

Journal of

COMPUTER AND KNOWLEDGE

ENGINEERING
Ferdowsi University of Mashhad ISSN:5238-5453

General Director: S. A. Hosseini Seno

Editor- in-Chief: M. Naghibzadeh

Publisher: Ferdowsi University of Mashhad

Editorial Board:
Mahmoud Naghibzadeh Professor Ferdowsi University of Mashhad, Iran

Mohammad H Yaghmaee-Moghaddam Professor Ferdowsi University of Mashhad, Iran

Dick H Epema Professor Delft Technical University, the Netherlands

Rahmat Budiarto Professor University Utara Malaysia, Malaysia

Mohsen Kahani Professor Ferdowsi University of Mashhad, Iran

Mohammad R Akbarzadeh-Tootoonchi Professor Ferdowsi University of Mashhad, Iran

Madjid Fathi Professor University of Siegen, Germany

Hossein Nezamabadi-pour Professor Bahonar University of Kerman, Iran

Ahmad Ghafarian Professor University of North Georgia, USA

Seyed Amin Hosseini Seno Associate Professor Ferdowsi University of Mashhad, Iran

Hossein Deldari Associate Professor Ferdowsi University of Mashhad, Iran

Hadi Sadoghi-Yazdi Associate Professor Ferdowsi University of Mashhad, Iran

Hamid Reza Pourreza Associate Professor Ferdowsi University of Mashhad, Iran

Reza Monsefi Associate Professor Ferdowsi University of Mashhad, Iran

Abedin Vahedian-Mazloum Associate Professor Ferdowsi University of Mashhad, Iran

Ebrahim Bagheri Associate Professor Ryerson University, Canada

Hossein Asadi Associate Professor Sharif University of Technology, Iran

Mahdi Kargahi Associate Professor University of Tehran, Iran

Hamid Reza Ekbia Associate Professor Indiana University, USA

Seyed Hassan Mirian Hosseinabadi Associate Professor Sharif University of Technology, Iran

Abbas Ghaemi Bafghi Associate Professor Ferdowsi University of Mashhad, Iran

Farhad Mahdipour Associate Professor Kyushu University, Japan

 Administrative Director: T. Hooshmand

Journal of Computer and Knowledge Engineering

Faculty of Engineering, Ferdowsi University of Mashhad

P. O. Box. 91775-1111, Mashhad, I.R. IRAN

Tel: +98 51 38806024, Fax: +98 51 38763301, Email: ejour@um.ac.ir, Site: cke.um.ac.ir

mailto:ejour@um.ac.ir
file:///C:/Users/user/AppData/Local/Temp/cke.um.ac.ir

CONTENTS

Migration Management in Sensor-Cloud
Networks

 Farahnaz Farazestanian
Seyed Amin Hosseini Seno

1

Particle Filter based Target Tracking in
Wireless Sensor Networks using Support
Vector Machine

 Ahmad Namazi Nik
Abbas Ali Rezaee

13

A Transmission Method to Guarantee QoS
Parameters in Wireless Sensor Networks

 Maryam Kordlar
Gholamhossein Ekbatanifard
Ahad Jahangiry
Ramin Ahmadi

21

A Novel Routing Algorithm for Mobile
ad-hoc Networks Based on Q-learning and
its Generalization to FSR Routing Protocol

 Mahmoud Alilou
Abdolreza Hatamlou

27

STAR: Improved Algorithm based on
Sliding Window for Trust-Aware Routing
in WSNs

 Mouhebeh Sadat Katebi
Hassan Shakeri
Farzad Tashtarian

33

Modeling Intra-label Dynamics and
Analyzing the Role of Blank in
Connectionist Temporal Classification

 Ashkan Sadeghi Lotfabadi
Kamaledin Ghiasi-Shirazi
Ahad Harati

47

Journal of Computer and Knowledge Engineering, Vol. 1, No.2. 2017.

DOI: 10.22067/cke.v1i2.57729

Migration Management in Sensor-Cloud Networks

Farahnaz Farazestanian Seyed Amin Hosseini Seno


Abstract: Placement of virtual sensors in servers of cloud
environment is one of the most important issues in resource
management of sensor-cloud networks. Virtual sensors
allocate resources of cloud servers to themselves, run
different applications and use equivalent physical sensors.
Selecting an appropriate method for placement of virtual
sensors on cloud servers has a significant impact on resource
management and energy consumption. Also, because of the
real-time requirements of sensor-cloud networks, traffic-
aware placement is necessary to minimize delay in a network
and respond to user requests in the shortest possible time. A
new method for traffic-aware placement and migration of
virtual sensors in sensor-cloud networks is proposed using
the unique characteristics of sensor-cloud networks such as
grouping virtual sensors and sharing them among different
applications. This approach tries to meet the needs of users
and the quality of service expected by the applications. Also,
the resources of cloud servers are managed properly in this
approach. The results of simulation show an optimization in
energy consumption and also a reduction in traffic costs and
reduction in service level agreement violation.

Keywords: Sensor-cloud networks, virtual sensors, resource
management, migration, energy consumption, traffic.

1. Introduction
Sensor-cloud networks are proposed to overcome limitations
of sensor networks and provide new services for users as a
new generation of cloud computing. These networks benefit
from cloud infrastructure for sharing physical sensors among
different users. Also, some problems of sensor networks
such as the limitation of data storage and the processing of
data are eliminated [1-3].

Sharing physical sensors among different applications is
performed by virtual sensors. Each virtual sensor is a
software sensor, which is created as an intermediary for the
connection between physical sensors and applications [4, 5].
Each virtual sensor is related to one or several physical
sensors that can aggregate their data and perform some
calculations on them. Virtual sensors can communicate with
each other and form a virtual sensor group. It is also possible
to share virtual sensors between different applications [6].
Virtual sensors allocate resources of cloud servers to
themselves, including CPU, memory, storage, and
bandwidth. They can respond to various requests of users.
Virtualization technology enables the creation of virtual
sensors in virtual machines of cloud servers. This technology
uses different placement methods of virtual machines to
manage allocation of cloud server’s resources.

Manuscript received July 24 , 2016; accepted. November 6, 2017.

F. Farazestanian, Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran, fa.farazestanian@stu.um.ac.ir.

*S. A. Hosseini Seno, Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran, hosseini@um.ac.ir.

A review of existing literature in the field of sensor-cloud
networks shows that the placement of virtual sensors on
cloud servers has been neglected by the designers of these
networks. In the available approaches, there is no mention of
the impact of migration on meeting real-time needs of these
networks. So, it seems that a new approach for migrating
virtual sensors can have a significant impact on energy
saving and network traffic and also meeting the quality of
service expected by the applications.

2. Background
One of the challenging issues in data centers of clouds is the
placement of virtual machines in cloud servers. Many
approaches have been proposed to solve this problem. These
approaches are meant to meet different objectives, such as
increasing the efficiency of server resources, reduce energy
consumption, reduce network traffic, or meet the quality of
service (QoS) expected by the applications. However, it
seems that this issue has not been addressed yet in sensor-
cloud networks, and no method has been presented for
optimization of this problem. What has been stated in sensor-
cloud networks is a general case of creating virtual sensors
on cloud servers [6]. In this case, after receiving requests of
(from) users for using a special physical sensor, the sensor-
cloud infrastructure retrieves the related template of that
physical sensor from the repository. Then, it tries to provide
the virtual sensor on the existing server. If the existing server
is not capable of meeting the resource requirements of the
virtual sensor, a new server is selected. In this paper, virtual
sensor placement is not considered as an optimization
problem, and there is no preference for selecting servers
running virtual sensors. Also, in other research studies such
as M. Yuriyama’s work [3], general methods have been used
and virtual sensor placement is not an independent issue.
Therefore, the allocation of virtual machines in the cloud
environment are studied in order to present a new method for
placement of virtual sensors on sensor-cloud networks.

One of the proposed solutions for the virtual machine
placement problem in a cloud environment is considering the
available resources and capacities on cloud servers. Power
consumption in the data center is related to processor,
memory, storage and network interface. Among these, the
processor has the highest proportion of power consumption.
Therefore, optimizing the utilization of the processor is an
important factor in the virtual machine placement problem
[7]. The capacity limitations of the resources that are
mentioned as server constraints, means that total resources
allocated to all virtual machines running on a server cannot
be more than the total capacity of that server [8, 9]. If the

http://dx.doi.org/10.22067/cke.v1i2.57729
mailto:hosseini@um.ac.ir

2 F. Farazestanian et.al: Migration Management in Sensor-Cloud Networks

constraints on a server are not met and the needed resources
are not fully allocated to virtual sensors, virtual machine
performance may be affected, and the expected quality of
service is not achieved.

Migration that is one of the technologies in the cloud
environment is the solution for distributing workloads on
cloud servers. It helps avoid overloading the servers to
maintain proper performance. Live migration of virtual
machines is used to move virtual machines from one server
to another during the running time and to respond to their
workload changes [10, 11]. Xen is a virtual machine monitor
(VMM) that manages and monitors the migrations of virtual
machines on data centers [12]. This VMM is used in the
simulation of the proposed algorithm as the hypervisor in
cloud servers.

In multi-tier applications where each part of the
application is executed on a separate virtual machine,
dependencies between virtual machines are considered as an
optimization parameter, which can lead to traffic on the
network [8]. The algorithm in [13, 14] aims to migrate virtual
machines so that network traffic is minimized and server-
side constraints are satisfied. This algorithm considers a
dependency graph between dependent virtual machines. The
cost of migration is calculated as a function of traffic demand
between each pair of dependent virtual machines and the
distance between them. Distance is defined as the latency,
delay or number of hops between each pair.

D. S. Dias et al. [15] have considered traffic dependencies
between virtual machines. The algorithm tries to find
dependent virtual machines by using the concept of graph
community. In this method, virtual machines are considered
as nodes of a graph and the dependencies between them are
depicted by edges. The edge weight is used to determine the
degree of relationship between a virtual machine and other
virtual machines. This weight shows the level of traffic
between each pair of virtual machines. Thus, with more
dependency between virtual machines, a greater weight will
be expected. After creating traffic matrix and identifying
virtual machine communities [16], each community must be
placed in one section of the servers called racks. Each rack
contains a number of servers which are connected to one
switch. The purpose is to place dependent virtual machines
as close as possible to each other. The solution of this
problem involves the amount of CPU and memory required
by each community and the available resources in each rack.
This problem is defined as a bin packing problem. H. T. Vu
et Al. in [17] have tried to simultaneously reduce network
traffic and energy consumption and increase the utilization
of the processor by developing this algorithm. In this
method, a tree is created such that in its lowest level,
dependent virtual machines are placed as sibling nodes after
finding dependent virtual machines. The host of the node
which is selected for migration may be under-utilized or
over-utilized. According to this, the destination is the host
where the increase of energy consumption is minimum. Also
the total distance between the destination host and dependent
virtual machines should be minimum.

One of the proposed methods for making decisions about
the start time of a migration is using thresholds according to
CPU utilization. In the double-threshold method, the amount
of CPU utilization is bounded between the upper and lower
thresholds. Exceeding these amounts will force the server to
execute migration [7]. If CPU utilization violates the low

threshold, all the virtual machines on the server are forced to
migrate and then the server will shut down. Also, if the CPU
utilization exceeds the high threshold, the server should
select one virtual machine for migration. Migrating the
virtual machine will cause reduction in the CPU’s workload.
Consequently performance of the applications will also be
managed in addition to reduction in energy consumption.
Since the workload of applications is continuously changing,
the CPU utilization also has continuous changes over time.
So, the placement of virtual machines must be constantly
optimized. Several heuristic algorithms have been proposed
by A. Beloglazov et al. [18] with the ability to adapt to these
changes. These algorithms are designed to optimize power
consumption, but they do not consider traffic dependencies
between virtual machines. In the method proposed in this
study, these algorithms are used to select a virtual machine
for migration.

Consolidation of virtual machines on a single server is also
considered in some papers. Inappropriate consolidation of
heterogeneous virtual machines on cloud servers will not
only affects computing performance of applications, but it
also reduces energy efficiency resulting in more energy
waste [19]. Drop in efficiency also leads to violation of
service level agreement (SLA). Placing one virtual machine
on different servers can cause different energy efficiency
levels due to the unique characteristics of the virtual
machine. Because of the different effects of consolidations
of virtual machines on a single server, implementing virtual
machines to servers will have more complexity. Due to the
characteristics of consolidated virtual machines, power
consumption and overall efficiency will change. This is
because of internal conflicts among consolidated virtual
machines, such as cache contentions, conflicts at functional
units of the CPU, disk scheduling conflicts, and network
transfer conflicts. M. F. H. Bhuiyan et al. [20] have shown
that a blind consolidation of virtual machines on a server will
lead to reduced power consumption and energy loss. The
idea of the researchers in [21] is placing virtual machines
with the same dominant resources on different servers at the
best effort. In this case, the resource competition between
different virtual machines on the same server is significantly
reduced. At the initial placement of virtual machines on
servers, virtual machines are classified according to the
dominant resource consumption. Then they are arranged in
descending order according to their priorities. In each
category, the virtual machine with the highest priority is
assigned to the server with the greatest resource available of
the category’s type. Since the migration of virtual machines
reduces efficiency, the machine that has a lower priority will
be selected for migration.

In the placement of virtual machines in the cloud
environment and the methods in the field of network traffic
in the cloud, it is seen that the network traffic is considered
between virtual machines and relevant applications or data
transfer between data centers and cloud servers. However, in
sensor-cloud networks the traffic can occur because of the
characteristics of the network. The possibility of creating
virtual sensors and virtual sensor groups has many benefits
and simultaneously, the availability of new features for users
of sensor-cloud networks, may cause unwanted effects on the
performance of the network. When virtual sensors
participate in a virtual sensor group, data communication
among the members of that group will happen. According to

Journal of Computer and Knowledge Engineering, Vol. 1, No.2. 2017. 3

the data collection rate of the associated physical sensors, the
traffic load among the group members may change. In
addition, if the locations of the servers of a group are far from
each other, traffic between the servers will be imposed on
network and traffic overhead can ensue. As a result, it may
fail in responding to user requests and sending data to the
applications. On the other hand, sharing virtual sensors
between different applications will add the number of virtual
sensor groups continuously, which increases the importance
of this issue.

Energy consumption by servers of the cloud is also a
significant problem. Many factors that should be considered
can affect this and a suitable approach to optimize the energy
consumption should be adopted. Placement of virtual sensors
on cloud servers, as well as how to choose the host servers
can be one of the factors. Also, using virtualization in cloud
environments offers another feature called migration that can
be used to perform this optimization.

Another challenging issue in cloud environments is
resource management. Distribution of virtual machines on
the cloud servers is one of the most complex issues in recent
years, and various methods have been proposed to solve it.
Meeting the quality of service expected by the applications
depends on efficient allocation of resources needed by them
in the running time. It has a significant impact on the quality
of applications. Also, an inappropriate combination of virtual
machines on a server can cause resource competition and
reduce server performance. Because different combinations
of virtual machines on a server have a great impact on energy
consumption, the homogeneity of virtual machines on a
server should be also considered in the placement process.

The main objective of the proposed method is introducing
a traffic-aware algorithm for placement of virtual sensors by
using live migration of virtual machines to distribute the
workload. This is more important because of the grouping
feature of virtual sensors. Resource management is taken
into consideration with regard to energy efficiency. This
approach should provide acceptable performance and hence
it is expected that a service level agreement shall be fulfilled.

3. The proposed method
The method proposed for traffic-aware migration of virtual
sensors in sensor-cloud networks in this study is looking for
a suitable destination for migration. In this method, the
virtual sensors are classified based on their dominant usage
of resources, including processor, memory, and network
bandwidth. When finding a suitable destination for
migration, virtual sensors with the same dominant resource
usage are distributed on different servers. Moreover, the
destination of migration during a replacement of virtual
sensors is selected according to virtual sensor groups. In this
case, the destination server is selected as close as possible to
the servers of dependent virtual sensors. Also, the destination
server is selected based on the minimum energy increase
after the placement. Assumptions necessary for the
implementation of this method are described in section 4.1
and details of this method are explained in Section 4.2.

3-1. Assumptions and Limitations
In the proposed method, we assume that each physical sensor
is associated with the cloud via the related virtual sensor.
Each virtual sensor is running on a virtual machine on cloud
servers. In this method, host servers of applications and host

servers of virtual sensors are considered to be separate. The
proposed algorithm tries to find an optimized allocation of
virtual sensors on cloud servers and does not take into
account the allocation of applications.

The proposed allocation method is designed by
considering the two main characteristics of sensor-cloud
networks. These features include the ability to create virtual
sensor groups and meeting the needs of real-time data.
Different types of data communication between the physical
and virtual sensors are based on S. Madria’s research [22,
23], including one-to-one, one-to-many and many-to-many
communication between physical and virtual sensors. Based
on the possibility of grouping virtual sensors, data
communication and dependencies between virtual sensors of
a group are used as parameters in the proposed method [6].
It is assumed that the virtual sensors will have no data
communication with each other, except in the case of
placement in a virtual sensor group.

In the proposed method, the data required by different
applications are considered only in real-time situations, and
the data stored in the data centers are not considered. Real-
time requirements include traffic control to minimize the
response time to the applications.

The initial placement of virtual sensors is based on M.
Yuriyama’s work [6]. When a client request is sent to the
cloud environment for using a special physical sensor, the
user will be assigned to that virtual sensor if a virtual sensor
has already been created for that physical sensor. Otherwise,
sensor-cloud infrastructure tries to create a new virtual
sensor for each physical sensor based on predefined
templates. To this, server resources should be reserved for
the virtual machine which is running the virtual sensor. In
this method, only three resource centers that include CPU,
memory, and network bandwidth are exploited for each
virtual sensor.

Each virtual sensor may dominantly benefit from one of
the available resource centers. For example, a virtual sensor
in a group may mostly need the processor to perform data
integration and necessary calculations. Also, the virtual
sensor whose equivalent physical sensor samples high
volume data from the environment (e.g. video data) may
need more memory. Physical sensors with a high sampling
rate can also be an example of equivalent virtual sensors that
are using a lot of bandwidth. Each virtual sensor is placed in
one of the groups of dominant processor, memory, or
network consumption, according to its dominant resource
consumption. This classification can be obtained by
monitoring the resource usage of virtual machines on a
server [21]. According to the description of virtual sensor in
S. Kabadayi’s work [4, 5], the data type and sampling rate
are determined by the user at the time of creating a new
virtual sensor. These two parameters can also be used in the
classification.

3-2. Migration of virtual machines
For optimization of the network status, cloud servers must
use migration algorithms. Each migration algorithm should
answer two questions: 1) which server should perform
migration? And which virtual sensor should be migrated? In
addition, 2) which server will be the destination of the
migration? The main objective of the proposed algorithm
here is to answer the second question. To address the first

4 F. Farazestanian et.al: Migration Management in Sensor-Cloud Networks

question, the algorithms presented by A. Beloglazov et el.
[18] are used.

3-2-1. Selecting server and a virtual machine for migration
An important factor that affects the efficiency offered by
cloud servers is the workload of virtual machines running on
them. Among server resources, the CPU has the most
significant impact on the performance of the virtual
machines. If the workload on a server exceeds its acceptable
level, the server will not be able to meet the needs of virtual
machines and virtual machines will lose their quality. On the
other hand, if the workload is too low on the server, the
server resources will be wasted. This causes energy loss. So,
optimizing CPU usage level is very important and effective,
in this regard.

There are two general approaches to identify overloaded
hosts: 1) Adaptive utilization threshold based algorithm, 2)
non-threshold based algorithm. After detection of
overloaded hosts, the virtual machine for migration should
be selected. A number of algorithms for detecting overloaded
servers and selecting the appropriate virtual machine for
migration are proposed by A. Beloglazov et al. [18]. These
algorithms belong to the second category. Based on the
results of the simulations and evaluations that have been
done in this current work, the LrMmt algorithm has the best
result in energy savings and SLA. This algorithm includes
two local regression algorithms (Lr), one used to select the
overloaded host and another to calculate the minimum
migration time (Mmt) for selecting the virtual machine for
migration. Due to the desirable results produced by this
algorithm, it is used in the proposed method in this study.

To identify under-loaded servers, a simple method is used.
In this way, after finding overloaded servers and migration
destinations, the remaining servers are arranged in order of
CPU utilization and the server with the lowest utilization is
selected. This server tries to migrate all virtual machines
running on it, while the destination servers do not experience
overloading. After migration is complete, the server is set to
switch to sleep mode.

After detecting over loaded and under loaded servers,
virtual machines running virtual sensors are selected for
migration. The destination server of migration is selected
based on the allocation algorithm that will be presented in
the next section. The pseudo code of this method is shown in
Algorithm 1.

3-2-2. Allocation of virtual machines

By selecting the appropriate virtual machine for migration,

the destination server must be determined. To do this, the

available resources of the selected destination server should

meet the resource requirements of the virtual machine which

is being migrated. Resource usage of virtual sensors depends

on the type and amount of data collected by the associated

physical sensor. The virtual sensors are classified based on

their dominant usage of CPU, memory, and the network.

The main part of the proposed method for selecting the

optimal destination considers two issues: the amount of

traffic on the network caused by virtual sensor groups, and

how to consolidate heterogeneous virtual sensors on a single

server. In the following section each of these cases will be

studied separately.

3-2-2-1. Destination host selection based on virtual sensor

groups

The destination server should be selected so that the

dependencies between dependent virtual sensors are

considered and the traffic between them is reduced. Data

communication between virtual sensors only observes in

virtual sensor groups. If the virtual sensors of a group are far

from each other, data transfer between them causes high

traffic overhead on the network. Consequently, when placing

virtual sensors of a group, the distance between them must

be reduced as much as possible. To do this, an algorithm for

detecting dependent virtual sensors is needed.

According to the method presented by H. T. Vu et al. [17],

the traffic between virtual sensors is modeled by a complete

graph. The virtual sensors are vertices and network

communications are edges. Edge weights are the traffic

weight between the virtual sensors. Then, lowest weight

edges are removed recursively and this continues until

dependent virtual sensor groups with the high amount of

traffic remain as a set of isolated sub-graphs. From this graph

a tree structure is created in which sibling nodes at lower

levels are virtual sensors of a group (Figure 1). For selecting

the destination server for migration, if the migrating virtual

sensor has a sibling node in the tree, the location of the server

is chosen such that the total distance of the server to the

servers of dependent virtual sensors is minimum. In other

words, the destination server must be the closest possible

server to the servers of dependent virtual sensors.

Fig 1. A conversion of graph to tree structure [17]

Journal of Computer and Knowledge Engineering, Vol. 1, No.2. 2017. 5

3-2-2-2. Destination host selection based on dominant

resource consumption

As mentioned in Section 2, the consolidation of

heterogeneous virtual machines on the same server has a

high impact on performance and energy consumption.

Replacement should be done such that the virtual sensors

with the same dominant resource consumption are

distributed on different servers as much as possible. In other

words, these virtual sensors should not be placed on the same

server. Consequently, conflicts and competitions for

accessing the resources of servers will be reduced. By

increasing the efficiency of virtual sensors, better service

quality will be provided for applications. To achieve this, the

destination server should be selected in such a way that the

category of the migrating virtual machine’s dominant

consumption is different from the category of virtual

machines’ dominant consumption running on the destination

server.

Moreover, for power management, the destination server

should be selected such that the increase in energy

consumption after the migration is minimum. The pseudo-

code of the proposed allocation algorithm is represented in

Algorithm 2.

4. Evaluation

For simulating the proposed algorithm and evaluating the

energy consumption and traffic, the CloudSim toolkit [24] is

used. It is an open source simulator for cloud computing

environments, and it performs the modeling of virtual

environments, on demand resource management and energy-

aware simulations. Because of the absence of a suitable

simulator for sensor-cloud networks, this tool is used.

The architecture considered for the data center is three-tier

architecture. According to Cisco, today this architecture is

mostly used in data centers in the cloud [25, 26]. Figure 2

illustrates this architecture. In the lowest layer of this

architecture, the hosts are divided into partitions, and each

partition is connected to an edge switch. Data

communication between servers is via edge switches and

data are not transferred to the higher layers. In the middle

layer, each edge switch is connected to one or more

aggregation switches. Then in the top layer, the core switches

are connected to aggregation switches and also communicate

with the rest of the data center. In the simulation of the

proposed algorithm, this architecture is used for the data

center of the cloud environment. The data center in the

proposed data center includes 1 core switch, 3 aggregation

switches, and 5 edge switches. Each edge switch is

connected to 10 servers. Totally, the data center has 150

servers. The number of virtual machines equivalent to virtual

sensors starts from 250 devices and in each round of

simulation 10 devices are added to it. This amount goes up

to 350 devices.

Fig 2. Three tier architecture for data centers [15]

The configuration of servers and virtual machines is

according to the work of A. Beloglazov et al. [18]. The traffic

in the data center is generated using FNSS tool. The run time

of simulation is 20 minutes in each round. According to the

generated traffic in the network, virtual machines are divided

into three categories: CPU intensive, memory intensive, and

network intensive. The servers are divided based on the

number of virtual machines of each category running on

them.

To select the appropriate virtual machine for migration,

the algorithms presented by D. S. Dias et al. [15] are used.

Since server selection and virtual sensors migration are done

randomly in sensor-cloud networks, the random selection

algorithm (LrRs) is used to simulate the migration in sensor-

cloud networks [16]. Based on the results of the algorithms

presented by D. S. Dias et al. [15], the LrMmt is nominated

as the best algorithm for optimizing the energy consumption.

This is combined with the proposed traffic-aware allocation

method and is executed as the ScLrMmt algorithm. The

evaluation parameters include: energy consumption, traffic

costs, SLA violation, and the number of migrations.

4-1. Power consumption model

The main power consuming devices in data centers are

processors, memory, hard disk, power generators and

cooling systems. Recent studies [20] have shown that there

is a linear relationship between the power consumption of

servers and processor efficiency. Because of the complexity

of power consumption modeling, especially in the new

multi-core processors, instead of using an analytical model

for the power consumption of the servers, the actual data

released by the SPECpower benchmark is used for

evaluating the power consumption level of servers.

The power consumption of the two servers, HP ProLiant

G4 (http://www.spec.org/power_ssj2008/results/res2011q1

/power_ssj2008-20110124-00338.html) and HP ProLiant

G5 (http://www.spec.org/power_ssj2008/results/res2011q1/

power_ssj2008-20110124-00339.html), based on the

percentage of CPU utilization is shown in the Table 1. These

two types of servers are used in the simulation here.

6 F. Farazestanian et.al: Migration Management in Sensor-Cloud Networks

Table 1. Power consumption of servers based on CPU utilization

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% CPU Utilization

117 114 112 108 106 102 99.5 96 92.6 89.4 86
HP ProLiant G4

Power Consumption (Watts)

135 133 129 125 121 116 110 105 101 97 93.7
HP ProLiant G4

Power Consumption (Watts)

Fig 3. Average CPU utilization of servers

4-2. SLA Violation
Meeting QoS parameters is one of the most important issues
in cloud environments. Requirements of quality of service
are usually formulated as service level agreements and based
on the characteristics like minimum throughput or maximum
response time. Because in sensor-cloud networks, different
applications use virtual sensors at the same time, SLA
parameters must be defined independently from applications
and their workloads. In assessment of the newly presented
algorithm, SLA is calculated according to the P. Barham et
al. proposed algorithm [18]. Thereby, the two parameters
SLATAH and PDM are calculated first. Then, the following
relationship is used to measure the service level agreement
violation (SLAV) by combining these two parameters as
follows:

SLAV=SLATAH . PDM

4-3. Simulation results
To evaluate the results of the proposed algorithm
(SCLrMmt) and comparing it with the basic algorithm
(LrRs), initially the impact of these algorithms on CPU
utilization of cloud servers will be discussed. Among all the

resource centers on a server, the CPU has a significant share
of power consumption [18]. There is a direct relationship
between CPU utilization and energy; i.e. a higher CPU
utilization level causes more energy consumption. In
addition, an increase in utilization leads to an increase in
SLA violation since in higher utilization levels, virtual
machine’s access to the server processor will be restricted
and competition for access will ensue. On the other hand, the
power consumption of an idle server is about 70% of its
power consumption in full usage state [27, 28]. Therefore, a
suitable CPU utilization level is always desirable.

To check the CPU utilization of servers in both
algorithms, simulations were run for 20 minutes with 150
servers and 350 virtual machines. The average of CPU
utilization of servers during 12 rounds of simulation is
illustrated in Figure 3. The proposed algorithm keeps the
CPU utilization at a more appropriate level in comparison
with the base algorithm. The average value of CPU
utilization with the proposed algorithm was 27% while it was
25% for the base algorithm.

Figure 4 illustrates CPU utilization level at the end of the

simulation. The average CPU utilization at this stage is about

46% in both algorithms. Although this amount is

approximately equal in both algorithms, the proposed

Journal of Computer and Knowledge Engineering, Vol. 1, No.2. 2017. 7

algorithm has tried to change the number of idle servers to

off situation in order to reduce energy consumption. In the

proposed algorithm about 50 servers have switched to off

status during the simulation. This amount is about 20 in the

base algorithm.

With changing the status of the servers, the virtual

machines are forced to migrate and the new destination is

selected based on the SCLrMmt algorithm. Initially, as is

shown in Figure 5, the number of migrations (~320) is almost

the same for both algorithms.
By increasing the number of virtual machines from 320,

the SCLrMmt algorithm tries to turn off the idle servers and

reduce their energy consumption. As a result, the number of

migrations goes up to 390. While in the LrRs algorithm about

340 migrations are performed.

The comparison of energy consumption in the two
algorithms is illustrated in Figure 6. As the number of virtual
machines on the servers increases during the simulation, the
energy consumption of servers also increases. Although the
rate of increase in energy is almost the same in both
algorithms, energy consumption in the case of using the
proposed algorithm is lower. The SCLrMmt algorithm has
about 7% more energy savings in comparison to the LrRs
algorithm. This reduction in energy consumption is due to
the shutdown of the idle servers and hence the resulting CPU
usage optimization. Also, the appropriate placement of
virtual sensors affects proper energy consumption.

Fig 4. CPU utilization of servers at the end of simulation

Fig 5. Number of migrations

8 F. Farazestanian et.al: Migration Management in Sensor-Cloud Networks

Fig 6. Energy consumption

Fig 7. Traffic costs

Fig 8. SLATAH comparison

Journal of Computer and Knowledge Engineering, Vol. 1, No.2. 2017. 9

Fig 9. PDM comparison

Fig 10. SLA violation

The traffic cost which is calculated based on the traffic

between each pair of virtual sensors and the distance between

them is compared for the algorithms in Figure 7. About 23%

reduction in traffic cost is seen in the SCLrMmt algorithm.

This is because the placement of virtual sensor groups are

considered for choosing the destination of migration in order

to minimizes the distance between the members of the

groups. This type of placement results in reduction in traffic

load and hence it lowers the cost.

The result of SLA violation for SCLrMmt and LrRs

algorithm based on the two parameters SLATAH and PDM

are illustrated separately in Figures 8 and 9. Subsequently,

these two parameters are combined and SLA violation is

calculated. Reduction in SLA violation is clearly visible in

the proposed algorithm as shown in Figure 10.

5. Conclusion and future works

In this paper, a new approach for migration and reallocation

of virtual sensors in sensor-cloud networks is proposed. By

selecting the appropriate destination for migration, the

proposed algorithm reduces the energy consumption in cloud

servers. This method is based on minimization of the

distance between the virtual sensor groups. It reduces the

traffic overhead on the network and meets the real-time

requirements of users. Reducing network traffic results in

reducing violation of service level agreement. As a result, the

desired quality of service is provided for applications. The

results of the simulation of the proposed algorithm confirm

improvements in energy efficiency, and decrease in traffic

cost and SLA.

Since the main idea of the proposed algorithm for

migration of virtual sensors is given from the migration of

virtual machines in the cloud environment, there are

similarities between them. Although in the new algorithm

some special properties of sensor-cloud networks, such as

the possibility of grouping and sharing virtual sensor groups

are used, involving other parameters that are specific for

sensor-cloud networks can clearly distinguish between cloud

algorithms and sensor-cloud algorithms. Also, designing a

tool that can simulate sensor-cloud networks influences the

presentation of new algorithms. For example, just one virtual

sensor is allocated to each virtual machine due to the lack of

10 F. Farazestanian et.al: Migration Management in Sensor-Cloud Networks

an appropriate simulator for sensor-cloud networks, while

allocation of virtual sensors to a virtual machine can be a new

idea in designing new algorithms. In the proposed algorithm,

the parameters that decide on the start time of a migration are

the overhead on servers and CPU utilization. Other factors

such as the amount of memory can also have an effect on the

occurrence of migration.

Future work on the proposed algorithm is based on the

number of user requests for using one special virtual sensor.

If the number of users of a virtual sensor is too high, it may

cause increased delay in the response time to them. This

situation is not suitable for real-time applications. Another

issue for future work is considering data stored in data

centers. In the proposed algorithm, only real-time data are

considered and there is no control over the data stored in data

centers. Minimizing the distance between virtual sensors and

databases can have a significant impact on network traffic.

Reference

[1] A. Alamri, W. S. Ansari, M. M. Hassan, M. S. Hossain,

A. Alelaiwi, and M. A. Hossain, "A Survey on Sensor-

Cloud: Architecture, Applications, and Approaches",

International Journal of Distributed Sensor Networks,

vol. 2013, p. 18, Art. no. 917923, 2013.

[2] M. Körner, A. Stanik, O. Kao, M. Wallschläger, and

S. Becker, "The ASCETiC Testbed - An Energy

Efficient Cloud Computing Environment", in

Testbeds and Research Infrastructures for the

Development of Networks and Communities: 11th

International Conference, TRIDENTCOM 2016,

Hangzhou, China, June 14-15, 2016, Revised

Selected Papers, S. Guo, G. Wei, Y. Xiang, X. Lin,

and P. Lorenz, Eds. Cham: Springer International

Publishing, pp. 93-102, 2016.

[3] Piraghaj, S. Fotuhi, A. V. Dastjerdi, R. N. Calheiros,

and R. Buyya, A Survey and Taxonomy of Energy

Efficient Resource Management Techniques in

Platform as a Service Cloud. Handbook of Research

on End-to-End Cloud Computing Architecture

Design, 2016.

[4] S. Kabadayi, A. Pridgen, and C. Julien, "Virtual

sensors: Abstracting data from physical sensors", in

In Proceedings of the International Symposium on on

World of Wireless, Mobile and Multimedia Networks,

Buffalo-Niagara Falls, NY, 2006.

[5] S. Bose, N. Mukherjee, and S. Mistry, "Environment

Monitoring in Smart Cities Using Virtual Sensors", in

2016 IEEE 4th International Conference on Future

Internet of Things and Cloud (FiCloud), pp. 399-404,

2016.

[6] M. Yuriyama and T. Kushida, "Sensor-Cloud

Infrastructure - Physical Sensor Management with

Virtualized Sensors on Cloud Computing", presented

at the 13th International Conference on Network-

Based Information Systems, Takayama, 2010.

[7] A. Beloglazov, J. Abawajy, and R. Buyya, "Energy-

aware resource allocation heuristics for efficient

management of data centers for cloud computing",

Future Generation Computer Systems, vol. 28, no. 5,

pp. 755-768, 2012.

[8] D. Huang, D. Yang, H. Zhang, and L. Wu, "Energy-

aware virtual machine placement in data centers",

presented at the Global Communications Conference

(GLOBECOM), Anaheim, CA, 2012.

[9] F. Song, D. Huang, H. zhou, and I. You, "application-

aware virtual machine placement in data centers",

presented at the Sixth International Conference on

Innovative Mobile and Internet Services in

Ubiquitous Computing (IMIS), 2012.

[10] C. Clark et al., "Live migration of virtual machines",

in Proceedings of the 2nd conference on Symposium

on Networked Systems Design & Implementation,

vol. 2, pp. 273-286: USENIX Association, 2005.

[11] U. Deshpande and K. Keahey, "Traffic-sensitive Live

Migration of Virtual Machines", Future Generation

Computer Systems, 2016.

[12] P. Barham et al., "Xen and the Art of Virtualization",

ACM SIGOPS Operating Systems Review, vol. 37, no.

5, pp. 164-177, 2003.

[13] V. Shrivastava, P. Zerfos, K. W. Lee, H. Jamjoom, Y.

H. Liu, and S. Banerjee, "Application-aware virtual

machine migration in data centers", in INFOCOM,

Shanghai, 2011.

[14] T. Chen, X. Gao, and G. Chen, "Optimized Virtual

Machine Placement with Traffic-Aware Balancing in

Data Center Networks", Scientific Programming,

2016.

[15] D. S. Dias and M. K. Costa, "Online traffic-aware

virtual machine placement in data center networks",

presented at the Global Information Infrastructure

and Networking Symposium (GIIS), Choroni, 2012.

[16] J. Liu, J. Guo, and D. Ma, "Traffic Aware Virtual

Machine Packing in Cloud Data Centers", in 2016

IEEE 2nd International Conference on Big Data

Security on Cloud (BigDataSecurity), IEEE

International Conference on High Performance and

Smart Computing (HPSC), and IEEE International

Conference on Intelligent Data and Security (IDS),

pp. 256-261, 2016.

[17] H. T. Vu and S. Hwang, "A Traffic and Power-aware

Algorithm for Virtual Machine Placement in Cloud

Data Center", International Journal of Grid &

Distributed Computing, vol. 7, no. 1, pp. Pages 21-

32, 2014.

[18] A. Beloglazov and R. Buyya, "Optimal online

deterministic algorithms and adaptive heuristics for

energy and performance efficient dynamic

consolidation of virtual machines in Cloud data

centers", Concurrency and Computation: Practice

and Experience, vol. 24, no. 13, pp. 1397-1420, 2012.

[19] M. F. H. Bhuiyan and C. Wang, "Energy-Efficient

Virtual Machine Management in Heterogeneous

Environment: Challenges, Approaches and

Journal of Computer and Knowledge Engineering, Vol. 1, No.2. 2017. 11

Opportunities", presented at the International

Conference on Systems, Man, and Cybernetics

(SMC), Manchester, 2013.

[20] M. Sharifi, H. Salimi, and M. Najafzadeh, "Power-

efficient distributed scheduling of virtual machines

using workload-aware consolidation techniques", The

Journal of Supercomputing, vol. 61, no. 1, pp. 46-66,

2012.

[21] X. Liu and L. Fan, "Priority-aware Gray-box

Placement of Virtual Machines in Cloud Platforms",

presented at the arXiv preprint arXiv:1307.6622,

2013.

[22] S. Madria, V. Kumar, and R. Dalvi, "Sensor cloud: A

cloud of virtual sensors", Software, IEEE, vol. 31, no.

2, pp. 70-77, 2014.

[23] S. K. Madria, "Sensor Cloud: A Cloud of Sensor

Networks", 2016 IEEE International Conference on

Cloud Engineering Workshop (IC2EW), 2016.

[24] R. Calheiros, R. Ranjan, A. Beloglazov, C. Rose, and

R. Buyya, "CloudSim: a toolkit for modeling and

simulation of Cloud computing environments and

evaluation of resource provisioning algorithms",

Software: Practice and Experience, vol. 41, no. 1, pp.

23–50, 2011.

[25] "Cisco Data Center Infrastructure 2.5 Design Guide",

May 2008.

[26] A. Gupta and N. Mukherjee, "Implementation of

virtual sensors for building a sensor-cloud

environment", in 2016 8th International Conference

on Communication Systems and Networks

(COMSNETS), pp. 1-8, 2016.

[27] R. Buyya, A. Beloglazov, and J. H. Abawajy,

"Energy-Efficient Management of Data Center

Resources for Cloud Computing: A Vision,

Architectural Elements, and Open Challenges",

CoRR, vol. abs/1006.0308, 2010.

[28] H. Goudarzi and M. Pedram, "Hierarchical SLA-

Driven Resource Management for Peak Power-

Aware and Energy-Efficient Operation of a Cloud

Datacenter", IEEE Transactions on Cloud

Computing, vol. 4, no. 2, pp. 222-236, 2016.

12 F. Farazestanian et.al: Migration Management in Sensor-Cloud Networks

Journal of Computer and Knowledge Engineering, Vol. 1, No. 2, 2017.

DOI: 10.22067/cke.v1i2.61798

Particle Filter based Target Tracking in Wireless Sensor Networks

using Support Vector Machine

Ahmad Namazi Nik Abbas Ali Rezaee

Abstract: Target tracking is estimating the state of moving
targets using noisy measurements obtained at a single
observation point or node. Particle filters or sequential
Monte Carlo methods use a set of weighted state samples,
called particles, to approximate the posterior probability
distribution in a Bayesian setup. During the past few years,
Particle Filters have become very popular because of their
ability to process observations represented by nonlinear
state-space models where the noise of the model can be non-
Gaussian. There are many Particle Filter methods, and
almost all of them are based on three operations: particle
propagation, weight computation, and resampling. One of
the main limitations of the previously proposed schemes is
that their implementation in a wireless sensor network
demands prohibitive communication capability since they
assume that all the sensor observations are available to every
processing node in the weight update step. In this paper, we
use a machine learning technique called support vector
machine to overcome this drawback and improve the energy
consumption of sensors. Support Vector Machine (SVM) is
a classifier which attempts to find a hyperplane that divides
two classes with the largest margin. Given labeled training
data, SVM outputs an optimal hyperplane which categorizes
new examples. The training examples that are closest to the
hyperplane are called support vectors. Using our approach,
we could compress sensor observations and only support
vectors will be communicated between neighbor sensors
which lead to cost reduction in communication. We use
LIBSVM library in our work and use MATLAB software to
plot the results and compare the proposed protocol with CPF
and DPF algorithms. Simulation results show significant
reduction in the amount of data transmission over the
network.

Keywords: Distributed Particle Filter; Support Vector

Machines; Target Tracking; Wireless Sensor Networks.

1. Introduction
Target tracking is one of the most important applications of
wireless sensor networks. Examples include security and
surveillance [1], environmental monitoring [2] and tracking
tasks [3]. Target tracking is the estimation of the current state
and prediction of future states of a target based on
measurements received from a sensor that is observing it.
The limited on-board resources of the sensor node and the
limited wireless bandwidth are the major constraints of
performing target tracking in wireless sensor networks. In
order to save resources, target tracking should be
implemented in a distributed way. Distributed computation

Manuscript received Jaunary 14, 2017; accepted July 28, 2017.
A. Namazi Nik, Department of Information and Communication Technology, Payame Noor University, Tehran, Iran.
namazi.a@pnurazavi.ac.ir.
*A. Ali Rezaee Department of Information and Communication Technology, Payame Noor University, Tehran, Iran. a_rezaee@pnu.ac.ir.

has found very successful applications in sensor networks,
particularly when a powerful central unit is not available.

Before particle filtering methods became popular, the
Kalman filter was the standard method for solving state
space models [4]. The Kalman filter can be applied to
optimally solve a linear Gaussian state space model. When
linearity or Gaussian conditions do not hold, its variants, i.e.
the extended Kalman filter and the unscented Kalman filter,
can be used. However, for highly nonlinear and non-
Gaussian problems they fail to provide a reasonable estimate.

Particle filtering techniques offer an alternative method.
They work online to approximate the marginal distribution
of the latent process as observations become available.
Importance sampling is used at each point in time in order to
approximate the distribution with a set of discrete values,
known as particles, each with a corresponding weight. There
are several papers and books which have presented detailed
reviews of particle filters and their applications [5-12].

In this work we tackle the problem of implementing the
DPF algorithm and make use of support vector machine – a
well-known machine learning classification method – to
compress measurements collected by processing nodes and
thus reducing communication costs.

The rest of the paper is organized as follows. In Section 2,
a brief review of prior related works on target tracking is
presented. In Section 3 we introduce the problem of target
tracking in the context of Bayesian filtering and describe the
solution to the nonlinear filtering problem with a centralized
PF. In Section 4 we provide a formal description of the DPF
algorithm. Section 5 introduces support vector machines. In
Section 6 we provide details of the proposed method.
Simulation and experimental results are presented and
discussed in Section 7 and, finally, Section 8 is devoted to
conclusions.

2. Related Works

Target tracking has many real life applications such as

battlefield surveillance, detection of illegal borders crossing,

gas leakage, fire spread, and wildlife monitoring.
Various taxonomies of target tracking algorithms have

been proposed in the literature and there is no standardized
or predefined classification. Some works have studied
tracking algorithms according to the security aspect [13]
while others have considered energy efficiency [14], fault
tolerance, mobility, accuracy, and so on [15].

A comparative study of target tracking with Kalman Filter,

Extended Kalman Filter and Particle Filter using Received

Signal Strength measurements has been reported in [16] and

their simulation results show that PF has superior

http://dx.doi.org/10.22067/cke.v1i2.61798
mailto:namazi.a@pnurazavi.ac.ir

14 A. Namazi Nik. et.al: Particle Filter based Target Tracking in Wireless Sensor…

performance to the KF and EKF in terms of accuracy and

root mean square error (RMSE).

The application of PFs in WSNs is challenging due to the

limited resources of WSNs. Centralized particle filters (CPFs)

have some problems such as consuming significant energy

and vulnerability as a single point of failure. Distributed

particle filters (DPFs) were studied as a response to these

problems, in particular, to offload the computation from the

central unit [17].

Particle filtering for target tracking in WSNs has already

attracted some attention, including a body of work in

distributed methods [18]. Its relation with agent networks has

also been explored in [19].

In [20], a fully decentralized particle filtering algorithm

for cooperative blind equalization is introduced. The

technique is proper, in the sense that it does not make any

approximations in the computation of the importance

weights of the particles. However, the scheme is applicable

only when the state signal is discrete, and would be infeasible

in terms of computation and communication among nodes.

In [21], the communication load is reduced using

quantization and parametric approximations of densities. A

similar parametric approach is applied in [18] to further

simplify communications.

The work reported in [22] provides a generalized approach

for approximating global likelihood through a consensus

filter. It approximates log-likelihood by a polynomial

function, and the sensors exchange only the coefficients of

the polynomial function to compute global likelihood.
The authors in [23] proposed a distributed particle filtering

algorithm with the objective of reducing the overhead data
that is communicated among the sensors. In their algorithm,
the sensors exchange information to collaboratively compute
the global likelihood function that encompasses the
contribution of the measurements towards building the
global posterior density of the unknown location parameters.
Each sensor uses its own measurement to compute its local
likelihood function and approximates it using a Gaussian
function. The sensors then propagate only the mean and
covariance of their approximated likelihood functions to
other sensors, thereby reducing the communication overhead.
The global likelihood function is computed collaboratively
from the parameters of the local likelihood functions using
an average consensus filter or a forward-backward
propagation information exchange strategy.

In [24] a distributed particle filter is designated and it is
shown that the difference in accuracy of their proposed DPF
and a centralized filter with the same total number of
particles is less than 2 cm, while the DPF with four
processing nodes is over four times faster than an equivalent
centralized version. This equivalently means that the same
performance can be obtained on less powerful hardware. The
main limitation of that scheme is that every node performing
a subset of the computations of the PF should have access to
all the observations (i.e., all the measurements collected by
the WSN at the current time step) in order to guarantee that
the particle weights are proper and, therefore, the resulting
estimators are consistent.

3. Nonlinear Filtering in State-Space System

3-1. Bayesian Filtering
Consider the Markov state-space random model with
conditionally independent observations [25, 26] described by

the triplet:

𝑝(𝑥0), 𝑝(𝑥𝑡|𝑥𝑡−1), 𝑝(𝑦𝑡|𝑥𝑡), 𝑡 = 1, 2, … (1)

We denote the states and the observations up to time t by

x0:t ≜ {x0, … , xt} and y0:t ≜ {y0, … , yt}, respectively. p(x0)
is the prior probability density function (pdf) of the state, the
transition density p(xt|xt−1) describes the (random)
dynamics of the process xt and the conditional pdf p(yt|xt)
describes how the observations are related to the state and it
is usually referred to as the likelihood of xt. The goal of a
stochastic filtering algorithm is to recursively estimate the
posterior distribution p(xt|y1:t), t ≥ 1.

Suppose that the required pdf p(xt−1|y1:t−1) at time t − 1
is available. The prediction stage obtains the prior pdf of the
state at time t via:

𝑝(𝑥𝑡|𝑦1:𝑡−1) = ∫ 𝑝(𝑥𝑡|𝑥𝑡−1)𝑝(𝑥𝑡−1|𝑦1:𝑡−1)𝑑𝑥𝑡−1 (2)

At time step t, an observation ytbecomes available, and it

may be used to update the prior (update stage) via Bayes’

rule:

𝑝(𝑥𝑡|𝑦1:𝑡) ∝ 𝑝(𝑦𝑡|𝑥𝑡)𝑝(𝑥𝑡|𝑦1:𝑡−1) (3)

Eqs. (2) and (3) form the basis for the optimal Bayesian

solution [6]. If the system of Eq. (1) is linear and Gaussian
then p(xt|y1:t) is Gaussian and can be obtained exactly using
the Kalman filter algorithm [27]. If the state space is discrete
and finite, exact solutions can also be computed [25].
However, if any of the pdf's in (1) is non-Gaussian, or the
system is nonlinear, we have to resort to suboptimal
algorithms in order to approximate the filter pdf p(xt|y1:t).

3-2. Particle Filtering
Particle Filters, also known as sequential Monte Carlo
methods, are simulation based algorithms that yield
estimates of the state based on a random point-mass (or
"particle") representation of the probability measure with
density p(xt|y1:t) [28-30]. Table 1 shows the standard
particle filter algorithm. We refer to it as centralized in order
to make explicit that it requires a central unit that collects all
the observations together, generates all the particles and
processes them together. The resampling step randomly
eliminates samples with low importance weights and
replicates samples with high importance weights in order to
avoid the degeneracy of the importance weights over time
[26, 31].

Table 1: The Centralized Particle Filter (CPF) algorithm

Initialize: At time 𝑡 = 0

For 𝑚 = 1, … , 𝑀

 sample 𝒙0
(𝑚)

from prior 𝑝(𝒙0)

Recursive step: for 𝑡 > 0

For 𝑚 = 1, … , 𝑀

 draw 𝒙𝑡
(𝑚)

~ 𝑝(𝒙𝑡|𝒙𝑡−1
(𝑚)

) and set 𝒙0:𝑡
(𝑚)

= {𝒙𝑡
(𝑚)

, 𝒙0:𝑡−1
(𝑚) }

 compute importance weights 𝑤𝑡
(𝑚)∗ = 𝑝(𝒚𝑡|𝒙𝑡

(𝑚)
)

Normalize weights 𝑤𝑡
(𝑚)

= 𝑤𝑡
(𝑚)∗ ∑ 𝑤𝑡

(𝑗)∗𝑀
𝑗=1⁄

Resample the weighted sample {𝒙0:𝑡
(𝑚)

, 𝑤𝑡
(𝑚)}

𝑚=1

𝑀
to obtain

an unweighted sample {𝒙0:𝑡
(𝑚)}

𝑚=1

𝑀

Journal of Computer and Knowledge Engineering, Vol. 1, No. 2, 2017. 15

4. Distributed Particle Filtering

In this paper, we implement a distributed particle filter with

nodes that can operate as processing elements (PEs) on a

wireless sensor network. Each PE is a low-powered device

that has to perform sensing, computation and radio

communication tasks while running on batteries. A common

assumption in other proposed schemes is that all

observations can be readily made available to all PEs in the

system [24, 32-33]. Such capacity cannot be taken for

granted in a WSN, where the observations are collected

locally by the nodes and communications are necessarily

constrained because of energy consumption. This issue will

be addressed in subsequent sections.

Assume we have N processing nodes in the network and

each is capable of running a separate PF with K particles (we

ignore any non-processing nodes for now since they do not

run particle filters). The total number of particles distributed

over the network is M=NK. In particular, after the

completion of a full recursive step of the distributed PF at

time t-1, the n-th PE should hold the set

{xt−1
(n,k)

, wt−1
(n,k)∗, Wt−1

(n)∗}
k=1,…,K

, where xt−1
(n,k)

 is the k-th particle

at the n-th PE, wt−1
(n,k)∗

 is the corresponding non-normalized

importance weight, and Wt−1
(n)∗

 is the non-normalized

aggregated weight of PE n.

Each PF runs locally on a node involves the usual steps of

drawing samples, computing weights and resampling. The

generation of new particles, the update of the importance

weights and the resampling step are taken strictly locally,

without interaction between different nodes. To be specific,

assume that the transition pdf of model (1) is used as an

importance function and that the observation vector yt is

available at every node. Then, at the n-th PE, and for k =

1, … , K, xt
(n,k)

 is drawn from the pdf p(xt
(n,k)

|xt−1
(n,k)

), and the

corresponding nonnormalized weight is computed as

wt
(n,k)∗ = wt−1

(n,k)∗p(yt|xt
(n,k)

).

Hence, the information stored by the n-th node at this point

becomes {xt
(n,k)

, wt
(n,k)∗}

k=1,…,K
 and the aggregated weight is

Wt
(n)∗ = ∑ wt

(n,k)∗K
k=1 .

Next, a resampling step is taken locally by each PE.

Assuming a multinomial resampling algorithm, we assign,

for k = 1, … , K , xt
(n,k)

= xt
(n,j)

with probability wt
(n,j)

and

j ϵ {1, … , K} , where wt
(n,j)

=
wt

(n,j)∗

∑ wt
(n,l)∗K

l=1

 , j = 1, … , K , are

the locally normalized importance weights. After resampling,

the particles at the n-th PE are equally weighted.

In the estimation step, we obtain local estimates of target

position at any node as:

𝑥̂𝑡
𝑛 = 𝐸(𝑥𝑡|𝑦1:𝑡) = ∫ 𝑥𝑡𝑝(𝑥𝑡|𝑦1:𝑡) 𝑑𝑥𝑡 = ∑ 𝑤𝑡

(𝑛,𝑘)
𝑥𝑡

(𝑛,𝑘)𝐾
𝑘=1

(5)

where wt
(n,k)

= wt
(n,k)∗ Wt

(n)∗, k = 1, … , K⁄ are the

locally normalized importance weights.

Global estimates can be easily computed by a linear

combination of local estimates. In order to obtain a global

estimate of target position, each node n in the network should

transmit its local estimate 𝑥̂𝑡
𝑛 and its aggregated weight

𝑊𝑡
(𝑛)∗

 to a prescribed node (working as a fusion center)

where global estimates can be computed as:

𝑥̂𝑡
𝑀𝑀𝑆𝐸 = ∑ 𝑊𝑡

(𝑛)
𝑥̂𝑡

(𝑛)𝐾
𝑘=1 (6)

where Wt
(n)

= Wt
(n)∗ ∑ Wt

(i)∗N
i=1⁄ is the globally

normalized aggregated weight of the n-th node.

5. Support Vector Machine

Support vector machines discriminate two classes by fitting

an optimal linear separating hyperplane to the training

samples of two classes in a multidimensional feature space.

The optimization problem being solved aims to maximize

the margins between the optimal linear separating

hyperplane and the closest training samples which are called

support vectors (Figure 1). In a linearly non-separable case,

the input data are mapped into a high-dimensional space in

which the new distribution of the samples enables the fitting

of a linear hyperplane [34].

Fig 1. An example of classification of two classes by SVM. The

support vectors are filled.

Assume some training data S which are a set of n points

of the form:

𝑆 = {(𝑥𝑖 , 𝑦𝑖)|𝑥𝑖 ∈ ℝ𝑑 , 𝑦𝑖 ∈ {+1, −1}} 𝑖 = 1, … , 𝑛 (7)

where ℝ𝑑 indicates the class to which point xi belongs

and each xi is a d-dimensional real vector. The goal of SVM

is to define a hyperplane which divides S, such that all the

points with the same label are on the same side of the

hyperplane while maximizing the distance between the two

classes +1, -1 and the hyperplane. The boundary can be

expressed as w. x + b = 0, where w is the normal vector to

the hyperplane. The parameter
b

‖w‖
 determines the

perpendicular distance from the hyperplane to the origin

along the normal vector w and ‖w‖ is the Euclidean norm of

w. The data points nearest to the boundary are used to define

the margins between the two classes and are known as

support vectors. At the margins, where the support vectors

are located, the equations for classes +1 and -1, respectively,

are:

𝑤. 𝑥 + 𝑏 = +1 , 𝑤. 𝑥 + 𝑏 = −1 (7)

http://en.wikipedia.org/wiki/Real_number

16 A. Namazi Nik. et.al: Particle Filter based Target Tracking in Wireless Sensor…

and the following decision function can be used to classify

any data point in either class +1 or -1:

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑤. 𝑥 + 𝑏) (8)

The margin between the two classes is measured

perpendicular to the hyperplane is
2

‖w‖
, so we want to

minimize ‖w‖ . In a linearly separable case, the support

vector machine looks for the separating hyperplane with the

largest margin. Suppose that all the training data satisfy these

constraints:

𝑤. 𝑥𝑖 + 𝑏 ≥ +1 ∀ 𝑥𝑖 𝑤𝑖𝑡ℎ 𝑦𝑖 = +1 (9)

𝑤. 𝑥𝑖 + 𝑏 ≤ −1 ∀ 𝑥𝑖 𝑤𝑖𝑡ℎ 𝑦𝑖 = −1 (10)

These can be combined into one inequality:

𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) ≥ 1 𝑖 = 1, 2 , … , 𝑁 (11)

where N is the number of training sets. According to [28]

it is worth to use Lagrangian formulation of the problem.

Thus, introducing Lagrange multipliers αi ≥ 0, i =
1, 2 , … , N, one for each of the constraints in Eq. (9), we get

the following Lagrangian:

𝐿(𝑤, 𝑏, 𝛼) =
1

2
‖𝑤‖2 − ∑ 𝛼𝑖𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏)𝑁

𝑖=1 + ∑ 𝛼𝑖
𝑁
𝑖=1 (12)

We must now minimize Eq. (10) with respect to w and b,

and maximize it with respect to αi. Thus:

𝜕

𝜕𝑤
𝐿(𝑤, 𝑏, 𝛼) = 0,

𝜕

𝜕𝑏
𝐿(𝑤, 𝑏, 𝛼) = 0 (13)

which leads to:

𝑤 = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖
𝑁
𝑖=1 , ∑ 𝛼𝑖𝑦𝑖 = 0𝑁

𝑖=1 (14)

Substituting Eq. (12) into Eq. (10) yields the dual

quadratic optimization problem:

Maximize

𝐿𝐷 = ∑ 𝛼𝑖
𝑁
𝑖=1 −

1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖 . 𝑥𝑗

𝑁
𝑖,𝑗=1 (15)

Subject to

𝛼𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑁, (16)

∑ 𝛼𝑖𝑦𝑖 = 0𝑁
𝑖=1 (17)

On substitution of Eq. (12) into the decision function (6)

we obtain an expression which can be evaluated in terms of

dot products between the pattern to be classified and the

Support Vectors:

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖𝑦𝑖(𝑥𝑖 . 𝑥)𝑁
𝑖=1 + 𝑏) (18)

The dot product can therefore be replaced with a nonlinear

kernel function, thereby performing large margin separation
in the feature-space of the kernel.

6. Using Support Vector Machine with Distributed

Particle Filter

We use LIBSVM [35] in our work. LIBSVM is a library for

Support Vector Machines and has gained wide popularity in

machine learning and many other areas [36].
The Web address of the package is at

http://www.csie.ntu.edu.tw/~cjlin/libsvm. Also, we use the
MATLAB software to plot the results.

A classification task usually involves separating data into

training and testing sets. Each instance in the training set

contains one “target value” (i.e. the class labels) and several

“attributes” (i.e. the features or observed variables). The goal

of SVM is to produce a model (based on the training data)

which predicts the target values of the test data given only

the test data attributes. Our idea is to make use of support

vector machine as a data classification technique in our work

to reduce communications among the nodes.
As we mentioned in section 4 in the weight update step we

assume that the observation vector yt is available at every
node which involves communications among the nodes. We
use SVM to reduce these communications. SVMs only
consider points near the margin (support vectors) instead of
whole data points. According to our assumption, the

observation coming from sensor j at time t, denoted yj,t, is

modeled as a binary observation. Then our SVM has two
classes. Each sensor has two attributes which are equal to the
coordinates of its position.

Scaling before applying SVM is very important. The main
advantage of scaling is to avoid attributes in greater numeric
ranges dominating those in smaller numeric ranges. Another
advantage is to avoid numerical difficulties during the
calculation. Because kernel values usually depend on the
inner products of feature vectors, e.g. the linear kernel and
the polynomial kernel, large attribute values might cause
numerical problems. In [37] it is recommended to linearly
scale each attribute to the range [-1, +1] or [0, 1]. We have
to use the same method to scale both training and testing data.
For example, suppose that we scaled the first attribute of
training data from [-10, +10] to [-1, +1]. If the first attribute
of testing data lies in the range [-11; +8], we must scale the
testing data to [-1.1, +0.8]. There are four basic kernel
functions in SVM, including linear, polynomial, radial basis
function (RBF) and sigmoid. In our work we have used RBF
kernel in the training step since it has fewer numerical
difficulties and has better performance in nonlinear cases.

When the training is done, support vectors are generated.
Once the support vectors are determined, the rest of the
feature set can be discarded, since the support vectors contain
all the necessary information for the classifier. We propagate
observations corresponding to these support vectors (y̅t)

rather than the whole yt in the network. Then, in the weight
update step of our distributed particle filter, every processing
element can obtain observations of other sensors by running
the final step of the SVM, namely prediction. On the other
hand, in the prediction step of SVM, we obtain observation
vector yt from vector y̅t . Table 2 summarizes the DPF
algorithm investigated in this paper.

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Journal of Computer and Knowledge Engineering, Vol. 1, No. 2, 2017. 17

Table 2. Distributed Particle Filter (DPF) algorithm

Initialize: At time 𝑡 = 0, for 𝑛 = 1, … … 𝑁

Draw 𝒙0
(𝑛,𝑘)

, for 𝑘 = 1, … , 𝐾, from prior 𝑝(𝒙0)

Assign 𝑤0
(𝑛,𝑘)∗ =

1

𝐾
 for all k, set 𝑊0

(𝑛)∗ = 1

Build the set {𝒙0
(𝑛,𝑘)

, 𝑤0
(𝑛,𝑘)∗, 𝑊0

(𝑛)∗}
𝑘=1

𝐾

Recursive step: At time 𝑡 > 0, start from the set {𝒙𝑡−1
(𝑛,𝑘)

, 𝑤𝑡−1
(𝑛,𝑘)∗, 𝑊𝑡−1

(𝑛)∗}
𝑘=1

𝐾
. Then, for 𝑛 = 1, … , 𝑁

Sampling: Draw 𝒙𝑡
(𝑛,𝑘)

 from 𝑝(𝒙𝑡|𝒙𝑡−1
(𝑛,𝑘)

), for 𝑘 = 1, … , 𝐾

Weight update: 𝑤𝑡
(𝑛,𝑘)∗ = 𝑤𝑡−1

(𝑛,𝑘)∗𝑝(𝒚𝑡|𝒙𝑡
(𝑛,𝑘)

)

Estimation: compute the desired output, such as the expected value

Resampling: to obtain the set {𝒙𝑡
(𝑛,𝑘)

, 𝑤𝑡
(𝑛,𝑘)∗, 𝑊𝑡

(𝑛)∗}
𝑘=1

𝐾
, where 𝑤𝑡

(𝑛,𝑘)∗ = 𝑊𝑡
(𝑛)∗/𝐾 for 𝑘 = 1, … , 𝐾

7. Simulation and Experimental Results

The goal of our work is to implement a DPF for target

tracking in a wireless sensor network and use SVM to

compress measurements collected by these sensors. Our

experimental scenario is shown in Figure 2. It is a room with

10 nodes (which are equipped with a light sensor) enclosing

an area of 4×6 m2 with a single source of natural light (a

window). Modeling environment specifications and

translating the disturbances caused by the target in the sensor

readings into distance measurements are very complex. Then,

instead we emphasize on obtaining binary observations: 1 if

the target is in the detection zone and 0 otherwise.

Fig. 2 Tracking scenario of 46 m2. The thick line is the light

source. There are 10 nodes equipped with light sensors around the

edges, indicated by squares. The entry to the scenario lies at the

bottom-right corner.

Table 3 displays values of the relevant simulation and

algorithm parameters. The number of processing elements

(N) is 4 in our experiments and we use N=1 as the equivalent

to a centralized particle filter. Changing N affects other

variables, such as the number of sensing-only elements (J-N)

and the number of particles per PE (K=M/N). It does not

matter which of the nodes are PEs and which are SEs, since

we assume a fully connected network. Each node (either PE

or SE) produces one binary observation every Ts second.

Figure 3 displays the empirical distribution of errors, and

the average error, for 100 simulated paths. Figure 4 plots two

selection of these paths along with the path estimated by our

SVM-based DPF. The dissensions between true and

estimated position tend to happen when the target moves

between detection zones. Since the observations are binary

and zone-based, rather than distance-based, there are gaps

around the edges (see for example the final points in Figure

4). Accuracy also tends to be higher nearer the light source

where more detection zones overlap.

Table 3. Simulation and algorithm parameters

Variable Symbol Value (unit)

Number of PEs N 4

Number of nodes J 10

Number of SEs J-N

Total number of particles M 100

Number of particles/PE K M N⁄

Number of timesteps T 20 (s)

Sampling period 𝑇𝑠 1 (s)

18 A. Namazi Nik. et.al: Particle Filter based Target Tracking in Wireless Sensor…

Fig 3. Histogram of position error in meters for both the centralized

(up) and our distributed (down) versions of the particle filter over

100 simulated trajectories.

Fig 4. The simulated (black) path for two simulations, and the

corresponding SVM-based DPF-estimated path (red); over T=20

time steps.

Figure 5 displays the amount of saving in the volume of

propagating information for updating particle weights, using

the proposed method, for 100 simulated paths. The

horizontal axis shows the simulation run and the vertical axis

shows the amount of propagating observations (in percent)

on the network compared to the case when SVM is not used.

The results show that using the proposed scheme,

only %51.9 of sensor observations are propagated on the

network, compared to the work done in [24], that leads to

saving energy consumption of sensors.

Fig 5. The amount of saving in the volume of propagating

information for updating particle weights, using our proposed

method, for 100 simulated paths.

Journal of Computer and Knowledge Engineering, Vol. 1, No. 2, 2017. 19

8. Conclusion

In this paper, we have described the implementation of a

distributed particle filter for target tracking in a wireless

sensor network. One of the main limitations of similar works

is the need to make all sensor observations available to every

processing node. To overcome this limitation, we have used

support vector machine to compress sensor observations.

Simulation results show that the difference in accuracy of the

proposed scheme and centralized particle filter and also

distributed particle filter are insignificant, whereas by

combining SVM with DPF we have reduced

communications among the nodes around %48. Since SVMs

only consider points near the margin (support vectors)

instead of whole data points, they are suitable for data

compression. SVMs can produce accurate and robust

classification results on a sound theoretical basis, even when

input data are non-monotone and non-linearly separable. The

biggest limitation of the support vector approach lies in

choice of the kernel function. In our work, we have used RBF

kernel in the training step since it has fewer numerical

difficulties and has better performance in nonlinear cases.

References

[1] E. Cayirci, H. Tezcan, Y. Dogan, and V. Coskun,

“Wireless sensor networks for underwater survelliance

systems”, Ad Hoc Networks, vol. 4, pp. 431-446, 2006.

[2] S. Santini, B. Ostermaier, and A. Vitaletti, “First

experiences using wireless sensor networks for noise

pollution monitoring”, presented at the Proceedings of

the workshop on Real-world wireless sensor networks,

Glasgow, Scotland, 2008.

[3] H.-W. Tsai, C.-P. Chu, and T.-S. Chen, “Mobile object

tracking in wireless sensor networks”, Computer

Communications, vol. 30, pp. 1811-1825, 6/8/ 2007.

[4] A. Ribeiro, G. B. Giannakis, and S. I. Roumeliotis,

“SOI-KF: Distributed Kalman Filtering With Low-

Cost Communications Using the Sign of Innovations”,

IEEE Transactions on Signal Processing, vol. 54, pp.

4782-4795, 2006.

[5] A. Dhital, P. Closas, and C. Fernández-Prades,

“Bayesian filtering for indoor localization and tracking

in wireless sensor networks”, EURASIP Journal on

Wireless Communications and Networking, vol. 2012,

pp. 1-13, 2012.

[6] M. S. Arulampalam, S. Maskell, N. Gordon, and T.

Clapp, “A tutorial on particle filters for online

nonlinear/non-Gaussian Bayesian tracking”, IEEE

Transactions on Signal Processing, vol. 50, pp. 174-

188, 2002.

[7] P. M. Djuric, M. Vemula, and M. F. Bugallo, “Target

Tracking by Particle Filtering in Binary Sensor

Networks”, IEEE Transactions on Signal Processing,

vol. 56, pp. 2229-2238, 2008.

[8] Y. Huang, W. Liang, H.-b. Yu, and Y. Xiao, “Target

tracking based on a distributed particle filter in

underwater sensor networks”, Wireless

Communications and Mobile Computing, vol. 8, pp.

1023-1033, 2008.

[9] S. Sarkka, “Bayesian Filtering and Smoothing”,

Cambridge University Press, 2013.

[10] H. Q. Liu, H. C. So, F. K. W. Chan, and K. W. K. Lui,

“Distributed particle filter for target tracking in sensor

networks”, Progress In Electromagnetics Research C,

vol. 11, pp. 171-182, 2009.

[11] K. Achutegui, L. Martino, J. Rodas, C. J. Escudero, and

J. Miguez, “A multi-model particle filtering algorithm

for indoor tracking of mobile terminals using RSS

data”, in Control Applications, (CCA) & Intelligent

Control, (ISIC), 2009 IEEE, 2009, pp. 1702-1707.

[12] O. Hlinka, F. Hlawatsch, and P. M. Djuric, “Distributed

particle filtering in agent networks: A survey,

classification, and comparison”, IEEE Signal

Processing Magazine, vol. 30, pp. 61-81, 2013.

[13] A. Oracevic and S. Ozdemir, “A survey of secure target

tracking algorithms for wireless sensor networks”, in

Proceedings of the World Congress on Computer

Applications and Information Systems (WCCAIS ’14),

pp. 1–6, IEEE, Hammamet, Tunisia, January 2014.

[14] O. Demigha, W.-K. Hidouci, and T. Ahmed, “On

energy efficiency in collaborative target tracking in

wireless sensor network: a review”, IEEE

Communications Surveys and Tutorials, vol. 15, no. 3,

pp. 1210–1222, 2013.

[15] A. Ez-Zaidi, S. Rakrak, “A Comparative Study of

Target Tracking Approaches in Wireless Sensor

Networks”, Journal of Sensors, vol. 2016, p. 11, 2016.

[16] M. W. Khan, N. Salman, A. Ali, A. M. Khan, and A. H.

Kemp, “A comparative study of target tracking with

Kalman filter, extended Kalman filter and particle filter

using received signal strength measurements”, in

Emerging Technologies (ICET), 2015 International

Conference on. IEEE, 2015.

[17] B. Jiang, B. Ravindran, “Completely Distributed

Particle Filters for Target Tracking in Sensor

Networks”, IEEE International Parallel & Distributed

Processing Symposium (IPDPS), pp. 334-344, 2011.

[18] O. Hlinka, O. Sluciak, F. Hlawatsch, P. Djuric, M.

Rupp, “Distributed Gaussian particle filtering using

likelihood consensus”, in: International Conference on

Acoustics, Speech and Signal Processing, pp. 3756–

3759, May 2011.

[19] O. Hlinka, F. Hlawatsch, P. Djuric, “Distributed

particle filtering in agent networks”, IEEE Signal

Process. Mag. pp. 61-81 (January) (2013).

[20] Claudio J. Bordin, Marcelo G. S. Bruno, “Cooperative

bling equalization of frequency-selective channels in

sensor networks using decentralized particle filtering”,

in: 42nd Asilomar Conference on Signals, Systems and

Computers, pp. 1198–1201, October 2008.

[21] Mark Coates, “Distributed particle filters for sensor

networks”, in: The International Conference on

Information Processing in Sensor Networks, (IPSN),

20 A. Namazi Nik. et.al: Particle Filter based Target Tracking in Wireless Sensor…

pp. 99–107, April 2004.

[22] O. Hlinka, P. Djuric, F. Hlawatsch, "Consensus-based

distributed Particle Filtering with distributed proposal

adaptation", IEEE Trans. Signal Process., vol 62, pp.

3029–3041, 2014.

[23] T. Ghirmai, "Distributed Particle Filter for Target

Tracking: With Reduced Sensor Communications",

Sensors, 16, 1454, 2016.

[24] J. Read, K. Achutegui, and J. Míguez, “A distributed

particle filter for nonlinear tracking in wireless sensor

networks”, Signal Processing, vol. 98, pp. 121-134,

2014.

[25] A. Doucet, N. d. Freitas, and N. Gordon, “Sequential

Monte Carlo Methods in Practice” Springer, 2001.

[26] B. Ristic, S. Arulampalam, and N. Gordon, “Beyond

the Kalman Filter: Particle Filters for Tracking

Applications”, Artech House, 2004.

[27] R. E. Kalman, “A New Approach to Linear Filtering

and Prediction Problems”, Journal of Basic

Engineering, vol. 82, pp. 35-45, 1960.

[28] A. Bain and D. Crisan, “Fundamentals of Stochastic

Filtering”, Springer, 2009.

[29] O. Cappe, S. J. Godsill, and E. Moulines, “An

Overview of Existing Methods and Recent Advances in

Sequential Monte Carlo”, Proceedings of the IEEE,

vol. 95, pp. 899-924, 2007.

[30] Djuric, x, P. M., J. H. Kotecha, Z. Jianqui, H. Yufei, et

al., “Particle filtering”, IEEE Signal Processing

Magazine, vol. 20, pp. 19-38, 2003.

[31] L. Tiancheng, M. Bolic, and P. M. Djuric, “Resampling

Methods for Particle Filtering: Classification,

implementation, and strategies”, IEEE Signal

Processing Magazine, vol. 32, pp. 70-86, 2015.

[32] M. Bolic, P. M. Djuric, and H. Sangjin, “Resampling

algorithms and architectures for distributed particle

filters”, IEEE Transactions on Signal Processing, vol.

53, pp. 2442-2450, 2005.

[33] J. Míguez, “Analysis of parallelizable resampling

algorithms for particle filtering”, Signal Processing,

vol. 87, pp. 3155-3174, 2007.

[34] C. C. Burges, “A Tutorial on Support Vector Machines

for Pattern Recognition”, Data Mining and Knowledge

Discovery, vol. 2, pp. 121-167, 1998/06/01 1998.

[35] https://www.csie.ntu.edu.tw/~cjlin/libsvm.

[36] C.-c. Chang and C.-J. Lin, “LIBSVM: a library for

support vector machines”, ACM Transactions on

Intelligent Systems and Technology, vol. 2, 2011.

[37] C.-w. Hsu, C.-c. Chang, and C.-j. Lin, “A practical

guide to support vector classification”, 2010.

Journal of Computer and Knowledge Engineering, Vol. 1, No.2, 2017.

DOI: 10.22067/cke.v1i2.62961

A Transmission Method to Guarantee QoS Parameters in

 Wireless Sensor Networks

 Maryam Kordlar Gholamhossein Ekbatanifard

Ahad Jahangiry Ramin Ahmadi

Abstract: Energy-efficient and reliable data transmission
are crucial issues in WSNs due to the energy constraints and
high packet loss rates, In order to increase network reliability
and throughput, multipath forwarding is used in many
applications. However because of using multiple paths
between source and destination, the multipath forwarding
mechanism increases network overhead. By splitting the
original messages and forwarding each sub-packet through
multipath routing protocols, energy consumption and
network overhead can be reduced. This paper proposes a
flexible recovery mechanism which increases reliability and
minimizes both energy consumption and delay. The
proposed scheme caches sub-packets at some special
intermediate nodes and retransmits from these nodes instead
of source node whenever it is necessary. Performance
evaluations of sub-packet caching (SPC) demonstrate that
using multipath forwarding with caching data can effectively
increase reliability and reduce energy consumption and
latency.

Keywords Wireless Sensor Networks, Energy-efficient
Routing, Multipath, Reliable Transmission, loss Recovery

1. Introduction
With the development of miniaturized sensor nodes, wireless
sensor networks (WSNs) [1] have become a promising
technology that can play an essential role in many vital and
critical fields. Sensors are responsible of forwarding
significant data, immediately and efficiently to the base
station for processing. Increasing reliability in WSNs is a
challenging task which have made it the target of many
studies. Because sensor nodes are powered by life-limited
and irreplaceable batteries, minimizing the power usage of
each node is important and must be considered while
designing WSNs. In order to increase reliability, multipath
forwarding is used in many applications. Single path
forwarding enhances the choice of the same path that can
cause dropping of the most used nodes. Inverse multipath
routing allows forwarding packets through multiple paths
between source and destination as a result of which multiple
copies of data will be sent. Although it can remarkably
enhance network overhead and consume more energy,
reliability will be guaranteed. To overcome these inherent
properties of many multipath routing protocols, the splitting
approach can be used. Original messages can split in several
sub-packets to be forwarded by multipath routing algorithm
such that each node will forward only small sub-packets. The

Manuscript received April 2, 2017; accepted November 12, 2017.

M. Kordlar Young Researchers Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

Gh. Ekbatanifard, Department of Computer Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Guilan, Iran.

A. Jahangiry, Department of Computer Engineering, Qom Branch, Islamic Azad University, Qom, Iran.

* R. Ahmadi, Dept. of Computer Engineering, Rasht Branch, Islamic Azad University, Rasht, Guilan, Iran, Raminahmadi@iaurasht.ac.ir.

splitting procedure that is used in this paper is the Chinese
Remainder Theorem (CRT) [4], which is characterized by a
simple modular division between integers [9]. Meanwhile
corrupted and lost packets are unavoidable facts in WSNs
because of data transmissions over radio links. A packet loss
can fall out due to wireless link errors or destroyed nodes due
to environmental events or node crash down due to energy
depletion and decreased network efficiency. This paper
proposes a flexible recovery mechanism for lost packets
which guarantee energy-efficient reliable data transmission.
The proposed scheme caches sub-packets at some special
intermediate nodes and retransmits from these nodes
whenever it is necessary. Hop by hop protocol is an approach
that caches data to every intermediate node. NBH [2] not
only increases reliability, but it also increases network
overhead. Inverse, End-to-End [3] protocol does not perform
data caching. Therefore the network overhead will be
balanced while the reliability decreases. Providing some
reliability support at intermediate nodes is more energy-
efficient. The proposed method which is called SPC fulfills
this requirement by caching packets at some special
intermediate nodes.

The remainder of this paper is organized as follows:
Section II presents related work, subsequently section III
presents the Chinese Remainder Theorem (CRT). We
describe the proposed scheme in section IV. Section V
details our simulation efforts and finally section VI
concludes the paper.

2. Related Work
Reliable transmission is an important issue in extremely
unreliable link environments of wireless sensor networks,
which have become more difficult to attain due to the
increased number of nodes. Recent studies have shown that
in WSNs links are highly unreliable due to many factors such

as interference, attenuation and fading [5-6]. Messages in the

network are delivered according to their deadlines. Several
routing protocols have been proposed to provide reliable data
transmission. In [7] a Distributed and Reliable Data
Transmission (DRDT) scheme with the objective of
efficiently guaranteeing reliable data transmission is
provided which increases reliability by cooperative
retransmission task by helping nodes.

DRDT effectively reduces the number of retransmissions
by using helping nodes. Selection of the helping node is
based on the quality of the link to the receiver node. DRDT
guarantees high energy-efficiency and effectively reduces

http://dx.doi.org/10.22067/cke.v1i2.62961
mailto:Raminahmadi@iaurasht.ac.ir

22 M .Kordlar et al: A Transmission Method to Guarantee QoS Parameters in…

end-to-end transmission delays. Ganesan et al. reported that
packet loss can occur over a short distance while the
distribution of packet reception over an area is not uniform
and low-power environments have quite asymmetric links
[8]. The authors of [9] proposed a multi-path routing model
for WSNs referred to as Multi-Constrained Multi-Path
routing (MCMP) where packet delivery from nodes to the
sink is achieved based on QoS constraints expressed in terms
of reliability and delay. This model addresses the issue of
multi-constrained QoS in wireless sensor networks taking
into account the unpredictability of network topology and
trying to minimize energy consumption. Couto et al. [10]
have measurements for DSDV and show that with
minimizing the hop count, the distance traveled maximizes
by each hop and it increases the loss ratio. Another study
proposes a packet delivery mechanism for energy aware
called Multi Path and Multi-Speed Routing Protocol
(MMSPEED), that overlays on the network layer and
medium access control layer. This protocol addresses
reliability dependency and presents multiple levels of
delivery speed. In MMSPEED each node is aware of its
neighbor nodes’ geographical information within its radio
range. Each node transmit data message to the closer
neighbor node, so the data can be delivered to the sink
without learning global information. Thus, MMSPEED
provides multiple delivery speed, but it does keep an
individual node's energy and it does not remove node's
energy except for when it selects paths for forwarding to the
sink. Therefore, many data packets are routed over the
same routes. It is the opposite of load balancing in wireless
sensor networks [11]. In [12] a Cluster-Based Forwarding
(CBF) is proposed which guarantees reliability by using a
cluster that consists of helper nodes with good link quality.
The disadvantage of CBF arise when the location of the sink
changes, so all the nodes should select helping nodes again.
Therefore, CBF cannot fully guarantee the reliability of
realistic wireless sensor networks. The Energy-Efficient
Multiple Paths Routing Algorithm (EMRA) for WSNs is a
routing algorithm that increases resilience to node failure.
This algorithm is based on a data-centric and location-based
approach to find discrete paths. This application is used to
control overhead and energy consumption in the network. In
EMRA, the source node floods data message to the sink,
when after the sink node receives the data message it can find
the main path. To find other secondary paths, the sink node
tries its neighbor nodes by intermediate nodes. Thus, it
reduces the delay to set up multiple paths [13]. Using caching
in WSNs was first proposed in [14]. The authors of [15]
proposed a multi-path-based distributed TCP caching
algorithm, which uses redundant paths and hop-by-hop local
retransmission to ensure reliable transport, on the basis of the
original single-path-based algorithm. A new structure of
caching is proposed in [16] which is called Active caching
(AC). AC provides a tradeoff between end-to-end delays and
memory requirements and more reliability.

3. The Chinese Reminder Theorem
In this section we will briefly review the Chinese Remainder
Theorem. In the simplest case, this theorem can be described
as follows [17]:

Given N primes pi> 1, in which iє {1... N}, M will be the
primes product, i.e. M=Пipi. By assuming m as an original
packet, then the set of integers {m1, m2….mN} will be sub-

packets, considering the condition m <M, where m can be
obtained from (1). Notice that in (2), qi is ci modular inverse.

𝑚 = (∑ 𝑐𝑖 ∗ 𝑚𝑖) 𝑚𝑜𝑑 𝑀 𝑁
𝑖=1 (1)

𝑐𝑖 = 𝑄𝑖 ∗ 𝑞𝑖 (2)

𝑄𝑖 =
𝑀

𝑝𝑖
 (3)

𝑚𝑖 = 𝑚𝑚𝑜𝑑𝑝𝑖 (4)

For example, consider a system that is m = 64 and we want
sent message by the Chinese Remainder Theorem, instead of
forwarding complete packet (m), knowing the set of primes
pi={3, 5, 7} that iє{1, 2, 3}can split it into three sub-packet
by equation (3) and the sub-packets sent by the intermediate
nodes to the sink.

Considering the above relations it can be proved that 7 bits
are required to show this message, which cannot be
considered as more than three bits for each sub-packet. For
example in Fig.1, if B, C and D are the received message m
from node A, each of them will execute the above method
and calculated sub-packets by mi equation with iϵ{1, 2, 3}
and transmit sub-packets to S node instead of m.

Fig. 1. Example of forwarding the main packet after division

𝑊𝐶𝑅𝑇𝑚𝑎𝑥
Indicates the maximum number of CRT

components where w is the number of bits in the original
packet.

𝑊𝐶𝑅𝑇𝑚𝑎𝑥
= 𝑚𝑎𝑥(⌈ 𝑙𝑜𝑔 (𝑝𝑖) ⌉ (5)

In general, splitting packet to several sub-packets with a

low number of bits will reduce energy consumption.
The maximum number of sub-packets bits and theoretical

maximum energy reduction factor (MERF) can be obtained
from the following equations:

𝑀𝐸𝑅𝐹 =
(𝑤−𝑊𝐶𝑅𝑇𝑚𝑎𝑥)

𝑤
 (6)

Selecting appropriate primes has the most important role
in energy storage.

4. The Proposed Approach
Reducing delay, improving energy consumption and
maximizing reliable data transmission are commonly
discussed issues in WSNs. In many applications, multipath
forwarding is used in order to increase both reliability and
throughput. Hence, the delay and packet loss ratio will be
extremely reduced because of using multiple paths in packet
transmission. However, traffic congestion and network
overhead increase because of sending several copies of a
packet. By splitting the original messages into several sub-
packets, each node will be responsible of forwarding a small
sub-packet; consequently low power consumption of each
node and network balancing will be achieved. The greedy
forwarding selects a nearest neighbor node from the source
node to the sink as the next forwarding node Storage data
packets at some intermediate nodes between the source and

Journal of Computer and Knowledge Engineering, Vol. 1, No.2, 2017. 23

the destination for retransmitting the missing data packet can
be an appropriate solution to reduce delay and increase
reliability.

The queuing model of the sensor nodes of the proposed
scheme is shown in Fig.2. The forwarding mechanism that is
used to delivered packets to the destination is described in
[18], which is the author’s previous paper.

Fig 2. Queuing model of sensor nodes

In order to achieve a high delivery ratio, minimize

network overhead and ensure high reliability, caching sub-
packets along the multipath forwarding can be used. In the
proposed scheme, the splitting procedure that is used to
break up the original message is the Chinese Remainder
Theorem (CRT). Two parameters play an essential role to
detect whether caching is necessary or not. This method
considers the reliability of the link rate as a threshold.
Probability of Error can be calculated as follows [19]:]

𝑃𝑂𝐸 =
1

2
∗ (1 − 𝑒𝑟𝑓)√

Eb

N0
 (7)

where erf is the error function, Eb is a bit of energy derived

and No is the noise power spectral density.

Each node has the ability to count the number of NACK
packets that receive from further nodes [20]. Probability of
Caching (POC) is obtained by POE and NON [t-1] which

refers to Number of NACK packets that node n receives in t-
1.

Depending on the type of data that sensors should report
to the sink, the Scheduler classifies received packets as need
reliability (NR) packet or non-need reliability (NNR) packet
and sends them to NRQueue or NNRQueue queues,
respectively. By using the algorithm described in Fig.3, the
caching information handler can decide whether caching is
needed or not. Packet will send the memory of current node
to cache for a special period of time if caching condition
becomes true.

In WSNs, information that has been collected by the
sensors must be delivered in a special time. Otherwise, data
will be useless. Successfully forwarding in a packet timeline
can be achieved in a balanced network. The proposed method
minimizes packet overhead and ensures high throughput by
multipath forwarding of sub-packets.

The following equation can be used to calculate the
network load balancing when sub-packets are distributed to
be forwarded through different multipath [21]:

𝜑(𝑟̅) =
(∑ 𝑟𝑗𝑝𝑗

𝑁
𝑗=1)2

𝑁 ∑ (𝑟𝑗𝑝𝑗)2𝑁
𝑗=1

 (8)

where 𝜑 illustrates load balance ratio, the vector 𝑟̅
denotes the traffic rates allocated to all available routes, rj

and pj are respectively the traffic flow and the product of
the path cost allocated to path j.

In the proposed scheme, the main packet will split into
several sub-packets only in the source node. Equation (9)
presents the transmission cost of each node. It reflects both
communication overhead and energy-efficiency [7]:

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐶𝑜𝑠𝑡 =
𝑇

𝑈.𝑁
 (9)

where N represents the average number of hops in the
paths, T shows the total bits each node transmits, and U
denotes the number of useful bits that the sink received.

By using (8) the reduction of network overhead is obvious.
This paper is going to reduce energy consumption while

minimizing the delay. To evaluate the node energy
consumption we use following equation:

ET =
∑ (ei,int−ei,res)M

i=1

M∗N
 (10)

where M is the number of nodes, ei, init and ei, res are the
initial and residual energy levels of node i, respectively and
N is the number of data packets received by the sink.

Energy is a major factor which impacts the network life
time. By reducing energy consumption and delay, the
network lifetime will be prolonged. The following equation
is used in order to obtain network lifetime:

NLT =
∑ (ei,res−ei,n)n

i=1

eint
 (11)

where ei,n indicates the energy needed for packet

forwarding of node i, and eint represents the initial level of
energy.

n=1 // current node in the path to destination

Loop n< N

(POE) n ← ½ * (1-erf) √ Eb/N0

(POC) n← (POE) n + NON [t-1] n

If (POC) n < θ1 and NON [t-1] n< θ2

Forward the packet normally and without caching

n←n+1

Return

Else if (POC) n > θ1 or NON [t-1] n> θ2

First cache the sub-packet and then forward to next hop

n←n+1

Return

End loop

Fig 3. Caching algorithm at n-th node

5. Performance Evaluation
In this paper, a homogenous WSN has been considered. For
the simulation, we assume 100 sensors that are randomly
distributed through the sensing area of 100*100 m2. Table 1
lists the main parameters of simulation.

We consider three different parameters to evaluate the
performance of the proposed method: End-to-End packet
delay, energy consumption and successfully delivered
packets ratio.

24 M .Kordlar et al: A Transmission Method to Guarantee QoS Parameters in…

The simulation has been done in two parts; splitting the
main packet, respectively into two and three sub-packets.
Fig. 4 and Fig. 5 show the performance comparison of
AELAR, GEAR, and SPC. Due to the forwarding multipath
(equal to the number of sub-packets) with different distances,
the average distance will be lower than forwarding from a
single path and also whenever the sub-packet is lost, the
delay in SPC will be reduced and be lower than the other two
protocols because of caching sub-packets in some
intermediate nodes and retransmission from those nodes
instead of source node as shown in Fig.4 (a) and Fig. 5 (a).

Table 1. Simulation Parameters

Parameter Value

Number of nodes 100

Simulation area 100*100

Number of sink 1

Sensor distribution Uniform random

Location of Sink top left corner

Radio range 5m

MAC layer IEEE 802.11

Bandwidth 200KB/S

Initial battery charge 3.3 Joule

To calculate the number of packets that reach the

destination, the Data Delivery Ratio can be used [22] and it

is express as:

Data Delivery Ratio =
Succesfully delivered data

Required Data
 (12)

This equation demonstrates both the number of data

packets that are sent by the source and the number of data

packets received by the sink. In the ideal condition the result

should be equal to 1.

Due to caching in SPC scheme the percentage of packets

which can successfully be delivered to the destination will

increase. This fact is shown in Fig.4 (b) and Fig.5 (b). By

getting closer to the ideal condition, high reliable forwarding

will be obtained. By splitting the original message into sub-

packets and using multipath for transmission, nodes use less

energy while forwarding although the number of nodes that

are involved in forwarding operation increased. This is

because they are responsible for forwarding only a part of the

message instead of the whole message, so energy

consumption of the nodes will decrease. By using a CRT-

based Packet Splitting Algorithm and splitting the original

message into two and three sub-packets, respectively about

71% and 57% of the energy could be saved. The simulation

results in Fig.4 (c) and Fig.5 (c) indicate this theme.

(a) Average end-to-end delay (b) Number of packet that reach destination

(c) Energy consumption

Fig 4. Simulation results for evaluating the performance of Splitting-packet cashing with 2 sub-packets (a, b, c)

Journal of Computer and Knowledge Engineering, Vol. 1, No.2, 2017. 25

(a) Average end-to-end delay (b) Number of packet that reach destination

(c) Energy consumption

Fig 5. Simulation results for evaluating the performance of Splitting-packet cashing with 3 sub-packets (a, b, c)

6. Conclusion

This paper describes the splitting of original packets into

several sub-packets based on the CRT algorithm, and uses

the multipath to forward these sub-packets to the destination.

A new Caching approach is proposed which considers two

parameters; link error that is calculated as the probability of

error and numbers of NACK packets that the current node

has received from the next node in past times. The proposed

scheme that is called SPC optimizes the tradeoff between the

reliability and energy-efficiency, minimizes the network

overhead, increases packet reception ratio and prolongs

network lifetime.

References

[1] Akyildiz I, Su W, Sankarasubramaniam Y, Cayirci

E. Wireless sensor networks: a survey. Computer

Networks, 38:393–422, 2002.

[2] Yao-Nan Lien “Hop-by-Hop TCP for Sensor

Networks”, International Journal of Computer

Networks & Communications (IJCNC), April, Vol.1,

No.1, 2009.

[3] Paulo Rogério Pereira, António Grilo, Francisco

Rocha, Mário Serafim Nunes, Augusto Casaca,

Claude Chaudet, Peter Almström and Mikael

Johansson,” End-To-End Reliability in Wireless

Sensor Networks: Survey And Research

Challenges” EuroFGI Workshop on IP QoS and

Traffic Control, P. Pereira (Ed.) Lisbon, Portugal,

December 6-7, 2007

[4] J.-H. Hong, C.-H. Wu, C.-W. Wu “RSA

Cryptosystem Based on the Chinese Remainder

Theorem”, Proc. of Asia and South Pacific Design

Automation Conference (ASP-DAC), Yokohama,

Japan, January 2001.

[5] Ganesan, D.; Krishnamachari, B.; Woo, A.; Culler,

D.; Estrin, D.; Wicker, S. Complex Behavior at

Scale: An Experimental Study of Low-Power

Wireless Sensor Networks; Technical report; CS TR

02-0013; UCLA: Los Angeles, CA, USA, 2002.

[6] Zhao, J.; Govindan, R. Understanding Packet

Delivery Performance in Dense Wireless Sensor

Networks. In Proceedings of ACM International

Conference on Embedded Networked Sensor

Systems, Los Angeles, CA, USA, November, 2003;

pp. 1–13.

[7] Jaewan Seo, Moonseong Kim, In Hur, Wook Choi

and Hyunseung Choo “DRDT: Distributed and

Reliable Data Transmission with Cooperative Nodes

for Lossy Wireless Sensor Networks”, 10, 2793-

2811, Sensors 2010.

[8] Ganesan, D.; Krishnamachari, B.; Woo, A.; Culler,

D.; Estrin, D.; Wicker, S. Complex Behavior at

Scale: An Experimental Study of Low-Power

Wireless Sensor Networks; Technical report; CS TR

02-0013; UCLA: Los Angeles, CA, USA, 2002.

[9] Huang, X., Fang, Y.: Multi constrained QoS

26 M .Kordlar et al: A Transmission Method to Guarantee QoS Parameters in…

Multipath Routing in Wireless Sensor Networks.

ACM Wireless Networks (WINET), 2007.

[10] Couto, D.S.J.D.; Aguayo, D.; Bicket, J.C.; Morris,

R. A High-throughput Path Metric for Multi-hop

Wireless Routing. Wirel. Netw. 11, 419–434, 2007.

[11] Emad Felemban, Student Member, Chang-Gun Lee,

Member, and Eylem Ekici” MMSPEED: Multipath

Multi-SPEED Protocol for QoS Guarantee of

Reliability and Timeliness in Wireless Sensor

Networks”, IEEE TRANSACTIONS ON MOBILE

COMPUTING, JUNE 2006 VOL. 5, NO. 6

[12] Cao, Q.; Abdelzaher, T.F.; He, T.; Kravets, R.

Cluster-Based Forwarding for Reliable End-to-End

Delivery in Wireless Sensor Networks. In

Proceedings of IEEE International Conference on

Computer Communications, Anchorage, AK, USA,

May, pp. 1928–1936, 2007.

[13] C. Kang, X. Shangkon, Sh. Jinglun and W. Gang

“An Energy-efficient Multiple Paths Routing

Algorithm for Wireless Sensor Networks", IEEE,

ICCS, 2008.

[14] S. Madden, M. J. Franklin, J. M. Hellerstein, and W.

Hong, “Tag: a tiny aggregation service for ad-hoc

sensor networks,” SIGOPS Oper. Syst. Rev, vol. 36,

no. SI, pp. 131 146, 2002.

[15] Yuhua Liu and Hao Huang Kaihua Xu “Multi-path-

based Distributed TCP Caching for Wireless Sensor

Networks”, IEEE DOI, 2007.

[16] Dae-Young Kim and Jinsung Cho” Active Caching:

A Transmission Method to Guarantee Desired

Communication Reliability in Wireless Sensor

Networks”, IEEE COMMUNICATIONS LETTERS,

JUNE, VOL. 13, NO. 6, 2009.

[17] G. Campobello, A. Leonardi, S. Palazzo “On the Use

of Chinese Remainder Theorem for Energy

Saving in Wireless Sensor Networks.” Proc. of IEEE

International Conference on Communications (ICC

2008), Beijing, China, May 2008.

[18] Ali Ghaffari, Maryam Kordlar, Vida

Aghakhanloyetakanloo, “Energy-efficient multipath

data forwarding in wireless sensor network”,

Australian Journal of Basic and Applied Sciences,

5(8): 523-529, ISSN 1991-8178, 2011.

[19] M. R. Ebenezar Jebarani1and T. Jayanthy,” An

Analysis of Various Parameters in Wireless Sensor

Networks Using Adaptive FEC Technique”,

International Journal of Ad hoc, Sensor &

Ubiquitous Computing (IJASUC), September,

Vol.1, No.3, 2010.

[20] Levente Buttyan, Ant´onio M. Grilo “A Secure

Distributed Transport Protocol for Wireless Sensor

Networks”, Australian Journal of Basic and Applied

Sciences, 5(8): 523-529, 2011.

[21] Ye Ming Luz and Vincent W. S. Wong, “An energy-

efficient multipath routing protocol for wireless

sensor networks”, International Journal of

Communication Sytems, 20:747–766, 2007.

[22] R Vidhyapriya, Dr P T Vanathi, “Energy Efficient

Adaptive Multipath Routing for Wireless Sensor

Networks”, IAENG International Journal of

Computer Science, 34:1, IJCS_34_1_8, 2006.

Journal of Computer and Knowledge Engineering, Vol. 1, No.2, 2017.

DOI: 10.22067/cke.v1i2.63668

A Novel Routing Algorithm for Mobile ad-hoc Networks Based on

Q-learning and its Generalization to FSR Routing Protocol

Mahmoud Alilou Abdolreza Hatamlou


Abstract: This study proposes a novel routing algorithm

using Q-learning. Q-learning is a machine learning (artificial

intelligence) algorithm using the reinforcement learning

policy which can be used to solve problems for which there

are different ways to reach their goal. The proposed

algorithm, the Modified Q-learning routing algorithm

(MQRA), has eliminated the episodes of Q-learning required

to gradually learn in different stages and this has made it a

rapid routing algorithm. MQRA can be used in various types

of networks. This study uses MQRA in mobile ad-hoc

networks, its generalization to fisheye state routing (FSR) (a

routing algorithm) and its performance results are compared

with the standard FSR. Experimental results confirm the

applicability and potential of the proposed algorithm.

Keywords: Routing Algorithm; Mobile ad-hoc Networks;

FSR Protocol; Reinforcement Learning; Routing in

MANETs.

1. Introduction

In mobile ad-hoc networks (MANETs), nodes or

workstations, trying to send information, are constantly

moving and their neighbors are always changing. Thus,

finding the current position of each node and the path to send

the information packages has become one of the most

important problems of such networks. Various routing

algorithms use different methods to find a route and reinforce

a particular component based on the policy used in sending

information packages through the network. Thus, it is natural

that concentrating on reinforcing one parameter would lead

to distraction from the weakness of other ones. For instance

if rapid delivery of the packages is important in a network,

the routing algorithm loses more time in the routing phase,

while finding the shortest path or it may have to select either

an unsure short path or a safe long path to send the

information packages. Another significant problem of

mobile networks is the energy consumption of the nodes to

process, store and send packages through the network. A

light and intelligent algorithm can mitigate power

consumption of the network and affect its lifetime with a

given amount of energy. Making an algorithm more

intelligent usually requires more information about the

network, more computation makes the algorithm more time

complex and usually it is not possible to make an algorithm

both light and intelligent. Therefore, the proposed algorithm

is presented to find the optimized route with the least

possible amount of computation and in a shorter time than

other similar algorithms [1, 2].

 Manuscript received April 10, 2017; accepted November 27, 2017.

M. Alilou, Department of Computer Science, Khoy Branch, Islamic Azad University, Khoy, Iran.

A. Hatamlou, Dept. of Computer Science, Salmas Branch, Islamic Azad University, Salmas, Iran. hatamlou@iaukhoy.ac.ir.

Fig 1. The standard Q-learning algorithm

2. Literature Review

MQRA significantly changes Q-learning as shown in Fig. 1

and shows great performance while routing. Standard Q-

learning executes stages to obtain a path between the origin

and the destination which is the shortest path between those

nodes. The proposed algorithm eliminates all stages to find

this path as shown in Fig. 2 and finds all paths between the

origin and the destination in a shorter time than the standard

Q-learning instead of just one path.

Fig 2. MQRA for a mesh network.

In the equation shown in Fig. 2, α is a variable which can

vary in relation to bandwidths of the links of each node.

Thus, instead of computing short paths by the number of

steps, optimized paths are obtained by the amount of

transferred data. However, for the simplicity of the example

here, α is considered constant and equal to 0.98.

We describe the algorithm by an example of a given

network. Take an 8x8 mesh, thus we have an 8x8 routing

table and we assume that node (5, 5) is the destination and

node (0, 1) is the origin. Therefore, the value of (5, 5) in the

routing Table is 1 and the rest of the Table has zero values.

http://dx.doi.org/10.22067/cke.v1i2.63668

28 M. Alilou et.ai: A novel routing algorithm for mobile ad-hoc networks…

We start from slot 0 of the Table, move from left to right, top

to bottom and set the value of each slot as α multiplied by the

maximum value of its neighbors. If the neighbors with

maximum values are all equal, one of them is selected by

default.

Table 1. The initial routing table.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.98 0.96 0.94

0.00 0.00 0.00 0.00 0.98 1.0 0.98 0.96

0.00 0.00 0.00 0.00 0.96 0.98 0.96 0.94

0.00 0.00 0.00 0.00 0.94 0.96 0.94 0.92

In Table 1, first values of all slots equal to 0, except for

the destination. After the first run of MQRA, this table is

changed as shown in Fig. 3 and after about 8 iterations of this

algorithm, the routing table is converged and all paths

between the origin and the destination are obtained as shown

in Fig. 4.

Table 2. The converged routing table.

 0 1 2 3 4 5 6 7

0 0.81 0.83 0.85 0.86 0.88 0.90 0.88 0.86

1 0.83 0.85 0.86 0.88 0.90 0.92 0.90 0.88

2 0.85 0.86 0.88 0.90 0.92 0.94 0.92 0.90

3 0.86 0.88 0.90 0.92 0.94 0.96 0.94 0.92

4 0.88 0.90 0.92 0.94 0.96 0.98 0.96 0.94

5 0.90 0.92 0.94 0.96 0.98 1.0 0.98 0.96

6 0.88 0.90 0.92 0.94 0.96 0.98 0.96 0.94

7 0.86 0.88 0.90 0.92 0.94 0.96 0.94 0.92

3. The FSR protocol

FSR is the reinforced protocol of GSR (both of which are

based on the link state). Updating messages uses a significant

amount of the bandwidth in GSR.

Fig. 3 presents an example of the fisheye boundary for

node circles in red. This boundary is determined by the

number of hops needed to reach a certain node. Not all

updating messages of FSR contain all the information of the

nodes. However, more information is provided about closer

nodes than the farther ones. This decreases the size of

updating message. The information of a node about its

neighbors is updated frequently. However increasing the

distance mitigates information validation. This process of

dividing the network to different boundaries is performed for

each node which means that there is no central node

responsible for this division [4].

Fig 3. Boundary of the fisheye [3].

Despite the invalidity of information related to far

neighbors, the routing procedure works correctly since

approaching the destination increases the precision of

information. This protocol is suitable for large-scale

networks, since the protocol overhead is controlled.

The fisheye state routing protocol is table-driven (a

proactive routing protocol). As it was mentioned, FSR is

based on link state routing and it is able to provide the path

information when needed. The link state package is

exchanged periodically, not event-driven and the topology

table is only sent to local neighbors instead of propagating in

the entire network. The order of numbers is used to arrange

the rows of the table, so that no row has the same number

and thus routing is done with no cycles.

Updating messages of the nodes in smaller boundaries are

more precise, since they send their routing tables more

frequently; that is, nodes close to each other receive tables

more frequently. However, the precision of farther nodes is

mitigated, since it takes longer to exchange tables.

Nonetheless, there is no need to find the path as done in

demand based routing algorithms.

The fisheye boundary enables sending link state messages

to nodes in different locations of the fisheye boundary in

different time intervals. This leads to reducing the size of the

link state packages.

Fig 4. Reducing the message using fisheye [3, 5].

The highlighted row of table.12 is propagated more

frequently to its neighbors since it has less hops. The TT

column presents the neighbors.

Each node in FSR has the following information: The

topology table, the link state list of neighbors, the routing

table, Pros and Cons. The topology table is created using the

Journal of Computer and Knowledge Engineering, Vol. 1, No.2, 2017. 29

information from link state messages. Each node has one slot

in this table (the entire topology map). Each slot consists of

two parts: the link state information and the destination order

number. The routing table is created according to the

information of this table. Information related to distance is

obtained after creating the routing table and its information

is used to determine the fisheye boundary for a node.

The topology table has the following information in each

row: destination address, destination order number and the

link state list. While receiving a link state message, the

receiving node registers or updates the sender in its

neighbors list. If it receives nothing from its neighbor after a

certain time out, the corresponding row is deleted from the

neighbors list. Each node stores the link state and the last

time stamp of its neighbors. The routing table provides the

next hop information to send the package to its destination.

The rows of this table are varied if the topology table is

changed. The rows of the routing table present the

destination address and the next hop address.

FSR is suitable for large mobile networks since it is not

sensitive to link malfunction through control messages. The

malfunction links are not considered in exchanging the next

connection messages and that means link changes do not

necessarily change the routing tables. FSR is a simple

method due to using the shortest updated paths. It is also a

robust method due to exchanging a part of the updated

message with only its neighbors which reduces traffic.

It is easy to find the destination, since the topology map

and a simple addressing scheme is used. The drawback of

this protocol is the complicated storage of the routing table,

the computation overhead and also its inability to provide

security as other protocols do [4-7].

3-1. Generalizing MQRA to FSR

 In MQRA generalized to FSR which we call “MQ-

FSRA”, each node sends its score equal to 1% of its value

together with its ID to all direct neighbors. Each receiving

node stores the ID, the score and sends a percentage of the

received score, as well as the ID of the first node to its

neighbors.

Consider two nodes labeled A and Z in Fig. 7. A node

which has a score coefficient equal 1.0 sends its label and a

percentage of its score to its direct neighbors. All neighbors

repeat the same so that A is identified in the entire network.

All nodes, e.g. Z, do the same to be identified in the network.

Fig. 5 is designed assuming A as centroid and each node like

A belongs to an area with its corresponding centroid. The

areas shown represent the frequency of sending packages.

This means that for instance A sends its information,

including label, a percentage of its score and other necessary

information, more frequently in a limited area highlighted in

the Figure. This frequency is reduced for farther areas and

information packages are sent less frequently.

To clarify this point, pay attention to the eighth node in

Fig. 7. This node, as it was considered beforehand, has saved

some coefficients to send packs to nodes A and Z. the

closeness coefficient of node 8 to node A is 0.94. This means

that in case node 8 is supposed to send a pack to A, it must

be sent through a neighbor that has a higher closeness

coefficient to A than itself.

Fig 5. Routing in MQ-FSRA

30 M. Alilou et.ai: A novel routing algorithm for mobile ad-hoc networks…

Fig 6. The navigation table structure in MQ-FSR.

In the example above, node 8 must choose node 6 or 5 in

the next step to convey a pack to A, and if it wants to send a

pack to node Z, the next step will be sending a pack to node

9. In this way, dispatch of any pack from any point in the net

to the desired destination is possible through the shortest

way.

With close attention to Fig. 5 we will notice that MQ-FSR

easily supports Multi Pathing without calculating and saving

any extra data in comparison with single pathing.

In order to dispatch any pack to destination, any node

might simultaneously choose various neighboring nodes

with higher closeness coefficients and choose one of the

neighbors under the same circumstances. Choosing a

neighbor can take place haphazardly or intelligently. The

next step, for instance, can be based on the battery level in

case some neighbors are under the same conditions. Namely,

to choose the node among the neighbors that has a higher

battery supply or to choose the neighboring node that has

fewer tasks in buffer queue awaiting to be processed.

Pay attention to node 2 in this hypothetical net. As it can

be seen in contrast with FSR list, the neighbors of other

nodes are not saved in the table of this node. Moreover,

instead of the number of paces, the closeness coefficient to

the destination is mentioned. In this table, in case there are

multiple routes to a destination. The longer ones with lower

closeness coefficients can be eliminated and an optimum

table can be produced by reduction of navigation table rows.

Therefore, less amount of information is propagated

through the network. However, routing is performed

correctly as mentioned before. This is so because as

packages approach their destinations, the information related

to the destination becomes more precise and the package is

guided to its destination.

3-2. The Advantage of MQ-FSRA to FSR

As we can see in Fig. 6, FSR always propagates the network

topology to direct neighbors of each node with different

frequencies. This makes two problems arise which are not

inherent to MQ-FSRA. First, each node must store its direct

neighbors and a list of neighbors of other nodes. This makes

each node identify its neighbors through sending and

receiving packages and sending collected information to

other nodes which consumes a significant amount of the

energy of the network. Second, there is the problem of node

dependencies; that is, nodes must try to send their packages

by their neighbors whose information is propagated through

the entire the network. This means an implicit dependency

between nodes which makes the network update itself

frequently. This is more intensified when velocities of nodes

are great or nodes often fail. Obviously, none of these two

problems exist in MQ-FSRA, since no list of neighbors is

sent, there is less amount of information, there is no need to

collect the information related to neighbors and there is no

dependencies between neighbors. Wherever nodes are

located in the network, they only have to send their

information to one node which has a higher score.

4. Simulation Results

In the experiments that were conducted, nodes are mobile

and the amount of their mobility is 0.5ms. The amount of

energy is limited and the same for all nodes. The network

space is 100x1000 and the number of nodes varies depending

on the experiment; that is new nodes can join or leave the

network during its lifetime. All facilities of the nodes are the

same, wireless transmission is used for sending and receiving

with a maximum bandwidth of 50Mbit/s and the radius of

30m.

Journal of Computer and Knowledge Engineering, Vol. 1, No.2, 2017. 31

In this section, we evaluate MQ-FSRA with important

policies of routing protocol evaluations, i.e. average routing

overhead and average package loss, and also compare the

results with FSR. The following simulation results indicate

that MQ-FSRA provides better results using these policies.

Routing overhead is the ratio of total number of sent

control packages to total data packages received successfully

at the destination. Figs. 7 and 8 present average routing

overhead and average packet loss of FSR and MQ-FSRA.

These diagrams consider the overhead amounts separately

according to the number of current nodes of the network and

the velocity of the nodes. Also average package lost is given

based on node failures. As we can see in Figs. 7 and 8, MQ-

FSRA has better performance compared with FSR, through

reduction of navigation table rows.

Fig 7. Average routing overhead according to cost functions with

different number of nodes.

Fig 8. Average package loss according to the proportion of node

failures.

5. Conclusions

As it was discussed in this study, the novel proposed

algorithm called “MQRA” is a light and rapid algorithm,

which can adapt to the environment and it can also be

generalized to various protocols. Generalizing the proposed

algorithm to FSR significantly reduces FSR computations

and eliminates node dependencies. This leads to long-term

updates of MQ-FSRA and imposes less overhead in the path

finding phase and routing reconfiguration. Node

independency reduces package loss due to node failures and

path disconnection while sending the package. MQ-FSRA

needs less amount of stored information to find a route

compared to FSR since in contrast to FSR, MQ-FSRA does

not need to store the information about direct and indirect

neighbors. Therefore, it requires less memory and consumes

less energy. Adding facilities like GPS to MQ-FSRA enables

provision of new services which we intend to discuss in

another paper. However, FSR does not predict utilizing such

capabilities.

References

[1] R. S. Sutton and A. G. Barto, ―Reinforcement

Learning: An Introduction,The MIT Press, 1998.

[2] A. F¨orster, ―Machine learning techniques applied

to wireless ad-hoc networks: Guide and survey, ‖ in

Proceedings of the 3rd International Conference on

Intelligent Sensors, Sensor Networks and

Information Processing (ISSNIP), 2007.

[3] G. Pei, M. Gerla and T.-W. Chen, “Fisheye State

Routing in Mobile Ad-Hoc Networks”, In

Proceedings of the 2000 ICDCS Workshops, Taipei,

Taiwan, pp. D71-D78, Apr. 2000.

[4] L. Kleinrock and K. Stevens, “Fisheye: A Lenslike

Computer Display Transformation”, Technical

report, UCLA, Computer Science Department, 1971.

[5] T.-W. Chen and M. Gerla, “Global State Routing: A

New Routing Scheme for Ad-hoc Wireless

Networks”, In Proceedings of IEEE ZCC’98,

Atlanta, GA, pp. 171-175, Jun. 1998.

[6] Gyanappa A. Walikar, Rajashekar C. Biradar , A

survey on hybrid routing mechanisms in mobile ad

hoc networks PP. 48-63.

doi>10.1016/j.jnca.2016.10.014

[7] Fahimeh Dabaghi, Zeinab Movahedi, Rami Langar,

A survey on green routing protocols using sleep-

scheduling in wired networks, PP. 106-122.

doi>10.1016/j.jnca.2016.10.005.

[8] Shafiee, Kaveh, and Victor Leung. Connectivity-

aware minimum-delay geographic routing with

vehicle tracking in VANETs. Ad Hoc Networks 9.2

(2011): 131-141.

[9] Ding, Zhiguo, and Kin K. Leung. Cross-layer

routing using cooperative transmission in vehicular

ad-hoc networks. Selected Areas in

Communications, IEEE Journal on 29.3 (2011): 571-

581.

[10] Sofra, Nikoletta, Athanasios Gkelias, and Kin K.

Leung. Link residual-time estimation for VANET

cross-layer design. Cross Layer Design, 2009.

IWCLD'09. Second International Workshop on.

IEEE, 2009.

[11] Al-Rabayah, Mohammad, and Robert Malaney, “A

new hybrid location-based ad hoc routing protocol”,

Global Telecommunications Conference

(GLOBECOM 2010), 2010 IEEE. IEEE, 2010.

32 M. Alilou et.ai: A novel routing algorithm for mobile ad-hoc networks…

[12] Al-Sultan, Saif, Ali H. Al-Bayatti, and Hussein

Zedan, “Context-aware driver behavior detection

system in intelligent transportation systems”,

Vehicular Technology, IEEE Transactions on 62.9

(2013): 4264-4275.

[13] Yang, Qing, et al. “ACAR: adaptive connectivity

aware routing protocol for vehicular ad hoc

networks”, Computer Communications and

Networks, 2008. ICCCN'08. Proceedings of 17th

International Conference on. IEEE, 2008.

[14] Schaul, T. Bayer, J. D. Weirstra, Sun, T. “PyBrain”,

Journal of Machine Learning Research, vol 11, no.2,

2010.

[15] Kulkani, S., Rao, R., “Performance Optimization of

Reinfrocement Learning Based Routing Algorithm

Applied to Ad hoc Networks”, International Journal

of Computer Networks and Communications, vol. 2,

pp. 46- 60, 2010.

Journal of Computer and Knowledge Engineering, Vol. 1, No.2, 2017.

DOI: 10.22067/cke.v1i2.66227

STAR: Improved Algorithm based on Sliding Window for

Trust-Aware Routing in WSNs

Mouhebeh Sadat Katebi


 Hassan Shakeri

 Farzad Tashtarian

Abstract: This research with attention to the establishment

of trust in WSNs and with the goal of increment in energy

supply and growth in malicious node detection accuracy by

using of improved sliding window, is saving energy by using

computation of the previous periods. Also, this research

calculates the trust in aspect of transferring information,

based on subjective logic model and incremented the

detection rate of malicious node by proposing two

algorithms for identifying these nodes. Then, this method

increases the speed of routing. The results of simulation of

STAR compared to EDTM (Jiang, et al., 2015) shows

11.99% increment in the residual energy of network and

growth of 1.52% in detecting the accuracy of malicious

nodes.

Keywords: Trust - Wireless Sensor Network – Subjective

Logic Model – Sliding Window – Confidence - Routing

1. Introduction

Since the wireless sensor networks spread everywhere and

they are being targeted by many security attacks, it is

necessary to provide and maintain security in these networks.

Moreover, older security measures should be replaced by

new ones. Trust establishment between nodes must be able

to evaluate trust among all nodes because the survival of

wireless sensor networks is dependent on the trust between

the nodes and their participation.

On the other hand, algorithms of trust based systems, as

computational loads go up, the nodes would experience lack

of energy and life time reduction. Therefore, while designing

trust based networks, we must consider the factors such as

amount of energy, computational limits, and node and

memory limitations in order to build a fully efficient

network.

Can be expressed, in general, establishing trust in wireless

sensor networks is down with two main objectives: to

improve cooperation and increase security (Ishmanov, et al.,

2015). Because of the collaboration between sensor nodes in

wireless sensor networks, it is crucial to maintain the

operation of a network. Also, the trust can be as an important

component to gain confidence to obtain data in WSNs.

Manuscript received ; July 20, 2017. Accepted October 30, 2017.

* M. S. Katebi, Dept. of Computer Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran, mhb.s.katebi@mshdiau.ac.ir.

H. Shakeri, Dept. of Computer Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran, shakeri@mshdiau.ac.ir.

F. Tashtarian, Dept. of Computer Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran. mhb.s.katebi@mshdiau.ac.ir.

2. Material and methods

In this study, the trust computation system is implemented

on WSNs using the improved sliding window and the

Subjective Logic (SL) model. The manner of calculating the

trust is based on three factors such as residual energy, node

behavior and interval of sending and receiving. The residual

energy factor, because of being considered as an important

feature in node ability, runs a very important role in

establishing trust. Node behavior would be determined based

on its suspicious behavior or by node's failure to send

(transfer) packets to the next nodes. Also, the interval of

packet sending/receiving factor is considered for

investigating the delay in receiving the packet. To detect the

malicious nodes and prevent them to be selected in the

routing process, two different algorithms were introduced

with the goal of distinguishing two types of different

behaviors. The first algorithm is to examine the tapering of

the trust node and the second is considered the node

cooperation in sending messages to the neighbor node.

This study implemented the trust computation system on

WSNs by using the improved sliding window and SL model

(Josang, et al., 2006). In this section, the concepts that are

used in this research are defined.

2.1. Preliminary definitions

2.1.1. Trust

From the perspective of decision-making, trust means "the

desire to confide". From this perspective, trust can be defined

as follows:

Trust is the willingness to rely on something or someone

in a certain situation which is characterized by a sense of

relative security at the same time. Also, it will consider the

possible implications (Gambetta, 1988).

This definition, in addition to the level of destination

trustworthiness, considers the conditions that must be taken

in decision-making. This includes numerous other options

for cooperation, risk or profit and loss of interaction or lack

of interaction.

2.1.2. Trust-aware routing

In recent years, some protocols have been proposed for trust-

base routing. In this routing method, the focus is on the

http://dx.doi.org/10.22067/cke.v1i2.66227

34 M. S. Katebi et.al: STAR: Improved Algorithm based on Sliding Window for Trust-Aware…

trustworthiness of nodes participating in the routing process

and it tries to make the main goal which is the security of

path by observing the certain constraints of any network such

as energy constraint. On this basis and considering the fact

that WSNs is one of the most popular networks for

implementing the Smart City; trust-aware routing protocols

will have a critical role in the security of this network.

2.1.3. Confidence

Believe to the truth of trust estimation.

The difference between trust and confidence: trust is

taken into account as an agent, but confidence is about the

value of trust evaluation.

2.1.4. Sliding window

The window that includes several slices which in any of it,

in every slicing time, a value is placed. With arriving a new

value, the oldest value will be removed from the window.

2.1.5. Piggybacking

It is a bidirectional data transmission in the network layer (in

the OSI model). This approach is prompted by the data

frames (that sent from receiver to sender) to add an

acknowledgment that indicates that the data frame is

received by the receiver successfully (ACK) and this means

that instead of sending a separate ACK package, this package

adheres over the data that are scheduled to be sent.

2.2. Related Work

Nowadays, there are different studies in trust-based systems

domains in WSNs, especially in the trust base routing field.

For encrypting communications between the two nodes and

the routing packets in WSNs, in 2008, a dynamically and

symmetric key distribution method was proposed by Lewis

et al (Lewis, et al., 2008). In this method, each sensor node

can distribute the common key. Each node can choose one of

the neighboring nodes to distribute a key pair to

communicate between two nodes. This selection is based on

the local computing of obtained trust value from the

requesting node. In this study, we present a trust-based

routing method that each node employs this method in its

routing. Use of direct and indirect trust, has a long history. A

trust-aware routing that contains distributed trust model is

based on direct and indirect trust information proposed in

2010. The innovation of this trust-aware routing algorithm is

a defense against wide attacks using supervision method and

awareness from energy. This also leads to better load

balancing and more flexibility against attacks.

In 2012, for solving the loss of data integrity problem that

was caused by invalid data injection by unauthorized nodes

in the network, the researchers (Chakrabarti, et al., 2012)

proposed a model that introduces a three layer architecture

based on trust framework to also detect unauthorized nodes

from authorized ones and to separate fake data from others.

The base station keeps the sequence of nodes trust values and

also the nodes in a cluster save a sequence of trust values of

their cluster heads. According to the study, the trust value is

affected by energy value, receiving data model (binary or

possibility) and a difference in the received data from a node

in comparison with the received data from neighbor nodes.

With the aim of finding the trusted nodes and running the

routing on these nodes, in 2014, the plan co-worker (Latha

& Palanivel, 2014), introduced a secure routing algorithm

that detected and ranked the trusted node by using the packet

Message Authentication Code (MAC) model and it also

gives a chance to the untrusted node to show its honesty.

The model provides security features with high performance

and a minimum of overload. In the first stage, the source

node achieves the MAC value by the message secret code

and sends it to its neighbor node. The neighbor node achieves

the received message MAC value by the same key. Then

both of MAC values would be compared with each other. If

each of both values meet together, ACK message would be

sent to the sender. If the sender did not receive the ACK

message, its neighbor node would be placed in a different list

as an untrusted node. In the second stage, the nodes that were

detected as trusted are ranked based on the number of packets

they send and also the quality of their behavior with other

neighbors. In the third stage, as soon as the source node

receives a signal, it starts the routing process for its packets

using predetermined nodes, and then ranking would be

done based on the second stage. In the fourth stage, the

trustworthiness of the nodes that are kept in the list would be

reevaluated. In another study, in 2014, the requirement for

routing protocols based on trust was studied in research

(Vasudha & Gajkumar Shah, 2014). In this study, the nodes

that have low security are detected and then are equipped

with the defense system by using clustering methods and

path discovery algorithms that are based on trust.

In 2015, in a study of security threats and energy

constraints in multi-hop WSNs, (Raza, et al., 2015) proposed

an energy storage routing protocol that is safe and based on

trust. This protocol supervised the trustworthiness and

reputation of nodes and it maintains a history of interactions

between nodes to determine the safety and trustworthiness of

the paths. The protocol has three phases for detecting the

neighbors, cluster, head selection and data sharing. In 2015,

a trust framework was designed for secure routing in WSNs

by (Hoceini, et al., 2015), that is based on network

architecture structure. This approach can effectively reduce

the costs of trust evaluations and guarantee the selection of

most secure paths leading to the base station. The protocol

evaluates the trustworthiness of sensor nodes according to

acknowledges of the base station and the recommendations

of the neighbor nodes. To protect WSNs against multi-hop

path corrupter attackers, (Chavan, et al., 2015) a model that

has a strong framework was implemented to trust-aware

routing for WSNs, in 2015. This model provides an energy-

efficient and trustworthiness path without synchrony and

GIS. More importantly, this model has an efficient definition

against attacks that produce fake ID. In 2015, in terms of

energy saving and guaranteeing the secure data transmission

for WSNs, a routing protocol based on a potential field and

trust was proposed by (He & Zhao, 2015). For node and valid

cluster head selection process, considered three factors such

as residual energy, trust value and distance.

In 2015, Jiang et al. introduced a distributed trust model

for WSNs by the acronym EDTM (Efficient Distributed

Trust Model), that is a trust model which includes two

components of one-hop trust model and multi-hop trust

model, (Jiang, et al., 2015). In the one-hop model, if trust

Journal of Computer and Knowledge Engineering, Vol. 1, No.2, 2017. 35

value is completely achieved by direct experiences of node

A with node B, this model is called direct trust, otherwise, a

recommendation trust model is built. In the multi-hop model,

when node A received a recommendation from other nodes

for node B, then the indirect trust model is built. The direct

trust between two neighbor nodes is calculated using

Equation 1:

𝑇𝑛−𝑑𝑖𝑟𝑒𝑐𝑡 = 𝑊𝑐𝑜𝑚𝑇𝑐𝑜𝑚 +𝑊𝑒𝑛𝑒𝑇𝑒𝑛𝑒 +𝑊𝑑𝑎𝑡𝑎𝑇𝑑𝑎𝑡𝑎 (1)

where Wcam , Wene and Wdata are the weight of

communication, energy and data trust, respectively.

Authors introduced Equations 2 and 3, to calculate the

indirect trust in two steps of finding the multi-hop

recommenders between two nodes and trust propagating.

𝑇𝑛−𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 (
𝐵

𝐶1
) = {

𝑇𝐶1 ∗ 𝑇𝑐1
𝐵 , 𝑖𝑓 𝑇𝑐1

𝐵 < 0.5

0.5 + (𝑇𝑐1 − 0.5) ∗ 𝑇𝑐1
𝐵 , 𝑒𝑙𝑠𝑒

 (2)

𝑇𝑛−𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 (
𝐵

𝐶𝑖+1
)

=

{

 𝑇𝐶𝑖+1 ∗ 𝑇𝑛−𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 (
𝐵

𝐶𝑖
) , 𝑖𝑓 𝑇𝑛−𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 (

𝐵

𝐶𝑖
) < 0.5

0.5 + (𝑇𝑐𝑖+1 − 0.5) ∗ 𝑇𝑛−𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 (
𝐵

𝐶𝑖
) , 𝑒𝑙𝑠𝑒

(3)

In 2016, researchers (Kaur, et al., 2016) suggested a trust-

based key management routing framework in WSNs that

creates a secure and trustworthiness path dependent on the

current and past interactions. Then, the path is updated by the

separation the malicious nodes or vulnerable nodes. In this

model, the network parameters can be determined such as the

network deployment area, the number of nodes, the rate of

the malicious node in the network (if the effect of attacks and

transmission range of a node are taken into account). Using

a distributed trust model for the discovery and the separation

of the misbehaving nodes, a secure and energy/trust-aware

protocol was introduced by (Ahmed, et al., 2016) in 2016.

This protocol uses a polymorphism routing method which

considers trust level, residual energy and hop number of

neighbor nodes, during the routing. This method not only

guarantees data release through the trustworthiness nodes but

also keeps the energy balance through trustworthiness nodes.

This model contains four modules such as trust estimator,

trust database, decision-making path and bootstrap path. The

idea of integration of fault tolerance and secure routing for

WSNs was present in 2016 by (D. Devanagavi, et al., 2016).

The goal of this model is establishing a secure path from the

source to the base station, even in the presence of malicious

nodes. In this idea, the agent-base trust model is used. Data

is also transferred from a safety path and without malicious

or compromiser nodes to the base station. Also in 2016,

(Salehi, et al., 2016) proposed a trust-base compromising

routing protocol for WSNs. The protocol is used for direct

relations between the sensor nodes and it benefits from a

novel watchdog mechanism considering not only the

forwarding behavior of the nodes but also the quality of the

links between them. In a sophisticated algorithm, choose the

next node for net hop, according to three criteria of link

quality, geographic location and trust level.

3. Calculation of trust in the STAR

3.1. Network topology model

In this network, each node has a unique identification that

cannot be assigned to the other. However, the nodes in this

network are immobile and all of them are homologous in

terms of storage capacity, initial energy, power supply and

computing power. Also, each node holds a list of last

neighbor nodes trust value that previously interacted with

them, in a table with the name of "Information List" (IL). The

structure of this table includes the sliding window improved

plan. Also, in order to remove the malicious node from the

routing process, information of the mentioned node was

recorded in the "Malicious Node List" (MNL) which each

node has it.

For the storage of trust, the values will be considered in

the range of (0-15), because if values are stored as the binary

form or stored between 0 and 4, it leads to reducing the trust

accuracy and if its data type be as decimal, it finished to

increase the computing space and subsequently led to

reduction in the computation speed. Therefore, this choice

has the advantage that it reduces the memory and

communication overhead through the computation of trust in

this range of storing.

3.2. Information List and present sliding window improved

structure.

Each node needs appropriate space to store the information

of nodes that interact with them to access them when

required, the accession must be able to do search, insert and

delete operations. Thus, the IL structure is introduced as

below:

IL structure contains two priority levels (Fig 1.a). High

priority is for nodes that have more interaction with the

source node and so their values remain longer in the sliding

window. Therefore, a low priority is assigned to other nodes.

The node with low priority changes to high priority after it

was used Nusing times in the routing. The implementation of

this list has a major advantage that there is not needed to

broadcast the trust value from base station and the nodes will

not be required to share the trust value. Use this list, as well,

increase efficiency of system resource by reducing in

network communication overhead.

In each node, IL includes the number of cells and the

structure of each cell includes node identification number,

sliding window that its width is Lsw and residual chance. (Fig

1.b)

The proposed structure of the sliding window also

includes three items. The first item is computing the trust

time, the second item is the trust value and the third item is

the interaction number. The sliding window is organized in

IL (Fig 1.b).

3.3. Computation of performance based on network trust in

interactions

At the beginning, the IL of the sliding window is empty for

all nodes and, will be recorded the destination node

information in the source node IL with any interaction. When

node A wants to interact with node B, if there is no previous

data of node B in IL of node A, the required data is provided

by recommender nodes and if the data of node B exist, it is

36 M. S. Katebi et.al: STAR: Improved Algorithm based on Sliding Window for Trust-Aware…

placed in proportional new location according to the current

time. The scenario can be explained as follows:

1. Starter node (node A), determines the destination node

(node B) that is going to interact with it.

2. Check the presence or absence of node B is addressed in

the IL of node A.

High priority

Low priority

a. Information List Structure

b. Structure of any cell of Information List

Node ID

Residual Chance

Improved structure of

Sliding Window
Time
Trust
Interaction No

Fig 1. a. The IL structure, b. The structure of any cell of IL

There is the address of node B in IL of node A.

2.1.1. If the trust of node B, was unacceptable, node A passes

up from interacting with node B and then terminates.

2.1.2. If the trust information retrieved from the list is

acceptable, compare the time of the trust value recorded

with the current time.

2.1.2.1. If this interval was acceptable, node A is going to

interact with node B and inserts trust information of node

B and the current time in the right location of IL and then

terminates.

2.1.2.2. If this interval is not acceptable, go to the next step.

2.2. Address of node B does not exist in IL of node A or is

not acceptable the interval then:

2.2.1. Node A sends a recommendation request package

about declaration individual trust of each neighbor node

to node B and asks their opinion about node B.

2.2.2. Any neighbor nodes send its direct or indirect opinion

according to this scenario.

2.2.3. Node A, collects the received opinions. The opinions

that have lower trust from threshold trust, are removed.

2.2.3.1. If the number of remover opinions is more than half

plus one of total opinion, the final opinion of node A about

node B, will be based on distrust to node B and terminate

the process.

2.2.3.2. If the number of remover opinions is less than half

plus one of the total opinion, node A arranges the gained

opinions values base on trust value of its first next node.

Then compute the weighted mean and then if the gained

result is acceptable, the new trust of node B and its time,

are stored in IL of node A. Therefore, node A will decide

to interact with node B and choose the path that reports

greatest trust value. If more than one path, declares the

same trust value, the path of creating the interaction will

be the path that has the minimum hop.

3.3.1. Methods of detection of malicious nodes

Based on the assumptions, there will be two kinds of

malicious nodes: the node that its trust is reducing

successively and the node that prevents from sending an

information packet to the destination. Thus, two separate

algorithms are introduced to detect malicious nodes:

3.3.1.1. Computation of Node Descending Trust (CNDT)

If there are Nuse-chance consecutive times, as much as 0.9% reduction

in the latest trust (Trnew) evaluation of a node than last trust value

(Trlast), the mentioned node has been identified as a suspicious node

and is removed from IL and routing operations and their subsequent

monitoring will be a duty of their neighbors. This is because it is

believed that the trustworthiness of a node - that its trust value is

reducing consecutively as much as 0.9 of last calculated trust value

- is being questioned and needs supervision. To implement this

approach, residual chance factor was used. In this way that by the

initialization of residual chance for each node, as soon as the

observation of condition (when trust value of Trnew is reduced 0.9%

than Trlast), a unit of a residual chance factor is deducted and its

value will be stored for future use. The Pseudo-code algorithm of

CNDT can be seen in:

Fig 2. CNDT algorithm pseudo-code

Here, the values of different W, are the weight of trust

values or the impact factor of the history.

It should be pointed out that this algorithm, in addition, to

identifying malicious nodes, provides the required weights

for use in Equation 14, that will affect the history of the last

trust value in the new value.

3.3.1.2. Computation of Node Association (CNA)

If the number of packets sent from a node such as A is greater or

equal to Percentpacket_sent percentage of its neighbor nodes and the

participation of a specific neighbor node like B exists in less than

Percentassociation percentage of interactions of node A, then node B

recognized as suspicious node, is used from chance and will be

monitored. The Pseudo-code algorithm of CNA can be seen in Fig

3:

Fig 3. CNA algorithm pseudo-code

3.3.2. Monitoring phase

The scenario of monitoring phase is expressed as follows:

Journal of Computer and Knowledge Engineering, Vol. 1, No.2, 2017. 37

When a node detects that another node (such as X) has

been suspicious, it informs its neighbors by sending a packet

to them. Each node that was made aware of its malicious or

suspected neighbor, after the time of tdet_mal from while

node X detected as malicious or suspicious, then will be

monitored the node X in a period of time, as follows:

1. If nodes A and C are as the neighbors of node X and are

considered to be supervisor of X, then when node A wants

to send data (including request Acknowledgement) to

node C, then its data is sent via node X and waits for ACK

message from node C (Fig 4-.a).

2. In this case, it is assumed that node X sends this packet to

node C (Fig 4-.b). Also, node C which knows that node X

is a malicious mode, sends an ACK message to senders of

the packet which is received from node X (Fig 4-c) and

then sends the received packet with node X information

to the next node by the piggybacking method.

3. If after the twait, did not receive any ACK message from

node C, that means that node X did not perform routing

appropriately and sent the packet to its arbitrary node,

such as node B (Error! Reference source not

found.3.d). Therefore, node A will resend its data and

information of node X also, by the piggybacking method.

A
X C

(a)

A
X C

(b)

A
X C

(c)

A
X C

B

(d)

ACK Request

ACK Answer

Sending ACK

Piggybacking Method

Info Packet

Fig 4. Steps of monitoring phase. a- Node A sends its packet via

node X to node C. b- Node X sent the packet of node A to node C.

c- Node C. When it received a packet of node A, it sends ACK

message. d- Node X, doesn’t send the packet to its destination.

Now we can consider a situation that malicious or suspect

node X, wants to produce fake ACK and performing this

action with the aim of deceiving the sender node (node A),

certifies this node to arrive data to node C. Therefore, to

ensure the arrival of the data packet to true destination, when

a node A wants to send data to node X with the aim of

monitoring it, node A informed the neighbors of node X.

Neighbor node also, controls the arrival or non-arrival of the

packet of node A to node C, through overhearing. Then node

A after receiving the ACK, determines whether the ACK

message is real or fake. Through voting results have been

reported by neighbor nodes. The result of evaluation of of

node X with gained information, including the amount of

trust that has been evaluated and a number of times to

monitoring, is stored in the base station to record the history.

Each node that detects as malicious Ndet_mal times, is removed

from routing cycle and is not monitored never.

3.3.3. Distribution the information of malicious node

between nodes and base station

The suggestion of distributing the information of malicious

nodes will be based on this approach that each node in its

interactions in several times, sends trust value of the node

that was detected as a malicious node to base station via the

piggybacking method. The base station also, in a certain

interval, declares these values to neighbor nodes of the

aforementioned node.

3.3.4. Method of interaction with new node and initialization

of the trust value

The suggestion of how to deal with the node that has not

recorded its interaction, would be considered a temporary

trust based on its residual energy. This temporary value is the

same initial value of trust for each node in starting the

network. Then, the considered node will be tested on the

verification test. If the result of the test is positive, interaction

with this node will be started. Otherwise, the history of node

evaluation will be stored as its trust value and it will be

monitored by its neighbor nodes.

The verification test could be considered such that after

the node A is sent its packet that includes of ACK request

from node C, to node X (node X that is tested), after the

appropriate time, the positive or negative result is determined

through receiving or not receiving the ACK message from

node C.

3.3.5. Calculation of energy parameters

The affecting factors in energy consumption, are the cost of

sending and receiving the packet and passes up from the cost

of energy for computation due to insignificance of the

matter. To initialize the primary energy of any sensor node

and energy consumption in receiving and sending the packet

activities, the values that are proposed in (Zho, et al., 2015)

have been used.

3.3.6. Decision and calculation of trust, based on subjective

logic model

A node is computing the trust value of its neighbors by this

method that the first search is the identification number (ID)

of object node in its IL. If the search was successful, node A

compares the last time of recorded trust value in its sliding

window with the current time and if it was in interval

38 M. S. Katebi et.al: STAR: Improved Algorithm based on Sliding Window for Trust-Aware…

threshold, then its decisions are made based on trust value

that is fetched and otherwise, node A computes the new trust

value (Trnew). It should be noted that the consideration of this

case, has the important advantage that it will increase the

speed of routing.

To calculate the amount of trust, the requester node use of

these factors for evaluating the trust of the node considers:

the amount of successful (NS) and unsuccessful (NUS)

interactions, the amount of residual energy (Erem), the

number of known as suspected node from evaluator node

(Nsus), the number of monitored because of being known as

malicious node from neighbor nodes (Nmal) and finally the

interval of sending and receiving the packet by considering

node (tsr). To use any of these parameters first the amount of

effect of any parameter must be investigated independently

and ultimately, the resultant of all obtained relationships

should be introduced as the final evaluated trust value.

Subsequently, the trust value in the fields of energy, behavior

and packet sending is computed.

The energy trust is calculated using Equation 4:

𝑇𝑟𝑒𝑛𝑒𝑟𝑔𝑦 = 𝐸𝑟𝑒𝑚/𝐸𝑖𝑛𝑖 (4)

Here, Eini represents the value of initial energy of each

node and Trenergy illustrates the trust of the perspective of

energy.

Due to Equation 5 of computing the trust in node behavior

area, the effect of two parameters of Nsus and Nmal on trust

value, fit into one equation:

𝑇𝑟𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 = (1 − 𝑁𝑠𝑢𝑠 /𝑁𝑚𝑎𝑥−𝑠𝑢𝑠)

∗ (1 − 𝑁𝑚𝑎𝑙/𝑁𝑚𝑎𝑥−𝑚𝑎𝑙) (5)

Where Nmax-sus is the maximum number of times that a

node can monitor as a suspicious node and Nmax-mal is the

maximum number of times that a node can monitor as a

malicious node. Trbehavior illustrates the trust of the

perspective of node behavior.

According to the Equation 5, it can be argued that if the

outcome of Nsus /Nmax−sus or Nmal/Nmax−mal is zero, this

means the complete trust in its area (The first fraction

illustrates the suspicious and the second fraction expresses

the malicious) and vice versa. If we have value one or close

to one, this means subtracting the same amount of trust in the

same field. The production of two parentheses also proves

that if a node was detected as malicious node (that it's mean

is 1 − Nsus /Nmax−sus = 0 or1 − Nmal/Nmax−mal = 0), if

one of the parenthesis being zero, the other will lose its cost;

because it has been terminated its chance for malicious or

suspicious and in each of these scenarios (malicious is

known, or suspected), it has been established malicious of

node.

To make-decision for the success or failure of sending a

packet, the differences of the interval of sending and

receiving of a packet must be calculated. But since it is

inevitable that a packet might be missing in the networks, to

consider the effects of this case, the calculation by (Faridi,

et al., 2010) was used, first, the probability of packet loss in

calculating the RTT was will be considered as follows:

When a node wants to send a packet and at the same time,

another node or its neighbor nodes are also sending a packet,

then the possibility of collision occurs. In this case, one or all

of the packets are lost and the sender must resend its packet.

What can occur in an information transmission, is the failure

to access the channel, collision of packet or success in

sending the packet.in (Faridi, et al., 2010), is considered as

two modes for packet losing, one is the failure mode and

another is the collision. So, based on the result of (Faridi, et

al., 2010). The calculation of the probability that is the

outcome of a packet is terminated to one of the modes of

failure or collision obtained by Equations 6 and 7:

𝑃𝐹𝐴𝐼𝐿 = ∏(1 − 𝑦𝑖)

𝑀

𝑖=0

 (6)

𝑃𝐶𝑂𝐿 = 𝑃𝑐𝑜 × (1 − 𝑃𝐹𝐴𝐼𝐿)
(7)

In Equation 6, y is the possibility of access to the channel,

M is number of channel detection states (CCA) and𝑃𝐹𝐴𝐼𝐿, is

the possibility of failing in channel access and in Equation 7,

𝑃𝑐𝑜, is the probability of collision for each node and finally,

𝑃𝐶𝑂𝐿, is the possibility of network collision.

Therefore, by applying the effect of the collision event, for

obtaining a successful result or achieving an unsuccessful

result in a particular interaction, Pseudo code of Fig 5 can

be used:

Fig 5. Pseudocode of result of successful or unsuccessful in a

sending

Here, RTT is the trip time (packet sending) and back

(getting ACK) and Tmax is the threshold value of RTT whose

value is obtained for each node, by using Equation 8:

𝑇𝑚𝑎𝑥(𝑖) = 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑅𝑇𝑇 + 𝑃𝐶𝑜𝑙(𝑖) (8)

The concept of this equation is that for every node i can be

added to the delay in receiving the packet, two values of RTT

threshold and a measure of the probability of collision in

packet sending for same node i.

By calculating each of subjective logic model parameters,

the evaluated trust is computed based on SL model

(Equations of 9, 10 and 11). S, F, b, d and u expressed

success, failure, belief, disbelief and uncertainty,

respectively:

𝑏 = (𝑆/𝑆 + 𝐹 + 1) (9)

𝑑 = (𝐹/𝑆 + 𝐹 + 1) (10)

𝑢 = (1/𝑆 + 𝐹 + 1) (11)

It is considerable that obtained value of u parameter is the

confidence value that illustrated the amount of trust accuracy

and for applying its effect on the trust value, the SL model is

used.

By spotting the parameter "a" (0 ≤ a < 1) as the base rate

that is defined in the SL model, the expected value of trust

in packet sending field, by Equation 12 is obtained:

Journal of Computer and Knowledge Engineering, Vol. 1, No.2, 2017. 39

𝑇𝑟𝑝𝑎𝑐𝑘𝑒𝑡 = 𝑏 + 𝑎𝑢 (12)

That the parameter "a" is usually considered as 0.5 and

Trpacket is expected value of trust in packet sending field.

Now, with having obtained trust values of each field (i.e.

Equations of 4, 5 and 12), the final trust of a node is gained

by adding and multiplying the weight of these trust values,

according to Equation 13:

𝑇𝑟𝑛𝑒𝑤 = 𝛼 ∗ 𝑇𝑟𝑝𝑎𝑐𝑘𝑒𝑡 + 𝛽 ∗ 𝑇𝑟𝑒𝑛𝑒𝑟𝑔𝑦 + 𝛾

∗ 𝑇𝑟𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟

𝑊ℎ𝑒𝑟𝑒 𝛼 + 𝛽 + 𝛾 = 1

(13)

In this equation, values of coefficient of α ، β and γ, are

variable and show the amount of effect of each obtained

trust. The value of Trnew is the newest computed trust value

of a certain node.

The method of entering and exiting trust value in sliding

window and computing the impact factor in trust value can

be calculated as defined in Equation 14:

𝑤𝑖 = 𝜌
𝜀Δ𝑇𝑖 (14)

And finally, the result of history (Trlast is the result of trust

value in three past interactions), is calculated according to

Equation 15:

𝑇𝑟𝑙𝑎𝑠𝑡 = 𝑊3 ∗ 𝑇𝑟3 +𝑊4 ∗ 𝑇𝑟4 +𝑊5 ∗ 𝑇𝑟5 (15)

To save new trust in a sliding window by applying

weighted (weights derived from algorithm Pseudo code

CNDT), the new value of the last trust, Trfinal, is obtained

from Equation 16:

𝑇𝑟𝑓𝑖𝑛𝑎𝑙 = 𝑊𝑙𝑎𝑠𝑡 ∗ 𝑇𝑟𝑙𝑎𝑠𝑡 +𝑊𝑛𝑒𝑤 ∗ 𝑇𝑟𝑛𝑒𝑤 (16)

4. Simulation results

The wireless sensor network of STAR has been 200 nodes

that established in spatial of dimensions of 40 × 40 square

meters. Each node has a different number of neighbors and

has radio radius of eight meters. The parameters that using

in this network and values of trust computation parameters is

observed in Error! Not a valid bookmark self-reference.

Table 1. parameter of implementation

Row Parameter name Parameter value explanation

1 IniSensorEnergy 10000 Amount of initial energy of each node

2 TransEnergy 0.144 Amount of energy consumption for packet sending

3 RecEnergy 0.0576 Amount of energy consumption for packet receiving

4 EnergyThreshold 6000 Acceptable threshold for residual energy

5 BaseRateSL 0.5 Base rate in SL model

6 𝛼 0.25 Ratio of expected value of packet sending in computing the new trust value

7 𝛽 0.55 Ratio of trust in energy field in computing the new trust value

8 𝛿 0.2 Ratio of trust in node behavior in computing the new trust value

9 𝜃 0.7 Weight of new trust value in state : TRnew >= TRlast * 0.9

10 𝜔 0.3 Weight of new trust value in state : TRnew < TRlast * 0.9

11 TrustThreshold 0.4 Acceptable threshold for trust value

12 MaliciousPercent 5 – 50 Total percentage of number of malicious node in network

13 PacketSentPercent 80 Percentage of number of sent packet by a certain node

14 AssociationPercent 3 Percentage of association of a node in sending the packet of neighbor nodes

15 RTTThreshold 5 Acceptable threshold for RTT

16 TotalChance 3 Total number of chances for each node

17 TotalSusPermission 3 Total number of allowed times for detecting a node as suspected

18 𝜀 0.01 Power parameter in Equation 14

19 𝜌 0.9 Ratio of impact factor in Equation 14

40 Katebi et.al: STAR: Improved Algorithm based on Sliding Window for Trust-Aware…

4.1. Comparative evaluation of STAR with EDTM

In this section, the result of comparing the residual energy

and detection percentage of the malicious node in STAR,

with EDTM (Efficient Distributed Trust Model) will be

analyzed that was proposed by (Jiang, et al., 2015).

4.1.1. Evaluation and analysis the residual energy of total of

network

For achieving the residual energy of total of network, after

each time determining the percentage of the number of

malicious node and termination of simulation, the percentage

of residual energy of total network is computed. The result

of comparing the simulation of STAR and EDTM, presented

in the graph of Fig. 6.

As the same time, STAR, is shown by having 11.99%

increase compared to EDTM, it can better preserve the

residual energy of network with a final value of the energy

867.9 MJ while, the residual energy of network in EDTM, is

760 MJ. This difference occurred due to storing the energy

of sensor nodes by not forwarding the packet to malicious

nodes that are placed in their neighborhood. Because after

the simulation of malicious nodes detection algorithms, and

again, because of the report of the detector node to base

station, the neighbor nodes of the malicious node via base

station declaration, are kept from interaction with malicious

node without any energy, time and relation consumption.

The providence in interaction creation, is useful in

broadcasting a packet by a node to its neighbor nodes,

because the malicious node exists in MNL of the sender node

and then does not send any packet to it. Therefore, this led to

more storing the energy of sender node. Also, using

improved sliding window with impact factor, helps each

node to use the latest trust values in sliding window instead

of creating new interactions, the last trust value is used in

sliding window structure and benefits from the previous

actions in the detection and evaluation of that node, without

any need to renewed consumption of energy.

4.1.2. Evaluation and analysis of the detection accuracy of

malicious nodes

In the simulation, MaliciousPercent parameter grows from

5% to 50%, that in each increasing the malicious nodes

number, the simulation is done and the amount of malicious

nodes detection is evaluated. The result of this evaluation

illustrates an increase in detection of the precision of STAR

than EDTM model. The result is shown in graph of Fig. 7.

This comparison demonstrates that STAR increased the

ability of malicious node detection to 94.02% by 1.52%

increasing than EDTM design. However, the detection

accuracy of EDTM model is 92.5%. But as you can see in

the above figure, in STAR, the amount of detection accuracy

from 30% damage to the next, has downfall by more

coefficient than EDTM. This is because that in simulation

and with the action of malicious nodes algorithms specially,

and also, because of that some nodes it is placed near the

more malicious nodes and is forced to use from residual

neighbor nodes in their packet sending and some of these

neighbor node after do not have enough energy for sending

packet and then are detected as malicious nodes step-by-step,

so if real malicious node is close to these nodes and that they

are identifiable only through this nodes, then the suspicious

nodes would remain hidden.

Fig. 6. comparison of residual energy

Journal of Computer and Knowledge Engineering, Vol. 1, No.2, 2017. 41

Fig. 7. Comparison of the detection accuracy of malicious nodes

Fig. 8. Discussion of optimal value of 𝛼 and response time

4.2. Analysis of the performance of STAR

In this section, the parameters of the simulation are discussed

and based on the obtained curves of several runs of

simulation, the optimal value is achieved.

4.2.1. Evaluation the effect of trust computation coefficients

on network performance

In this evaluation, the purpose of trust computation

coefficients is the coefficients used in Equation 13 that are

recognized in simulation by the names of 𝛼, 𝛽 and 𝛿. So, for

presentation of the amount of access speed of malicious

nodes detection – that is one of goals of this study – for

different values of the coefficients and the malicious percent

equal to 5%, the graphs of the Figure 8 Figure 1 to are

provided that express the amount of access speed of

malicious nodes detection based on different values of

coefficients of 𝛼, 𝛽 and 𝛿. In all of the graphs, the numerical

value of obtained points response time in each change of 𝛼,

𝛽 and 𝛿 values, is the yield of result mean of simulation run

in three times. Other parameters are initialized according to

the Tabel 1..

Remind that 𝛼 is the TRpacket coefficient in Equation 13. In

the graph, the below situations for 𝛼, 𝛽 and 𝛿 are considered.

𝑎𝑙𝑝ℎ𝑎 > 𝑏𝑒𝑡𝑎 & 𝑔𝑎𝑚𝑚𝑎

𝑏𝑒𝑡𝑎 = 𝑔𝑎𝑚𝑚𝑎

Since that sum of three coefficients is equal to one, each

point in the graph of Fig 8. The 𝛼, 𝛽 and 𝛿 values of Table 2

follow.

The graph of Fig 8. and Table 2 shows that optimal value

for 𝛼 coefficient is placed in range of (0.15, 0.25). The

42 M. S. Katebi et.al: STAR: Improved Algorithm based on Sliding Window for Trust-Aware…

optimal point is explanatory that the increment in expected

value of packet sending, from out of this range, led to an

increment in response time and then this event is accented

that two coefficients of 𝛽 and 𝛿 are also important,.

The same process is running for 𝛽 and 𝛿 coefficients in

graphs of Fig. 9 Fig. 9and a similar value of Table 2.

The state of coefficients in Fig. 9. is as follow:

𝑏𝑒𝑡𝑎 > 𝑎𝑙𝑝ℎ𝑎 & 𝑔𝑎𝑚𝑚𝑎

𝑎𝑙𝑝ℎ𝑎 = 𝑔𝑎𝑚𝑚𝑎
and in

Fig. 10, is as follow:

𝑔𝑎𝑚𝑚𝑎 > 𝑏𝑒𝑡𝑎 & 𝑎𝑙𝑝ℎ𝑎

𝑎𝑙𝑝ℎ𝑎 = 𝑏𝑒𝑡𝑎

It is pointed out that the 𝛽 in Equation 13 the TRenergy

coefficient exists.
As the same shown in Fig. 9 Fig. 9the optimal value of 𝛽 is in the

range of (0.45, 0.55). This graph shows that although the response

time is decreasing by increasing the energy trust coefficient value

to 0.5, but after this amount and further increasing the energy trust

coefficient, the response time will be increased. That means that

although residual energy amount is the more effective factor in

response time, but at the same time, the amount of trust in packet

sending and in node behavior in the interaction with neighbors, has

its appropriate value, too. The graph of

Fig. 10, shows the discussion of 𝛿 that is TRbehavior

coefficient. The optimized value of 𝛿 is in the range of (0.15,

0.25).

Table 2. 𝛼, 𝛽 and 𝛿 values in discussion the optimal value of 𝛼

Point Coordinates 𝛼 𝛽 𝛿 Response Time

0.05 , 7402 0.05 0.475 0.475 7402

0.1 , 5907 0.1 0.45 0.45 5907

0.15 , 4675 0.15 0.425 0.425 4675

0.2 , 4775 0.2 0.4 0.4 4775

0.25 , 5376 0.25 0.375 0.375 5356

0.3 , 5600 0.3 0.35 0.35 5600

0.35 , 5677 0.35 0.325 0.325 5677

0.4 , 6250 0.4 0.3 0.3 6250

0.45 , 6806 0.45 0.275 0.275 6806

0.5 , 7424 0.5 0.25 0.25 7424

0.55 , 7946 0.55 0.225 0.225 7946

0.6 , 8052 0.6 0.15 0.15 8052

Fig. 9. Discussion of optimal value of 𝛽 and response time

Journal of Computer and Knowledge Engineering, Vol. 1, No.2, 2017. 43

Fig. 10. Discussion of optimal value of 𝛿 and response time

Fig 11. Comparison of response time in 𝛼, 𝛽 and 𝛿

For comparison and designing how to select the

coefficients values of 𝛼, 𝛽 and 𝛿, all three graphs are plotted

in Fig. 11.

Based on the chart, we can say according to the proof of

the significance and the effect of energy in decreasing the

response time, the criterion of choosing 𝛼, 𝛽 and 𝛿 values is

based on priorities of energy, expected value of packet

sending and node behavior. The obtained value for 𝛽

coefficient (0.55), reflects the fact that the residual energy of

a sensor node in the trustworthiness of the same node, has

more importance than the node behavior between neighbor

nodes. On the other hand, it seems reasonable that if a subject

node is going to choose a node for its interactions, between

two sensor nodes that the first node has high trustworthiness

in packet sending (TRpacket) or in behavior (TRbehavior) and has

minimum of energy, and against the trustworthiness of

packet sending or behavior of second node was lower than

the first node but its residual energy was greater, the starter

node will choose the second node, because the probability of

reaching the packet. By the node that has more energy than

a node with lower energy, is much higher. Also, according

to this graph and with comparing the minimum point on all

three graphs, about the 𝛿 curve that has upper minimum point

than the 𝛼 and 𝛽 curves, we can say that the impact of node

behavior in STAR, than the impact of energy and the

expected value of packet sending, is lower. In other words,

the high important of energy and expected value of packet

sending in routing process is reflected.

4.2.2. Evaluation of the accuracy of STAR

In this section, the accuracy of STAR is evaluated based on

Precision, Recall and F1-measure factors.

The Precision factor (Equation 17) shows the accuracy

44 M. S. Katebi et.al: STAR: Improved Algorithm based on Sliding Window for Trust-Aware…

rate among the predicted data.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (17)

The Recall factor (Equation 18) shows the ratio of

predicted data to a total number of expected data for

prediction.

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (18)

Also, F1-measure (Equation 19), is the weighted mean

between Precision and Recall.

 𝐹1 = 2 ∗ ((𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

𝑅𝑒𝑐𝑎𝑙𝑙))
(19)

Therefore, it can be plotted in

Table 3 that shows Precision, Recall and F1-measure

values in malicious nodes detection for different percentages

of malicious nodes (Malicious Percent).

Table 3. Accuracy of STAR between predicted data

MaliciousPercent Precision Recall F1-measure

55 1 1 1

10% 1 1 1

15% 0.88 1 0.93

20% 0.84 0.97 0.9

25% 0.81 0.98 0.88

30% 0.8 0.96 0.87

35% 0.78 0.92 0.84

40% 0.78 0.92 0.84

45% 0.78 0.86 0.81

50% 0.74 0.82 0.77

According to the Precision values in

Table 3 that illustrate the obtained accuracy, it is observed

that although with the increment in the malicious rate of

nodes, the detection accuracy has a descending flow, but

achieving the values more than 0.7 show the detection with

appropriate accuracy. Also, Recall values are explanatory

that even by an increment in malicious nodes percent, the

STAR has a very good ability for detection of the really

malicious nodes. Similarly, the F1-measure factor

emphasizes on verification the resulting values of two

criteria of Precision and Recall.

5. Conclusion and future works

The result of this research has shown that by using the STAR

it can be performed up to very substantial saving in energy

consumption and at the same time, adding to previous

achievements, the accuracy of detection of malicious nodes

is increased. Increased accuracy in malicious nodes detecting

is a factor for the speed growth of routing. This is because if

detection accuracy is higher, the participating malicious or

suspicious nodes in selecting and applying in the path of

packet sending is decreased and then the packet will arrive

earlier and more securely.

In the future we can regulate the chance factor for each

node based on function of neighbor opinions until the

number of chance for a node that has more trust value with

view of its neighbors can be much more than a node that does

not have this advantage, because the factor is an important

agent in the postponement of detection a node as malicious

node. So the node that cannot have trust value from views of

its neighbors, has less chance of having the opportunity and

will be introduced earlier as a malicious node. In addition to

the above, in order to reduce the number of nodes that are

known to malicious node wrongly, the base station can

evaluate the received information and if it confirms the

existence of malicious behavior, votes not to trust reported

node and then introduces this node to the network as

malicious. We can also present the strategies for resisting the

STAR against the attacks, especially on-off attacks and bad

mouthing attack in future.

References

[1] Ahmed, A., Abu Bakr, K. & Channa, M. I., "A Secure

Routing Protocol with Trust and Energy Awareness for

Wireless Sensor Network", Mobile Networks and

Applications, 21(2), pp. 272-285, (2016).

[2] Chakrabarti, A., Parekh, V. & Ruia, A., "A Trust Based

Routing Scheme for Wireless Sensor Networks",

Bangalore, India, Springer Berlin Heidelberg, pp. 159-

169, (2012).

[3] Chavan, P. A., Aher, R. D., Khairnar, K. V. & Sonawane,

H. D., "Enhanced Trust Aware Routing Framework

against Sinkhole Attacks in Wireless Sensor Networks",

Engineering and Technical Research (IJETR), 3(1), pp.

22-25, (2015).

[4] D. Devanagavi, G., Nalini, N. & C.Biradar, R., "Secured

routing in wireless sensor networks using fault-free and

trusted nodes", Communacation Systems, 29(1), pp. 170-

193, (2016).

[5] Faridi, A., Dohler, M. & Grieco, L. A., Comprehensive

Evaluation of the IEEE 802.15.4 MAC Layer

Performance With Retransmissions. IEEE

TRANSACTIONS ON VEHICULAR TECHNOLOGY,

59(8), pp. 3917-3932, (2010).

[6] Gambetta, D., "Can we trust trust", Trust: Making and

breaking cooperative relations. pp. 213-237, (1988).

[7] He, S. & Zhao, H., "Trust and potential field-based

routing protocol for wireless sensor networks", Ningbo,

Signal Processing, Communications and Computing

(ICSPCC), (2015).

[8] Hoceini, O., Talbi, S. & Aoudjit, R., "Trust framework

for a secured routing in wireless sensor network",

Electronic Journal of Information Technology, 8(8), pp.

58-65, (2015).

Journal of Computer and Knowledge Engineering, Vol. 1, No.2, 2017. 45

[9] Ishmanov, F., Won Kim, S. & Yeob Nam, S., A "Robust

Trust Establishment Scheme for Wireless Sensor

Networks", Sensors, Volume 15, pp. 7040-7061, (2015).

[10] Jiang, J. et al., "An Efficient Distributed Trust Model

for Wireless Sensor Networks", PARALLEL AND

DISTRIBUTED SYSTEMS, 26(5), pp. 1228 - 1237,

(2015).

[11] Josang, A., Gray, L. & Kinateder, M., "Simplification

and Analysis of Transitive Trust Networks", Web

Intelligence and Agent Systems Journal, 4(2), pp. 139 -

161, (2006).

[12] Kaur, J., Sandeep, S. G. & Balwinder, S. D., "Secure

Trust Based Key Management Routing Framework for

Wireless Sensor Networks", Journal of Engineering, pp.

1-9, (2016).

[13] Latha, D. & Palanivel, K., "Secure Routing Through

Trusted Nodes in Wirels Sensor Networks – A Survey",

Advanced Research in Computer Engineering &

Technology (IJARCET), 3(11), pp. 3792-3799, (2014).

[14] Lewis, N., Foukia, N. & G. Govan, D., "Using trust for

key distribution and route selection in Wireless Sensor

Networks", Salvador, Bahia, s.n, (2008).

[15] McKnight, D. H. & Chervany, N. L., "The Meanings of

Trust", s.l.: University of Minnesota, Management

Information Systems Reseach Center, (1996).

[16] Olmedilla, D., Rana, O. F., Matthews, B. & Nejdl, W.,

"Security and Trust Issues in Semantic Grids", Dagstuhl,

Germany, Internationales Begegnungs- und

Forschungszentrum Informatik (IBFI), (2006).

[17] Raza, S., Haider, W. & Durrani, N. M., "Trust Based

Energy Preserving Routing Protocol in Multi-hop WSN.

In: Networked Systems", s.l.:Springer International

Publishing, pp. 518-523, (2015).

[18] Salehi, M., Boukerche, A. & Darehshoorzadeh, A.,

"Towards a novel trust-based opportunistic routing

protocol for wireless networks", Wireless Netw, 22(3), p.

927–943, (2016).

[19] Vasudha, N. & Gajkumar Shah, P., "Requisite Trust

Based Routing Protocol for WSN", International Journal

of Innovative Research in Advanced Engineering

(IJIRAE), 01(05), pp. 138-142, (2014).

[20] Zahariadis, T. et al., "Implementing a Trust-Aware

Routing Protocol in Wireless Sensor Nodes", London,

s.n, (2010).

[21] Zho, C. et al., "Toward Offering More Useful Data

Reliably to Mobile Cloud From Wireless Sensor

Network", IEEE Transactions on Emerging Topics in

Computing, 3(1), pp. 84-94, (2015).

46 M. S. Katebi et.al: STAR: Improved Algorithm based on Sliding Window for Trust-Aware…

Journal of Computer and Knowledge Engineering, VOL. 1, NO.2, 2017.

DOI: 10.22067/cke.v1i2.69769

Modeling Intra-label Dynamics and Analyzing the Role of Blank in

Connectionist Temporal Classification

Ashkan Sadeghi Lotfabadi

 Kamaledin Ghiasi-Shirazi Ahad Harati


Abstract: The goal of many tasks in the realm of sequence

processing is to map a sequence of input data to a sequence

of output labels. Long short-term memory (LSTM), a type of

recurrent neural network (RNN), equipped with

connectionist temporal classification (CTC) has been proved

to be one of the most suitable tools for such tasks. With the

aid of CTC, the existence of per-frame labeled sequences are

no longer necessary and it suffices to only knowing the

sequence of labels. However, in CTC, only a single state is

assigned to each label and consequently, LSTM would not

learn the intra-label relationships. In this paper, we propose

to remedy this weakness by increasing the number of states

assigned to each label and actively modeling such intra-label

transitions. On the other hand, the output of a CTC network

usually corresponds to the set of all possible labels along

with a blank. One of the uses of blank is in the recognition

of multiple consecutive identical labels. Assigning more than

one state to each label, we can also decode consecutive

identical labels without resorting to the blank. We

investigated the effect of increasing the number of sub-labels

with/without blank on the recognition rate of the system. We

performed experiments on two printed and handwritten

Arabic datasets. Our experiments showed that while on

simple tasks a model without blank may converge faster, on

real-world complex datasets use of blank significantly

improves the results.

Keywords: Connectionist Temporal Classification;

Handwriting Recognition; Recurrent Neural Networks;

Multidimensional Long Short Term Memory; Blank.

1. Introduction

Labeling unsegmented sequences is one of the most

significant and common problems in the field of artificial

intelligence. Handwriting, speech and gesture recognition are

examples of this problem. Some solutions to this problem

have been given by probabilistic graphical models like HMM

(Hidden Markov Model). However, HMMs are generative

models whereas labeling a sequence is a dicriminative task.

On the other hand, RNNs (Recurrent Neural Networks) can

be trained discriminatively and have a strong structure which

learns the data and time dependencies. However, RNNs need

pre-segmented data for training. A traditional solution has

been to combine HMMs with RNNs. As we mentioned

above, HMMs are generative models and they are not the best

choice for a discriminative task like sequence labeling.

Another solution is CTC which is a newer framework than

Manuscript received: October 25, 2017. Accepted December 22, 2017.
A. Sadeghi Lotfabadi, Department of Computer Engineering Ferdowsi University of Mashhad, Iran, a.sadeghilotfabadi@mail.um.ac.ir.

K. Ghiasi-Shirazi, epartment of Computer Engineering Ferdowsi University of Mashhad, Iran, k.ghiasi@um.ac.ir.
A. Harati, Department of Computer Engineering Ferdowsi University of Mashhad, Iran. k.ghiasi@um.ac.ir.

HMMs. We can consider the output of RNN as a probability

distribution on all the possible label sequences and then we

get an objective function to maximize the true labeling

probability [1].

One of the main issues confronted by RNNs is the

vanishing/exploding gradient problem[2,3]. LSTM (Long

Short Term Memory) [4,5] was designed to solve this

problem. Moreover, BLSTM (Bidirectional LSTM) [6,7] and

MDLSTM (Multidimensional LSTM) [8] are two other

generalizations of LSTM and are proposed to learn

bidirectional and multidimensional contexts, respectively.

Since LSTM is a kind of RNN, it is possible to combine CTC

with LSTM [1, 8-15].

Woellmer [10,16] proposed to combine DBNs (Dynamic

Bayesian Network) and CTC to learn more complex relations

like finding keywords in speech or text. In addition, there are

some generalizations for CTC like ECTC (Extended CTC)

[15] which consider a consistency to evaluate frame-to-frame

visual similarities in CTC. Another generalization is HCTC

(Hierarchical CTC) [17] which is composed of several layers

of CTC in which each layer has a special task to learn a

specific context of a sequence. In addition to RNNs, CTC can

be combined with graphical models like LDCRF (Latent-

Dynamic Conditional Random Field) [18].

One problem with CTC is that it leaves the task of learning

the dynamics within each label to the underneath RNN. In this

paper (This paper is the extension of our previous paper [19]

 A. S. Lotfabadi, K. Ghiasi-Shirazi, and A. Harati,

"Modeling intra-label dynamics in connectionist temporal

classification," in 2017 7th International Conference on

Computer and Knowledge Engineering (ICCKE), 2017, pp.

367-371.), we propose to model each label as a sequence of

hidden internal labels and show how these internal labels can

be learned. We postulate that by splitting each label to several

hidden sub-labels, the task of the underneath RNN will

become simpler and the overall accuracy increases. The

output of the underneath network consists of all possible

labels plus blank. The blank plays two roles in the network.

Firstly, it allows recognition of consecutive identical labels

and secondly, it frees the network from predicting the label of

a sub-sequence until it has gathered enough evidence.

Nevertheless, we will show that by considering several states

for each label, the network can recognize contingent identical

labels without using blank.

The organization of the paper is as follows: Section 0

introduces CTC, its mathematical formulation and its training

algorithm. In Section 0, we introduce the Multi-state CTC

http://dx.doi.org/10.22067/cke.v1i2.69769
mailto:k.ghiasi@um.ac.ir

48 A. Sadeghi Lotfabadi et al: Modeling Intra-label Dynamics and Analyzing…

(M-CTC) in which we propose splitting each label into

multiple states/sub-labels. In section IV, we investigate the

role of blank in standard CTC and the proposed M-CTC. In

Section V we report our experiments on M-CTC with/without

blank. We conclude the paper in Section VI.

2. Connectionist Temporal Classification (CTC)

CTC was proposed in 2006 by A. Graves [1] to train RNNs

on unsegmented sequences. Prior to CTC, training RNNs on

sequential data required the label to be specified for every

frame of the input sequence. CTC revolutionized this process

by making training possible when only a label sequence was

given for the whole input sequence, without knowing the

alignment between input and label sequences [20].

Assume that the number of outputs in the underneath RNN

for each frame is equal to the number of labels plus one (for

blank, or no label). A softmax layer normalizes these outputs

before the last hidden layer sends them to CTC:

(1)

t
k

t
k

a
t

k a

k

e
y

e 





 

where
t

ka is the kth output of the RNN in frame t and t

ky

is the normalized output. To obtain the probability of path (

), we use equation (2):

(2)
1 1

(|) (|)
t

T T
t

t

t t

p p y  
 

  x x 

Paths are mapped to a label sequence by function F. This

function removes the same consecutive labels and blank. For

example, () ()F a ab F aa abb aab      in which- means

blank. Therefore, the probability of a special labeling like l is

the sum of the probabilities of all paths which are mapped by

F to l as shown in (3):

(3)
1()

(|) (|)
F

p p





 
l

l x x 

The number of related paths to a specific labeling grows

exponentially with respect to the length of the input sequence.

However, it can be solved by dynamic programming and the

algorithm is similar to the forward-backward in HMM [1].

Fig. 1 illustrates the CTC structure for all paths which map to

the labeling ‘SUN’.

Loss function L(s) in CTC is the negative log probability

of correctly labeling of all the training examples.

(4)
(,)(,)

() ln (|) ln (|)
SS

L S p p


    
x zx z

z x z x


The derivation of the loss function with respect to the

networks parameters is done by using the backpropagation

through time algorithm. So, it is possible to train the network

by any gradient-based nonlinear optimization algorithm [20].

Fig. 1. CTC structure for ‘SUN’. Black and white units show

blank and labels, respectively. The allowed paths which lead to

‘SUN’ labeling are determined by arrows.

3. Multi-state CTC (M-CTC)

Learning temporal context plays an important role in

sequence labeling. So, the network should be able to

maximally learn relations between frames. As we mentioned

earlier, RNNs have the vanishing/explosion gradient

problem. Therefore, we use LSTM which solves this

problem. In most sequences the relations between frames are

bidirectional. It means that future information is as important

as past information. Thus, it is better to use networks which

use both past and future information. Accordingly, we choose

MDLSTM [8] which is a generalization of LSTM since

MDLSTM can learn long-range dependencies in all spatio-

temporal dimensions.

As we noted before, CTC was proposed to help RNNs

(which is MDLSTM in our case) in training with

unsegmented data. Considering Fig. 1, it is supposed that the

MDLSTM determines the probability of each label at time t

and the labels are given in the exact order from the left side

which in this example are English alphabets. CTC considers

1 state for each label. So, the error is calculated by the CTC

for each label at time t. Therefore, MDLSTM just learns the

extrinsic dynamics between the labels. However, if we

consider n state for each label in the CTC, the network not

only learns extrinsic dynamics between the labels, but also

learns intrinsic dynamics of labels and the relations of internal

components of each label (which from now on we refer to as

sub-labels). This increase in the number of states leads to

better and more detailed learning of MDLSTM. An example

of considering 2 states for each label class is illustrated in Fig.

2.

However, an equal number of sub-labels for each label may

not be the best choice. It is better to determine the number of

sub-labels according to the data length of that label the class.

It means that a long data set needs more sub-labels than a

short data set. Fig. 3 provides more details about this idea

which illustrates 3 handwriting words from the IFN/ENIT

[21] dataset. In this example, the number of sub-labels is

determined based on average label length. By the above

explanation, the number of sub-labels for letters ‘ث’, ‘ ار ’, ‘ ایی ’

and ‘ ام ’ are 5, 4, 2 and 5, respectively.

Journal of Computer and Knowledge Engineering, VOL. 1, NO.1. 49

Fig. 2. CTC structure after considering 2 state for each label class

Fig. 3. Determining number of sub-labels according to label

length. The gaps between vertical lines correspond to the frames.

4. Role of Blank

The output of the network beneath CTC consists of all

possible labels plus the blank. Blank plays two roles in the

network. Firstly, it prevents deletion of identical consecutive

labels. For example, without blank CTC would recognize the

word ‘accuracy’ as ‘acuracy’, recognizing the two

consecutive letters ‘c’ as one. Secondly, blank frees the

network from the oblige of predicting a label at each frame.

For example, in the task of speech recognition, silences and

short pauses between the utterance of phonemes can be

recognized as blank (see page 64 of [20]). In the following,

we will investigate the role of the blank when one models

each label by multiple states in CTC.

According to Eq. (3), the probability of a labeling for the

whole sequence is obtained by summing up the probabilities

of all paths leading to that labeling. A path is an assignment

of labels (possibly blank) to each frame. We define the

function F from paths to sequences of labels as a mapping that

removes blanks and repetitive labels. For example, paths ‘oo-

f-fff’, ‘--off-f---’, and ‘---o-ff--fffff-’ are mapped to the

sequence label ‘off’. Please note that in these examples,

frames which are labeled ‘f’ form two groups which are

separated by one or multiple blanks. Having only a single

group of labels ‘f’, the path would have been mapped to the

label sequence ‘of’. In fact, one of the reasons for

provisioning the blank in CTC was to avoid misrecognition

of words with consecutive repetitive words. Fig. 4 shows the

structure of a CTC for recognizing the word ‘off’. As it can

be seen, there is no link between the two instances of label ‘f’

and all paths should pass through the intermediate blank label.

o

f

f

1 2 3 T-2 T-1 T

Fig. 4. CTC structure for ‘off’. There is no link between the two

instances of label ‘f’ and all paths should pass through the

intermediate blank label.

In Fig. 4, which exemplifies the structure of standard CTC,

each label is modeled by exactly one state (shown as nodes in

the Figure). In this paper, we propose to model each label with

several states/sub-labels. Having multiple states for each label

automatically guarantees that consecutive labels would be

correctly recognized, eliminating one of the reasons behind

considering the special label blank. Assume that we have

modeled each label with two states and have eliminated blank

from CTC, arriving at the CTC structure is shown in Fig. 5.

Now, to map a sequence of frames to a label, it is necessary

to see both of its sub-labels in order, which guarantees correct

recognition of consecutive repetitive labels. For example,

paths ‘o1o1o2f1f2f2f2f1f2’ and ‘o1o1o2f1f1f2f1f2f2’ both yield the

sequence label ‘o1o2f1f2f1f2’. Modeling each label with

multiple sub-labels eliminated the first reason for the

existence of the blank. But, what about the second reason

which was to free the network from predicting a (non-blank)

label at each frame? In the following, we perform

experiments with/without blank to answer this question.

50 A. Sadeghi Lotfabadi et al: Modeling Intra-label Dynamics and Analyzing…

o1

f1

1 2 3 T-2 T-1 T

o2

f2

f1

f2

Fig. 5. CTC structure for ‘off’ by considering 2 state for each label

and removing blank.

5. Experiments and Results

In this section, we explain the experiments used to evaluate

the performance of the proposed method. The goal of these

experiments is to investigate the role of the number of sub-

labels and inclusion/exclusion of blank in the recognition

accuracy. To evaluate the standard CTC, we use RNNLIB

[22] which has been developed by inventors of CTC

themselves. The neural network at the bottom of CTC

consists of three hidden layers each one having four parallel

LSTM layers. Each LSTM layer consists of several LSTM

cells, the number of which is identified by “Hidden Size” in

the tables of our experiments. The input data of each hidden

layer is obtained by moving a window on the output neurons

of the preceding layer in four directions. The sizes of these

windows are designated by “Input Block” and “Hidden

Block” in input and hidden layers, respectively. We also use

some subsampling hidden layers whose sizes are identified by

“Subsampling Size”. In all cases, we use the gradient descent

training algorithm.

5-1. Printed Digits Dataset

To evaluate the proposed method in the task of discovering

the true sub-labels of each label, we generated an artificial

dataset in which each label actually encompasses two sub-

labels. In this dataset, we have 10 different labels

corresponding to digit sequences ‘01’, ‘03’, ‘11’, ‘12’, ‘21’,

‘31’, ‘33’, ‘41’, ‘43’, and ‘52’, each label being made from

two digits. The dataset contains 1000 samples of sequences

of 3 labels (6 digits). Fig. 6 shows a sample image from this

dataset. We use 800 samples for training, 100 for validation,

and the remaining 100 for testing.

Labels: "31" "52" "11"

Data:

Fig. 6. An example of printed digits dataset with true labels.

 We performed 7 different experiments on this dataset.

The parameters of four of these experiments which were

performed with blank are shown in Table 1 and are titled from

A to D. There are three other experiments which are identical

to the experiments B, C, and D, except that now the blank is

removed. The reason that experiment A has no counterpart

with blank removed is that in experiment A the number of

sub-labels is equal to one and, according to the explanations

of Section 4, the blank is essential to the recognition of

consecutive repetitive labels. The number of states for each

label in the experiments B, C, and D was chosen as 2, 4, and

10 respectively. The other fact important to note is the

difference between the values of “Input Block” and “Hidden

Block” in experiment D. The reason behind this difference is

that since the number of sub-labels is very high, the length of

the input data to CTC should be long enough to visit all the

sub-labels. Therefore, the length of the input data to CTC in

experiment D should be slightly more than that of the other

three experiments. In fact, we believe that one of the reasons

that in our experiments M-CTC has been shown to be superior

to CTC, in contrast to the experiments reported in [23], is the

adjustment of these parameters.

Table 1. Parameters For Printed Digits Experiments

D C B A Experiment

2, 10, 50 2, 10, 50 2, 10, 50 2, 10, 50
Hidden

Size

6, 20 6, 20 6, 20 6, 20
Subsample

Size

2x4, 2x4 3x4, 2x4 3x4, 2x4 3x4, 2x4
Hidden

Block

2x4 3x4 3x4 3x4
Input

Block

1e-4 1e-4 1e-4 1e-4 Learn Rate

0.9 0.9 0.9 0.9 momentum

Steepest

ascent

Steepest

ascent

Steepest

ascent

Steepest

ascent
optimizer

10 4 2 1
Number of

Sub-labels

Because of the simplicity of this dataset, in all experiments,

the accuracy of 100% was obtained. For this reason, we

compare method based on their speed at reaching a solution.

Explicitly, we compare the error of different methods at the

end of a certain epoch. Table 2 illustrates the results of our

experiments. This Table has been filled based on the error

obtained at epoch 25. As stated previously, experiment A has

no “without-blank” counterpart. The experiments show that

increasing the number of sub-labels has decreased the error,

obtaining the best results in the experiment D. The other

important observation is the effect of removing blank. The

results show that the accuracy of experiments without blank

is superior to those with a blank. This shows that in this

simple example (in which data for each label are artificially

generated by concatenating data of two sub-labels), not only

the blank label does not improve the results, but it also has

increased the time of getting error zero. An example of the

output of a model with 4 sub-labels and without blank is

shown in Fig. 7. In this Figure, two consecutive instances of

label ‘52’ are recognized without any problem.

Journal of Computer and Knowledge Engineering, VOL. 1, NO.1. 51

 52
4

 52
3

 52
3

 52
2

 52
1

 52
4

 52
3

 52
2

 52
1

 11
4

 11
3

 11
2

 11
2

 11
1

Labels:

Data:

Sub Labels:

Fig. 7. MDLSTM output for a data from printed digits. In this model blank is removed and each label has 4 sub-labels. Each square

shows a frame and includes the labels and sub-labels.

Table 2. Results For Printed Digits

Experiment

With blank Without blank

CTC Error Label Error % CTC Error Label Error %

Train Val Test Train Val Test Train Val Test Train Val Test

A 7.52 7.60 7.67 87.63 88.94 87.90 - - - - - -

B 12.15 11.75 11.79 74.57 73.72 72.65 0.29 0.30 0.31 1.79 2.12 1.68

C 1.00 0.84 0.82 0.28 0.22 0.13 0.33 0.36 0.35 0.06 0.05 0.05

D 0.19 0.19 0.19 0.00 0.00 0.00 0.21 0.21 0.20 0.00 0.00 0.00

5-2. IFN/ENIT Dataset

This dataset consists of 32249 samples from the handwritten

images of 937 towns in Tunisia. Each sample in this dataset

has a label sequence, each label being chosen from 120

possible choices of letters of alphabet, digits, and punctuation

signs. This dataset has five segments named ‘a’ to ‘e’. We

perform our experiments on segment ‘a’. We first randomly

select a subset of segment ‘a’ consisting of 1000 samples and

perform our experiments on this subset. Then we repeat the

experiments on the whole segment ‘a’. A sample of data of

this segment is shown in Fig. 5.

Fig. 8. Some sample handwritten words from the INF/ENIT

dataset.

We perform four experiments on the 1000-sample data and

the whole samples of segment ‘a’. Details of the three

experiments A, B, and C (in which the blank label is present)

are shown in Table 3. The first three experiments are named

A, B, and C and the fourth experiment is similar to B with the

difference that the blank label is removed. The reason that

experiments A and C are not repeated without blank is that in

these experiments some of the labels have only one state in

CTC. In experiment C, the number of sub-labels ranges

between 1 and 3 in proportion to the average length of data of

that label. The values of “Input Block” and “Hidden Block”

differ between the three experiments and is chosen in a way

that ensures that there are enough data for all sub-labels of the

input data. This dataset is much harder than the printed digits

dataset and so the number of cells in LSTM, i.e. the value of

“Hidden Size”, is chosen in a way that gives the best results

for each experiment. Since by increasing the number of sub-

labels the network should learn more details about data, the

number of LSTM cells should increase accordingly. In all

experiments, we use the “early stopping” method to avoid

overfitting. If the error rate on validation set does not decrease

for 40 consecutive epochs, we stop training and return the

network with the lowest validation error.

Table 3. Parameters For IFN/ENIT Experiments

C B A Experiment

4, 15, 64 4, 20, 80 2, 10, 50 Hidden Size

6, 20 6, 20 6, 20 Subsample Size

2x3, 1x3 2x4, 2x4 3x4, 2x4 Hidden Block

3x3 2x4 3x4 Input Block

1e-4 1e-4 1e-4 Learn Rate

0.9 0.9 0.9 momentum

Steepest

Descent

Steepest

Descent

Steepest

Descent
optimizer

1 or 2 or

3
2 1 Number of Sub labels

5-3. 1000 sample subset of IFN/ENIT Dataset

The 1000 samples of this dataset have been chosen randomly

from segment ‘a’ of the IFN/ENIT dataset. We use 800

samples for training, 100 for validation, and 100 for testing.

The results of the experiments on this dataset are shown in

Table 4. By comparing experiments A and B one can observe

that increasing the number of sub-labels from one to two has

increased recognition accuracy. In addition, by comparing

experiments B and C one can see that the appropriate choice

of the number of sub-labels has improved the results. Now,

52 A. Sadeghi Lotfabadi et al: Modeling Intra-label Dynamics and Analyzing…

we investigate the role of the blank label by considering

experiment B with and without blank. It can be seen that the

results obtained with blank are much higher than those

obtained without it. Another important observation is that

without blank, the training error is much higher (in addition

to the test error). This shows that removal of blank leads to a

learning machine with much lower capacity (possibly due to

optimization issues). Therefore, we designed another

experiment in which we removed the stopping condition and

allowed the network to obtain a much lower error on the

training set. However, the results obtained by this method did

not differ considerably from those obtained by early stopping.

5-4. Segment ‘a’ of the IFN/ENIT Dataset

Segment ‘a’ of the IFN/ENIT dataset consists of 6537

samples from which 5702 are used for training, 426 for

validation, and 409 for testing. The results are given in Table

5. By comparing this Table with Table 4, we see that by

increasing the number of training samples the model is much

better optimized and much higher accuracy results have been

obtained over the validation and test sets. In addition, similar

to the previous experiments, we have obtained better results

in experiment B in comparison with experiment A, because

of using two sub-labels for each label. We have achieved the

best results in experiment C in which the number of sub-

labels is chosen in proportion to the average length of each

label. By comparing experiment B in the two cases with and

without blank we see that the results with blank are much

better than those without blank. This shows that the use of

blank in datasets with complex data leads to improved

recognition accuracy.

5-5. Analyzing the effect of blank

In the previous sections, we reported the results of our

experiments on the printed digits and IFN/ENIT datasets. The

first dataset was very simple as every sample contained three

labels with equal lengths and widths. We observed that the

use of blank deteriorated the speed of obtaining a solution. In

contrast, in experiments that did not use blank, much better

results had been obtained in early epochs. Because of the

simplicity of this dataset, all experiments ended with 100%

accuracy. However, the IFN/ENIT dataset was much more

complex: having labels with different average lengths, and 12

times more labels. For example, Fig. 3 shows different styles

of letters which differ in length and writing style. Because of

this complexity, the network should have a flexible structure

which can learn all states of each label. The results showed

that the use of blank has a huge effect on improving the

recognition accuracy. It can be deduced that even when the

number of states is more than one, use of blank improved the

recognition results on real-world datasets. After doing this

work, we found that similar observations have been done in

[23], confirming the superiority of RNN-CTC models using

blank over those that do not. In contrast to the results reported

in [23], we found that the combination of increasing the

number of states per label and using blank gives the best

results. This difference in observations may be due to the fact

that we have modified the structure of the beneath neural

network appropriately to cope with the increase in the number

of states in M-CTC.

Table 4. Results For 1000 Data From IFN/ENIT

Experiment

With blank Without blank

CTC Error Label Error % CTC Error Label Error %

Train Val Test Train Val Test Train Val Test Train Val Test

A 0.53 17.45 11.93 0.22 40.22 41.35 - - - - - -

B 0.57 28.27 19.56 0.03 33.77 33.30 76.69 95.60 83.88 68.71 76.26 81.75

C 0.96 25.89 18.85 0.51 31.64 30.25 - - - - - -

Table 5. Results For set ‘a’ of IFN/ENIT

Experiment

With blank Without blank

CTC Error Label Error % CTC Error Label Error %

Train Val Test Train Val Test Train Val Test Train Val Test

A 0.41 6.69 5.46 0.49 19.45 17.98 - - - - - -

B 0.33 9.43 8.18 0.07 13.28 12.85 25.33 36.99 37.73 29.13 46.24 46.28

C 0.32 8.36 7.53 0.15 12.66 10.86 - - - - - -

Journal of Computer and Knowledge Engineering, VOL. 1, NO.1. 53

5-6. Conclusions and future works

In this paper, we extended CTC to model and learn intra-label

relations. We achieved this goal by increasing the number of

states in CTC for each label. In other words, we considered

several states/sub-labels for each label. Experimental results

showed that the proposed extension improves the recognition

accuracy. In addition, we studied the role of blank. We

showed that by increasing the number of states, models

without blank can learn repetitive consecutive labels. Our

experiments showed that while on simple tasks a model

without blank may converge faster, on real-world complex

datasets use of blank significantly improves the results.

Although we restrict the model to see the sub-labels in true

order during training, there is not a similar obligation during

test time. In other words, it is possible during test time that

the model predict the second sub-label without seeing the first

sub-label. In future, we want to analyze the impact of this

discrepancy at training and testing time on the recognition

accuracy.

References

[1] A. Graves, S. Fernández, F. Gomez, and J.

Schmidhuber, "Connectionist temporal classification:

labelling unsegmented sequence data with recurrent

neural networks", in Proceedings of the 23rd

international conference on Machine learning, pp. 369-

376, 2006.

[2] Y. Bengio, P. Simard, and P. Frasconi, "Learning long-

term dependencies with gradient descent is difficult",

IEEE transactions on neural networks, vol. 5, pp. 157-

166, 1994.

[3] S. Hochreiter, Y. Bengio, P. Frasconi, and J.

Schmidhuber, "Gradient flow in recurrent nets: the

difficulty of learning long-term dependencies", ed: A

field guide to dynamical recurrent neural networks.

IEEE Press, 2001.

[4] S. Hochreiter and J. Schmidhuber, "Long short-term

memory", Neural computation, vol. 9, pp. 1735-1780,

1997.

[5] F. A. Gers, N. N. Schraudolph, and J. Schmidhuber,

"Learning precise timing with LSTM recurrent

networks", Journal of machine learning research, vol.

3, pp. 115-143, 2002.

[6] A. Graves, S. Fernández, and J. Schmidhuber,

"Bidirectional LSTM networks for improved phoneme

classification and recognition", in International

Conference on Artificial Neural Networks, pp. 799-

804, 2005.

[7] A. Graves and J. Schmidhuber, "Framewise phoneme

classification with bidirectional LSTM and other neural

network architectures", Neural Networks, vol. 18, pp.

602-610, 2005.

[8] A. Graves and J. Schmidhuber, "Offline handwriting

recognition with multidimensional recurrent neural

networks", in Advances in neural information

processing systems, pp. 545-552, 2009.

[9] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H.

Bunke, and J. Schmidhuber, "A novel connectionist

system for unconstrained handwriting recognition",

IEEE transactions on pattern analysis and machine

intelligence, vol. 31, pp. 855-868, 2009.

[10] M. Wöllmer, F. Eyben, B. Schuller, and G. Rigoll,

"Spoken term detection with connectionist temporal

classification: a novel hybrid ctc-dbn decoder", in 2010

IEEE International Conference on Acoustics, Speech

and Signal Processing, pp. 5274-5277, 2010.

[11] M. Wöllmer, B. Schuller, and G. Rigoll, "Probabilistic

ASR feature extraction applying context-sensitive

connectionist temporal classification networks", in

2013 IEEE International Conference on Acoustics,

Speech and Signal Processing, pp. 7125-7129, 2013.

[12] A. Graves, A.-r. Mohamed, and G. Hinton, "Speech

recognition with deep recurrent neural networks", in

2013 IEEE international conference on acoustics,

speech and signal processing, pp. 6645-6649, 2013.

[13] M. Wöllmer, F. Weninger, J. Geiger, B. Schuller, and

G. Rigoll, "Noise robust ASR in reverberated

multisource environments applying convolutive NMF

and Long Short-Term Memory", Computer Speech &

Language, vol. 27, pp. 780-797, 2013.

[14] A. Graves and N. Jaitly, "Towards End-To-End Speech

Recognition with Recurrent Neural Networks", in

ICML, pp. 1764-1772, 2014.

[15] D.-A. Huang, L. Fei-Fei, and J. C. Niebles,

"Connectionist Temporal Modeling for Weakly

Supervised Action Labeling", arXiv preprint

arXiv:1607.08584, 2016.

[16] M. Woellmer, B. Schuller, and G. Rigoll, "Keyword

spotting exploiting long short-term memory", Speech

Communication, vol. 55, pp. 252-265, 2013.

[17] S. Fernández, A. Graves, and J. Schmidhuber,

"Sequence Labelling in Structured Domains with

Hierarchical Recurrent Neural Networks", in IJCAI, pp.

774-779, 2007.

[18] A. A. Atashin, K. Ghiasi-Shirazi, and A. Harati,

"Training LDCRF model on unsegmented sequences

using Connectionist Temporal Classification", arXiv

preprint arXiv:1606.08051, 2016.

[19] A. S. Lotfabadi, K. Ghiasi-Shirazi, and A. Harati,

"Modeling intra-label dynamics in connectionist

temporal classification", in 2017 7th International

Conference on Computer and Knowledge Engineering

(ICCKE), pp. 367-371, 2017.

[20] A. Graves, "Neural Networks," in Supervised Sequence

Labelling with Recurrent Neural Networks, ed:

Springer, pp. 15-35. , 2012

[21] M. Pechwitz, S. S. Maddouri, V. Märgner, N. Ellouze,

and H. Amiri, "IFN/ENIT-database of handwritten

54 A. Sadeghi Lotfabadi et al: Modeling Intra-label Dynamics and Analyzing…

Arabic words", in Proc. of CIFED, pp. 127-136, 2002.

[22] A. Graves, "RNNLIB: A recurrent neural network

library for sequence learning problems", [OL][2015–

07-10], 2013.

[23] T. Bluche, H. Ney, J. Louradour, and C. Kermorvant,

"Framewise and CTC training of Neural Networks for

handwriting recognition", in Document Analysis and

Recognition (ICDAR), 2015 13th International

Conference on, pp. 81-85. , 2015.

	Cover-Final-01-1
	00jeld-1
	CKE Content
	1-hosseini seno
	2.namazi
	3.kordlar
	4.hatamlou
	5.Katebi
	6.sadeghi
	Cover-Final-01-2

