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Abstract. Business processes are subject to changes during their 

execution over time due to new legislation, seasonal effects, etc. Detection 

of process changes is alternatively called business process drift detection. 

Currently, existing methods unfavorably subject the accuracy of drift 

detection to the effect of window size. Furthermore, most methods have to 

struggle with the problem of how to select appropriate features specifying 

the relations between traces or events. This paper draws on the notion of 

trace embedding to propose a new framework for automatic detection of 

suddenly occurring process drifts. The main contributions of the proposed 

approach are: (i) It is independent of windows. (ii) Trace embedding, 

which is used for drift detection, makes it possible to automatically extract 

all features from relations between traces. (iii) As attested by synthetic 

event logs, our approach is superior to current methods in respect of 

accuracy and drift detection delay. 
 

Keywords: Process mining · Concept drift · Process changes · Word 
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1 Introduction 

Modern business processes are handled by information systems. Information systems 
produce event logs, which are sources of information about the actual processes. It is 
typical for a business process to vary over time, which may be attributed to factors such 
as substantial changes in supply and demand, seasonal reasons, etc. These changes have 
considerable effects on the process costs and efficiency. 

Detection of business process drifts can be considered as a variant of the general 
issue of concept drift detection, which has received much attention in data mining 
and machine learning. Experts in such areas use the term “concept drift” when the 
distribution of a variable has experienced a change [1]. In process mining, however, 
the challenge is detecting more complex changes, such as changes in the process 
models that describe choices, loops, cancellations, and concurrency. 
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Therefore, drift detection methods used in data mining cannot directly be applied 
to detect drifts in business processes. Based on the definition of concept drift in 
process mining, wherever the traces before and after a specific point differ in 
characteristics, a business process drift has occurred [2]. 

In the area of process mining, various techniques have been proposed to detect 
concept drift, most of which perform statistical comparisons between pairs of  
windows. Some methods are based on fixed windows [3–7]. During the process, 
these windows keep their size unvarying. The other methods use adaptive windows 
in which the size of windows changes during the process [2, 8–11]. Adaptive windows 
provide higher accuracy than fixed windows. However, the initial size of an 
adaptive window has to be determined log by log. 

On the other hand, the majority of the current methods rely on selecting 
features that characterize traces. Features such as relation type count (RC), 
relation entropy (RE), window count (WC), and J measure [3, 2] are typical 
examples. The point is that good levels of accuracy sometimes require the user to 
be knowledgeable about the characteristics of drifts. If the user is not 
knowledgeable enough, unsuitable features may be selected, which leads to a 
failure to identify some kinds of features. 

The goal of this study is to solve the aforementioned problems using the idea of 
trace embedding. This concept has already been introduced in [12], which is based 
on the notion of paragraph2vec. Here, we presented a new definition of trace2vec 
based on word2vec [13]. We extract the features from the relations between traces 
and identify sudden process changes based on similarities between the vectors. Thus, 
the main novelty of our work is the elimination of windows, which results in more 
accurate detection of process drifts. The main contributions of this study are 
outlined below: 

– The idea of trace embedding is applied for concept drift detection. This is 
exploited in the automatic extraction of features from traces, the 
straightforward comparison of vectors of traces and change detection. 

– The fourier transform is used to omit noise and outlier traces in the log. 
– Unlike the existing methods, the proposed approach is window-independent  

– The artificial logs of [8] are used to determine the accuracy of our approach. 
They show our approach to be markedly more accurate than the state-of-the-art 
methods in terms of F-score and drift detection delay. 

The remainder of this paper is organized as follows. Section 2 includes the 
literature review. In section 3, our proposed approach,”’Trace2Vec-CDD”’, is dis- 
cussed in detail. Then, the proposed framework is empirically evaluated in Section 
4. Finally, the conclusion and future directions are stated in Section 5. 

 

2 Related works 

 In this section, the existing methods for concept drift detection from various 
aspects are investigated. To this end, these different aspects are introduced and the 
related works are then classified organized according to these dimensions. 
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2.1 Detection method 

State-of-the-art methods in this area can detect drifts in either an offline or online 
setting. In the offline setting, the whole log must exist, whereas in the online one, 
concept drifts will be detected by sequential monitoring of the logs of a system and 
react to changes in an online, almost real-time way [6, 9, 14, 15]. [6] is one of the 
methods that use online setting. [9] is another online approach that proposes an 
event-based method that performs well with processes in which there is a high 
ratio of distinct executions to the total number of executions in the log. All 
other existing methods work in a n  offline setting. [15] h a s  presented an online 
technique for detecting drifts. For that, trace distances are calculated by comparing 
them to a global model that represents the current state of the process. Hence, a 
density-based clustering algorithm is applied to distribute the instances in the 
feature space. Finally, the discovery of new clusters represents the detection of new 
concepts in the stream, i.e., concept drift. 

 
2.2 Type of window 

Most o f  the existing methods for business process drift detection use windows that 
are either static or dynamic. The first group of methods use static windows [7, 4, 
6, 3, 5]. In such studies, the accuracy of t h e  drift detection method is dependent 
on the size of t h e  window. The second group of methods use adaptive window 
[2, 8, 9, 16, 10, 11, 17, 14]. The idea of using adaptive windows is to set minimum and 
maximum values for the size of t h e  window and increase the minimum value 
until a change is detected or the window size reaches the maximum size limit. 
Thus, if the minimum size is too small, noises may be detected as drifts. On the 
other hand, if the maximum size is too large, some drifts may not be detected. 

 
2.3 Perspective 

There are three approaches to analyzing process models [3]: 1) control flow, which 
is concerned with behavioral and structural changes in a process model; 

2) data, where changes refer to the changes in the production and consumption of data 
and the effect of data on the routing of cases; and 3) resource, which is the 
changes in resources, their roles, and organizational structure. Most of the 
previous methods have considered the control-flow perspective of process models. 
The only solution that considers both the control-flow and data perspectives is that 
suggested by [5].  In order to identify change points, the similarity between two 
consecutive windows is compared using the Markov clustering algorithm. 

 
2.4 Type of drift 

Based on the classification presented in [18], there are four types of drift: 1) sudden 

drift, in which a new process replaces an existing one, 2) gradual drift, in which parts 
of both new and old processes coexist for a period of time, 
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3) recurring drift, when a set of processes re-appear after some time, and 4) 
incremental drift, i n  which a new process is substituted for an existing process 
via plenty of minor incremental changes.  

Most of the previous methods can detect sudden drift, while few of them can 
detect other types of drift, too. For example, [19, 3] address the detection of sudden 
drifts and certain types of gradual drifts in process mining. The method proposed by 
[2] considers windows at different time scales to detect recurring drifts. This 
method does not work for logs involving many process variants. The authors of [4] 
claim that their method can detect all sudden, gradual, and recurring drifts using 
fixed windows. The approach clusters traces based on the distance between pairs 
of activities. The authors of [8] propose an automatic approach in order to build a 
“run” from each trace in order to detect sudden drifts in two sequential adaptive 
windows.  

In [11], they extend their previous method [8] to detect not only sudden drifts but 
also gradual drifts. They believe that gradual drifts will appear in the form of two 
consecutive sudden drifts, and they apply a statistical test in order to determine 
whether the detected sudden drifts are separate changes or a single gradual drift. A 
limitation of the method is the requirement to re-size the adaptive window to 
arrive at a trade-off between accuracy and drift detection delay. Also, [17] 
presented two new algorithms in order to detect incremental, sudden, recurring, and 
gradual drifts. The first algorithm creates the process history and discovers new 
viable models based on conformance and a sliding window approach. The second 
algorithm determines concept drifts based on the synthesized process histories. 

In summary, Table 1 provides a feature-based comparison of the previous studies 
based on the aforementioned aspects. As shown in this table, most of the methods use 
the window, fixed or adaptive. Also, the concept of embedding has not been applied 
to drift detection so far. In this work, we propose an embedding-based approach for 
concept drift detection that is window independent. 

 
3 Proposed Approach 

 

In order to detect concept drifts in business process logs and overcome the 
limitations of the previous approaches, we use trace embedding in the detection of 
process drifts. The general architecture of our proposed approach is illustrated in 
Figure 1, which consists of four main phases. Below, the phases are separately 
discussed in detail. 

 
3.1 Modeling trace to vector 

In this step, we use trace embedding to automatically extract features from the 
relations between traces. 

By interpreting process event logs as texts and process traces as words, we can 

apply the idea of trace embedding to this step. Algorithm 1, which is used in this 
step, receives a list of traces LT as its input and outputs a set of traces vectors 
TV. 
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Table 1: Feature-based comparison of the related works 
 

Ref. 
Detection 

method 

Type of 

windows 
Perspective Type of drifts 

Offline Online Fixed Adaptive control-flow Resource Data Sudden Gragual Recurrin
g 

Incremental 

[7] *  *  *   *    

[4] *  *  *   * * *  

[6]  * *  *   *    

[3] *  *  *   * *   

[5] *  *  *  * *    

[2] *   * *   * * * * 

[8] *   * *   *    

[9]  *  * *   *    

[20] *  *  *   *    

[16] *   * *   * *   

[10] *   * *   * *   

[11] *   * *   * *   

[17] *   * *   * * * * 

[14]  *  * *   *    

[21] *  *  *  *  * *  

[15]  * *  *   * *   

Proposed 

method 
*  window 

-independent 
*   *    

 
 

At the beginning of the algorithm, we need to consider traces as words and 

change each trace to a single word by omitting any spaces, underlines, and so 
on.  LWT  =    ConvertTrace2Word(t) t     LT   ,  where  ConvertTrace2Word  
is a function that changes a trace t to a single word, and LT is a list of traces, 
which is ordered on the basis of the timestamp of the first event (Line 2 in 
Algorithm 1). 

The TraceEmbedding function is trained by the list of traces, which results in 
the representation of each trace in the log as a vector of numerical values in a latent 
feature space (Line 6 in Algorithm 1). In other words, we transform LWT to a set 
of trace vectors TV  =   TraceEmbedding(t′) t′     LWT   , where TraceEmbedding 
is a function that computes the vector of trace t′ in the set LWT using CBOW 
model. 

As mentioned earlier, the idea of trace2vec as presented in [12] is based on the 
notion of paragraph2vec introduced in [22], which involves numbers denoting the 
order of paragraphs. Applying this method in our study causes identical traces that 
occur in differing positions in the log to have different vectors. This is not desirable 
in our study. As a result, we presented a new notion of trace embedding. 

 
3.2 Detecting non-co-occurring traces 

The objective of this phase is to detect non-co-occurring traces in two steps: 

calculating trace similarity and clustering co-occurring traces. 

 
Calculating trace similarity As mentioned above, the traces are represented 
through their vector models from the embedding space. Therefore, it is possible 
to directly calculate the similarity between all pair-wise combinations of trace 
vectors. 
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Fig. 1: Architecture of the proposed approach 
To calculate trace similarity, we use the set of trace vectors TV and the set of 

traces in the event log to produce the similarity matrix SM and a list of traces with 
a minimum co-occurrence. Then, by using the values of similarity, we are able to 
separate the pairs of traces with the minimum co-occurrence or the maximum 
distance in the vector space. Such pairs may lead to the occurrence of drifts. The 
principal assumption is that if the substitution of a process B for a process A 
has produced a case of drift, there has been a large distance (or a small number of 
co-occurrence relations) between the set of traces of process A and those of 
process B. In other words, the trace vectors before the change point differ from 
the ones after the change point. 

 
Clustering co-occurring traces After identifying the set of traces with the 
minimum co-occurrence, we will use maximum co-occurrence to cluster them. The 
clustering leads to a situation in which all members of the same cluster are in a 
similar feature space. 

This step receives the similarity matrix created in the previous step as its input 
and produces a set of clusters as the output. We apply hierarchical clustering with 
single linkage, in which traces cannot be placed in multiple clusters. The threshold 
of clustering is empirically set to 0.99. 
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Algorithm 1: Modeling trace to vector 

Input : LT : a list of traces ordered on the basis of the timestamp of the first event 

Output: TV : a set of trace vectors 
1  for each ti LT do 

2 t′i = ConvertTrace2Word(ti); 

3 ADD t′i to LWT ; 

4 end 

5 for each t′i ∈ LWT do 

6 TV.add TraceEmbedding(ti) ; 

7 end 

8 return TV 

 

Algorithm  2: Calculating trace similarity 
 

Input : TV = v1, v2, ..., vn}: a set of trace vectors, T =  t1, t2, ..., tn} : a 
set of traces in L 

Output: SM : a similarity matrix, NCT : a list of traces with the 

minimum co-occurrence 

1 SET NCT to null; 

2  for each vi  ∈ TV do 

3 for each vj ∈ TV do 
4 dij =Similarity(vi,vj ); 

5  i
f 

CheckNoCoOccurrance( dij) 
then 

6   ADD Tvi to NCT ; 
7   ADD Tvj to NCT ; 
8   ADD dij to SMij; 

9 end 

10 end 

11 end 

12 return SM 

 
 

3.3 Drift detection 
 

In this phase, some special techniques are employed to reduce delays in detecting 
changes as much as possible. The phase consists of two steps: clustered trace 
analysis and determining main changes. 

 

Analyzing clustered traces This step aims at determining how the members 
of each cluster are distributed in a log, which leads to the creation of a distribution 
vector for each cluster. The step receives the output of the former step, i.e., the set 
of clusters CL, as its input and outputs a set of distribution vectors. 

In the step, for each cluster, where a member of the cluster appears in the log, 
we represent it by 1 in the distribution vector associated with the cluster; otherwise, 
we represent the member by 0. 
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Fig. 2: Distribution of each cluster in a log 

 

Algorithm 3: Determining main changes 
 

Input   : DV  =    dv1, dv2, ..., dvn}: a set of distribution vectors 

Output: D: a set of indexes of the traces in which drifts have occurred 

1  SET drifts to null; 

2  for each dvi  ∈ DV  do 
3 fft = fft(dvi); 

4 lpf =LowPassFilter(fft); 

5 ifft=  ifft(LPF ); 

6 diff =  Differentiate(ifft); 
7 di   =ReportDrift(diff ); 
8 ADD di to D; 

9 end 

10 return D; 

 
 

Figure 2 illustrates how the two clusters, C1 and C2, are distributed in a log 
that has 2500 cases. Dense areas in Figure 2 indicate the positions of the traces of 

each cluster in the log. 

 
Determining the main changes, The main objective of this step, which utilizes 
Algorithm 3, is to determine the change points in the distribution vectors. The 
set of distribution vectors DV produced in the previous step is input to the algorithm 
of this step and, as the output, we will have a set of indexes of the traces in which 
drifts have occurred. 

In order to determine the frequency regions, the fourier transform is applied to 
the distribution vectors (Line 3 in Algorithm 3). The Fourier transform breaks 
up a signal into its frequency components [23]. In this study, to distinguish the 
main changes, we need to preserve high frequencies and eliminate low ones. To 
fulfill this, low-pass filtering is applied (Line 4 in Algorithm 1). In other 
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Fig. 3: (a) Rate of changes in the distribution vector of cluster C1. (b) Rate of 
changes in the distribution vector of cluster C2. Remarkable peaks are change 

points. 

 
words, the traces that have been incorrectly detected as co-occurring traces will be 
eliminated by applying low-pass filtering. Then, the distribution vectors are 
transferred back to the time domain (Line 5 in Algorithm 3). Afterwards, the rate 
of changes is determined through differentiating (Line 6 in Algorithm 3). The 
positions associated with the highest rate of changes or notably distinguishable 
peaks are specified as indexes of the traces in which a drift has occurred (Line 7 in 
Algorithm 3). For instance, in Figure 3, 9 drifts will be detected at the indexes of 
250, 500, 750, 1000, 1250, 1500, 1750, 2000, and 2250, all of which are positions 
of notably distinguishable peaks. 

In summary, by applying trace embedding and also various techniques such 
as hierarchical clustering and Fourier transform, we managed to propose an 
approach marked by the following innovative characteristics: It automatically 
extracts features from traces and events. Besides, since it uses no windows for 
detecting drifts, it is not sensitive to window size. 

 
4 Evaluation 

 

In this section, the evaluation metrics are discussed, and the evaluation of the 
proposed approach is presented. Then, the performance of our method is evaluated 
in comparison with two different categories of state-of-the-art methods. 

In order to implement the proposed approach, Deeplearning4j3 was used to 
model traces and activities as vectors. We use the CBOW model with the 
following parameters: window size = 20 (based on the mean length of the traces); 
number of iterations = 10; vector dimension = 100. The remaining parameters 
have the default values as proposed in [24]. 

3 https://deeplearning4j.org/ 
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Fig. 4: Base BPMN model of loan application process 

 
 

Hierarchical clustering algorithm has been implemented in Java. Also, Matlab 
tool has been used For Fourier transform computing and applying low-pass 
filtering. 

 
4.1 Evaluation metrics 

In terms of evaluation metrics, we compare the performance of our work with the 
state-of-the-art methods using two measures: F-score and mean delay. 

In the case of our study, True Positive is the number of drifts that have correctly 
been detected, False Positive specifies the number of drifts that the method has 
incorrectly detected, and False Negative is the number of drifts that the method 
was not able to detect. 

In other words, F-score specifies whether our approach has correctly identified 
drifts in an event log or not. Besides, we calculate the mean delay, which is the 
distance between actual drift points and detected drifts. 

 
4.2 Data set 

We initially describe the data set used in the experiment and then the results of our 
method are compared with the methods proposed in [8], [10] and [3]. 

To evaluate our approach, the synthetic logs published by [8] were used. The 
Base model of these logs, which has 15 activities, involves various control-flow 
structures. Its BPMN representation, which is about assessing loan applications, is 
illustrated in Figure 4. The base model was systematically modified to generate 
drifts. These modifications included 12 simple change patterns organized into three 
categories: Insertion (“I”), Resequentialization(“R”) and Optionalization (“O”) as 
shown in Table 2. Moreover, the categories were combined to produce more 
complex patterns including “IOR”,  “IRO”,  “ORI”,  “OIR”,  “RIO”,  “ROI”. Four 
logs of 2500, 5000, 7500, 10000 traces were produced for each of the 18 simple 
and complex change patterns. Drifts were injected by switching the drift toggle on 
and off every 10% of the log. Therefor, any instance of the produced logs included 
9 drifts. 
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Table 2: Simple control-flow change patterns 

Code Simple change pattern Categor
y 

re Add/remove fragment I 

cf Make two fragments conditional/sequential R 

lp Make fragment loopable/non-loopable O 

pl Make tow fragments parallel/sequential R 

cb Move fragment into/out of conditional branch O 

cm Move fragment into/out of conditional branch I 

cd Synchronize,two fragments R 

cp Duplicate fragment I 

pm Move,fragment into/out of parallel branch I 

rp Substitute,fragment I 

sw Swap two fragments I 

fr Change branching frequency O 

 

 
4.3 Accuracy evaluation 

 
The accuracy of the proposed approach is evaluated as follows. First, the 18 change 
patterns discussed in 4.2 were applied to the four log sizes. Then, considering each 
of the 18 change patterns, the proposed approach was compared against the 
methods put forward by [8] (called “run”), [10] (called “process- graph”), and [3] 
(called “Bose”) in terms of the measures of F-score and mean delay. The values 
resulting for the two measures, averaged over the four log sizes, are demonstrated in 
Figure 5 and Figure 6. Our approach secured the F-score of exactly 1 for all 
patterns, except for the OIR pattern (0.99), far better than what the methods 
achieved. Moreover, in terms of mean delay, our method outperforms the “Bose”, 
the “process-graph”, and the “run” approaches, except for two change patterns. 

On average, our method, “run”, “process-graph” and “Bose” approaches 
achieved an F-score of approximately 0.9998, 0.97, 0.94, and 0.701, respectively. 
Furthermore, in terms of delay, our method managed to achieve a mean delay of 
about 13 traces, while the “run”, the “process-graph” and the “Bose” approaches 
achieved mean delays of approximately 32, 24, and 47 traces, respectively. Table 3 
includes the exact values of F-score and mean delay for each individual change 
pattern as well as the total average made by each of the four methods. 

The results of the statistical tests, i.e., t-tests, on the proposed approaches, 
“run”, “process-graph”, and “Bose” in terms of F-score and mean delay are 
demonstrated in Table 4. In each of the tests, the proposed approach served as the 
first group. The p-value in all the tests- for both F-score and mean delay- is less 
than 0.05, except in the case of F-score in the test between “trace2vec” and “run”. 
This demonstrates that the difference in means is statistically significant at the 
0.05 level.  
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Fig. 5: Comparison of F-score values per change pattern 

 

Fig. 6: Comparison of mean delay values per change pattern 

 
 

Additionally, the positive upper and lower F-score values and negative higher and 
lower mean delay values, with the exception of the test between "trace2vec" and 
"run," suggest that the suggested methodology produces better average F-score and 
mean delay values than previous approaches. 

 
5 Conclusion 

This study proposed a new method for the detection of process drifts in business 
process logs. We introduced the new notions of trace embedding, which enabled us 
to surpass the state-of-the-art methods in the identification of predictable process 
drifts as well as unpredictable ones. Trace embedding can be used for automatic 
extraction of all features from the relations that exist between traces and for 
producing vector representations of traces. Thus, the relations that exist between 
traces in the log are represented by the relations that exist between vectors in the 
vector space. The experiments demonstrated that, considering both F-score and 
mean delay, our approach is superior to the current methods. Moreover, these 
achievements have been made without using any type of windows. 
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Table 3: Comparison of average F-score and mean delay values 

Change 

pattern 

trace2vec run [8] process-graph  
[10] 

Bose [3] 

F-
score 

Mean delay F-
score 

Mean delay F-
score 

Mean delay F-
score 

Mean delay 

re 1 21.83 1 44.03 0.9036 33.02 1 17 

cf 1 5.08 0.9824 21 0.9853 34.62 0.8950 36 

lp 1 21.69 1 40.29 0.7618 48.03 0.6484 41 

pl 1 13.8 1 35.74 0.9575 26.33 1 20 

cb 1 9.1 0.9387 58.55 0.9722 18.94 0 0 

cm 1 8.52 1 39.85 0.9722 19.24 0 0 

cp 1 4.58 1 19.66 0.9853 17.59 0.6394 36 

cd 1 46.44 0.8799 34.62 0.9546 28.62 1 20 

pm 1 11.97 1 12.88 0.9869 24.78 0.7804 69 

rp 1 4.86 0.9666 19.18 0.9722 12.67 0.75 40 

sw 1 6.02 1 21.67 1 29.61 0.7804 39 

fr 1 20.5 0.7569 49.92 0.9853 19.92 0.4420 165 

IOR 1 36.66 1 19.11 0.9606 13.00 0.7804 38 

IRO 1 6.8 1 43.96 0.9487 27.22 0.5611 82 

OIR 0.9967 12.11 0.9803 47.89 0.7331 28.06 1 20 

ORI 1 11.38 1 14.51 0.9869 14.25 0.7804 38 

RIO 1 9.08 0.9824 23.81 0.9722 20.77 0.5611 60 

ROI 1 7.66 1 22.51 1 7.31 1 20 

Average 0.9998 12.15 0.9715 31.62 0.9466 23.56 0.7010 46.31 

 

Table 4: The results of the t-tests, where the first group is the trace2vec approach 
and the second group is either run, process-graph, or Bose approach 
 Mean 

Std. 

Deviation 

Std. 
Error 

Mean 

confidence 
t df 

Sig. 

(2-tailed) Lower Upper 

trace2vec- 

run 

F-score 0.03000 0.06444 0.01519 -0.00205 0.06205 1.975 17 0.065 

Mean delay -17.28333 16.66887 3.92889 -25.57257 -8.99410 -4.399 17 0.000 

trace2vec- 

processGrap

h 

F-score 0.05889 0.07324 0.01726 0.02247 0.09531 3.412 17 0.003 

Mean delay -9.20833 13.66684 3.2213 -16.00469 -2.41197 -2.859 17 0.011 

trace2vec- 

Bose 

F-score 0.30000 0.30828 0.07266 0.14670 0.45330 4.129 17 0.001 

Mean delay -31.28375 39.19712 9.799928 -52.17042 -10.39708 -3.192 15 0.006 

In the future, we expect our study to advance in the ways listed below: 

– This paper h a s  dealt with process changes only from control-flow 
perspective. We plan to include changes from data and resource perspectives, 
as well. 

– The detection of sudden drift has been addressed in this study. Likewise, 

detection of gradual and recurring drifts will be covered. 

– This study also, plans to implement the approach as a ProM plug-in. 
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