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Abstract Scene understanding through semantic 
segmentation is a vital component for autonomous 
vehicles. Given the importance of safety in autonomous 
driving, existing methods are constantly striving to 
improve accuracy and reduce error. RGB-based semantic 
segmentation models typically underperform due to 
information loss in challenging situations such as lighting 
variations and limitations in distinguishing occluded 
objects of similar appearance. Therefore, recent studies 
have developed RGB-D semantic segmentation methods by 
employing attention-based fusion modules. Existing fusion 
modules typically combine cross-modal features by 
focusing on each modality independently, which limits 
their ability to capture the complementary nature of 
modalities. To address this issue, we propose a simple yet 
effective module called the Discriminative Cross-modal 
Attention Fusion (DCMAF) module. Specifically, the 
proposed module performs cross-modal discrimination 
using element-wise subtraction in an attention-based 
approach. By integrating the DCMAF module with 
efficient channel- and spatial-wise attention modules, we 
introduce the Discriminative Cross-modal Network 
(DCMNet), a scale- and appearance-invariant model. 
Extensive experiments demonstrate significant 
improvements, particularly in predicting small and fine 
objects, achieving an mIoU of 77.39% on the CamVid 
dataset, outperforming state-of-the-art RGB-based 
methods, and a remarkable mIoU of 82.8% on the 
Cityscapes dataset. As the CamVid dataset lacks depth 
information, we employ the DPT monocular depth 
estimation model to generate depth images. 
Key Words Attention Mechanism, Autonomous Driving, 
Deep Learning, RGB-D Semantic Segmentation.  

1- INTRODUCTION 
In recent years, semantic segmentation methods have seen 
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a dramatic development due to the advancement of deep 
learning methods. Semantic segmentation aims to assign a 
semantic label to each pixel within an image. 
Concurrently, advancements in depth estimation methods 
and the development of RGB-D techniques have 
highlighted the significant role of geometric information 
in enhancing semantic segmentation performance. Depth 
information is less sensitive to illumination variations and, 
by providing 3D information, can be used as 
complementary data for RGB images. Therefore, RGB-D 
semantic segmentation models [1, 2, 3] have been 
developed to enhance the results of RGB-based models. 
The benefit of integrating both RGB and depth information 
is shown in Fig. 1. 

RGB-D semantic segmentation models use different 
approaches to fuse RGB and depth features. Early methods 
[4, 5] utilized element-wise addition for cross-modal 
feature fusion, whereas more recent approaches [6, 7, 8] 
have introduced attention-based modules to achieve 
improved fusion. These fusion modules are designed to 
apply attention mechanisms either to individual modalities 
[1, 3] or to their interactions [2, 7]. Specifically, methods 
[1, 3, 6] incorporate channel-wise attention within their 
fusion modules, while [2, 7] and [9] utilize channel and 
spatial attention in sequential and parallel configurations, 
respectively. Despite this improvement, a potential issue 
arises when the RGB branch carries less information than 
the corresponding depth branch, or vice versa. In such 
cases, attending separately to feature maps of these 
modalities can degrade performance by failing to take 
advantage of the complementary information available 
from the other modality. 

To address this issue, we introduce the Discriminative 
Cross-Modal Attention Fusion (DCMAF) module. Unlike 
prior attention-based approaches, this module improves 
cross-modal fusion by evaluating the discriminative power 
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of each modality through element-wise subtraction. 
Therefore, the proposed DCMAF module: 1) enhances the 
fusion of complementary data by performing feature map 
comparison between modalities; and 2) facilitates gradient 
flow during backpropagation to update weights that extract 
the most salient features from the depth and RGB 
branches. By following the architecture of ACNet [1] and 
using the proposed DCMAF module, we present the 
Discriminative Cross-Modal Network (DCMNet). 
Furthermore, we enhance our model's performance by 
effectively integrating spatial and channel attention 
modules.  

Experimental results on the CamVid [10] and 
Cityscapes [11] datasets show that our method enhances 
semantic segmentation performance, particularly in the 
accurate prediction of small and fine objects. Given that 
the CamVid dataset does not include depth information, 
we use the DPT model [12], a well-established network for 
monocular depth estimation, to generate synthetic depth 
images for this dataset. On the CamVid dataset, our 
proposed model achieves an mIoU of 77.39%, which 
outperforms the state-of-the-art RGB-based models. 
Furthermore, on the Cityscapes dataset, our model attains 
an mIoU of 82.8%, demonstrating a clear improvement 
over recent, comparable models. 

The main contributions of this paper are summarized as 
follows: 

• We introduce a Discriminative Cross-modal Attention 
Fusion (DCMAF) module to apply attention based on 
the distinction between RGB and depth modalities. 

• We use the DPT monocular depth estimation model to 
generate synthetic depth images for the CamVid 
dataset. 

• We propose DCMNet for RGB-D semantic 
segmentation, which is state-of-the-art on challenging 
outdoor semantic segmentation datasets. 

Fig. 1 Despite differing feature distributions, the 
complementarity of RGB images (a) and depth information 
(b) enhances semantic segmentation accuracy. For instance, 

green boxes highlight regions with prominent depth 
features, while red boxes indicate regions rich in color 

texture features. Comparison of the predicted segmentation 
(c) and ground truth (d) demonstrates the effectiveness of 

leveraging this complementary information. 

 
Fig. 2. Structure of Discriminative Cross-Modal Attention 

Fusion (DCMAF) Module. 

2- RELATED WORKS 
This section provides an overview of prior RGB and RGB-
D semantic segmentation methods, due to their significant 
overlap. 

A.  Semantic Segmentation 
Semantic segmentation is an image analysis technique that 
assigns a semantic label to each pixel within an image. The 
FCN [13] network was the first successful network in 
semantic segmentation, which used fully convolutional 
layers in its structure and solved the problem of resizing 
the input image. The FCN approach has had a major 
influence on subsequent research to enhance segmentation 
results. For instance, [14, 15] adopted encoder-decoder 
architectures with skip connections; [16, 17, 18] focused 
on expanding the receptive field; [19, 20, 21] used 
attention modules; and [9, 22, 23] incorporated vision 
transformers into their architectures. 

B.  RGB-D Semantic Segmentation 
Semantic segmentation of RGB-D images is based on the 
interaction and fusion of RGB and depth information. 
Recent research has shown that fusing depth information 
with RGB images results in enhanced outcomes in 
comparison to RGB-based models. The feature fusion of 
RGB-D semantic segmentation models can be categorized 
into four types: early fusion, mid-term fusion, late fusion, 
and multi-level interactive fusion. In early fusion, RGB 
and depth images are concatenated and fed into the model 
input. This approach does not fundamentally alter the 
model structure compared to RGB-based models, and the 
network input is only increased to four channels, similar to 
the SegNet [14] model. Such a simple combination ignores 
the complementary nature of RGB images and depth 
information. Mid-term fusion [24] uses two parallel 

a) RGB b) Depth 

c) Prediction d) Ground-Truth 
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encoders to extract each modal separately and only fuses 
cross-modal features at the end of the encoder network. 
Late fusion [25] fuses RGB and depth feature maps after 
being separately encoded and decoded. Due to the gradual 
loss of information in the two networks, this method is 
unable to reconstruct the rich information of each branch. 
The multi-level interactive fusion method is relatively 
more complex, and most recent models [7, 26, 27] use this 
method. In this approach, feature maps extracted from 
depth and RGB images are fused at multiple levels, 
resulting in superior accuracy compared to alternative 
fusion methodologies. 

3-PROPOSED METHOD 
In this section, we first introduce the Discriminative Cross-
Modal Attention Fusion (DCMAF) module and then 
explain the architecture of the proposed Discriminative 
Cross-Modal Network (DCMNet). We also propose the 
efficient use of channel and spatial attention modules. 

A.  Discriminative Cross-Modal Attention Fusion Module 
 Conventional RGB-D methods typically employ a 

fusion module to attend to the channels of each modality 
independently before the fusion operation. This approach 
lacks direct connections between the corresponding 

channels in the RGB and depth branches, leading to the 
fusion of cross-modal information without adequate 
consideration of complementary features. To address this 
limitation, we propose the Discriminative Cross-Modal 
Attention Fusion (DCMAF) module. The DCMAF module 
leverages element-wise subtraction to compute channel-
wise differences between modalities. This subtraction of 
feature maps is a simple and computationally efficient 
approach that facilitates cross-modal interaction by 
highlighting conflicting or complementary information. 
Subsequently, utilizing the output of this subtraction 
within an attention mechanism causes the attention 
weights to become dependent on the relative differences 
between the RGB and depth features. This establishes an 
implicit dependency, enabling the model to prioritize 
modalities based on their differences, and during 
backpropagation, directs gradients towards the most 
informative modalities or features for more efficient 
learning of cross-modal dependencies. Thereby, the 
DCMAF module creates a meaningful and effective fusion 
method. 

As shown in Fig. 2, the DCMAF module first applies a 
global average pooling layer to the feature maps of each 
RGB and depth branch. The resulting vectors represent the 
amount of global information within each channel. 
Subsequently, two 1×1 convolutional layers with the 

a) DCMNet model 

c) Spatial Attention Module 

b) Channel Attention Module 

 

 

Fig. 3. Architecture of DCMNet for RGB-D semantic segmentation. (a) Encoder-decoder architecture of DCMNet with RGB and 
Depth inputs. (b) Channel Attention Module (CAM). (c) Spatial Attention Module (SAM). 
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ReLU activation are used for each branch to extract the 
correlation between the channels. The difference between 
the RGB and depth vectors is then computed via element-
wise subtraction, enabling the module to distinguish 
between the two modalities. Finally, the resulting vector is 
passed through a sigmoid function to scale the weight 
vector to the range of 0 to 1. We multiply the weight vector 
(W) by the RGB features and the vector (1-W) by the depth 
features, and then we aggregate the weighted feature maps 
and the feature maps extracted from the middle branch by 
the addition operation. It is worth noting that in the first 
DCMAF module within the network, only the weighted 
feature maps of the RGB and depth branches are summed. 
The DCMAF module is formulated as follows: 

𝑊𝑊𝐿𝐿
𝑐𝑐(𝒟𝒟𝐿𝐿

𝑐𝑐, ℐ𝐿𝐿𝑐𝑐) = 𝜎𝜎 � 𝑤𝑤1,𝐿𝐿
𝑐𝑐 �ℛℯ �𝑤𝑤0,𝐿𝐿

𝑐𝑐/2�ℐ𝑎𝑎𝑎𝑎𝑎𝑎,𝐿𝐿
𝑐𝑐 ��� −

𝑤𝑤′1,𝐿𝐿
𝑐𝑐 �ℛℯ �𝑤𝑤′0,𝐿𝐿

𝑐𝑐/2�𝒟𝒟𝑎𝑎𝑎𝑎𝑎𝑎,𝐿𝐿
𝑐𝑐 ����, 

𝒟𝒟𝐿𝐿
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𝑀𝑀𝐿𝐿 = 𝑀𝑀𝐿𝐿−1
′ + 𝒟𝒟𝐿𝐿

′ + ℐ𝐿𝐿′ , 

 
 
 
 

(1) 

where 𝒟𝒟𝑎𝑎𝑎𝑎𝑎𝑎,𝐿𝐿
𝑐𝑐  and ℐ𝑎𝑎𝑎𝑎𝑎𝑎,𝐿𝐿

𝑐𝑐  are the average vectors of the 
depth (𝒟𝒟𝐿𝐿

𝑐𝑐) and RGB (ℐ𝐿𝐿 
c ) feature maps, respectively, 

calculated across 𝑐𝑐 channels at level 𝐿𝐿. The parameters 
𝑤𝑤0,𝐿𝐿
𝑐𝑐/2, 𝑤𝑤1,𝐿𝐿

𝑐𝑐 , 𝑤𝑤′0,𝐿𝐿
𝑐𝑐/2، and 𝑤𝑤′1,𝐿𝐿

𝑐𝑐  denote the independent 
weights of the 1×1 convolutional layers, and 𝑊𝑊𝐿𝐿

𝑐𝑐 
represents the weight obtained after applying the sigmoid 
function (σ). 𝑀𝑀𝐿𝐿 is the output of the DCMAF module, 
derived from the weighted element-wise summation of the 
RGB and depth feature maps (ℐ𝐿𝐿′  and 𝒟𝒟L

′ , respectively) 
with the merged feature maps of the previous level (𝑀𝑀𝐿𝐿−1

′ ).  

B.  Network Architecture 
  We introduced the Discriminative Cross-Modal 

Network (DCMNet) by following the ACNet [1] 
architecture. DCMNet uses a multi-level interactive fusion 
strategy with three branches of ResNet50 [28] as its 
encoder network. These branches are responsible for 
extracting features from RGB images, depth information, 
and cross-modal fused features. The proposed model 
architecture is shown in Fig. 3(a). Initially, the network 
applies a 7×7 convolution with a stride of 2 on the RGB 
and depth images, and then the extracted feature maps of 
both branches are fed to the first DCMAF module to merge 
information with a discriminative cross-modal attention-
based approach. Generally, this fusion process is 
performed at five levels with output strides of 2, 4, 8, 16, 
and 32. Since attention in DCMAF is applied between 
corresponding channels in two branches, the weight 
assigned to channels with same numerical amount of 
information will be equal, regardless of the quantity of 
useful information in both channels. Therefore, a channel 
attention module (Fig. 3(b)) will be applied after each 
DCMAF. The middle branch is dedicated to processing 
cross-modal information, leveraging complementary 
features from both RGB and depth modalities to 

specifically extract fused features. Within the encoder 
network, skip connections are utilized to transfer multi-
level features to the decoder. For enhanced efficacy, a 
spatial attention module (Fig. 3(c)) is applied alongside the 
Agent block. The Agent block is a 1×1 convolutional layer 
followed by a batch normalization layer and a ReLU 
activation, which offers computational efficiency. 

The decoder network uses residual layers similar to the 
encoder network. Simple residual blocks are used instead 
of bottleneck blocks, which contain transposed 
convolutional layers, to perform upsampling. The 
upsampled feature maps in the decoder network are fused 
with the corresponding skip connection feature maps at 
different levels by the DCMAF module. Finally, a residual 
layer without upsampling, followed by a transposed 
convolution, is used to generate the semantic segmentation 
prediction. 

4- EXPERIMENTS AND RESULTS 
In this section, we first introduce the CamVid and 
Cityscapes datasets. Then, we explain the implementation 
details and compare the experimental results with the state-
of-the-art methods in terms of accuracy and computational 
complexity. We also study the effectiveness of the 
proposed methods and finally discuss the pros and cons of 
the proposed model. 

A.  Datasets 
1) CamVid [10]: This dataset contains driving scenes for 

semantic segmentation. It consists of 701 images at a 
resolution of 720 × 960, with 11 semantic classes. 
There are 367, 101, and 233 images for training, 
validation, and testing, respectively. In this paper, we 
use DPT-Hybrid [12] as a successful monocular depth 
estimation network to estimate the depth images of the 
CamVid dataset. A few examples of RGB and 
synthetic depth images of the CamVid dataset are 
shown in Fig. 4. 

 
Fig. 4. Some examples of synthetic depth images estimated 

by the DPT-Hybrid model. 

2) Cityscapes [11]: This RGB-D dataset includes urban 
street scenes from 50 different cities. It consists of 
5,000 well-annotated images with 19 semantic classes. 
The images have a high resolution of 2048×1024 and 
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are split into 2,975 images for training, 500 for 
validation, and 1,525 for testing. 
 

TABLE I 
Comparison of our model with other methods on CamVid 

dataset. "I" and "D" denote RGB and depth maps, respectively. 
*: RGB-D methods that are well-trained on RGB-depth 

CamVid dataset. 
 

mIoU (%)  Params (M) Modality Model 

55.6 29.5 I SegNet [14] 

66.4 0.68 I EDANet [31] 

67.1 26.5 I ICNet [34] 

68 6.2 I LBN-AA [35] 

68.7 49 I BiSeNet1 [33] 

69.5 17.8 I S2-FPN18 [32] 

71 27.9 I S2-FPN34 [32] 

72.4 - I BiSeNetV2 [36] 

73 8.4 I STDC1-Seg75 [37] 

73.2 - I BiSeNetV2L [36] 

73.9 12.5 I STDC2-Seg75 [37] 

74.2 27.9 I S2-FPN34M [32] 

75.83 35.2 I & D SGACNet-R34-NBt1D* [9] 

75.94 81.8 I & D RedNet-R50* [5] 

76.01 64.7 I & D SA-Gate-R50* [2] 

76.13 54.2 I & D ESANet-R50* [3] 

76.27 101.9 I & D FRNet-R34* [38] 

76.30 124.8 I & D ACNet-R50* [1] 

77.39 133.5 I & D DCMNet (Ours) 

 

B.  Implementation Details 
We train our proposed DCMNet using the CamVid and 

Cityscapes datasets on two NVIDIA T4 GPUs. To 
generate the CamVid depth information, we leverage 
DPT-Hybrid, which is trained on the large-scale MIX 6 
dataset and fine-tuned on the KITTI driving scenes dataset 
[29]. The ResNet50 backbone is pre-trained on the 
ImageNet [30] dataset. Since the depth data has only one 
channel, we convert the three channels of the first layer of 

ResNet50 to a single channel by averaging. For data 
augmentation, different scales with ratios of {0.75, 0.85, 1, 
1.25, 1.5, 1.75} are used, along with random horizontal 
flipping and random cropping with dimensions of 
544×704 for the CamVid and 512×1024 for the Cityscapes 
datasets. Histogram equalization and ColorJitter were also 
used for RGB images. The batch size is set to 8, and the 
number of traning epochs is set to 600 and 800 for the 
CamVid and Cityscapes datasets, respectively. We used 
the CrossEntropy loss function and exploited the class-
weighting scheme introduced in [31] due to the class 
imbalance of the CamVid dataset. The momentum is 0.9, 
and the weight decay is 0.0005 for the SGD optimizer. We 
employ a cosine annealing schedule with an initial learning 
rate of 0.05. All reported accuracy results are based on the 
mean intersection over union (mIoU) metric. 

C.  Comparison With SOTA Models 
 The quantitative results of our method and other 

models on the CamVid dataset are compared in Table I. 
The results show that our model outperforms other state-
of-the-art methods. It is worth noting that some methods 
used a combination of training and evaluation sets to train 
their models, while our model was able to reach this result 
using only the training set and without pretraining on the 
additional driving scene datasets. The DCMNet model 
achieves about a 3.19% improvement in mIoU over [32], 
the best RGB-based method, with an mIoU of 77.39%. To 
have a fair comparison with other RGB-D methods, we 
have trained some RGB-D models on the RGB-depth 
CamVid dataset. As shown in Table II, we also achieve the 
highest IoU for 8 out of 11 classes compared to other 
methods. Fig. 5 presents the qualitative results obtained on 
the CamVid dataset, showing the remarkable semantic 
segmentation performance of our proposed method.  

Table III illustrates the performance of our proposed 
DCMNet on the Cityscapes. Achieving a significant 
82.8% mIoU, DCMNet surpasses the state-of-the-art 
RGB-D model, CMX. Importantly, this performance is 
achieved with reduced parameter and computational 
complexity compared to CMX, which employs the MiT-
B4 vision transformer. Furthermore, some of the 
qualitative results obtained on the CityScapes dataset are 
presented in Fig. 6, demonstrating the substantial semantic 
segmentation performance of our proposed method.  

 

TABLE II 
DCMNet class IoU comparison on CamVid. *: RGB-D method that are well-trained on RGB-depth CamVid dataset. 
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68 47.9 82.1 36.3 53.2 55.6 93 51.6 81.7 92.5 70.5 83.2 LBN-AA [35] 
68.7 54 81.4 31.9 53.6 58.8 94.6 46.5 83.7 92 75.8 83 BiSeNet1 [33] 

69.5 62.5 84.8 32.4 43.4 56.4 95.7 48.2 88.9 91.8 77.2 83 S2-FPN18 [32] 
71 66.5 85.4 33.2 46.8 59.1 95.7 49.6 91.2 91.7 77.4 85.3 S2-FPN34 [32] 

74.2 70.7 86.8 42.1 47.3 67.1 96 56.2 92.2 92.6 78.8 86 S2-FPN34M [32] 
76.30 68.38 86.8 47.6 56.6 70.2 96.1 61.6 90.1 93.4 80.2 88.3 ACNet-R50* [1] 

77.39 71.5 85.4 48.9 60.5 71.4 95.5 64.4 90.9 93.6 80.6 88.5 DCMNet (Ours) 
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Fig. 5. Qualitative results of our DCMNet on CamVid dataset. Our model excels at segmenting intricate details such as fine and 
small objects in cluttered backgrounds. From left to right: RGB, Depth, Prediction, and Ground-truth. 

Fig. 6. Qualitative results of our DCMNet on Cityscapes dataset. From left to right: RGB, Depth, Prediction, and Ground-truth. 

RGB  Depth 
 

Prediction 
 

Ground-Truth 
 

RGB  Depth 
 

Prediction 
 

Ground-Truth 
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TABLE III   
Comparison of our model with other methods on Cityscapes val 
set. FLOPS are estimated for inputs with a size of 512×1024. *: 
methods that are well-trained on Cityscapes dataset. ✝: methods 

that are re-tested on Cityscapes dataset. 
 

mIoU (%) FLOPs (G) Params (M) Backbone Model 

78.3 - - - RDFormer [39] 

80.7 406 65.97 ResNet-50 SA-Gate✝ [2] 

81.7 588.7 110.6 ResNet-101 SA-Gate✝ [2] 

80.9 - - MiT-B4 ABFNet [8] 

81.1 394.6 116.6 ResNet-50 ACNet-R50* [1] 

81.4 - - ResNet-34 CLGFormer [27] 

81.6 228.5 66.57 MiT-B2 CMX✝ [7] 

82.6 394.7 139.86 MiT-B4 CMX✝ [7] 

82.8 394.7 133.52 ResNet-50 DCMNet (Ours) 

 

D.  Ablation Studies 
We conduct ablation studies on the CamVid and 

Cityscapes datasets. Initially, we evaluate the effectiveness 
of the main components of our proposed DCMNet. 
Thereafter, we compare the DCMAF module with several 
fusion strategies that have publicly available code and are 
compatible with our model architecture. 

1) Effectiveness of Main Components: We verify the 
contributions of each component within the proposed 
DCMNet, the results are shown in Table IV. We evaluate 
the results in four cases. In the first case, we use the ACNet 
[1] model structure, which includes the ACM module prior 
to the fusion operation, resulting in the mIoU of 76.30%. 
In the second case, we remove the ACM modules and 
employ the DCMAF module along with the channel 
attention module to fuse the features of the two parallel 
encoders. This represents an increase of 0.64%. In the third 
case, we leverage the spatial attention module in the skip 
connections. This module improves the results by 0.23% 
by transferring more salient features to the decoder. 
Finally, in our proposed DCMNet model, the DCMAF 
module is used in both the encoder and decoder. This 
resulted in an improvement of 0.22% over the third case. 
In this case, instead of simple fusion with addition 
operations, the DCMAF module is used, which has an 
attention-based fusion approach. This leads to a weighted 
aggregation of feature maps from different levels of the 
decoder and transferred features from the encoder, 
resulting in a better reconstruction of the image 
information in the decoder. 

2) Effectiveness of DCMAF: As shown in Table V, we 
evaluate the performance of DCMAF against Summation 
(element-wise addition), the Gated Fusion from LSD-GF 
[25], the Attention Complementary Module (ACM) from 
ACNet [1], the Separation-and-Aggregation Gate (SA-
Gate) from [2], and the Cross-Modal Feature Rectification 
Module (CM-FRM) from CMX [7] on the Cityscapes 
validation set. Notably, DCMAF achieves an mIoU of 
82.8%, demonstrating competitive performance against 
CM-FRM, which has the highest accuracy, with fewer 

FLOPs and parameters. Specifically, DCMAF maintains 
the lowest FLOPs among the attention-based methods at 
394.7G, comparable to the simple summation approach, 
while significantly outperforming it in mIoU. These results 
confirm the DCMAF module's ability to effectively fuse 
RGB and depth features while maintaining a favorable 
tradeoff between performance and computational 
overhead. 

 
TABLE IV 

An ablation study for the effectiveness of different modules on 
CamVid. ACM: Attention-Complementary Module [1], CAM: 
Channel Attention Module, SAM: Spatial Attention Module, 
DCMAF-En: Discriminative Cross-Modal Attention Fusion 

module in the encoder, and DCMAF-De: Discriminative Cross-
Modal Attention Fusion module in the decoder 

mIoU(%) DCMAF-De DCMAF-En SAM CAM ACM [1] 

76.30      

76.94      

77.17      

77.39      

 
TABLE V   

Comparison of DCMAF with various fusion modules on 
Cityscapes val set. FLOPS are estimated for inputs with a size 

of 512×1024. 

mIoU(%) FLOPs (G) Params (M) Fusion Module 

79.5 394.6 122.36 Summation [4,5] 

80.4 411.3 146.72 Gated Fusion [25] 

81.5 394.7 122.36 ACM [1] 

82.4 398.9 137.63 SA-Gate [2] 

82.9 431.5 278.49 CM-FRM [7] 

82.8 394.7 133.52 DCMAF (Ours) 

 

E.  Discussion 
The proposed DCMAF module is well-suited for 

optimally attending to RGB and depth features. Deploying 
this module enables the extraction and processing of 
salient cross-modal features at multiple levels, which 
significantly improves the segmentation of challenging 
regions, particularly fine and small objects. As shown in 
Table II, the proposed model has considerably improved 
on classes with fine structures (e.g., Fence, Bicyclist, Pole, 
Sign symbol, and Pedestrian). The DCMAF module can be 
integrated into various multi-modal deep network 
architectures without requiring significant modifications. 
Although the proposed model exhibits improved 
performance on the CamVid dataset, its performance on 
the Tree, Road, and Sidewalk classes is less effective. This 
could be due to depth estimation errors in the model [12]. 
Additionally, the use of three encoder branches increases 
computational expense. Fig. 7 shows some qualitative 
examples of the pros and cons of the proposed model on 
the CamVid dataset. 
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Fig. 7.  Visualization of the pros and cons of DCMNet on CamVid. The white and orange boxes indicate pros and cons, respectively.

5- CONCLUSION 
In this paper, we introduce a new module called 
Discriminative Cross-modal Attention Fusion (DCMAF), 
which can effectively apply attention-based fusion to 
discriminate between the RGB and depth modalities. The 
main idea of the proposed module is to learn a 
discriminative attention weight from both modalities at 
each level of the encoder. These weights capture the 
complementary nature of the modalities and make the 
model suitable for predicting small and fine objects. We 
present a new RGB-D semantic segmentation model, 
Discriminative Cross-Modal Network (DCMNet), by 
efficiently using the channel- and spatial-wise attention 
modules, along with the DCMAF module. We evaluate our 
proposed method on the CamVid and Cityscapes datasets. 
Since the CamVid dataset lacks depth information, we use 
the DPT-Hybrid to generate depth images. Experimental 
results illustrate the effectiveness of our proposed method 
in enhancing RGB-D semantic segmentation performance. 
The combination of these advantages makes the DCMNet 
model ideal for detailed, fine-grained predictions in 
autonomous driving and robotics applications.  
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