

Trace2Vec-CDD: A Framework for

Concept Drift Detection in Business Process

Logs using Trace Embedding

Fatemeh Khojasteh1, Behshid Behkamal2*, Mohsen Kahani2, and Mahsa

Khorasani1

1 Ferdowsi University, Mashhad, Iran

{fatemeh.khojasteh,mahsakhorasani}@mail.um.ac.ir
Ferdowsi University, Mashhad, Iran

{behkamal,kahani}@um.ac.ir

Abstract. Business processes are subject to changes during their

execution over time due to new legislation, seasonal effects, etc. Detection

of process changes is alternatively called business process drift detection.

Currently, existing methods unfavorably subject the accuracy of drift

detection to the effect of window size. Furthermore, most methods have to

struggle with the problem of how to select appropriate features specifying

the relations between traces or events. This paper draws on the notion of

trace embedding to propose a new framework for automatic detection of

suddenly occurring process drifts. The main contributions of the proposed

approach are: (i) It is independent of windows. (ii) Trace embedding,

which is used for drift detection, makes it possible to automatically extract

all features from relations between traces. (iii) As attested by synthetic

event logs, our approach is superior to current methods in respect of

accuracy and drift detection delay.

Keywords: Process mining · Concept drift · Process changes · Word

embedding

1 Introduction

Modern business processes are handled by information systems. Information systems
produce event logs, which are sources of information about the actual processes. It is
typical for a business process to vary over time, which may be attributed to factors such
as substantial changes in supply and demand, seasonal reasons, etc. These changes have
considerable effects on the process costs and efficiency.

Detection of business process drifts can be considered as a variant of the general
issue of concept drift detection, which has received much attention in data mining
and machine learning. Experts in such areas use the term “concept drift” when the
distribution of a variable has experienced a change [1]. In process mining, however,
the challenge is detecting more complex changes, such as changes in the process
models that describe choices, loops, cancellations, and concurrency.

2

2 F. Khojasteh et al.

Therefore, drift detection methods used in data mining cannot directly be applied
to detect drifts in business processes. Based on the definition of concept drift in
process mining, wherever the traces before and after a specific point differ in
characteristics, a business process drift has occurred [2].

In the area of process mining, various techniques have been proposed to detect
concept drift, most of which perform statistical comparisons between pairs of
windows. Some methods are based on fixed windows [3–7]. During the process,
these windows keep their size unvarying. The other methods use adaptive windows
in which the size of windows changes during the process [2, 8–11]. Adaptive windows
provide higher accuracy than fixed windows. However, the initial size of an
adaptive window has to be determined log by log.

On the other hand, the majority of the current methods rely on selecting
features that characterize traces. Features such as relation type count (RC),
relation entropy (RE), window count (WC), and J measure [3, 2] are typical
examples. The point is that good levels of accuracy sometimes require the user to
be knowledgeable about the characteristics of drifts. If the user is not
knowledgeable enough, unsuitable features may be selected, which leads to a
failure to identify some kinds of features.

The goal of this study is to solve the aforementioned problems using the idea of
trace embedding. This concept has already been introduced in [12], which is based
on the notion of paragraph2vec. Here, we presented a new definition of trace2vec
based on word2vec [13]. We extract the features from the relations between traces
and identify sudden process changes based on similarities between the vectors. Thus,
the main novelty of our work is the elimination of windows, which results in more
accurate detection of process drifts. The main contributions of this study are
outlined below:

– The idea of trace embedding is applied for concept drift detection. This is
exploited in the automatic extraction of features from traces, the
straightforward comparison of vectors of traces and change detection.

– The fourier transform is used to omit noise and outlier traces in the log.
– Unlike the existing methods, the proposed approach is window-independent

– The artificial logs of [8] are used to determine the accuracy of our approach.
They show our approach to be markedly more accurate than the state-of-the-art
methods in terms of F-score and drift detection delay.

The remainder of this paper is organized as follows. Section 2 includes the
literature review. In section 3, our proposed approach,”’Trace2Vec-CDD”’, is dis-
cussed in detail. Then, the proposed framework is empirically evaluated in Section
4. Finally, the conclusion and future directions are stated in Section 5.

2 Related works

 In this section, the existing methods for concept drift detection from various
aspects are investigated. To this end, these different aspects are introduced and the
related works are then classified organized according to these dimensions.

Trace2Vec-CDD

3

2.1 Detection method

State-of-the-art methods in this area can detect drifts in either an offline or online
setting. In the offline setting, the whole log must exist, whereas in the online one,
concept drifts will be detected by sequential monitoring of the logs of a system and
react to changes in an online, almost real-time way [6, 9, 14, 15]. [6] is one of the
methods that use online setting. [9] is another online approach that proposes an
event-based method that performs well with processes in which there is a high
ratio of distinct executions to the total number of executions in the log. All
other existing methods work in a n offline setting. [15] h a s presented an online
technique for detecting drifts. For that, trace distances are calculated by comparing
them to a global model that represents the current state of the process. Hence, a
density-based clustering algorithm is applied to distribute the instances in the
feature space. Finally, the discovery of new clusters represents the detection of new
concepts in the stream, i.e., concept drift.

2.2 Type of window

Most o f the existing methods for business process drift detection use windows that
are either static or dynamic. The first group of methods use static windows [7, 4,
6, 3, 5]. In such studies, the accuracy of t h e drift detection method is dependent
on the size of t h e window. The second group of methods use adaptive window
[2, 8, 9, 16, 10, 11, 17, 14]. The idea of using adaptive windows is to set minimum and
maximum values for the size of t h e window and increase the minimum value
until a change is detected or the window size reaches the maximum size limit.
Thus, if the minimum size is too small, noises may be detected as drifts. On the
other hand, if the maximum size is too large, some drifts may not be detected.

2.3 Perspective

There are three approaches to analyzing process models [3]: 1) control flow, which
is concerned with behavioral and structural changes in a process model;

2) data, where changes refer to the changes in the production and consumption of data
and the effect of data on the routing of cases; and 3) resource, which is the
changes in resources, their roles, and organizational structure. Most of the
previous methods have considered the control-flow perspective of process models.
The only solution that considers both the control-flow and data perspectives is that
suggested by [5]. In order to identify change points, the similarity between two
consecutive windows is compared using the Markov clustering algorithm.

2.4 Type of drift

Based on the classification presented in [18], there are four types of drift: 1) sudden

drift, in which a new process replaces an existing one, 2) gradual drift, in which parts
of both new and old processes coexist for a period of time,

4 F. Khojasteh et al.

3) recurring drift, when a set of processes re-appear after some time, and 4)
incremental drift, i n which a new process is substituted for an existing process
via plenty of minor incremental changes.

Most of the previous methods can detect sudden drift, while few of them can
detect other types of drift, too. For example, [19, 3] address the detection of sudden
drifts and certain types of gradual drifts in process mining. The method proposed by
[2] considers windows at different time scales to detect recurring drifts. This
method does not work for logs involving many process variants. The authors of [4]
claim that their method can detect all sudden, gradual, and recurring drifts using
fixed windows. The approach clusters traces based on the distance between pairs
of activities. The authors of [8] propose an automatic approach in order to build a
“run” from each trace in order to detect sudden drifts in two sequential adaptive
windows.

In [11], they extend their previous method [8] to detect not only sudden drifts but
also gradual drifts. They believe that gradual drifts will appear in the form of two
consecutive sudden drifts, and they apply a statistical test in order to determine
whether the detected sudden drifts are separate changes or a single gradual drift. A
limitation of the method is the requirement to re-size the adaptive window to
arrive at a trade-off between accuracy and drift detection delay. Also, [17]
presented two new algorithms in order to detect incremental, sudden, recurring, and
gradual drifts. The first algorithm creates the process history and discovers new
viable models based on conformance and a sliding window approach. The second
algorithm determines concept drifts based on the synthesized process histories.

In summary, Table 1 provides a feature-based comparison of the previous studies
based on the aforementioned aspects. As shown in this table, most of the methods use
the window, fixed or adaptive. Also, the concept of embedding has not been applied
to drift detection so far. In this work, we propose an embedding-based approach for
concept drift detection that is window independent.

3 Proposed Approach

In order to detect concept drifts in business process logs and overcome the
limitations of the previous approaches, we use trace embedding in the detection of
process drifts. The general architecture of our proposed approach is illustrated in
Figure 1, which consists of four main phases. Below, the phases are separately
discussed in detail.

3.1 Modeling trace to vector

In this step, we use trace embedding to automatically extract features from the
relations between traces.

By interpreting process event logs as texts and process traces as words, we can

apply the idea of trace embedding to this step. Algorithm 1, which is used in this
step, receives a list of traces LT as its input and outputs a set of traces vectors
TV.

Trace2Vec-CDD

5

 }
|

∈

 }
| ∈

Table 1: Feature-based comparison of the related works

Ref.
Detection

method

Type of

windows
Perspective Type of drifts

Offline Online Fixed Adaptive control-flow Resource Data Sudden Gragual Recurrin
g

Incremental

[7] * * * *

[4] * * * * * *

[6] * * * *

[3] * * * * *

[5] * * * * *

[2] * * * * * * *

[8] * * * *

[9] * * * *

[20] * * * *

[16] * * * * *

[10] * * * * *

[11] * * * * *

[17] * * * * * * *

[14] * * * *

[21] * * * * * *

[15] * * * * *

Proposed

method
* window

-independent
* *

At the beginning of the algorithm, we need to consider traces as words and

change each trace to a single word by omitting any spaces, underlines, and so
on. LWT = ConvertTrace2Word(t) t LT , where ConvertTrace2Word
is a function that changes a trace t to a single word, and LT is a list of traces,
which is ordered on the basis of the timestamp of the first event (Line 2 in
Algorithm 1).

The TraceEmbedding function is trained by the list of traces, which results in
the representation of each trace in the log as a vector of numerical values in a latent
feature space (Line 6 in Algorithm 1). In other words, we transform LWT to a set
of trace vectors TV = TraceEmbedding(t′) t′ LWT , where TraceEmbedding
is a function that computes the vector of trace t′ in the set LWT using CBOW
model.

As mentioned earlier, the idea of trace2vec as presented in [12] is based on the
notion of paragraph2vec introduced in [22], which involves numbers denoting the
order of paragraphs. Applying this method in our study causes identical traces that
occur in differing positions in the log to have different vectors. This is not desirable
in our study. As a result, we presented a new notion of trace embedding.

3.2 Detecting non-co-occurring traces

The objective of this phase is to detect non-co-occurring traces in two steps:

calculating trace similarity and clustering co-occurring traces.

Calculating trace similarity As mentioned above, the traces are represented
through their vector models from the embedding space. Therefore, it is possible
to directly calculate the similarity between all pair-wise combinations of trace
vectors.

6 F. Khojasteh et al.

Fig. 1: Architecture of the proposed approach
To calculate trace similarity, we use the set of trace vectors TV and the set of

traces in the event log to produce the similarity matrix SM and a list of traces with
a minimum co-occurrence. Then, by using the values of similarity, we are able to
separate the pairs of traces with the minimum co-occurrence or the maximum
distance in the vector space. Such pairs may lead to the occurrence of drifts. The
principal assumption is that if the substitution of a process B for a process A
has produced a case of drift, there has been a large distance (or a small number of
co-occurrence relations) between the set of traces of process A and those of
process B. In other words, the trace vectors before the change point differ from
the ones after the change point.

Clustering co-occurring traces After identifying the set of traces with the
minimum co-occurrence, we will use maximum co-occurrence to cluster them. The
clustering leads to a situation in which all members of the same cluster are in a
similar feature space.

This step receives the similarity matrix created in the previous step as its input
and produces a set of clusters as the output. We apply hierarchical clustering with
single linkage, in which traces cannot be placed in multiple clusters. The threshold
of clustering is empirically set to 0.99.

Trace2Vec-CDD

7

 ′

∈

Algorithm 1: Modeling trace to vector

Input : LT : a list of traces ordered on the basis of the timestamp of the first event

Output: TV : a set of trace vectors
1 for each ti LT do

2 t′i = ConvertTrace2Word(ti);

3 ADD t′i to LWT ;

4 end

5 for each t′i ∈ LWT do

6 TV.add TraceEmbedding(ti) ;

7 end

8 return TV

Algorithm 2: Calculating trace similarity

Input : TV = v1, v2, ..., vn}: a set of trace vectors, T = t1, t2, ..., tn} : a
set of traces in L

Output: SM : a similarity matrix, NCT : a list of traces with the

minimum co-occurrence

1 SET NCT to null;

2 for each vi ∈ TV do

3 for each vj ∈ TV do
4 dij =Similarity(vi,vj);

5 i
f

CheckNoCoOccurrance(dij)
then

6 ADD Tvi to NCT ;
7 ADD Tvj to NCT ;
8 ADD dij to SMij;

9 end

10 end

11 end

12 return SM

3.3 Drift detection

In this phase, some special techniques are employed to reduce delays in detecting
changes as much as possible. The phase consists of two steps: clustered trace
analysis and determining main changes.

Analyzing clustered traces This step aims at determining how the members
of each cluster are distributed in a log, which leads to the creation of a distribution
vector for each cluster. The step receives the output of the former step, i.e., the set
of clusters CL, as its input and outputs a set of distribution vectors.

In the step, for each cluster, where a member of the cluster appears in the log,
we represent it by 1 in the distribution vector associated with the cluster; otherwise,
we represent the member by 0.

8 F. Khojasteh et al.

Fig. 2: Distribution of each cluster in a log

Algorithm 3: Determining main changes

Input : DV = dv1, dv2, ..., dvn}: a set of distribution vectors

Output: D: a set of indexes of the traces in which drifts have occurred

1 SET drifts to null;

2 for each dvi ∈ DV do
3 fft = fft(dvi);

4 lpf =LowPassFilter(fft);

5 ifft= ifft(LPF);

6 diff = Differentiate(ifft);
7 di =ReportDrift(diff);
8 ADD di to D;

9 end

10 return D;

Figure 2 illustrates how the two clusters, C1 and C2, are distributed in a log
that has 2500 cases. Dense areas in Figure 2 indicate the positions of the traces of

each cluster in the log.

Determining the main changes, The main objective of this step, which utilizes
Algorithm 3, is to determine the change points in the distribution vectors. The
set of distribution vectors DV produced in the previous step is input to the algorithm
of this step and, as the output, we will have a set of indexes of the traces in which
drifts have occurred.

In order to determine the frequency regions, the fourier transform is applied to
the distribution vectors (Line 3 in Algorithm 3). The Fourier transform breaks
up a signal into its frequency components [23]. In this study, to distinguish the
main changes, we need to preserve high frequencies and eliminate low ones. To
fulfill this, low-pass filtering is applied (Line 4 in Algorithm 1). In other

Trace2Vec-CDD

9

Fig. 3: (a) Rate of changes in the distribution vector of cluster C1. (b) Rate of
changes in the distribution vector of cluster C2. Remarkable peaks are change

points.

words, the traces that have been incorrectly detected as co-occurring traces will be
eliminated by applying low-pass filtering. Then, the distribution vectors are
transferred back to the time domain (Line 5 in Algorithm 3). Afterwards, the rate
of changes is determined through differentiating (Line 6 in Algorithm 3). The
positions associated with the highest rate of changes or notably distinguishable
peaks are specified as indexes of the traces in which a drift has occurred (Line 7 in
Algorithm 3). For instance, in Figure 3, 9 drifts will be detected at the indexes of
250, 500, 750, 1000, 1250, 1500, 1750, 2000, and 2250, all of which are positions
of notably distinguishable peaks.

In summary, by applying trace embedding and also various techniques such
as hierarchical clustering and Fourier transform, we managed to propose an
approach marked by the following innovative characteristics: It automatically
extracts features from traces and events. Besides, since it uses no windows for
detecting drifts, it is not sensitive to window size.

4 Evaluation

In this section, the evaluation metrics are discussed, and the evaluation of the
proposed approach is presented. Then, the performance of our method is evaluated
in comparison with two different categories of state-of-the-art methods.

In order to implement the proposed approach, Deeplearning4j3 was used to
model traces and activities as vectors. We use the CBOW model with the
following parameters: window size = 20 (based on the mean length of the traces);
number of iterations = 10; vector dimension = 100. The remaining parameters
have the default values as proposed in [24].

3 https://deeplearning4j.org/

10 F. Khojasteh et al.

Fig. 4: Base BPMN model of loan application process

Hierarchical clustering algorithm has been implemented in Java. Also, Matlab
tool has been used For Fourier transform computing and applying low-pass
filtering.

4.1 Evaluation metrics

In terms of evaluation metrics, we compare the performance of our work with the
state-of-the-art methods using two measures: F-score and mean delay.

In the case of our study, True Positive is the number of drifts that have correctly
been detected, False Positive specifies the number of drifts that the method has
incorrectly detected, and False Negative is the number of drifts that the method
was not able to detect.

In other words, F-score specifies whether our approach has correctly identified
drifts in an event log or not. Besides, we calculate the mean delay, which is the
distance between actual drift points and detected drifts.

4.2 Data set

We initially describe the data set used in the experiment and then the results of our
method are compared with the methods proposed in [8], [10] and [3].

To evaluate our approach, the synthetic logs published by [8] were used. The
Base model of these logs, which has 15 activities, involves various control-flow
structures. Its BPMN representation, which is about assessing loan applications, is
illustrated in Figure 4. The base model was systematically modified to generate
drifts. These modifications included 12 simple change patterns organized into three
categories: Insertion (“I”), Resequentialization(“R”) and Optionalization (“O”) as
shown in Table 2. Moreover, the categories were combined to produce more
complex patterns including “IOR”, “IRO”, “ORI”, “OIR”, “RIO”, “ROI”. Four
logs of 2500, 5000, 7500, 10000 traces were produced for each of the 18 simple
and complex change patterns. Drifts were injected by switching the drift toggle on
and off every 10% of the log. Therefor, any instance of the produced logs included
9 drifts.

Trace2Vec-CDD

11

Table 2: Simple control-flow change patterns

Code Simple change pattern Categor
y

re Add/remove fragment I

cf Make two fragments conditional/sequential R

lp Make fragment loopable/non-loopable O

pl Make tow fragments parallel/sequential R

cb Move fragment into/out of conditional branch O

cm Move fragment into/out of conditional branch I

cd Synchronize,two fragments R

cp Duplicate fragment I

pm Move,fragment into/out of parallel branch I

rp Substitute,fragment I

sw Swap two fragments I

fr Change branching frequency O

4.3 Accuracy evaluation

The accuracy of the proposed approach is evaluated as follows. First, the 18 change
patterns discussed in 4.2 were applied to the four log sizes. Then, considering each
of the 18 change patterns, the proposed approach was compared against the
methods put forward by [8] (called “run”), [10] (called “process- graph”), and [3]
(called “Bose”) in terms of the measures of F-score and mean delay. The values
resulting for the two measures, averaged over the four log sizes, are demonstrated in
Figure 5 and Figure 6. Our approach secured the F-score of exactly 1 for all
patterns, except for the OIR pattern (0.99), far better than what the methods
achieved. Moreover, in terms of mean delay, our method outperforms the “Bose”,
the “process-graph”, and the “run” approaches, except for two change patterns.

On average, our method, “run”, “process-graph” and “Bose” approaches
achieved an F-score of approximately 0.9998, 0.97, 0.94, and 0.701, respectively.
Furthermore, in terms of delay, our method managed to achieve a mean delay of
about 13 traces, while the “run”, the “process-graph” and the “Bose” approaches
achieved mean delays of approximately 32, 24, and 47 traces, respectively. Table 3
includes the exact values of F-score and mean delay for each individual change
pattern as well as the total average made by each of the four methods.

The results of the statistical tests, i.e., t-tests, on the proposed approaches,
“run”, “process-graph”, and “Bose” in terms of F-score and mean delay are
demonstrated in Table 4. In each of the tests, the proposed approach served as the
first group. The p-value in all the tests- for both F-score and mean delay- is less
than 0.05, except in the case of F-score in the test between “trace2vec” and “run”.
This demonstrates that the difference in means is statistically significant at the
0.05 level.

12 F. Khojasteh et al.

Fig. 5: Comparison of F-score values per change pattern

Fig. 6: Comparison of mean delay values per change pattern

Additionally, the positive upper and lower F-score values and negative higher and
lower mean delay values, with the exception of the test between "trace2vec" and
"run," suggest that the suggested methodology produces better average F-score and
mean delay values than previous approaches.

5 Conclusion

This study proposed a new method for the detection of process drifts in business
process logs. We introduced the new notions of trace embedding, which enabled us
to surpass the state-of-the-art methods in the identification of predictable process
drifts as well as unpredictable ones. Trace embedding can be used for automatic
extraction of all features from the relations that exist between traces and for
producing vector representations of traces. Thus, the relations that exist between
traces in the log are represented by the relations that exist between vectors in the
vector space. The experiments demonstrated that, considering both F-score and
mean delay, our approach is superior to the current methods. Moreover, these
achievements have been made without using any type of windows.

Trace2Vec-CDD

13

Table 3: Comparison of average F-score and mean delay values

Change

pattern

trace2vec run [8] process-graph
[10]

Bose [3]

F-
score

Mean delay F-
score

Mean delay F-
score

Mean delay F-
score

Mean delay

re 1 21.83 1 44.03 0.9036 33.02 1 17

cf 1 5.08 0.9824 21 0.9853 34.62 0.8950 36

lp 1 21.69 1 40.29 0.7618 48.03 0.6484 41

pl 1 13.8 1 35.74 0.9575 26.33 1 20

cb 1 9.1 0.9387 58.55 0.9722 18.94 0 0

cm 1 8.52 1 39.85 0.9722 19.24 0 0

cp 1 4.58 1 19.66 0.9853 17.59 0.6394 36

cd 1 46.44 0.8799 34.62 0.9546 28.62 1 20

pm 1 11.97 1 12.88 0.9869 24.78 0.7804 69

rp 1 4.86 0.9666 19.18 0.9722 12.67 0.75 40

sw 1 6.02 1 21.67 1 29.61 0.7804 39

fr 1 20.5 0.7569 49.92 0.9853 19.92 0.4420 165

IOR 1 36.66 1 19.11 0.9606 13.00 0.7804 38

IRO 1 6.8 1 43.96 0.9487 27.22 0.5611 82

OIR 0.9967 12.11 0.9803 47.89 0.7331 28.06 1 20

ORI 1 11.38 1 14.51 0.9869 14.25 0.7804 38

RIO 1 9.08 0.9824 23.81 0.9722 20.77 0.5611 60

ROI 1 7.66 1 22.51 1 7.31 1 20

Average 0.9998 12.15 0.9715 31.62 0.9466 23.56 0.7010 46.31

Table 4: The results of the t-tests, where the first group is the trace2vec approach
and the second group is either run, process-graph, or Bose approach
 Mean

Std.

Deviation

Std.
Error

Mean

confidence
t df

Sig.

(2-tailed) Lower Upper

trace2vec-

run

F-score 0.03000 0.06444 0.01519 -0.00205 0.06205 1.975 17 0.065

Mean delay -17.28333 16.66887 3.92889 -25.57257 -8.99410 -4.399 17 0.000

trace2vec-

processGrap

h

F-score 0.05889 0.07324 0.01726 0.02247 0.09531 3.412 17 0.003

Mean delay -9.20833 13.66684 3.2213 -16.00469 -2.41197 -2.859 17 0.011

trace2vec-

Bose

F-score 0.30000 0.30828 0.07266 0.14670 0.45330 4.129 17 0.001

Mean delay -31.28375 39.19712 9.799928 -52.17042 -10.39708 -3.192 15 0.006

In the future, we expect our study to advance in the ways listed below:

– This paper h a s dealt with process changes only from control-flow
perspective. We plan to include changes from data and resource perspectives,
as well.

– The detection of sudden drift has been addressed in this study. Likewise,

detection of gradual and recurring drifts will be covered.

– This study also, plans to implement the approach as a ProM plug-in.

References

1. J. C. Schlimmer and R. H. Granger, “Beyond incremental processing: Tracking

concept drift.,” in AAAI, pp. 502–507, 1986.

2. J. Martjushev, R. J. C. Bose, and W. M. Van Der Aalst, “Change point detection

and dealing with gradual and multi-order dynamics in process mining,” in In-

ternational Conference on Business Informatics Research, pp. 161–178, Springer,

2015.

14 F. Khojasteh et al.

3. R. J. C. Bose, W. M. Van Der Aalst, I. Zliobaite, and M. Pechenizkiy,

“Dealing with concept drifts in process mining,” IEEE transactions on neural

networks and learning systems, vol. 25, no. 1, pp. 154–171, 2014.

4. R. A. T. Stocker, “Discovering workflow changes with time-based trace clustering,”

Lecture Notes in Business Information Processing, pp. 154–168, 2011.

5. B. Hompes, J. C. Buijs, W. M. Van Der Aalst, P. Dixit, and H. Buurman,

“Detect- ing change in processes using comparative trace clustering.,” in SIMPDA,

pp. 95– 108, 2015.

6. J. Carmona and R. Gavalda, “Online techniques for dealing with concept drift in

process mining,” in Proceedings of the 11th International Conference on Advances

in Intelligent Data Analysis, IDA’12, pp. 90–102, Springer-Verlag, 2012.

7. P. Weber, B. Bordbar, and P. Tino, “Real-time detection of process change using

process mining.,” in ICCSW, pp. 108–114, 2011.

8. A. Maaradji, M. Dumas, M. La Rosa, and A. Ostovar, “Fast and accurate business

process drift detection,” in International Conference on Business Process Manage-

ment, pp. 406–422, Springer, 2015.

9. A. Ostovar, A. Maaradji, M. La Rosa, A. H. ter Hofstede, and B. F. van

Don- gen, “Detecting drift from event streams of unpredictable business processes,”

in Conceptual Modeling: ER 2016, pp. 330–346, Springer, 2016.

10. A. Seeliger, T. Nolle, and M. Mühlhäuser, “Detecting concept drift in processes

using graph metrics on process graphs,” in Proceedings of the 9th Conference on

Subject-oriented Business Process Management, p. 6, ACM, 2017.

11. A. Maaradji, M. Dumas, M. La Rosa, and A. Ostovar, “Detecting sudden and gradual

drifts in business processes from execution traces,” IEEE Transactions on

Knowledge and Data Engineering, vol. 29, no. 10, pp. 2140–2154, 2017.

12. P. De Koninck, S. vanden Broucke, and J. De Weerdt, “act2vec, trace2vec, log2vec,

and model2vec: Representation learning for business processes,” in Business Pro-

cess Management, pp. 305–321, Springer International Publishing, 2018.

13. T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word

representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

14. M. Hassani, “Concept drift detection of event streams using an adaptive window.,”

pp. 230–239, 2019.

15. G. M. Tavares, P. Ceravolo, V. G. T. Da Costa, E. Damiani, and S. B. Junior,

“Overlapping analytic stages in online process mining,” pp. 167–175, 2019.

16. T. Li, T. He, Z. Wang, Y. Zhang, and D. Chu, “Unraveling process evolution by

handling concept drifts in process mining,” in SCC, pp. 442–449, 2017.

17. F. Stertz and S. Rinderle-Ma, “Process histories - detecting and representing con-

cept drifts based on event streams,” in On the Move to Meaningful Internet Sys-

tems. OTM 2018 Conferences (H. Panetto, C. Debruyne, H. A. Proper, C. A.

Ardagna, D. Roman, and R. Meersman, eds.), pp. 318–335, Springer International

Publishing, 2018.

18. T. Mikolov, W.-t. Yih, and G. Zweig, “Linguistic regularities in continuous

space word representations.,” in hlt-Naacl, vol. 13, pp. 746–751, 2013.

19. R. J. C. Bose, W. M. Van der Aalst, I. Žliobaitė , and M. Pechenizkiy, “Handling

concept drift in process mining,” in International Conference on Advanced

Infor- mation Systems Engineering, pp. 391–405, Springer, 2011.

20. C. Zheng, L. Wen, and J. Wang, “Detecting process concept drifts from

event logs,” pp. 524–542, 2017.

21. Y. Spenrath and M. Hassani, “Ensemble-based prediction of business processes

bottlenecks with recurrent concept drifts.,” 2019.

Trace2Vec-CDD

15

22. Q. Le and T. Mikolov, “Distributed representations of sentences and documents,”

in ICML, pp. 1188–1196, 2014.

23. M. Rahman, Applications of Fourier transforms to generalized functions. WIT

Press, 2011.

24. T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed

repre- sentations of words and phrases and their compositionality,” in Advances in

neural information processing systems, pp. 3111–3119, 2013.

25. V. D. Aalst, Process Mining - Discovery, Conformance and Enhancement of

Busi- ness Processes. Springer, 2011.

26. W. Van Der Aalst, A. Adriansyah, A. K. A. De Medeiros, F. Arcieri, T. Baier,

T. Blickle, J. C. Bose, P. van den Brand, R. Brandtjen, J. Buijs, et al., “Process

mining manifesto,” in International Conference on Business Process Management,

pp. 169–194, Springer, 2011.

27. V. D. Aalst, M. L. Rosa, and F. M. Santoro, “Business process management - don’t

forget to improve the process!,” Business & Information Systems Engineering,

vol. 58, no. 1, pp. 1–6, 2016.

28. M. Baroni, G. Dinu, and G. Kruszewski, “Don’t count, predict! a systematic com-

parison of context-counting vs. context-predicting semantic vectors.,” in ACL (1),

pp. 238–247, 2014.

29. S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R.

Harshman, “Indexing by latent semantic analysis,” JOURNAL OF THE

AMERICAN SOCI- ETY FOR INFORMATION SCIENCE, vol. 41, no. 6,

pp. 391–407, 1990.

30. A. Mandelbaum and A. Shalev, “Word embeddings and their use in sentence clas-

sification tasks,” arXiv preprint arXiv:1610.08229, 2016.

31. X. Rong, “word2vec parameter learning explained,” arXiv preprint

arXiv:1411.2738, 2014.

32. P. Ristoski and H. Paulheim, “Rdf2vec: Rdf graph embeddings for data mining,”

in International Semantic Web Conference, pp. 498–514, Springer, 2016.

33. R. J. C. Bose and W. M. Van der Aalst, “Context aware trace clustering: Towards

improving process mining results,” in Proceedings of the 2009 SIAM International

Conference on Data Mining, pp. 401–412, SIAM, 2009.

34. R. J. C. Bose and W. M. Van der Aalst, “Trace clustering based on conserved pat-

terns: Towards achieving better process models.,” in Business Process Management

Workshops, vol. 43, pp. 170–181, Springer, 2009.

35. G. Greco, A. Guzzo, L. Pontieri, and D. Sacca, “Discovering expressive process

models by clustering log traces,” IEEE Transactions on Knowledge and Data

En- gineering, vol. 18, no. 8, pp. 1010–1027, 2006.

36. J. Demšar and Z. Bosnić, “Detecting concept drift in data streams using model

explanation,” Expert Systems with Applications, vol. 92, pp. 546–559, 2018.

37. J. Evermann, J.-R. Rehse, and P. Fettke, “Predicting process behaviour using deep

learning,” Decision Support Systems, 2017.

38. T. S. Sethi and M. Kantardzic, “On the reliable detection of concept drift from

streaming unlabeled data,” Expert Systems with Applications, vol. 82, pp. 77–99,

2017.

39. T. Escovedo, A. Koshiyama, A. A. da Cruz, and M. Vellasco, “Detecta: abrupt

concept drift detection in non-stationary environments,” Applied Soft Computing,

vol. 62, pp. 119–133, 2018.

40. A. Alves de Medeiros, B. Van Dongen, W. Van Der Aalst, and A. Weijters, “Process

mining: Extending the alpha-algorithm to mine short loops,” tech. rep., BETA

Working Paper Series, 2004.

16 F. Khojasteh et al.

41. K. Fatemeh, “Concept drift detection in business process logs using deep learning,”

Master’s thesis, Ferdowsi University of Mashhad, Iran, 2016.

