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Abstract. Business processes are subject to changes during their
execution over time due to new legislation, seasonal effectsqetc. Detection
of process changes is alternatively called business process drift detection.
Currently, existing methods unfavorably subject the aceuracypof drift
detection to the effect of window size. Furthermore, most methods*haveto
struggle with the problem of how to select appropriate features specifying
the relations between traces or events. This paper draws on the notion of
trace embedding to propose a new framewark forjautomatic'detection of
suddenly occurring process drifts. The main‘contributions of the proposed
approach are: (i) It is independent of ‘windows. (il) Trace embedding,
which is used for drift detection, makes. it possible to automatically extract
all features from relations between traces. (iii) As attested by synthetic
event logs, our approach is_superier to cufrent methods in respect of
accuracy and drift detection delay.

Keywords: Process mining ““€oncept drift - Process changes - Word
embedding

1 Introduction

Modern business proecesses are handled by information systems. Information systems
produce eventlogs, which are sources of information about the actual processes. It is
typical for a businessqrocess to vary over time, which may be attributed to factors such
as substantial changes in supply and demand, seasonalreasons, etc. These changes have
considerableyeffects on the process costs and efficiency.

Detection of business process drifts can be considered as a variant of the general
issueyof concept drift detection, which has received much attention in data mining
and maehine learning. Experts in such areas use the term “concept drift” when the
distribution of a variable has experienced a change [1]. In process mining, however,
the challenge is detecting more complex changes, such as changes in the process
models that describe choices, loops, cancellations, and concurrency.
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Therefore, drift detection methods used in data mining cannot directly be applied
to detect drifts in business processes. Based on the definition of concept drift in
process mining, wherever the traces before and after a specific point differ in
characteristics, a business process drift has occurred [2].

In the area of process mining, various techniques have been proposed to detect
concept drift, most of which perform statistical comparisons between pairs of
windows. Some methods are based on fixed windows [3—7]. During the process,
these windows keep their size unvarying. The other methods use adaptive windows
in which the size of windows changes during the process [2, 8-11]. Adaptive windows
provide higher accuracy than fixed windows. However, the initial sizeof an
adaptive window has to be determined log by log.

On the other hand, the majority of the current methods rely on selecting
features that characterize traces. Features such as relation type count (R€),
relation entropy (RE), window count (WC), and J measure [3, 2] are typical
examples. The point is that good levels of accuracy sometimes require the'user, to
be knowledgeable about the characteristics of drifts. If the user. is not
knowledgeable enough, unsuitable features may be selected, whiehgleads to a
failure to identify some kinds of features.

The goal of this study is to solve the aforementioned problems using the ideaof
trace embedding. This concept has already been introduced in 2], whiehgs based
on the notion of paragraph2vec. Here, we presented a newfdefinition of trace2vec
based on word2vec [13]. We extract the features from the relations hetween traces
and identify sudden process changes based on similarities between the vectors. Thus,
the main novelty of our work is the elimination of'windows, which results in more
accurate detection of process drifts. The main contributionsof, this study are
outlined below:

— The idea of trace embedding is applied for concept drift detection. This is
exploited in the automatic “exXtraction of, features from traces, the
straightforward comparison of vecters of‘traces and change detection.

— The fourier transform is used to omit neise and outlier traces in the log.

— Unlike the existing methods, the proposed approach is window-independent

— The artificial logs of [8] areyused,to/determine the accuracy of our approach.
They show our approach tode markedly more accurate than the state-of-the-art
methods in termsf F-score and drift detection delay.

The remaindeg, 0f thisypaper is organized as follows. Section 2 includes the
literature review. In'section 3) our proposed approach,”’ Trace2Vec-CDD””’, is dis-
cussed in detail. Then, the proposed framework is empirically evaluated in Section
4.Finally, the\conclusion'and future directions are stated in Section 5.

2 oRelatedpyworks

Inthis ‘section, the existing methods for concept drift detection from various
aspects are‘investigated. To this end, these different aspects are introduced and the
related'works are then classified organized according to these dimensions.
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2.1 Detection method

State-of-the-art methods in this area can detect drifts in either an offline or online
setting. In the offline setting, the whole log must exist, whereas in the online one,
concept drifts will be detected by sequential monitoring of the logs of a system and
react to changes in an online, almost real-time way [6, 9, 14, 15]. [6]is one of the
methods that use online setting. [9] is another online approachthat proposes an
event-based method that performs well with processes in whichthere is a high
ratio of distinct executions to the total number of executionsin the log. All
other existing methods work in an offline setting. [15] has presentedan online
technique for detecting drifts. For that, trace distances are calculated by comparing
them to a global model that represents the current state of the process. Hehce, a
density-based clustering algorithm is applied to distribute the instances inythe
feature space. Finally, the discovery of new clusters represents the detection ofdew
concepts in the stream, i.e., concept drift.

2.2 Type of window

Most of the existing methods for business process drift detectiompuseswindows that
are either static or dynamic. The first group of methods use ‘Static windows [7,4,
6, 3, 5]. In such studies, the accuracy of the drift detectionypmethod is dependent
on the size of the window. The second group of methods use, adaptive window
[2,8,9, 16, 10, 11, 17, 14]. The idea of using adaptive windows is ta set minimum and
maximum values for the size of the window and increasegthe” minimum value
untila change is detected or the window size/reaches the maximum size limit.
Thus,if the minimum size is too small, noises may beidetected ds drifts. On the
otherhand, if the maximum size is too large, Semeidrifts may not be detected.

2.3 Perspective

There are three approaches to analyzing praeess models [3]: 1) controlflow, which
is concerned with behavioraland structural changes in a process model;

2) data, where changes refer ta the changesiin the production and consumption of data
and the effect of datafon ‘the routing of cases; and 3) resource, whichis the
changes in resources, their “roles, and organizational structure. Most ofthe
previous methodsdave considered the control-flow perspective of process models.
The only solution that.considers both the control-flow and data perspectives is that
suggested by [5].“4ln okder to identify change points, the similarity between two
consecutive windowsiis compared using the Markov clustering algorithm.

2.4m, Type ofadrift

Based onithe classification presented in [18], there are four types of drift: 1) sudden
drift;iin which a new process replaces an existing one, 2) gradual drift, in which parts
oftboth®new and old processes coexist for a period of time,
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3) recurring drift, when a set of processes re-appear after some time, and 4)
incremental drift, in which a new process is substituted for an existing process
via plenty of minor incremental changes.

Most of the previous methods can detect sudden drift, while few of them can
detect other types of drift, too.For example, [19, 3] address the detection of sudden
drifts and certain types of gradual drifts in process mining. The method proposed by
[2] considers windows at different time scales to detect recurring drifts. This
method does not work for logs involving many process variants. The authors of [4]
claim that their method can detect all sudden, gradual, and recurring drifts using
fixed windows. The approach clusters traces based on the distance between pairs
of activities. The authors of [8] propose an automatic approach in order to huild a
“run” from eachtrace in order to detect sudden drifts in two sequential adaptive
windows.

In [11],they extend their previous method [8] to detect not only sudden drifis, but
also gradual drifts. They believe that gradual drifts will appear in the form of two
consecutive sudden drifts, and they apply a statistical test in order to determing
whether the detected sudden drifts are separate changes or a single gradual driftA
limitation of the method is the requirement to re-size the adaptive windowto
arrive at a trade-off between accuracy and drift detectiony'delaypAlso, [17]
presented two new algorithms in order to detect incremental,sudden, recurring, and
gradual drifts. The first algorithm creates the process historysandidiscovers new
viable models based on conformance and a sliding window appreach. The second
algorithm determines concept drifts based on the'synthesizedypracess histories.

In summary, Table 1 provides a feature-based gomparison of ‘the previous studies
based on the aforementioned aspects. As shown inthis table, most obthe methods use
the window, fixed or adaptive. Also, the concept of,embedding hasnot been applied
to drift detection so far. In this work, we propose’an embedding-based approach for
concept drift detection that is window{indepéndent

3 Proposed Approach

In order to detect concept drifts in“business process logs and overcome the
limitations of the previous approaches, we use trace embedding in the detection of
process drifts. Thegeneral architecture of our proposed approach is illustratedin
Figure 1, which censists ‘af, four main phases. Below, the phases are separately
discussed in detail.

3.1 Modeling trace to vector

Ingthis step, weyuse trace embedding to automatically extract features from the
relations, between traces.

By interpreting process event logs as texts and process traces as words, we can
apply‘the idea of trace embedding to this step. Algorithm 1, which is usedin this
step,, receives a list of traces LT as its input and outputs a set of traces vectors
TV,
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Table 1: Feature-based comparison of the related works

Ref. D;zet%té%n V—\II—I)r/TF(;?)V(\?: Perspective Type of drifts
Offline [Online|Fixed|Adaptive |control-flow [Resource|[Data|Sudden [Gragual| Recurrin |Incremental
[7] * * * * g
4 * * * * * *
6 * * * *
3 * * * * *
5 * * * * *
2 * * * * * * *
[8] * * * *
[9] * * * *
[20] * * * *
[16] * * * * *
[lo] * * * * *
[11] * * * * *
[17] * * * * * * *
[14] * * * *
[21] * * * * *
[15] * * * *
Proposed| window - *
method -independent

At the beginning of the algorithm, we need to consider tracesyas words and
change each trace to a single word by omitting any spaces, underlines, and so
on. LWT = ConvertTrace2Word(t) t L?ﬁ , Where“€onvertTrace2Word
isa function that changes a trace t to a singleaword, and LTyis a list of traces,
which is ordered on the basis of the timestamp ofithe first event (Line 2 in
Algorithm 1).

The TraceEmbedding function is trained by the 1ist'of traces, which results in
the representation of each trace in thelog asia vector of numerical values in a latent
feature space (Line 6 in Algorithm_1).“In otherwords, we transform LWT to a set
of trace vectors TV = TraceEmbedding(t)a’ LWTF , where TraceEmbedding
is a function that computes the Vector of trace t’ in the set LWT using CBOW
model.

As mentioned earlierg,the, idea of trace2vec as presented in [12] is based onthe
notion of paragraph2vec intraduced in [22], which involves numbers denoting the
order of paragraphs.(Applying this method in our study causes identical traces that
occur in differing pesitionstin the log to have different vectors. Thisis not desirable
in our study. AS‘awesulty, we presented a new notion of trace embedding.

3.2 Detecting, aon-co-occurring traces

The objective_of this phase is to detect non-co-occurring traces in two steps:
calculating trace similarity and clustering co-occurring traces.

Calculating trace similarity As mentioned above, the traces are represented
through their vector models from the embedding space. Therefore, it is possible
tordirectly calculate the similarity between all pair-wise combinations of trace
vectors.
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Fig. 1: Architecture of the proposed approach

To calculate trace similarity, we use the set of trace veeters TV, and the set of
traces in the event log to produce the similarity matrix SM and‘alistief traces with
a minimum co-occurrence. Then, by using the Values of similarity, we are able to
separate the pairs of traces with the minimum co-0ecurrence‘orthe maximum
distance in the vector space. Such pairs may lead to"the occurrence of drifts. The
principal assumption is that if the substitutiontef a precess B for a process A
has produced a case of drift, there has beepfalargeidistance (or a small number of
co-occurrence relations) between the set of\traces of process A and those of
process B. In other words, the trace vectorsbefore/the change point differ from
the ones after the change point.

Clustering co-occurring tracesoAfterpidentifying the set of traces with the
minimum co-occurrence, we wilbuse‘maximum co-occurrence to cluster them. The
clustering leads to a sitbationfin which all members of the same cluster arein a
similar feature space.

This step receives the'similarity matrix created in the previous step as its input
and produces a set ofyclusters as the output. We apply hierarchical clustering with
single linkage, in'whichytraces cannot be placed in multiple clusters. The threshold
of clusteringtis empirically set to 0.99.
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Algorithm 1: Modeling trace to vector
Input : LT: a list of traces ordered on the basis of the timestamp of the firstevent
Output: TV : a set of trace vectors

1 foreach tic LT do

2 ti = ConvertTrace2Word(ti);

3 ADD ti to LWT;

send

s for each ti € LWT do ,

6 TV.add TraceEmbedding(ti) ;

7end

8 return TV

Algorithm 2: Calculating trace similarity
Input : TV = vq,Vy,...,Vn}: a set of trace vectors, T = ti,to,...,th}: &
set of traces in L
Output: SM: a similarity matrix, NCT : a list of traces with the
minimumco-occurrence
1 SET NCT to null;
2 for each vi e TV do
3 for each v; e TV do

4 dij=Similarity(vi,vj);
5 i CheckNoCoOccurrance( dij)
f then
6 ADD Ty;to NCT;
7 ADD Tyto NCT
8 ADD djj to SMij;
9 end
10 end
11 end

12 return SM

3.3 Drift detection

In this phase, some special, techniques are employed to reduce delays in detecting
changes as much as,possible. The phase consists of two steps: clustered trace
analysis and determining main changes.

Analyzing clustered traces This step aims at determining how the members
of each cluster are distributed in a log, which leads to the creation of a distribution
vector for each cluster. The step receives the output of the former step, i.e., the set
of‘elustersyCL, as its input and outputs a set of distribution vectors.

Inithe step, for each cluster, where a member of the cluster appears in the log,
we represent it by 1 in the distribution vector associated with the cluster; otherwise,
we represent the member by 0.
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Fig. 2: Distribution of each cluster in a log \

Algorithm 3: Determining main changes

Input : DV = dvy,dvy, ..., dvq}: a set of distribution vec
Output: D: a set of indexes of the traces in which drift e urre

1 SET drifts to null;

2 for each dvi e DV do

fft = fft(dvi);

Ipf =LowPassFilter(fft);

ifft= ifft(LPF);

diff = Differentiate(ifft);

di =ReportDrift(diff);

8 ADD dito D;

9end

10 return D;

N o 0o b~ w

Figure 2 illustrate twg, clusters, C1 and C2, are distributed in a log
that has 2500 cases ea in'Figure 2 indicate the positions of the traces of
each cluster in the log.

ainichanges, The main objective of this step, which utilizes
termine the change points in the distribution vectors. The

al into its frequency components [23]. In this study, to distinguish the
changes, we need to preserve high frequencies and eliminate low ones.To
ill this, low-pass filtering is applied (Line 4 in Algorithm 1). In other
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Fig. 3: (a) Rate of changes in the distribution vector of cluster C1. (b) Rate of
changes in the distribution vector of cluster C2. Remarkable peaks are ¢hange
points.

words, the traces that have been incorrectly detected as co-occurring,traces will be
eliminated by applying low-pass filtering. Then, the distributionjyvectors are
transferred back to the time domain (Line 5 in Algorithm 3). Afterwards, the rate
of changes is determined through differentiating (Line (6 inAlgerithm 3). The
positions associated with the highest rate of ehanges or notably distinguishable
peaks are specified as indexes of the traces in whigh a drift has occurred (Line 7 in
Algorithm 3). For instance, in Figure 3, 9 driftsqwillybe detected at the indexes of
250, 500, 750, 1000, 1250, 1500, 1750, 2000, and 2250, all of which are positions
of notably distinguishable peaks.
In summary, by applying trace embedding and“also various techniques such
as hierarchical clustering and Fourier tranSforms we managed to propose an
approach marked by the following” mnovativegCharacteristics: It automatically

extracts features from traces and events.yBesides, since it uses no windows for
detecting drifts, it is not sensitivesto window size.

4 Evaluation

In this section, the'evaluation metrics are discussed, and the evaluation of the
proposed approach isypresented. Then, the performance of our methodis evaluated
in comparison withytwoidifferent categories of state-of-the-art methods.

In order te implement the proposed approach, Deeplearning4j® was usedto
model {traces and_activities as vectors. We use the CBOW model with the
following,parameters: window size = 20 (based on the mean length of the traces);

number, oftiterations = 10; vector dimension = 100. The remaining parameters
have theidefault values as proposed in [24].

Shttps:lideeplearning4j.org/
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Hierarchical clustering algorithm has been implemented in Java. Also, Matlab
tool has been used For Fourier transform computing and applying, low-pass
filtering.

4.1 Evaluation metrics

In terms of evaluation metrics, we compare the performance ofiouriwork with the
state-of-the-art methods using two measures: Fascore andimean‘delay.

In the case of our study, True Positive is the number of driftsithat have correctly
been detected, False Positive specifies the number-of drifts that the method has
incorrectly detected, and False Negative is the'numbemnof drifts‘that the method
was not able to detect.

In other words, F-score specifies, whether gur approach has correctly identified
drifts in an event log or not. Besides; we calculate the mean delay, which is the
distance between actual drift points,andydetected drifts.

4.2 Data set

We initially describe theydata sét used in the experiment and then the results of our
method are compared@with theymethods proposed in [8], [10] and [3].

To evaluate ouri approach, the synthetic logs published by [8] were used. The
Base model of these,logs, Which has 15 activities, involves various control-flow
structures. 1tsBPMN ‘representation, which is about assessing loan applications, is
illustrated in Figurex4. The base model was systematically modified to generate
drifts. These modifications included 12 simple change patterns organized into three
categorigs: Insertion (“1”), Resequentialization(“R”) and Optionalization (“0”) as
shown, iniLable) 2. Moreover, the categories were combined to produce more
complexypatterns including “IOR”, “IRO”, “ORI”, “OIR”, “RIO”, “ROI”. Four
logsyof 2500, 5000, 7500, 10000 traces were produced for each of the 18 simple
and camplex change patterns. Drifts were injected by switching the drift toggle on
andieff every 10% of the log. Therefor, any instance of the produced logs included
9_drifts.
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Table 2: Simple control-flow change patterns

Code Simple change pattern Categor

y
re Add/remove fragment |
cf Make two fragments conditional/sequential R
Ip Make fragment loopable/non-loopable O
pl Make tow fragments parallel/sequential R
cb | Move fragment into/out of conditional branch (@]
cm | Move fragment into/out of conditional branch 1
cd Synchronize,two fragments R
cp Duplicate fragment |
pm Move,fragment into/out of parallel branch |
rp Substitute,fragment |
SwW Swap two fragments I
fr Change branching frequency o

4.3 Accuracy evaluation

The accuracy of the proposed approach is evaluated as followsyFirst; the 18 change
patterns discussed in 4.2 were applied to the four log sizes. Thenyconsidering each
of the 18 change patterns, the proposed appreach was<eompared against the
methods put forward by [8] (called “run”), [10] (called “process- graph™), and [3]
(called “Bose”) in terms of the measures of F-score“and mean“delay. The values
resulting for the two measures, averaged over.thefour logisizes,are demonstrated in
Figure 5 and Figure 6. Our approach seécuredythenksscore of exactly 1 for all
patterns, except for the OIR pattérng(0.99); far ,better than what the methods
achieved. Moreover, in terms of meandelay;‘ourdmethod outperforms the “Bose”,
the “process-graph”, and the “rup*approaches, except for two change patterns.

On average, our method, “run”, “process-graph” and “Bose” approaches
achieved an F-score of approximately 0.9998, 0.97, 0.94, and 0.701, respectively.
Furthermore, in terms of delaysfour method managed to achieve a mean delay of
about 13 traces, whilegthe “run”, the “process-graph” and the “Bose” approaches
achieved mean delays of approximately 32, 24, and 47 traces, respectively. Table 3
includesthe exact*values of,F-score and mean delay for each individual change
patternas wellgas,the total average made by each of the four methods.

The results of the statistical tests, i.e., t-tests, on the proposed approaches,
“run”, gprecess-graph”, and “Bose” in terms of F-score and mean delay are
demonstrated in“Table 4. In each of the tests, the proposed approach served as the
firstagroup., Thehp-value in all the tests- for both F-score and mean delay- is less
than 0.05, exeept in the case of F-score in the test between “trace2vec” and “run”.
This, demaopstrates that the difference in means is statistically significantat the
0.05 Tevel.
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F-score values and negative higher and
exception of the test between "trace2vec" and
odology produces better average F-score and

Additionally, the positive
lower mean delay valugs;
"run,"” suggest that t

mean delay valuesgythan ious approaches.

5 Conc

This st pro new method for the detection of process drifts in business
process . introduced the new notions of trace embedding, which enabledus

ate-of-the-art methods in the identification of predictable process
Il as unpredictable ones. Trace embedding can be used for automatic

cing vector representations of traces. Thus, the relations that exist between
in the log are represented by the relations that exist between vectors in the

tor space. The experiments demonstrated that, considering both F-score and
mean delay, our approach is superior to the current methods. Moreover, these
achievements have been made without using any type of windows.
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Table 3: Comparison of average F-score and mean delay values

Change trace2vec run [8] Flr(())]cess-graph Bose [3]
pattern F- [Mean delay| F- |[Mean delay| F- |[Mean delay| F- [Mean delay
score score score score
re 1 21.83 1 44.03 0.9036 33.02 1 17
cf 1 5.08 0.9824 21 0.9853 34.62 0.8950 36
Ip 1 21.69 1 40.29 0.7618 48.03 0.6484 41
pl 1 13.8 1 35.74 0.9575 26.33 1 20
cb 1 9.1 0.9387 58.55 0.9722 18.94 0 0
cm 1 8.52 1 39.85 0.9722 19.24 0 0
cp 1 4.58 1 19.66 0.9853 17.59 0.639%4 36
cd 1 46.44 0.8799 34.62 0.9546 28.62 1 20
pm 1 11.97 1 12.88 0.9869 24.78 0.7804 69
rp 1 4.86 0.9666 19.18 0.9722 12.67 0.75 40
SW 1 6.02 1 21.67 1 29.61 0.7804 39
fr 1 20.5 0.7569 49.92 0.9853 19.92 0.4420 165
IOR 1 36.66 1 19.11 0.9606 13.00 0.7804 38
IRO 1 6.8 1 43.96 0.9487 27.22 0.5611 82
OIR 0.9967 12.11 0.9803 47.89 0.7331 28.06 1 20
ORI 1 11.38 1 14.51 0.9869 14.25 0.7804 38
RIO 1 9.08 0.9824 23.81 0.9722 20.77 0.5611 60
ROI 1 7.66 1 22.51 1 7.31 1 20
Average 0.9998| 12.15 |0.9715| 31.62 |0.9466| 23156 10.7010| 46.31

Table 4: The results of the t-tests, where the first group is the'trage2vec approach
and the second group is either run, process-graph;-or, Bose approach

Std. Std. confidence Sig.
Mean Deviation| Egkor “pL ower ) Upper tojaf (2-tailed)
Mean

trace2vec- F-score | 0.03000 | 0.06444 0.01519 -0.00205 | 0.06205 |1.975|17 0.065
run Mean delay |-17.28333| 16.66887 3.92889 |[/25.57257|-8.99410 |-4.399|17| 0.000
trace2vec- F-score 0.05889 | 0.07324 0.01726 0.02247 | 0.09531 |3.412 |17 0.003
processGrap |Mean delay | -9.20833 | 18.66684 3.2213 |-16.00469| -2.41197 |-2.859|17| 0.011
h
trace2vec- F-score 0.30000 | 0.30828 0.07266 | 0.14670 | 0.45330 [4.129(17( 0.001
Bose Mean delay |-31.28375}89.19%12 [/ 9.799928 |-52.17042|-10.39708(-3.192(15| 0.006

In the future, we expect our study to advance in the ways listed below:

— This paper hasgdealt withwprocess changes only from control-flow
perspective.We plan to,include changes from data and resource perspectives,

as well.

— The detection“of sudden drift has been addressed in this study. Likewise,
detection of gradual andrecurring drifts will be covered.
— Thisstudy also,4plans to implement the approach as a ProM plug-in.
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