on the test classes. MAML depends on the number
of gradient steps in the inner loop and has low accuracy at a
few steps. Increasing the gradient steps also leads to an
increase in computation and memory consumption. In order
to be able to test MAML in 10 steps adaptation, we used its
first order approximation [28]. Table 1 shows the result of
Omniglot 5 way- 15 shot classification.

Figure 6. One-versus-rest scheme. Each model is a binary

classifier for input data with labels {-1, 1}. For a probabilistic

output, a sigmoid function 𝜎 is applied to it.

Figure 7. The CNN used as a backbone for classification. It

consists of 4 convolutional layers, each consisting of a 2D

convolution, a batch-norm layer, and a ReLU non-linearity.

Table 1. Average accuracy and standard deviation on Omniglot

classification with average number of support vectors

SVs Omniglot 5 way - 15 shot Method

- 99.36±0.08 Feature Transfer

- 95.80±0.312 MAML

75 99.52±0.211 DKT

13 99.46±0.141 MetaOptNet

6 99.33±0.1 Sparse DKT

Sparse DKT is more accurate than MetaOptNet and close

to DKT, while DKT uses all training data of 5 classes as

support vectors for its prediction. MAML can achieve more

accuracy at the cost of more adaptation steps. Table 2 shows

the classification results of CUB and miniImageNet. Due to

the limited resources in this section, we had to run 2-way

classification. The number of task training data in CUB and

miniImageNet is 50 and 125, respectively. Feature transfer

overfits in the few-shot setting. However, it was able to get

higher accuracy than other methods in our experiments. We

believe that the accuracy of Feature Transfer decreases when

the new task's classes diverge more from the training classes.

We leave further investigations to future works.

Sparse DKT is more interpretable and has higher accuracy

than MetaOptNet, with a smaller number of support vectors.

The efficiency of MetaOptNet in sparsity decreases with the

increase of training data due to the weakness of SVM. In

miniImageNet classification, the proposed method has

selected 14 support vectors on average from 250 data, while

MetaOptNet has selected 76 support vectors. Additionally,

the experiments on these different datasets show that the

number of support vectors for each application depends on

intra-class and inter-class similarity. The metric space

learned by the Sparse DKT to separate classes affects the

number of support vectors.

In Figure 8, we have given an example of testing the

trained model with the Sparse DKT and DKT on a 2 way –

50 shot classification task from the CUB meta-test dataset.

Journal of Computer and Knowledge Engineering, Vol.5 , No.2. 2022. 51

In this task, Sparse DKT has the same accuracy as DKT. In

Figure 9, task training data are shown, and the data that are

support vectors have been marked with a red line around the

image.

Table 2. Average Accuracy and Standard Deviation on CUB and miniImageNet Classification with Average number of Support Vectors

SVs miniImageNet 2 way - 125 shot SVs CUB 2 way - 50 shot Method

- 93.13±0.530 - 95.23±0.381 Feature Transfer

- 85.63±0.176 - 92.33±1.069 MAML

250 92.0±0.4 100 93.98±0.448 DKT

76 89.70±0.56 33 92.27±1.313 MetaOptNet

14 91.08±0.913 21 93.75±0.909 Sparse DKT

Figure 8. Comparing a) Sparse DKT and b) DKT accuracies on a CUB meta-test task. Sparse DKT has the same accuracy as DKT.

Figure 9. Sample-based interpretability of Sparse DKT in CUB 2 way – 50 shot. Support vectors of the two classes (a, b), highlighted

with a red square, are the basis of the model's prediction.

52 Sayed Kamaledin Ghiasi-Shirazi et. al: Meta-Learning for Medium-Shot …

Figure 10. Comparing kernels of a) Sparse DKT and b) DKT: a) the most similar support vectors to test image, b) the most similar

training data to test images. The green line above the images on the right, shows that they have the same label as the test image.

We compared the learned kernels of Sparse DKT and

DKT in Figure 10. For Sparse DKT similarity of test images

to support vectors is computed. In each row, the images are

sorted in the order of the most similar from left to right. The

green and red lines on top of the right image, show whether

the labels of the right images are the same or different from

those of the test image. The vertical green line in the test

image indicates that the model accurately predicted the label.

The Sparse DKT kernel can detect the similarity well, even

though the number of support vectors is very small.

5. Conclusion

In this study, we introduced medium-shot learning as a

generalization of few-shot learning for real-world

applications. Considering that interpretability in deep

learning models is becoming increasingly more important,

especially in sensitive scenarios, sample-based

interpretability can be easily obtained by reducing the data to

a small number of support vectors in medium-shot learning.

We considered sparse kernel methods from an attention-

based perspective to have sample-based interpretability. The

proposed Sparse DKT algorithm leverages Sparse Gaussian

processes in the meta-learning framework and selects the

most important training data as support vectors. At the test

time, it makes the predictions based on support vectors.

The impact of marginal likelihood in the trade-off between

accuracy and the number of support vectors, as well as the

impact of more task training data, is one of the key areas for

future work. Using improved versions of RVM [64, 65]

would be effective in increasing the accuracy of Sparse DKT.

Since SVM in MetaOptNet is less effective in sparsifying,

When data increases, we can use GLASSO [66], which also

has a probabilistic solution, as an alternative to SVM in

MetaOptNet. Another future work is investigating

variational sparse Gaussian processes [67–70] that use

variational inference for increasing the lower bound of the

marginal likelihood algorithm. We can use the combination

of point processes [71] with it to determine the support

vectors in sparse variational Gaussian processes.

6. References

[1] Goodfellow, I., Bengio, Y., and Courville, A., Deep

learning, MIT press, 2016.

[2] Wang, Y., Yao, Q., Kwok, J., and Ni, L. M.,

"Generalizing from a Few Examples: A Survey on Few-

Shot Learning", ACM Computing Surveys (CSUR), Vol.

53, No. 3, Apr. 2019, Accessed: Jan. 23, 2022. [Online].

Available: http://arxiv.org/abs/1904.05046.

[3] Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B.,

"Human-level concept learning through probabilistic

program induction", Science, Vol. 350, No. 6266, pp.

1332–8, doi: 10.1126/science.aab3050, Dec, 2015.

http://arxiv.org/abs/1904.05046

Journal of Computer and Knowledge Engineering, Vol.5 , No.2. 2022. 53

[4] Jiang, X., Ding, L., Havaei, M., Jesson, A., and Matwin,

S., "Task Adaptive Metric Space for Medium-Shot

Medical Image Classification", in MICCAI, pp. 147–

155. doi: 10.1007/978-3-030-32239-7_17, 2019.

[5] Li, X., Sun, Z., Xue, J.-H., and Ma, Z., "A concise

review of recent few-shot meta-learning methods",

Neurocomputing, Vol. 456, pp. 463–468, doi:

10.1016/j.neucom.2020.05.114, Oct, 2021.

[6] Samek, W., Montavon, G., Vedaldi, A., Hansen, L. K.,

and Müller, K.-R., Explainable AI: interpreting,

explaining and visualizing deep learning, Vol. 11700.

Springer Nature, 2019.

[7] Zhang, Y., Tino, P., Leonardis, A., and Tang, K., "A

Survey on Neural Network Interpretability", IEEE

Transactions on Emerging Topics in Computational

Intelligence, Vol. 5, No. 5, pp. 726–742, doi:

10.1109/TETCI.2021.3100641, Oct, 2021.

[8] Patacchiola, M., Turner, J., Crowley, E. J., O’Boyle,

M., and Storkey, A., "Bayesian Meta-Learning for the

Few-Shot Setting via Deep Kernels", 34th Conference

on Neural Information Processing Systems (NeurIPS

2020), Oct. 2019, Accessed: Feb. 04, 2021. [Online].

Available: http://arxiv.org/abs/1910.05199.

[9] Huisman, M., van Rijn, J. N., and Plaat, A., "A survey

of deep meta-learning", Artificial Intelligence Review,

Vol. 54, No. 6, pp. 4483–4541, doi: 10.1007/s10462-

021-10004-4, Aug. 2021.

[10] Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D.,

and Lillicrap, T., "One-shot Learning with Memory-

Augmented Neural Networks", 33rd International

Conference on Machine Learning, ICML 2016, Vol. 4,

pp. 2740–2751, May 2016, Accessed: Oct. 16, 2019.

[Online]. Available: http://arxiv.org/abs/1605.06065

[11] Munkhdalai, T., and Yu, H., "Meta Networks", 34th

International Conference on Machine Learning, ICML,

Vol. 5, pp. 3933–3943, Mar. 2017, Accessed: Oct. 18,

2019. [Online]. Available:

http://arxiv.org/abs/1703.00837

[12] Andrychowicz, M., et al., "Learning to learn by gradient

descent by gradient descent", Advances in Neural

Information Processing Systems, pp. 3988–3996, Jun.

2016, Accessed: Oct. 16, 2019. [Online]. Available:

http://arxiv.org/abs/1606.04474

[13] Ravi, S., and Larochelle, H., "Optimization as a model

for few-shot learning", 2017.

[14] Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu,

K., and Wierstra, D., "Matching Networks for One Shot

Learning", Advances in Neural Information Processing

Systems, pp. 3637–3645, Jun. 2016, Accessed: Oct. 18,

2019. [Online]. Available:

http://arxiv.org/abs/1606.04080

[15] Snell, J., Swersky, K., and Zemel, R. S., "Prototypical

Networks for Few-shot Learning", Advances in Neural

Information Processing Systems, Vol. 2017-Decem, pp.

4078–4088, Mar. 2017, Accessed: Oct. 18, 2019.

[Online]. Available: http://arxiv.org/abs/1703.05175

[16] Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P. H. S.,

and Hospedales, T. M., "Learning to Compare: Relation

Network for Few-Shot Learning", in 2018 IEEE/CVF

Conference on Computer Vision and Pattern

Recognition, pp. 1199–1208. doi:

10.1109/CVPR.2018.00131, Jun, 2018.

[17] Gordon, J., Bronskill, J., Bauer, M., Nowozin, S., and

Turner, R. E., "Meta-Learning Probabilistic Inference

For Prediction", 7th In International Conference on

Learning Representations, ICLR, May 2018, Accessed:

Jan. 23, 2022. [Online]. Available:

http://arxiv.org/abs/1805.09921

[18] Finn, C., Xu, K., and Levine, S., "Probabilistic Model-

Agnostic Meta-Learning", Advances in Neural

Information Processing Systems, pp. 9516–9527, Jun.

2018.

[19] Garnelo, M., et al., "Conditional Neural Processes",

35th International Conference on Machine Learning,

ICML 2018, Vol. 4, pp. 2738–2747, Jul. 2018,

Accessed: Apr. 21, 2020. [Online]. Available:

http://arxiv.org/abs/1807.01613

[20] Edwards, H., and Storkey, A., "Towards a Neural

Statistician", 5th International Conference on Learning

Representations, ICLR, Accessed: Apr. 26, 2020, Jun,

2016. [Online]. Available:

http://arxiv.org/abs/1606.02185

[21] Finn, C., Abbeel, P., and Levine, S., "Model-Agnostic

Meta-Learning for Fast Adaptation of Deep Networks",

34th International Conference on Machine Learning,

ICML 2017, Vol. 3, pp. 1856–1868, Mar. 2017,

Accessed: Oct. 19, 2019. [Online]. Available:

http://arxiv.org/abs/1703.03400

[22] Kim, T., Yoon, J., Dia, O., Kim, S., Bengio, Y., and

Ahn, S., "Bayesian Model-Agnostic Meta-Learning",

Advances in Neural Information Processing Systems,

pp. 7332–7342, Jun. 2018.

[23] Grant, E., Finn, C., Levine, S., Darrell, T., and Griffiths,

T., "Recasting Gradient-Based Meta-Learning as

Hierarchical Bayes", 6th International Conference on

Learning Representations, ICLR, Jan. 2018.

[24] Ravi, S., and Beatson, A., "Amortized bayesian meta-

learning", 2018.

[25] Raghu, A., Raghu, M., Bengio, S., and Vinyals, O.,

"Rapid Learning or Feature Reuse? Towards

Understanding the Effectiveness of MAML", 8th

International Conference on Learning Representations,

ICLR 2020, Sep. 2019.

[26] Oh, J., Yoo, H., Kim, C., and Yun, S., "BOIL: Towards

Representation Change for Few-shot Learning", 2021.

[27] Zintgraf, L., Shiarlis, K., Kurin, V., Hofmann, K., and

Whiteson, S., "Fast context adaptation via meta-

learning", in 36th International Conference on Machine

Learning, ICML 2019, Vol. 2019-June, pp. 13262–

13276, 2019.

[28] Nichol, A., Achiam, J., and Schulman, J., "On First-

Order Meta-Learning Algorithms", Mar. 2018,

Accessed: Apr. 13, 2020. [Online]. Available:

http://arxiv.org/abs/1803.02999

[29] Rajeswaran, A., Finn, C., Kakade, S., and Levine, S.,

"Meta-Learning with Implicit Gradients", Advances in

Neural Information Processing Systems 32(pp. 113-

124), Sep. 2019, Accessed: Aug. 16, 2020. [Online].

Available: http://arxiv.org/abs/1909.04630

[30] Lee, K., Maji, S., Ravichandran, A., and Soatto, S.,

"Meta-Learning With Differentiable Convex

Optimization", in 2019 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pp.

10649–10657. doi: 10.1109/CVPR.2019.01091, Jun,

http://arxiv.org/abs/1910.05199
http://arxiv.org/abs/1605.06065
http://arxiv.org/abs/1703.00837
http://arxiv.org/abs/1606.04474
http://arxiv.org/abs/1606.04080
http://arxiv.org/abs/1703.05175
http://arxiv.org/abs/1805.09921
http://arxiv.org/abs/1807.01613
http://arxiv.org/abs/1606.02185
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1803.02999
http://arxiv.org/abs/1909.04630

54 Sayed Kamaledin Ghiasi-Shirazi et. al: Meta-Learning for Medium-Shot …

2019.

[31] Bertinetto, L., Henriques, J. F., Torr, P. H. S., and

Vedaldi, A., "Meta-learning with differentiable closed-

form solvers", 7th In International Conference on

Learning Representations, ICLR, May 2018, [Online].

Available: http://arxiv.org/abs/1805.08136

[32] Gai, S., and Wang, D., "Sparse Model-Agnostic Meta-

Learning Algorithm for Few-Shot Learning", in 2019

2nd China Symposium on Cognitive Computing and

Hybrid Intelligence (CCHI), pp. 127–130, Sep. 2019.

doi: 10.1109/CCHI.2019.8901909.

[33] Madan, A., and Prasad, R., "B-Small: A Bayesian

Neural Network Approach to Sparse Model-Agnostic

Meta-Learning", ICASSP 2021 - 2021 IEEE

International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pp. 2730–2734, 2021.

[34] Tian, H., Liu, B., Yuan, X. -T., and Liu, Q., "Meta-

learning with Network Pruning", in Computer Vision –

ECCV 2020. Lecture Notes in Computer Science,

Springer, Cham, pp. 675–700. doi: 10.1007/978-3-030-

58529-7_40, 2020.

[35] Sabzevar, R. Z., Ghiasi-Shirazi, K., and Harati, A.,

"Prototype-based interpretation of the functionality of

neurons in winner-take-all neural networks", ArXiv, vol.

abs/2008.08750, Aug. 2020, [Online]. Available:

http://arxiv.org/abs/2008.08750

[36] Chen, C., Li, O., Tao, C., Barnett, A. J., Su, J., and

Rudin, C., "This Looks Like That: Deep Learning for

Interpretable Image Recognition", Advances in Neural

Information Processing Systems (NeurIPS 2018)), Vol.

32, pp. 8930–8941, Jun. 2019, [Online]. Available:

http://arxiv.org/abs/1806.10574

[37] Cao, K., Brbic, M., and Leskovec, J., "Concept Learners

for Few-Shot Learning", International Conference on

Learning Representations (ICLR), 2021.

[38] Koh, P. W., and Liang, P., "Understanding Black-box

Predictions via Influence Functions", International

Conference on Machine Learning, pp. 1885–1894, Mar.

2017, [Online]. Available:

http://arxiv.org/abs/1703.04730

[39] Yeh, C. -K., Kim, J. S., Yen, I. E. H., and Ravikumar,

P., "Representer Point Selection for Explaining Deep

Neural Networks", Advances in Neural Information

Processing Systems, Vol. 31, Nov. 2018, [Online].

Available: http://arxiv.org/abs/1811.09720

[40] Arik, S. O., and Pfister, T., "ProtoAttend: Attention-

Based Prototypical Learning", Journal of Machine

Learning Research, Vol. 21, pp. 1–35, Feb. 2020,

[Online]. Available: http://arxiv.org/abs/1902.06292

[41] Vaswani, A., et al., "Attention is all you need", in

Advances in neural information processing systems, pp.

5998–6008, 2017.

[42] Tsai, Y. -H. H., Bai, S., Yamada, M., Morency, L. -P.,

and Salakhutdinov, R. "Transformer Dissection: An

Unified Understanding for Transformer’s Attention via

the Lens of Kernel", Proceedings of the Conference on

Empirical Methods in Natural Language Processing,

2019.

[43] Chen, Y., Zeng, Q., Ji, H., and Yang, Y., "Skyformer:

Remodel Self-Attention with Gaussian Kernel and

Nystrom Method", Advances in Neural Information

Processing Systems, Vol. 34, 2021.

[44] Song, K., Jung, Y., Kim, D., and Moon, I. -C., "Implicit

kernel attention", in Proceedings of the AAAI

Conference on Artificial Intelligence, Vol. 35, No. 11,

pp. 9713–9721, 2021.

[45] Choromanski, K. M., et al., "Rethinking Attention with

Performers", International Conference on Learning

Representations, 2021.

[46] Schlkopf, B., Smola, A. J., and Bach, F., Learning with

Kernels: Support Vector Machines, Regularization,

Optimization, and Beyond. The MIT Press, 2018.

[47] Wilson, A. G., Hu, Z., Salakhutdinov, R., and Xing, E.

P., "Deep Kernel Learning", Artificial intelligence and

statistics, AISTATS, pp. 370–378, Nov. 2016, [Online].

Available: http://arxiv.org/abs/1511.02222

[48] Tossou, P., Dura, B., Laviolette, F., Marchand, M., and

Lacoste, A., "Adaptive deep kernel learning", arXiv

preprint arXiv:1905.12131, 2019.

[49] Salakhutdinov, R., and Hinton, G. E., "Using Deep

Belief Nets to Learn Covariance Kernels for Gaussian

Processes", in NIPS, Vol. 7, pp. 1249–1256, 2007.

[50] Calandra, R., Peters, J., Rasmussen, C. E., and

Deisenroth, M. P., "Manifold Gaussian processes for

regression", in 2016 International Joint Conference on

Neural Networks (IJCNN), pp. 3338–3345, 2016.

[51] Cortes, C., and Vapnik, V., "Support-vector networks",

Machine Learning, Vol. 20, No. 3, pp. 273–297, doi:

10.1007/bf00994018, Sep. 1995.

[52] Rasmussen, C. E., and Williams, C. K. I., Gaussian

Processes for Machine Learning. The MIT Press, 2006.

[Online]. Available:

http://www.gaussianprocess.org/gpml/

[53] Quinonero-Candela, J., and Rasmussen, C. E., "A

unifying view of sparse approximate Gaussian process

regression", The Journal of Machine Learning

Research, Vol. 6, pp. 1939–1959, 2005.

[54] Liu, H., Ong, Y. -S., Shen, X., and Cai, J., "When

Gaussian process meets big data: A review of scalable

GPs", IEEE Trans Neural Netw Learn Syst, Vol. 31, No.

11, pp. 4405–4423, 2020.

[55] Smola, A., and Bartlett, P., "Sparse greedy Gaussian

process regression", Adv Neural Inf Process Syst, Vol.

13, 2000.

[56] Seeger, M. W., Williams, C. K. I., and Lawrence, N. D.,

"Fast forward selection to speed up sparse Gaussian

process regression", in International Workshop on

Artificial Intelligence and Statistics, pp. 254–261, 2003.

[57] Keerthi, S. S., and Chu, W., "A matching pursuit

approach to sparse Gaussian process regression", Adv

Neural Inf Process Syst, Vol. 18, 2005.

[58] Snelson, E., and Ghahramani, Z., "Sparse Gaussian

processes using pseudo-inputs", Adv Neural Inf Process

Syst, Vol. 18, 2005.

[59] Williams, C., and Seeger, M., "Using the Nyström

Method to Speed Up Kernel Machines", in Advances in

Neural Information Processing Systems, Vol. 13, pp.

682–688, 2000.

[60] Tipping, M. E., "Sparse Bayesian Learning and the

Relevance Vector Machine", J. Mach. Learn. Res., Vol.

1, pp. 211–244, 2001.

[61] Bishop, C. M., Pattern Recognition and Machine

Learning (Information Science and Statistics). Berlin,

Heidelberg: Springer-Verlag, 2006.

http://arxiv.org/abs/1805.08136
http://arxiv.org/abs/2008.08750
http://arxiv.org/abs/1806.10574
http://arxiv.org/abs/1703.04730
http://arxiv.org/abs/1811.09720
http://arxiv.org/abs/1902.06292
http://arxiv.org/abs/1511.02222
http://www.gaussianprocess.org/gpml/

Journal of Computer and Knowledge Engineering, Vol.5 , No.2. 2022. 55

[62] Tipping, M. E., and Faul, A. C., "Fast marginal

likelihood maximisation for sparse Bayesian models",

International workshop on artificial intelligence and

statistics, pp. 276–283, 2003.

[63] Gardner, J., Pleiss, G., Weinberger, K. Q., Bindel, D.,

and Wilson, A. G., "Gpytorch: Blackbox matrix-matrix

gaussian process inference with gpu acceleration", Adv

Neural Inf Process Syst, Vol. 31, 2018.

[64] Al-Shoukairi, M., Schniter, P., and Rao, B. D., "A

GAMP-based low complexity sparse Bayesian learning

algorithm", IEEE Transactions on Signal Processing,

Vol. 66, No. 2, pp. 294–308, 2017.

[65] Zhou, W., Zhang, H. -T., and Wang, J., "An efficient

sparse Bayesian learning algorithm based on Gaussian-

scale mixtures", IEEE Transactions on Neural

Networks and Learning Systems, 2021.

[66] Roth, V., "The generalized LASSO", IEEE Trans

Neural Netw, Vol. 15, No. 1, pp. 16–28, 2004.

[67] Titsias, M., "Variational learning of inducing variables

in sparse Gaussian processes", in Artificial intelligence

and statistics, pp. 567–574, 2009.

[68] Hensman, J., Matthews, A., and Ghahramani, Z.,

"Scalable variational Gaussian process classification",

in Artificial Intelligence and Statistics, pp. 351–360,

2015.

[69] Hensman, J., Fusi, N., and Lawrence, N. D., "Gaussian

processes for Big data", in Proceedings of the Twenty-

Ninth Conference on Uncertainty in Artificial

Intelligence, pp. 282–290, 2013.

[70] Wilson, A. G., Hu, Z., Salakhutdinov, R. R., and Xing,

E. P., "Stochastic variational deep kernel learning",

Advances in Neural Information Processing Systems,

Vol. 29, 2016.

[71] Uhrenholt, A. K., Charvet, V., and Jensen, B. S.,

"Probabilistic selection of inducing points in sparse

Gaussian processes", in Uncertainty in Artificial

Intelligence, pp. 1035–1044, 2021.

56 Sayed Kamaledin Ghiasi-Shirazi et. al: Meta-Learning for Medium-Shot …

Journal of Computer and Knowledge Engineering, Vol. 5, No. 2, 2022. (57-66) 57

DOI: 10.22067/cke.2022.77664.1062

The Impact of Preprocessing Techniques for Covid-19 Mortality

Prediction*
Research Article

Soodeh Hosseini1 Zahra Asghari Varzaneh2

Abstract: Coronavirus 2019 (COVID-19), as a common
infectious disease, is spreading rapidly and uncontrollably
worldwide. Therefore, early detection of mortality
considering the symptoms that appear in patients with
Coronavirus is important. The main aim of this study is
investigating the effect of data preprocessing methods on the
efficiency of data mining approaches. In this study, we
propose a hybrid method based on the Covid-19 dataset to
predict the mortality of 1255 patients with coronavirus that
has three main steps. In the first step, preprocessing methods
such as imputing missing values, data balancing,
normalization, and filter-based feature selection are used on
raw data. Then the classification algorithms are applied to
the data and finally, the evaluation is done. The results of the
proposed method show its effectiveness in predicting
mortality from coronavirus disease. Therefore, doctors and
treatment staff can use this model to early diagnose of factors
affecting the mortality of patients and with timely treatment,
the mortality rate due to Covid-19 is reduced.
Keywords: COVID-19, Artificial Intelligence, Data Mining,
Feature Selection, Mortality Detection, Preprocessing,
KNIME Tool

1. Introduction
CORONAVIRUS (COVID-19) is an infectious disease
caused by the SARS-CoV-2 virus. The virus was first
reported by the World Health Organization (WHO) in a
Chinese city in late 2019, it was named the 2019 coronavirus
or COVID-19. Although accurate and comprehensive
information is not available due to the novelty of this virus,
so far the disease has shown itself in the form of respiratory
symptoms [1, 2]. Anyone can get Covid-19 disease and
become seriously ill or die at any age. This disease is a new
phenomenon and at the moment it is not possible to give a
definite opinion about the fatality of this disease. But
statistics show that the death ration is around 2%, but
according to the WHO, this number can change [3, 4].

Today, due to the spread of knowledge and more complex
decision-making processes, the use of information systems,
especially AI systems in decision-making is more important.
AI is one of the broadest branches of computer science
related to the construction of intelligent machines [5]. In the
field of health, AI uses sophisticated algorithms and software
to analyze complex medical data. The main purpose of
artificial intelligence programs in the field of health and
medicine is analyzing techniques to prevent and treat disease
[6]. AI is used for a variety of therapeutic and research
purposes, such as diagnosis, management of chronic
diseases, and medical and pharmaceutical services. With the
spread of the coronavirus, AI is widely used in the diagnosis

* Manuscript Received: 11 July 2022, Revised, 31 July 2022, Accepted, 29 August 2022.
1. Corresponding author. Associate Professor, Department of Computer Science, Faculty of Mathematics and Computer, Shahid Bahonar

University of Kerman, Kerman, Iran. Email: so_hosseini@uk.ac.ir
2. Ph. D. Student, Department of Computer Science, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman,

Kerman, Iran.

and treatment of this disease, and researchers have been able
to help medical science by using various techniques,
including data mining. Clinical Decision Support Systems
(CDSS) are introduced as computer programs that use ML
algorithms, and AI, to help physicians make accurate and
appropriate decisions [7-9]. Therefore, our goal is to develop
and evaluate a new CDSS based on techniques to predict the
mortality of patients with COVID-19 disease based on the
decision tree, Random forest, MLP, KNN, SVM, and Fuzzy
rules algorithms.

Using the collected raw data cannot provide acceptable
and reliable results. Therefore, they need to be preprocessed
before using. We propose a hybrid method based on the
Covid-19 dataset to predict the mortality of patients. The
proposed model has three steps. At first, we correct
incomplete information by using missing value estimation
techniques. We use the KNN Imputer to fill missing values.
This method preserves the value and diversity of the dataset
while being more accurate and efficient than using other
methods. Then we normalize the data so that everyone is in
the bound of 0 to 1. Also, since the data we are examining
are unbalanced, the SMOTE technique is applied for
balancing the distribution of data classes. SMOTE has the
advantage of not creating duplicate data points, but rather
synthetic data points that differ slightly from the original data
points. Next, a filter-based feature selection method called
“relief method” is used to select the best features that have
the greatest impact on the performance of classification
algorithms. After data preprocessing, data mining algorithms
are applied and evaluated according to different criteria.
Then, using statistical methods, the data mining algorithms
are ranked and the best algorithm is selected.

The rest of the article is organized as follows. Some of the
researches in this field are presented in Section 2. In Section
3, the proposed prediction model is covered. The evaluation
and experimental results are provided in Section 4, along
with a comparative analysis of the classification algorithms.
Conclusions and future works will be presented in the last
section of this paper.

2. Related works
Many methods have been recently proposed for COVID-19
diagnosis using data mining tools and machine learning
algorithms to automate and help with the diagnosis and
treatment of this disease. Some studies and diagnostic
methods regarding COVID-19 are briefly described here.

To analyze and predict the growth of COVID-19 infection
worldwide, the authors presented an improved mathematical
model in [10]. This model is based on machine learning used
to predict the spread of disease and is based on a cloud

https://cke.um.ac.ir/
https://cke.um.ac.ir/article_42777.html

58 Soodeh Hosseini et. al.: The impact of preprocessing...

computing platform. The results of the study show that the
use of the Weibull model based on repetitive weighting can
make more accurate statistical predictions and the weaker the
fit model, the non-optimal decision and the health status will
be poor. In [11], the authors used the SVM algorithm for
predicting severe conditions of COVID-19. In their proposed
prediction model, they searched and discovered the features
that had the greatest impact on the diagnosis of mild or
severe disease. The model for predicting severe disease
conditions presented by the authors had an almost optimal
accuracy. [12] analyzed three different classification
algorithms such as Random Forest (RF), logistic regression
(LR) to predict the severity of the disease in patients with
coronavirus disease at King Fahad Hospital. They used the
SMOTE method for balancing the data in the preprocessing
phase. The models are implemented in Python language. For
partitioning the data, a 10-fold cross-validation technique is
used. Experiments are performed on the original dataset and
the SMOTE-transformed dataset. The results of their
experiments showed that the efficiency of the RF algorithm
is better than other classification algorithms. [13] presented
a model to predict the recovery from Covid-19. They applied
data mining models such as decision trees, SVM, LR, and
KNN to the data of patients with Covid-19 in South Korea.
Data mining algorithms are applied directly to the dataset
using python programming language to develop the models.
This model is for predicting the minimum and the maximum
number of days for recovery of COVID-19 patients and those
at high risk for the recovery of COVID-19. The results of
their research showed that the decision tree algorithm is more
effective in predicting the possibility of recovery of infected
patients.

An Efficient Deep Learning Technique for the screening
of COVID-19 can be seen in [15]. The authors propose a
vote-based design and cross-data set analysis. This approach
is evaluated on two of the largest COVID-19 CT analysis
datasets with patient-based division. A cross-data set review
is also introduced to evaluate the robustness of the models in
a more realistic scenario in which the data come from
different distributions. The model is implemented in Python
language. The results show that the methods that aim at
COVID-19 detection in CT images have to be improved
significantly to be considered as a clinical option.

 Nikooghadam et al. [16] used a hybrid approach to predict
and diagnose the coronavirus. The authors presented their
proposed method in two steps. In the first step, they used the
relief feature selection method to preprocess the data and
select the effective features in the decision-making. Next,
they used the ensemble-based classifier, in which the base
classifier algorithms are combined to make the diagnosis
with more accuracy. Basic classifiers include decision trees,
KNN, combined with a random forest algorithm in the
stacking section. To execute the proposed model, data
mining tools including Rapid Miner and Python are used.
The results proved that the combination of these algorithms
can have a good effect on classification performance. In [17],
it was tried to predict the mortality of COVID-19 disease in
patients. In this study, they first identified the factors
contributing to patient mortality. For this purpose, they
reviewed various studies, and based on known factors, a

variety of classification algorithms such as SVM, random
forest, J48, MLP, and KNN were applied to predict the
mortality of COVID-19 disease. They used Weka v3.9.2
software to analyze the data, identify the importance of each
factor, and implement prediction models. According to the
results, the random forest algorithm is superior to other
algorithms. In all research studied in this article, methods
based on AI and data mining algorithms have been used to
diagnose COVID-19 disease and predict its mortality, but
what matters is the preprocessing and management of raw
data. This study comprehensively examines data
preprocessing methods and before applying data mining
algorithms to the data, preprocessing methods were used.
This step increases the efficiency of classification
algorithms.

3. The proposed prediction model
The proposed model is a machine learning model that
predicts mortality from COVID-19 in three main stages.
Initially, raw data sets are collected for all those who are
referred for the PCR-COVID-19 diagnostic test. Then, from
the collected data, positive and negative diagnostic tests are
separated. To predict mortality, only data that are in the
positive diagnostic test category are needed. In the
following, the raw data collected from the medical records
of patients with COVID-19 disease are preprocessed. To
reduce the dimensions of data and eliminate redundant
features that increase the computational load and reduce the
performance of classification algorithms, the feature
selection method was used. The feature selection method
used in this paper is based on the filter method and the reason
for choosing this method is that filter-based feature selection
methods are not exposed to "overfitting" and impose less
computational load on the system.

After preparing the data, in the second stage, some
machine learning methods are developed and used in a
prospective study to predict the mortality of patients. Finally,
different models for external validation are evaluated and
ranked based on statistical methods and the best model is
selected. Each step is explained as follows. Figure 1 briefly
describes the methodology.

3.1. Dataset
The dataset in this study is collected from the database of
Imam Khomeini Hospital in Ilam. These data are related to
those who are referred to the hospital for the PCR-COVID-
19 test from February 7, 2020, to December 20, 2021. Out of
a total of 6854 suspected cases of covid-19, 1853 positive
cases of covid-19, 2472 negative cases, and 2529 uncertain
cases are identified. Among the 1853 positive samples,
unknown cases, discharge or death from the emergency
room, missing data > 70%, noise, and abnormal values
outside the defined time period were removed from the
dataset, and 1225 cases were registered in the database. This
dataset contains 54 features that include clinical features (14
features), history of personal diseases (7 features), patient’s
demographic (5 features), laboratory results (26 features),
remedies (one feature), and an output variable (0: Life and 1:
Death). Table 1 presents a list of features of Covid-19
dataset.

Journal of Computer and Knowledge Engineering, Vol.5, No.2. 2022. 59

Figure 1. Overall methodology for COVID-19 mortality prediction

Table 1. List of features of Covid-19 dataset

No Feature name
Variable

type
No Feature name

Variable

type

1 Length of hospitalization Polynomial 28 alcohol addiction Binominal

2 Age Polynomial 29 Creatinine Polynomial

3 Height Polynomial 30 Red-cell count Polynomial

4 Weight Polynomial 31 White-cell count Polynomial

5 Blood Type Polynomial 32 Hematocrit Polynomial

6 Gender Binominal 33 Hemoglobin Polynomial

7 Cough Binominal 34 Platelet count Polynomial

8 Contusion Binominal 35 Absolute lymphocyte Polynomial

9 Nausea Binominal 36 Absolute neutrophil Polynomial

10 Vomit Binominal 37 Calcium Polynomial

11 Headache Binominal 38 Phosphorus Polynomial

12 Gastrointestinal symptoms Binominal 39 Magnesium Polynomial

13 Muscular pain Binominal 40 Sodium Polynomial

14 Chill Binominal 41 Potassium Polynomial

15 Hypersensitive troponin Binominal 42 Blood ureanitrogen Polynomial

16 Fever Binominal 43 Total bilirubin Polynomial

17 Oxygen therapy Polynomial 44 Aspartate ami1transferase Polynomial

18 Dyspnea Binominal 45 ICU Binominal

19 Loss of taste Binominal 46 Albumin Polynomial

20 Loss of smell Binominal 47 Glucose Polynomial

21 Runny 1ise Binominal 48 Lactate dehydrogenase Polynomial

22 Sore throat Binominal 49 Activated partial Binominal

23 Other underline disease Binominal 50 Prothrombin time Polynomial

24 Cardiac disease Binominal 51 Alkaline phosphatase Polynomial

25 Hypertension Binominal 52 C-reactive protein Polynomial

26 Diabetes Binominal 53 Erythrocyte sedimentation Polynomial

27 Smoking Binominal 54 Death Binominal

3.2. Data pre-processing

The COVID-19 raw dataset contains some errors that can

negatively affect the effectiveness of data mining models.

Hence, to obtain the best results, we remove duplicate values

from all attributes and convert raw data into numerical

features. Then, we conduct some well-defined preprocessing

methods to achieve the best models.

Imputing Missing Values: When working with a dataset,

we may encounter observations in which one or more

variables or attributes have no value. This problem often

60 Soodeh Hosseini et. al.: The impact of preprocessing...

occurs if not enough care is taken when collecting data. In

such cases, we say that the observations have a "missing

value" or the dataset suffers from the obstacle of missing

data. To impute missing values, there are many methods such

as replacing the mode, mean or mean of a group [18, 19].

In the dataset used in this study, there are missing values

that need to be managed. If we want to remove all the

observations that have missing values from the dataset, we

may face a lack of information. To address the obstacle of

missing values, we delete the observations in which the

number of missing values is high. Therefore, considering

that the total number of data columns (features) is 54, we

remove the observations in which more than 70% of the

features are without value and replace the remaining missing

values with the mean value of 5 nearest neighbors measured

by Euclidean distance (KNN Imputer) of the non-missing

values in the column. The idea in KNN Imputer method is to

identify "k" similar samples in the dataset. Then we use these

"k" samples to estimate the amount of missing data points.

The missing values in each sample are estimated using the

mean value of k of the nearest neighbors measured by

Euclidean distance in the dataset. In this paper, we set the

value of "k" to be 5.

There are different methods to handle missing data. These

methods can waste valuable data or reduce the diversity of

the dataset. In contrast, the KNN Imputer preserves the value

and diversity of the dataset while being more accurate and

efficient than using other methods.

Data Balancing: Unbalanced data class distribution

occurs when the number of samples related to one class is

significantly less than the number of samples belonging to

another class. This will reduce the efficiency of machine

learning algorithms [20]. Hence, various techniques have

been introduced to deal with the problem of unbalanced data

such as under-sampling, over-sampling, and Synthetic

Minority Oversampling Technique (SMOTE) [21, 22]. We

used different methods to balance the data and got the best

result from the SMOTE method.

SMOTE is an algorithm that performs data augmentation

by creating artificial data points based on original data

points. SMOTE selects a random sample from minority

class and determine k nearest neighbors for this sample.

Then a vector between the current sample and a chosen

neighbor is determined. The synthetic instances are

generated by multiplying this vector with a random number

between 0 and 1. The advantage of SMOTE is that

duplicates are not generated and the data points generated are

slightly different from the original data points. Therefore, in

this study, to balance the "death" class of patients with

COVID-19, we applied the SMOTE method. Before

balancing the data, the death class contained only 176

records (13%), while after balancing the data, the death class

contained 748 records.

Normalization: Data normalization is one of the main

phases of data mining. When data have different scales, they

have an adverse effect on each other and the algorithm at

different change intervals. So the data should be in an equal

range with each other. Each of the data recorded in the

database will change between 0 and 1 [23]. This allows the

data to be shorter in the domain and the model to be better

trained. There are several techniques for normalization. In

this study, Min-Max Normalization technique is used to

normalize the data as follows [24].

𝑥 =
𝑥−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 (1)

In this formula, Xmin and Xmax are equal to the minimum

and maximum values of the data in the database,

respectively.

Relief Feature Selection: The relief method is a filter-

based feature selection algorithm that uses a statistical

solution to select features [14]. In this method, at each step,

a sample is randomly selected from the samples in the data

set. Then, for each of the features of this sample, it finds the

nearest Hit and the nearest Miss according to the Euclidean

criterion. The nearest Hit is the sample that has the smallest

Euclidean distance among other samples with the same class

as the selected sample. The nearest Miss is the sample with

the smallest Euclidean distance among samples from the

opposite class to the selected sample.

Wi = Wi − (xi − nearHiti)
2 + (xi − nearMissi)

2 (2)

As shown in Equation 2, if the difference between a

feature in the selected sample and the same feature in the

sample of the same class is greater than the difference

between the same feature in the selected sample and the same

feature in the sample of the same class, weight (degree of

importance) of this feature is reduced and vice versa.

By weighting the features, those that have a greater impact

on the classification accuracy are identified. In order to select

the most suitable features, we rank them according to their

weight value. In this study, according to the various

experiments, we selected 20 of the best features that had a

higher rating and applied them to different data mining

algorithms to predict the mortality of Covid-19 patients and

evaluated the performance criteria of the algorithms.

4. Data mining models

In this subsection, some of the AI algorithms used to develop

the CDSS system in this study are introduced. Each of the

data mining algorithms introduced in this section is

implemented in the original and balanced dataset and their

evaluation results are compared. All methods are

implemented in the KNIME Analytics Platform.

4.1. Decision tree

In data mining, the decision tree is a predictive model that is

used for both regression and classification models [25]. In

the decision tree structure, the prediction obtained from the

tree is explained as a sequence of rules. The decision tree

algorithm classifies the samples so that the classes are

actually at the end of the leaf nodes. Each path from the root

to a decision tree leaf expresses a rule, and finally, the leaf is

labeled with the class in which the most records belong. The

decision tree is used in problems that can be posed in such a

way that they provide a single answer in the form of a group

or class name [26]. In this study, two types of decision trees

C4.5 [27] and Random forest [28] are used for the

implementation of a decision tree on data from Covid-19

patients. Figure 2 shows the snapshot from the KNIME

workflow of C4.5.

Journal of Computer and Knowledge Engineering, Vol.5, No.2. 2022. 61

Figure 2. KNIME workflow of C4.5

4.2. Support Vector Machine (SVM)

SVM is mostly used in classification problems. The basis of

the SVM classifier is the linear classification of data. In the

SVM algorithm, each data sample is drawn as a point in the

n-dimensional space on the scatter diagram of the data (n is

the number of features of a data sample) and the value of

each feature related to the data determines one of the

components of the coordinates of the point on the diagram.

Then, by drawing a straight line, it categorizes different and

distinct data. In the linear division of data, the line is selected

that has a more reliable margin [29].

4.3. Logistic regression

Logistic regression is a statistical regression model for two-

way dependent variables. Being two-way means that a

random event occurs in two possible situations like death or

life, which are variables with two positions. Logistic

regression can be seen as a special case of the general linear

model and linear regression. Logistic regression model is

based on completely different hypotheses from linear

regression about the relationship between variables. These

variables can be dependent or independent. We use logistic

regression when we want to measure the relationship

between an independent variable with continuous values and

a dependent variable with qualitative values [30].

4.4. K-Nearest Neighbor (KNN)

This algorithm classifies a test sample based on k

neighboring neighbors. Train samples are presented as

vectors in multidimensional feature space. The space is

partitioned into areas with train samples. A point in space

belongs to the class in which most of the training points

belong to that class within the closest instance to k [31]. This

study uses the Euclidean distance to find the nearest

neighbors. The test sample is presented as a vector in the

feature space and the Euclidean distance of the test vector

with the total training vectors is calculated and the closest

training sample to k is selected.

4.5. Multi-Layer Perceptron (MLP)

MLP is a feed-forward neural network that consists of three

main layers: input layer, hidden layer, and output layer. Each

layer contains a group of nerve cells that are connected in a

directional graph to all the neurons in other layers. The MLP

network establishes a non-linear connection between the

input and output vectors using an activator function. In the

training phase, training information is given to the

perceptron, then the network weights are adjusted to

minimize errors between the output and the target [32].

4.6. Fuzzy rules

This algorithm receives numerical data as input and

generates fuzzy rules based on the fuzzy intervals generated

in the higher dimensional space [33]. Fuzzy intervals are

defined by trapezoidal fuzzy membership functions for each

dimension. To generate fuzzy rules, the input numeric

columns are used as the first section of the rules and the last

column, which is the target data in the classification, is

introduced as the output of the rules. This column contains

class information and can contain degrees between 0 and 1

[34]. The model output port contains the fuzzy rule model,

which can be used for prediction in the Fuzzy Rule Predictor

node. The number of fuzzy rules generated in this study is

209.

5. Evaluation and results

To evaluate different ML algorithms for predicting the

mortality of patients, several performance metrics such as the

ROC Curve as well as the accuracy, precision, sensitivity,

specificity, and F-measure are used [35]. Table 2 shows the

calculations of measures. Furthermore, the 10-fold cross-

validation method is used to measure the efficiency of

algorithms.

Table 2. Definition of performance metrics

Performance Metrics Definitions

Precision TP/ (TP + FP)

Specificity / true negative

rate (TNR)
TN/ (TN + FP)

Sensitivity/ true positive

rate (TPR) or Recall
TP/ (TP + FN)

Accuracy (TP + TN)/ (TP + TN + FP + FN)

F-measure
(2 ×Precision ×Recall)/

(Precision + Recall)

* True Positive (TP), True Negative (TN), False Positive (FP),

62 Soodeh Hosseini et. al.: The impact of preprocessing...

False Negative (FN)

5.1. Predictive models for COVID-19

This subsection evaluates the performance of ML algorithms

in predicting early mortality from COVID-19 disease. These

algorithms include the decision tree, Random forest, SVM,

MLP, KNN, and Fuzzy rules. The most important measure

for determining the efficiency of a classification algorithm is

classification accuracy. But in real problems, the

classification accuracy measure is not a good measure for

evaluating the efficiency of classification algorithms,

because, concerning classification accuracy, the values of

records of different categories are considered the same.

Therefore, in problems dealing with unbalanced categories,

other measures are used.

Table 3 presents the test results based on performance

measures, accuracy, precision, sensitivity (recall),

specificity, and F-measure without the use of data

preprocessing techniques. The data used to evaluate

performance is not normalized and also a large amount of

data information have been removed from the dataset due to

missing values. The important point is that the data is labeled

unbalanced, and the number of data labeled "death" is much

less than the number of data labeled "life".

According to the results presented in Table 3, the decision

tree (C4.5) algorithm performs better than other algorithms

in terms of precision and F-measure criteria with values of

56.4% and 54.7%, respectively. The MLP algorithm has a

higher recall rate than other algorithms with a value of

56.6%. Considering the specificity criterion, the logistic

regression algorithm is superior to other algorithms. This

algorithm achieved 93.6% specificity of the dataset shown in

Table 3. In addition, the fuzzy rule base algorithm has the

highest classification accuracy of 86.7% compared to other

ML algorithms.

Figure 3 shows the performance results of the models. As

can be seen, examining this chart cannot accurately show

which algorithm is more efficient than the others. Since ML

algorithms are compared based on five different criteria, it is

not possible to choose the best algorithm with the highest

performance. In this paper, we used Friedman's statistical

test to compare the performance of ML algorithms based on

different evaluation factors. This statistical test ranks the

algorithms with a significance level of 0.05. Figure 4 shows

the comparison results of Friedman test. The value of 𝑃 -

𝑣𝑎𝑙𝑢𝑒 <0.05 indicates that there is a significant difference in

performance between the algorithms.

Table 3. Performance evaluation results without preprocessing

Model Precision Recall Specificity F-score Accuracy

Decision tree (C4.5) 0.564 0.534 0.902 0.547 0.861

Random forest 0.430 0.386 0.926 0.407 0.823

SVM 0.287 0.412 0.375 0.336 0.457

Logistic regression 0.323 0.355 0.936 0.341 0.849

MLP 0.511 0.566 0.893 0.535 0.856

KNN 0.462 0.485 0.912 0.471 0.826

Fuzzy Rules 0.342 0.462 0.924 0.395 0.867

Figure 3. Comparison of performance measure of ML algorithms (without preprocessing)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Decision tree

(C4.5)

Random forestSVMLogistic

regression

MLPKNNFuzzy Rules

Precision Recall Specificity F-measure Accuracy

Journal of Computer and Knowledge Engineering, Vol.5, No.2. 2022. 63

According to Figure 4, the decision tree (C4.5) algorithm

with a rank 7.6 generally performs better than other

algorithms. According to the results shown in Table 3 and

Figure 4, when preprocessing is not performed on data

related to patients with Covid-19, mortality is predicted with

low quality, and the results obtained cannot be effective and

reliable in the decision and treatment processes.

Table 4 shows the results of comparing the performance

of ML algorithms after the preprocessing stage of raw data

obtained from patients with Covid-19 disease. The numerical

results show that the performance of ML algorithms has

improved significantly. All algorithms are applied to

preprocess datasets and, by considering all measures, they

have better results than before. Table 4 shows that the KNN

algorithm works better than other ML algorithms with 94.2%

and 92.2% in terms of precision and F-measure, respectively.

Moreover, this algorithm has a higher classification accuracy

of 97.1% than others. The Random forest algorithm is the

best in terms of specificity criteria. The value of specificity

for this algorithm is 98.6%. The recall criterion in the Fuzzy

Rules base algorithm is 91.6%, which has the highest value

compared to other algorithms.

Figure 5 shows a bar chart of comparing ML algorithms

in terms of accuracy, precision, sensitivity (recall),

specificity, and F-measure. By looking at this diagram, it is

not possible to determine which algorithm generally

performs better than other algorithms. Figure 6 shows the

mean rank of ML algorithms based on the Friedman test.

As shown in Figure 6, the KNN algorithm has the highest

performance. This algorithm ranks first with a rank of 1.4.

Then the Random forest algorithm has the best performance.

The SVM algorithm with the rank of 6.6 is the weakest

algorithm investigated in this study.

Figure 7 compares the performance metrics of the KNN

algorithm before and after pre-processing. As we can see, the

efficiency of KNN algorithm is significantly improved after

data preprocessing. In this algorithm, the precision criterion

has increased from 0.462 to 0.942. Moreover, the recall

criterion has improved and has increased about 0.42.

Appropriate pre-processing on the Covid-19 dataset has also

had a good impact on the specificity and accuracy criteria

and has improved the efficiency of the KNN algorithm by

0.07 and 0.15, respectively.

In addition to the performance evaluation criteria

presented in Table I, the ROC curve is plotted for each of the

ML algorithms used in this study. Figure 8 shows the ROC

curves. In the ROC curve, the best classification

performance will occur at the point with coordinates (0, 1),

where we have the lowest error rate and the highest

sensitivity rate. This point represents the perfect

classification. As shown in Figure 8, the ROC curve is the

best for the KNN algorithm because the curve is close to 1.

Figure 4. The mean rank of ML algorithms based on the Friedman test (without preprocessing)

Table 4. Performance evaluation results with preprocessing

Model Precision Recall Specificity F-score Accuracy

Decision tree (C4.5) 0.941 0.791 0.961 0.863 0.858

Random forest 0.895 0.881 0.986 0.903 0.888

SVM 0.743 0.792 0.921 0.767 0.821

Logistic regression 0.768 0.763 0.954 0.776 0.938

MLP 0.905 0.839 0.947 0.858 0.896

KNN 0.942 0.903 0.982 0.922 0.971

Fuzzy Rules 0.790 0.916 0.978 0.848 0.965

64 Soodeh Hosseini et. al.: The impact of preprocessing...

Figure 5. Comparison of performance measure of ML algorithms (with preprocessing)

Figure 6. The mean rank of ML algorithms based on the Friedman test (with preprocessing)

Figure 7. The performance metrics for K-NN before and after pre-processing

0

0.2

0.4

0.6

0.8

1

1.2

Decision tree

(C4.5)

Random

forest

SVMLogistic

regression

MLPKNNFuzzy Rules

Precision Recall Specificity F-measure Accuracy

0

0.2

0.4

0.6

0.8

1

1.2

PrecisionRecallSpecificityF-measureAccuracy

with preprocessing without preprocessing

Journal of Computer and Knowledge Engineering, Vol.5, No.2. 2019. 65

Random forest

Decision tree(C4.5)

KNN

MLP

Fuzzy rules

SVM

Figure 8. ROC curve for ML algorithms

6. Conclusion and future studies

COVID-19 is a viral disease that was declared an

international public health emergency by the World Health

Organization (WHO). The increase in mortality due to

COVID-19 disease caused concerns among countries and

economic, social, and educational problems. Early diagnosis

of mortality from Covid-19 helps physicians to easily make

clinical decisions as well as reduce diagnostic errors. In this

study, different machine learning classification algorithms

were tested on COVID-19 data to predict the death of

infected patients and compared them based on different

performance criteria. To increase the performance of these

algorithms, the data were preprocessed before the

experiment. The experimental results showed that the KNN

algorithm is more efficient than other algorithms. In the

future, we should use other feature selection methods to

reduce data volume and increase the efficiency of

classification algorithms.

7. References

[1] Coronavirus Cases:

https://www.worldometers.info/coronavirus/, accessed:

2020-04-10.

[2] Liu, Q., Guan, X., Wu, P., Wang, X., Zhou, L., and

Tong, Y., "Early transmission dynamics in Wuhan,

China, of novel coronavirus-infected pneumonia", New

Journal of Medicine, 2020.

[3] Jiang, F., Deng, L., Zhang, L., Cai, Y., Cheung, C. W.,

and Xia, Z., "Review of the clinical characteristics of

coronavirus disease 2019 (COVID-19)", Journal of

General Internal Medicine, Vol. 6, pp. 1-5, 2020.

[4] Wu, Z., and McGoogan, J. M., "Characteristics of and

important lessons from the coronavirus disease 2019

(COVID-19) outbreak in China: summary of a report of

72314 cases from the Chinese Center for Disease

Control and Prevention", 2020.

[5] Turing, A. M., "Computing machinery and

intelligence", In Parsing the turing test: Springer, pp.

23-65, 2009.

[6] Briganti, G., and Le Moine, O., "Artificial Intelligence

in Medicine: Today and Tomorrow", Perspective, Vol.

7, No. 27, pp. 1-27. 2020.
[7] Omidian, Z., Hadianfard, A., "The study of clinical

decision support systems role in health care (1980-

2010)", Jundishapur J Health Res, Vol. 2, No. 3, pp. 1–

13, 2011.

[8] Paydar, K., Kalhori, S. R., Akbarian M, M., "A clinical

decision support system for prediction of pregnancy

outcome in pregnant women with systemic lupus

erythematosus", Int J Med Inform, No. 97, pp. 239–246,

2017.

[9] Sadoughi, F., Sheikhtaheri, A., "Applications of

artificial intelligence in clinical decision making:

opportunities and challenges", Health Information

Management, Vol. 8, No.19, pp. 440–5, 2011.

[10] Tuli, S., Tuli, S., Tuli, R., and Gill, S. S., "Predicting the

growth and trend of COVID-19 pandemic using

66 Soodeh Hosseini et. al.: The impact of preprocessing...

machine learning and cloud computing", Internet of

Things, Vol. 11, pp. 100222, 2020.

[11] Sun, L., Song, F., Shi, N., "Combination of four clinical

indicators predicts the severe/critical symptom of

patients infected COVID-19", Journal of Clinical

Virology, Vol. 128, pp. 104431, 2020.

[12] Aljameel, S. S., Khan, I. U., Aslam, N., Aljabri, M., and

Alsulmi, E. S., "Machine Learning-Based Model to

Predict the Disease Severity and Outcome in COVID-

19 Patients", Journal of Scientific Programming, Vol.

21, 2021.

[13] Muhammad, L., Islam, M. M., Usman, S. S., and Ayon,

S. I., "Predictive data mining models for novel

coronavirus (COVID-19) infected patients’ recovery",

Journal of SN Computer Science, Vol. 1, No. 4, pp. 1-

7, 2020.

[14] Kononenko, I., "Overcoming the myopia of inductive

learning algorithms with RELIEFF", Applied

Intelligence, Vol. 7, No. 1, pp. 39-55, 1997.

[15] Silva, P., Luz, E., Silva, G., Moreira, G., Silva, R.,

Lucio, D., Menotti, D., "COVID-19 detection in CT

images with deep learning: A voting-based scheme and

cross-datasets analysis", Informatics in Medicine

Unlocked, Vol. 20, pp. 100-127, 2020.

[16] Nikooghadam, M., Ghazikhani, A., Saeedi, M.,

"COVID-19 Prediction Classifier Model Using Hybrid

Algorithms in Data Mining ", International Journal of

Pediatrics, Vol. 9, No. 1, 2021.

[17] Moulaei, K., Ghasemian, F., Bahaadinbeigy, K., Sarbi,

R. E., Taghiabad, Z. M., and Engineering, "Predicting

mortality of COVID-19 patients based on data mining

techniques", Journal of Biomedical Phys Eng, Vol. 11,

No. 5, pp. 653, 2021.

[18] Paydar, K., Kalhori, S. R., Akbarian M, M., "A clinical

decision support system for prediction of pregnancy

outcome in pregnant women with systemic lupus

erythematosus", Int J Med Inform, No. 97, 2017.

[19] Han, J., Pei, J., Kamber, M., "Data mining: concepts

and techniques", Elsevier; 2011.

[20] Olson, D. L., "Data set balancing", In Chinese Academy

of Sciences Symposium on Data Mining and Knowledge

Management, pp. 71-80, 2004.

[21] Bowyer, KW., Hall, LO., "SMOTE: synthetic minority

over-sampling technique", J Artif Intell Res, Vol. 16,

pp. 321–57, 2002.

[22] Douzas, G., Bacao, F., Last, F., "Improving imbalanced

learning through a heuristic oversampling method

based on k-means and SMOTE", Inf Sci, Vol. 465, pp.

1-20, 2018.

[23] Al Shalabi, L., and Shaaban, Z., "Normalization as a

preprocessing engine for data mining and the approach

of preference matrix", In 2006 International conference

on dependability of computer systems, pp. 207-214,

2006.

[24] Saranya, C., Manikandan, G., "A study on

normalization techniques for privacy preserving data

mining", Journal of Engineering and Technology, Vol.

5, No. 3, pp. 2701-2704, 2013.

[25] Quinlan, J. R., "Simplifying decision

trees", International Journal of Man-Machine Studies,

No. 27, Vol. 3, pp. 221–234, 1987.

[26] Brunello, A., Marzano, E., Montanari, A., "Sciavicco,

G. J48ss: A novel decision tree approach for the

handling of sequential and time-series data",

Computers, Vol. 8, No. 1, 2019.

[27] Wu, X., Kumar, V., Quinlan, JR., Ghosh J, J., Yang, Q.,

Motoda, H., "Top 10 algorithms in data mining", Knowl

Inf Syst, Vol. 14, pp. 1-37, 2008.

[28] Ozçift, A., "Random forests ensemble classifier trained

with data resampling strategy to improve cardiac

arrhythmia diagnosis", Comput Biol Med, Vol. 41, pp.

265-71, 2011.

[29] Cortes, C., Vladimir, N., "Support-vector

networks", Machine Learning, Vol. 20, No. 3, pp. 273–

297, 1995.

[30] David, W., Lemeshow, S., "Applied Logistic

Regression (2nd ed.)", Wiley. 2000.

[31] Yuan, J., Douzal-Chouakria, A., Yazdi, S. V., Wang, Z.,

"A large margin time series nearest neighbor

classification under locally weighted time warps",

Knowl. Inform. Syst, Vol. 59, No. 1, pp. 117–135, 2019.

[32] Cho, YB., Farrokhkish, M., Norrlinger, B., Heaton, R.,

Jaffray D, D., Islam, M., "An artificial neural network

to model response of a radiotherapy beam monitoring

system", Med Phys. Vol. 47, 2020.

[33] Yager, R. R., Zadeh, L. A., "An Introduction to Fuzzy

Logic Applications in Intelligent Systems", Kluwer

Academic, Dordrecht. 1992.

[34] Bardossy, A., Duckstein, L., "Fuzzy Rule-Based

Modeling with Application to Geophysical", Biological

and Engineering Systems, CRC, Boca Raton. 1995.

[35] Zhu, W., Zeng, N., Wang, N., "Sensitivity, specificity,

accuracy, associated confidence interval and ROC

analysis with practical SAS implementations", NESUG

proceedings: health care and life sciences, Baltimore,

Maryland , Vol. 19, pp. 67, 2010.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.4740&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.4740&rep=rep1&type=pdf
https://en.wikipedia.org/wiki/Corinna_Cortes
http://image.diku.dk/imagecanon/material/cortes_vapnik95.pdf
http://image.diku.dk/imagecanon/material/cortes_vapnik95.pdf
https://en.wikipedia.org/wiki/Machine_Learning_(journal)

	1-1
	00jeld-1
	CKE Content2
	JCKE(2022-11-10) - 1-Rohani-Revised1
	JCKE(2022-11-10) - 2-Haghani-Revised (1)
	JCKE(2022-11-10) - 3-Radnejad-Revised_11_22(1)
	JCKE(2022-11-10) - 4-Jafari-Revised-Final
	JCKE(2022-11-10) - 5-Adabi-Revised-Revised
	JCKE(2022-11-10) - 6-Hosseini-Revised (4)
	1-2

