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Abstract The Internet of Vehicles (IoV) represents a 

transformative paradigm in Intelligent Transportation 

Systems (ITS), enabling real-time communication between 

vehicles, infrastructure, and cloud platforms to improve 

traffic management, safety, and efficiency. However, the 

resource limitations in vehicles pose significant challenges 

for delay-sensitive applications such as autonomous 

driving and automated navigation. Vehicular Edge 

Computing (VEC) offers a promising solution by 

offloading tasks to edge servers near vehicles, reducing 

transmission delays and enhancing computational 

efficiency. In this paper, we address the complex task 

offloading and resource allocation problem in VEC 

environments. We model this challenge as an Integer 

Linear Programming (ILP) problem, aiming to maximize 

the system’s overall profit. To mitigate the computational 

complexity of solving the ILP problem, we propose an 

efficient heuristic algorithm. This approach considers 

various task types, accounting for the diversity and 

specific requirements of each. The algorithm optimizes 

CPU resource allocation based on task generation rates, 

average task sizes, and a calculated weight coefficient for 

each task type. Simulation results demonstrate that the 

proposed algorithm reduces memory costs and penalties 

from rejected tasks, while improving overall system profit. 

In particular, it outperforms existing algorithms by an 

average of 18.26% in terms of profit, demonstrating its 

effectiveness in practical VEC applications. 

Key Words Internet of vehicle, vehicular edge computing, 

task offloading, resource allocation, profit maximization.  

 

1. INTRODUCTION 
As modern automotive industries with sensing and 

wireless communication technologies rapidly advance, 

vehicles are becoming smarter, giving rise to the Internet 

of Vehicles (IoVs) as a new paradigm in Intelligent 
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Transportation Systems (ITS) [1]. The IoVs combines 

vehicular ad hoc networks (VANETs) with the Internet of 

Things (IoT) to improve transportation efficiency and 

vehicle safety [2]. The rapid development of vehicular 

networks has enabled numerous delay-sensitive 

applications, including autonomous driving, automated 

navigation, vehicular augmented reality, and intelligent 

object recognition, each requiring substantial data 

processing and computational resources. These 

advancements are pushing current infrastructures to their 

limits, as they demand stringent Quality of Service (QoS) 

while processing large volumes of sensor data and 

communicating with the network [3]. However, the limited 

computational resources available within vehicles often 

prevent them from meeting the low-latency QoS 

requirements essential for these applications, creating a 

bottleneck in the advancement of vehicular networks. 

To address these challenges, mobile edge computing 

(MEC) is considered a promising paradigm [4]. MEC 

enhances service efficiency for vehicles and reduces 

transmission delays between vehicles and cloud servers by 

bringing cloud computing resources closer to the network 

edge. Additionally, Vehicular Edge Computing (VEC) 

offers an effective solution to this problem [5]. In VEC, 

computational and storage resources of cloud servers are 

deployed at the edge of the radio access network, such as 

roadside units (RSUs), located near vehicles. This 

proximity enables service with high QoS and provides a 

cost-efficient, low-latency solution [6]. VEC offloads 

vehicle tasks to edge servers located on or near RSUs or to 

other vehicles with surplus computing resources. 

Compared to traditional cloud-based systems, edge-based 

solutions offer significantly lower communication latency 

by reducing the distance over which tasks are transmitted 

to computing resources, enhancing responsiveness for 

latency-sensitive applications [7], [8]. Vehicle 
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applications can greatly benefit from the advantages of 

VEC, leading to a safer and more efficient transportation 

system [9]. However, optimizing task offloading and 

resource allocation in VEC remains a fundamental 

challenge, as these systems must handle heterogeneous 

user demands, each with unique resource requirements, all 

while utilizing shared resources. Efficient resource 

allocation strategies are needed to maximize QoS while 

minimizing operational costs. 

In this paper, we propose a mathematical model for the 

task offloading and resource allocation problem in 

heterogeneous VEC systems, formulated as an Integer 

Linear Programming (ILP) problem. The objective is to 

maximize the system's total profit while adhering to QoS 

constraints. We introduce a heuristic weighted algorithm 

that takes into account the number of tasks in the system 

and their computational demands. Using this information, 

the algorithm calculates a weight for each task type and 

allocates available resources across the MEC servers 

accordingly. Extensive experiments were conducted 

across various scenarios to compare the performance of 

our proposed algorithm against existing algorithms using 

multiple performance metrics. The results demonstrate 

that our algorithm significantly improves the system’s 

total profit. 

Our main contributions are summarized as follows: 

 We present a mathematical framework for 

addressing task offloading and resource 

allocation in heterogeneous VEC systems, 

formulated as an Integer Linear Programming 

problem, with the goal of optimizing system-

wide profit while meeting QoS requirements. 

 We propose an innovative heuristic weighted 

algorithm that dynamically calculates task 

weights based on both the number of tasks 

present in the system and their specific 

computational demands. This algorithm 

effectively allocates available resources across 

MEC servers, optimizing system performance by 

balancing workload and enhancing resource 

utilization. 

 We perform comprehensive experiments across 

different scenarios to evaluate the performance of 

the proposed algorithm. These experiments 

demonstrate that our algorithm consistently 

outperforms existing approaches across multiple 

performance metrics, leading to substantial 

improvements in total system profit, resource 

efficiency, and overall service quality. 

The rest of this paper is organized as follows: In Section 

2, we review the related works. Section 3 presents the 

proposed system model and formulates the optimization 

problem for task offloading and resource allocation. In 

Section 4, we introduce our proposed method, a weighted 

algorithm for task offloading and resource allocation. 

Section 5 provides an evaluation of our algorithm and 

simulation results. Finally, Section 6 concludes the paper 

and discusses future work. 

2. RELATED WORK 

In recent years, MEC has gained significant attention for 

its role in computation offloading, leading to the 

development of various optimization strategies for 

offloading [10]. Wang et al. [1] introduce a fuzzy logic-

based dynamic pricing strategy to optimize offloading 

decisions and model vehicle interactions as a two-stage 

Stackelberg game, considering social factors such as 

reputation and task satisfaction. Wu et al. [11] model the 

interactions between vehicles and MEC servers using a 

Markov decision process and optimize decisions using the 

twin delayed deep deterministic policy gradient (TD3) 

algorithm. Load balancing is enhanced through edge 

collaboration and a server selection algorithm based on 

TOPSIS. Cheng et al. [10] propose the CO-MATCH 

algorithm, which includes a dynamic programming-based 

service caching (DPSC) algorithm and a Many-to-One 

Matching Game (MOMG) algorithm. These components 

encourage edge services and vehicles to cache tasks and 

optimize task offloading. 

Zhang et al. [12] propose enhancing VECNs with fiber-

wireless (FiWi) technology and introduce a software-

defined networking (SDN) based load-balancing task 

offloading scheme. This approach aims to minimize 

processing delays by efficiently managing computation 

resources. Fan et al. [7] develop an algorithm using 

Generalized Benders Decomposition (GBD) and 

Reformulation Linearization (RL) methods for optimal 

solutions, as well as a heuristic algorithm for sub-optimal 

solutions with lower computational complexity. They aim 

to minimize the total task processing delay by optimizing 

task scheduling, channel allocation, and computing 

resource distribution between vehicles and RSUs. Zhao et 

al. [13] model the joint optimization problem of task 

offloading and resource allocation as a Markov decision 

process, taking into account communication, computing, 

and system costs. They introduce a multi-agent deep 

deterministic policy gradient (MADDPG) algorithm to 

address convergence issues in dynamic environments and 

incorporate federated learning to manage non-IID data and 

ensure privacy protection. 

Du et al. [14] propose a comprehensive IoV architecture 

and formulate a joint optimization problem to minimize 

the system function value. They employ a Simulated 

Spring System Algorithm (SSSA), which decouples the 

problem into two sub-problems: allocating computing 

resources based on KKT conditions and optimizing the 

task offloading strategy using the simulated spring system. 

These sub-problems iteratively update each other until a 

solution is achieved. Liu et al. [15] address the challenge 

of efficient task execution in Vehicular Edge Computing 

Networks (VECNs) by accounting for the variations in 

channel and access times due to high vehicle mobility. 

They propose a multi-path dynamic offloading scheme 

(MPDOS), designed to minimize the maximum task 

completion time for vehicles handling serial tasks. 

MPDOS includes three key components: optimizing 

communication links to boost processing capability, 

employing a multi-knapsack algorithm for allocating tasks 

to RSUs, and implementing a load-balancing scheme to 

ensure even distribution of computing tasks. 
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Huang et al. [16] propose a multi-objective 

optimization model for dynamic, heterogeneous VEC 

networks, formulated as a multi-objective Markov 

Decision Process (MOMDP). They introduce EMOTO, a 

novel multi-objective reinforcement learning algorithm 

designed to minimize task execution delay and vehicle 

energy consumption while maximizing service provider 

revenue. EMOTO integrates a preference priority 

sampling module and a model-augmented environment 

estimator to address the challenges of the highly dynamic 

VEC environment, enhancing decision-making accuracy 

and efficiency. Wan et al. [17] propose a framework where 

idle vehicles (IVs) collaborate with busy vehicles (BVs) as 

edge nodes to reduce task computation latency. They 

model the matching and resource allocation between BVs 

and IVs to minimize latency and consider energy 

consumption, introducing a low-complexity solution for 

one-to-one matching and an improved biogeography-

based optimization (IBBO) algorithm for one-to-many 

matching. Mao et al. [18] address security challenges in 

vehicular ad hoc networks (VANETs) by proposing a task 

offloading mechanism for the IoV that relies on trusted 

RSUs. They introduce a novel infrastructure trust 

management model incorporating social factors to enhance 

RSU security. This mechanism models vehicle task 

offloading with a focus on RSU reliability, aiming to 

ensure secure and efficient task processing even under 

malicious attacks. 

Azizi et al. [19] introduce a Mixed-Integer Nonlinear 

Programming (MINLP) model for task offloading, aimed 

at maximizing the number of tasks meeting their deadlines 

while minimizing the overall energy consumption of 

mobile devices. They propose DECO, a heuristic 

algorithm designed to optimize the trade-off between task 

deadlines and energy consumption in IoT devices. DECO 

jointly considers the deadline requirements of tasks and the 

energy consumed by devices. Additionally, it accounts for 

task prioritization and the heterogeneous capabilities of 

edge cloud servers (ECSs). Yeganeh et al. [20] model task 

offloading and scheduling in MEC networks as an 

optimization problem, aiming to minimize execution time 

and energy consumption. They introduce a hybrid 

algorithm, E-AEO-AOA, which combines Artificial 

Ecosystem-based Optimization (AEO) and Arithmetic 

Optimization Algorithm (AOA). The E-AEO-AOA 

incorporates a modified Q-learning strategy for 

hybridization and employs chaos theory to enhance local 

search capabilities. 

While numerous studies have explored resource 

allocation and task offloading in both MEC and VEC, this 

work introduces several novel contributions that 

distinguish it from prior research. First, this study 

considers a dynamic workload environment, reflecting 

real-world conditions where task demands fluctuate over 

time. This added variability increases the complexity of the 

resource management problem, requiring adaptive 

strategies to accommodate changing resource 

requirements effectively. Second, we propose a low-

complexity, highly efficient algorithm specifically 

designed to optimize resource allocation under these 

fluctuating conditions, ensuring that the computational 

load is distributed effectively across the available 

resources. This approach minimizes computational 

overhead while maintaining responsiveness, an essential 

factor in edge computing environments. Third, our model 

incorporates the distinct QoS requirements associated with 

varying task types. By introducing a specialized objective 

function, we ensure that resource allocation not only 

maximizes system performance but also addresses the 

diverse QoS needs of each task type, which is critical in 

scenarios where task prioritization and latency sensitivity 

differ. Through this multi-faceted approach, our work 

provides a robust framework that balances system 

performance, resource utilization, and QoS compliance, 

advancing the state of resource management 

methodologies in MEC and VEC contexts. 

3. SYSTEM MODEL 

In this section, we provide an overview of our system 

model and architecture, followed by a detailed discussion 

on the mathematically modeled problem formulation. 

3.1. System Architecture 

Fig. 1 illustrates the VEC system model, designed for a 

two-lane straight road with equally spaced roadside units 

positioned along the route. Each RSU provides wireless 

communication coverage, denoted by L. All RSUs are 

directly connected to a base station which houses a MEC 

server. Each vehicle is capable of generating multiple 

tasks, which are categorized into different types. Each task 

type possesses unique attributes that distinguish it from 

other task types. Task i generated by a vehicle is 

characterized by three primary attributes, denoted as 𝑇𝑖  = 

{𝑇𝑖
𝑡𝑦𝑝𝑒

, 𝑇𝑖
𝑠𝑖𝑧𝑒 , 𝑇𝑖

𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒}, where 𝑇𝑖
𝑡𝑦𝑝𝑒

 represents the 

specific type of the task, 𝑇𝑖
𝑠𝑖𝑧𝑒 denotes the computational 

effort required to complete the task, measured in millions 

of instructions, and 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 indicates the maximum 

allowable time before the task is rejected, measured in 

milliseconds for precision. 

 
Fig. 1. System architecture 

All tasks generated by vehicles are offloaded to the 

nearest RSU. Upon receiving these tasks, the RSU 

forwards them to the base station, where the computing 

process is initiated in the MEC server. Error! Reference 

source not found. illustrates the architecture of the MEC 

server, which includes three distinct First-In-First-Out 

(FIFO) queues at the current time (t) for different task 

types, with each queue linked to a corresponding instance 

for computation. Each instance is characterized by three 
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main attributes, denoted as 𝐶𝐼𝑗  = 

{𝐶𝐼𝑗
𝑠𝑡𝑎𝑡𝑒 , 𝐶𝐼𝑗

𝑐𝑜𝑟𝑒𝑠 , 𝐶𝐼𝑗
𝑚𝑒𝑚}, where 𝐶𝐼𝑗

𝑠𝑡𝑎𝑡𝑒 represents the 

state of the instance (either on or off), 𝐶𝐼𝑗
𝑐𝑜𝑟𝑒𝑠 represents 

the number of CPU cores assigned to the instance, and 

𝐶𝐼𝑗
𝑚𝑒𝑚 indicates the memory usage of the instance, 

measured in megabytes. Each MEC server contains a CPU 

pool, comprising all the CPU cores available for allocation 

among the active instances. 

Each task type has its own QoS class and constraints to 

ensure efficient handling and prioritization, enabling 

flexible resource management by assigning income and 

penalties based on task completion time to encourage 

timely task processing and effective system resource 

management. The details for each class are as follows: 

• Task Type 1: This class has a single deadline 

constraint. If the instance’s response time exceeds this 

standard deadline, the task is rejected, and the system 

incurs a penalty due to the unmet deadline. 

• Task Type 2: The QoS class for Task Type 2 includes 

two thresholds: the standard deadline and an extended 

deadline, determined by a multiplier, denoted by θ, of the 

original deadline. If the task is completed by the standard 

deadline, full on-time income is earned. Completion after 

the standard deadline but within the extended θ-adjusted 

deadline yields reduced income, denoted by β. Exceeding 

this extended deadline results in task rejection and a 

penalty. 

• Task Type 3: Task Type 3 has three deadline-based 

QoS thresholds: the standard deadline and two extended 

deadlines, denoted by Δ1 and Δ2. Completion within the 

standard deadline yields full on-time income. If completed 

after the standard deadline but before Δ1, a partial income, 

denoted by Φ1, is awarded. Completion between Δ1 and 

Δ2 yields a further reduced income, denoted by Φ2. 

Exceeding Δ2 results in task rejection and a penalty. 

3.2. Problem Formulation 

In this section, we formulate the task offloading process 

as an Integer Linear Programming optimization problem. 

The objective is to maximize the total profit while 

satisfying constraints such as task deadlines, 

computational costs, and QoS.  

 Table 1. Presents symbols and notations used in our 

problem formulation. We model the number of tasks 

generated for each type within a time slot using a Poisson 

distribution, where each task type has a unique generation 

rate, denoted by λm for task type m. Upon the task's entry 

into the MEC server, the server calculates the response 

time for the task. The response time for task i on container 

j is expressed as:  

𝑇𝑖,𝑗
𝑟𝑒𝑠 = 𝑄𝑗

𝑤𝑎𝑖𝑡 +
𝑇𝑖

𝑠𝑖𝑧𝑒

(𝐶𝐼𝑗
𝑐𝑜𝑟𝑒𝑠 ∗ 𝐶𝑃)

 (1) 

where 𝐶𝑃 represents the CPU power of each core, 

measured in million instructions per second (MIPS), and 

is assumed to be homogeneous across the system. Since a 

FIFO system has been implemented for each queue, 𝑄𝑗
𝑤𝑎𝑖𝑡  

represents the waiting time for task execution in the queue 

of container j and is expressed as: 

𝑄𝑗
𝑤𝑎𝑖𝑡 =

∑ 𝑇𝑘
𝑠𝑖𝑧𝑒𝑁𝑗

𝑘=1

(𝐶𝐼𝑗
𝑐𝑜𝑟𝑒𝑠 ∗ 𝐶𝑃)

 (2) 

where 𝑁𝑗 represents the total number of tasks waiting to be 

executed in the queue of container j before task 𝑖. 

Once the response time is calculated, the system 

determines whether the server can execute task i before its 

deadline, denoted as 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒. Based on the task type and 

the QoS class, the system decides whether to reject the task 

or add it to the instance's queue for execution. If the task is 

accepted, the associated income is added to the total 

income of the container, denoted by 𝐶𝐼𝑗
𝑖𝑛𝑐. Conversely, if 

the task is rejected, the penalty incurred by the system is 

added to the total penalty of the container, denoted by 

𝐶𝐼𝑗
𝑝𝑒𝑛

. Therefore, the income for each task type can be 

expressed as: 

𝐶𝐼1
𝑖𝑛𝑐 = 𝑂𝑇1 × 𝑇𝑇1

𝑜𝑡𝑝
 (3) 

and 

𝐶𝐼2
𝑖𝑛𝑐 = (𝑂𝑇2 × 𝑇𝑇2

𝑜𝑡𝑝
) + (𝑇𝐻 × β) (4) 

and 

𝐶𝐼3
𝑖𝑛𝑐 = (𝑂𝑇3 × 𝑇𝑇3

𝑜𝑡𝑝
) + (𝐷1𝑇 × Φ1) + (𝐷2𝑇

× Φ2) 
(5) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig2 MBC server model 
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TABLE 1 

Key notations used in the problem formulation 

Symbol Description Unit 

λm Task generation rate for task type m - 

𝑇𝑖
𝑠𝑖𝑧𝑒 Size of task i [MI] 

𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 Deadline for task i [ms] 

𝑂𝑇𝑚 Number of tasks executed before the original deadline for task type 𝑚 - 

𝑇𝑇𝑚
𝑜𝑡𝑝

 Income earned for completing a task on time for task type m [$] 

𝑇𝐻 Number of tasks executed within the time frame θ × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 but after the original deadline - 

β Income earned for completing tasks within the time frame θ × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 [$] 

𝐷1𝑇 Number of tasks completed between the original deadline and 𝛥1 × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 - 

Φ1 Profit for completing a task during the time frame 𝛥1 × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 [$] 

𝐷2𝑇 Number of tasks executed between 𝛥1 × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒  and 𝛥2 × 𝑇𝑖

𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 - 

Φ2 Profit for completing tasks within the time frame 𝛥2 × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 [$] 

𝑅𝐽𝑇𝑚 Number of rejected tasks for task type m - 

𝑇𝑇𝑚
𝑝𝑒𝑛

 Penalty amount for rejected tasks for task type m [$] 

𝑇𝑇𝑚
𝑚𝑒𝑚 Memory usage for task type m [$] 

𝑇𝑇𝑚
𝑚𝑐 Cost per 100 MB of memory for task type m [$] 

𝐶𝐼𝑗
𝑐𝑜𝑟𝑒𝑠 Number of CPU cores allocated to container j - 

𝐶𝑃 CPU power of each core [MIPS] 

𝑄𝑗
𝑤𝑎𝑖𝑡 Waiting time for task execution in the queue of container [ms] 

𝑁𝑗  Total number of tasks waiting to be executed in the queue of container j before task 𝑖 - 

𝐶𝐼𝑗
𝑖𝑛𝑐  Total income earned by container j [$] 

𝐶𝐼𝑗
𝑝𝑒𝑛

 Total penalty incurred by container j for rejected tasks [$] 

𝑅𝑇𝑗
𝑖𝑑𝑙𝑒 Idle runtime for container j [ms] 

𝑅𝑇𝑗
𝑎𝑐𝑡𝑖𝑣𝑒 Active runtime for container j [ms] 

𝐶𝐼𝑗
𝑚𝑒𝑚 Memory usage of container j [MB] 

𝐶𝐼𝑗
𝑡𝑜𝑡𝑎𝑙𝑚𝑒𝑚 Total memory usage for container j [MB] 

𝐶𝐼𝑗
𝑚𝑒𝑚𝑐𝑜𝑠𝑡 Total memory cost for container j [$] 

𝑃𝑅𝑂𝐹𝑗 Profit of container j [$] 

𝑇𝑖,𝑗
𝑟𝑒𝑠 Response time for task i on container j [ms] 

𝐼𝑁𝑡𝑜𝑡𝑎𝑙 Total income earned across all containers [$] 

𝑃𝐸𝑁𝑡𝑜𝑡𝑎𝑙 Total penalty incurred across all containers [$] 

𝑃𝑅𝑂𝐹𝑡𝑜𝑡𝑎𝑙 Total profit of the system [$] 

where, for all task types, 𝑂𝑇𝑚 represents the number of 

tasks executed before the original deadline, 𝑇𝑇𝑚
𝑜𝑡𝑝

 is the 

amount of income earned for executing a task on time. For 

task type 2, 𝑇𝐻 denotes the number of tasks executed 

before θ × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒  and after the original deadline, with β 

being the income earned for executing tasks within this 

timeframe. For task type 3, 𝐷1𝑇 represents the number of 

tasks completed after the original deadline but before 

𝛥1 × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒, with Φ1 indicating the profit for executing 

a task during this period. Similarly, 𝐷2𝑇 is the number of 

tasks executed after 𝛥1 × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒  and before 𝛥2 ×

𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒, with Φ2 being the profit for completing tasks 

within this timeframe. Therefore, the total income can be 

expressed as: 

𝐼𝑁𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐶𝐼𝑗
𝑖𝑛𝑐

3

𝑗=1

 

 

(6) 

The penalty is determined by the number of rejected 

tasks, with each task type incurring a different penalty 

amount. Thus, the total penalty amount for each task type 

can be expressed as: 

𝐶𝐼𝑚
𝑝𝑒𝑛

= 𝑅𝐽𝑇𝑚 × 𝑇𝑇𝑚
𝑝𝑒𝑛

 

 

(7) 

where 𝑅𝐽𝑇𝑚 represents the number of rejected tasks for task 

type m, and 𝑇𝑇𝑚
𝑝𝑒𝑛

 is the penalty amount assigned to that 

task type. The total penalty for all containers can be 

expressed as: 

𝑃𝐸𝑁𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐶𝐼𝑗
𝑝𝑒𝑛

3

𝑗=1

 

 

(8) 

In this system, we consider two types of runtimes for 

each container. The first is idle runtime, which occurs when 

the container's state is 'On' but no tasks are being executed. 

This is denoted by 𝑅𝑇𝑗
𝑖𝑑𝑙𝑒. The second type is active 

runtime, which occurs when the container's state is 'On' and 

a task is being executed. This is denoted by 𝑅𝑇𝑗
𝑎𝑐𝑡𝑖𝑣𝑒 . As 

previously mentioned, each container has its own memory 

usage, denoted by 𝐶𝐼𝑗
𝑚𝑒𝑚. Additionally, each task type has 

its own memory usage, which can be expressed as 𝑇𝑇𝑚
𝑚𝑒𝑚 
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for task type m. Therefore, the total memory usage for 

container j and task type m can be expressed as: 

𝐶𝐼𝑗
𝑡𝑜𝑡𝑎𝑙𝑚𝑒𝑚 = (𝑅𝑇𝑗

𝑎𝑐𝑡𝑖𝑣𝑒 × 𝑇𝑇𝑚
𝑚𝑒𝑚) + (𝑅𝑇𝑗

𝑖𝑑𝑙𝑒

× 𝐶𝐼𝑗
𝑚𝑒𝑚) 

(9) 

and the total memory cost for container j and task type m 

can be expressed as: 

𝐶𝐼𝑗
𝑚𝑒𝑚𝑐𝑜𝑠𝑡 = 𝐶𝐼𝑗

𝑡𝑜𝑡𝑎𝑙𝑚𝑒𝑚 ×
𝑇𝑇𝑚

𝑚𝑐

100
 

(10) 

where 𝑇𝑇𝑚
𝑚𝑐 represents the cost per 100 megabytes of 

memory for task type m. For each container, our goal is to 

maximize its profit, so the profit for container j can be 

expressed as: 

𝑃𝑅𝑂𝐹𝑗 = 𝐶𝐼𝑗
𝑖𝑛𝑐 − 𝐶𝐼𝑗

𝑝𝑒𝑛
− 𝐶𝐼𝑗

𝑚𝑒𝑚𝑐𝑜𝑠𝑡  (11) 

and the total profit of the system can be expressed as: 

𝑃𝑅𝑂𝐹𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑃𝑅𝑂𝐹𝑗

3

𝑗=1

 

 

(12) 

To reiterate, our optimization objective is to maximize 

the total profit of the system; therefore, the total profit 

serves as our objective function. In the following section, 

we propose a weighted algorithm to solve this optimization 

problem. This algorithm is designed to allocate tasks to the 

appropriate instances efficiently while considering multiple 

factors such as task deadlines, resource availability, and 

QoS. 

4. PROPOSED ALGORITHM 

In this section, we propose a heuristic weighted task 

offloading and resource allocation algorithm. To design 

this weighted algorithm, we make the following 

assumptions: 

Assumption 1: We assume that the task generation for each 

task type follows a Poisson distribution, with a given 

generation rate λ and an average task size, denoted as 

𝑇𝑇𝑎𝑣𝑔𝑠𝑖𝑧𝑒 . 

Assumption 2: We assume the size of each task follows a 

normal distribution, with 𝑇𝑇𝑎𝑣𝑔𝑠𝑖𝑧𝑒 as the mean and a 

standard deviation of σ. 

Assumption 3: The number of epochs within a specific 

timeframe is assumed to be known. 

Assumption 4: All instances are assumed to remain in the 

‘On’ state during each epoch and are allocated at least one 

CPU core. 

As mentioned previously, our system design is based on 

time slots. The total number of time slots is divided into a 

series of epochs, during which the task offloading and 

resource allocation algorithm is executed. For each epoch, 

the task generation rate varies across all three task types. At 

the beginning of each epoch, our algorithm makes two key 

decisions: first, it determines which containers will be in 

the 'Off' state and which will remain ‘On’; second, it 

decides the number of CPU cores to allocate from the CPU 

pool to each container that is in the 'On' state. As stated in 

our assumptions, we assume that all instances remain in the 

‘On’ state, and the number of CPU cores allocated to each 

instance is determined by the weight of the queue for each 

task type. The weight calculation for each task type can be 

expressed as: 

𝑤𝑚
𝑒𝑝

= 𝜆𝑚
𝑒𝑝

× 𝑇𝑇𝑚
𝑎𝑣𝑔𝑠𝑖𝑧𝑒

 (13) 

where 𝜆𝑚
𝑒𝑝

 represents the generation rate and 𝑇𝑇𝑚
𝑎𝑣𝑔𝑠𝑖𝑧𝑒

 

represents the average task size of task type m in epoch 

number ep. The total weight of all task types can be 

expressed as: 

𝑤𝑡𝑜𝑡𝑎𝑙
𝑒𝑝

= ∑ 𝑤𝑗
𝑒𝑝

3

𝑗=1

 

 

(14) 

We use the weight for each task type to calculate a 

coefficient, which is then utilized to assign a specific 

number of CPU cores to each task type’s instance in the 

current epoch. The coefficient for task type m in epoch ep 

can be expressed as: 

𝑐𝑜𝑚
𝑒𝑝

=
𝑤𝑚

𝑒𝑝

𝑤𝑡𝑜𝑡𝑎𝑙
𝑒𝑝  

(15) 

The number of CPU cores assigned to the instance of task 

type m, denoted by 𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠, can be specified as: 

𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠 = ⌊𝑐𝑜𝑚

𝑒𝑝
× 𝐴𝐶⌋ (16) 

where AC represents the total number of available CPU 

cores in the CPU pool. After assigning the floor of the 

calculated number of CPU cores based on the coefficient to 

each instance, there may be some remaining extra cores that 

need to be allocated. For each instance, a "luck percentage," 

denoted by 𝐶𝐼𝑚
𝑙𝑢𝑐𝑘 is assigned, with the sum of all luck 

percentages totaling 100%. These extra cores are 

distributed to instances based on their luck percentage. For 

example, if  𝐶𝐼𝑚
𝑙𝑢𝑐𝑘 = 70, it means there is a 70% chance 

that an extra core will be allocated to that instance. For each 

extra core, a random number between 0 and 100 is 

generated, and if the number falls within the range of 𝐶𝐼𝑚
𝑙𝑢𝑐𝑘 

, the extra core is added to 𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠. The pseudocode of the 

proposed weighted algorithm is presented in Algorithm 1. 

As presented in the pseudocode, the algorithm iterates 

through each epoch, with the maximum number of epochs 

denoted as 𝑒𝑐, allowing it to adapt dynamically to changing 

conditions. Lines 2 through 5 calculate the weight for each 

task type, with line 5 computing the total weight across all 

task types to provide an overview of the computational 

demands during the current epoch. Line 6 then initiates an 

iteration through each instance, with lines 7 and 8 ensuring 

that each instance is allocated at least one CPU core to 

maintain operational integrity. Using the total weight, lines 

9 through 12 calculate a coefficient for each task type, 

determining the proportion of resources allocated based on 

their weighted importance. The algorithm then allocates the 

floor of the calculated number of cores to each instance to 

ensure feasibility. Lastly, lines 13 through 19 address the 

distribution of any remaining cores, which are allocated 

individually based on each instance's luck percentage if 

extra cores remain after the initial allocation. 
In analyzing the time complexity of the proposed 

algorithm, the outer loop iterates 𝑒𝑐 times, resulting in a 

time complexity of 𝑂(𝑒𝑐). The two inner loops in lines 2 

through 4 and lines 6 through 12 each run a constant 
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number of times (specifically, three iterations), giving 

them a time complexity of 𝑂(1). Therefore, these inner 

loops do not impact the overall complexity. Lines 13 

through 19 consist of a while loop that executes up to 𝐴𝐶 

times, contributing a time complexity of 𝑂(𝐴𝐶). 

Consequently, combining the contributions from the outer 

loop and the while loop, the total complexity of the 

proposed algorithm is 𝑂(𝑒𝑐 × 𝐴𝐶). 

Algorithm 1 Proposed Resource Allocation Algorithm 

Input: 𝐴𝐶, 𝜆𝑚
𝑒𝑝

, 𝑇𝑇𝑚
𝑎𝑣𝑔𝑠𝑖𝑧𝑒

, 𝑒𝑐 

Output: 𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠 

1: for ep=0;ep<ec;ep++ do 
2:  for m=0;m<3;m++ do 
3:   calculate weight for each task type m in 

epoch ep: 
   𝑤𝑚

𝑒𝑝
= 𝜆𝑚

𝑒𝑝
× 𝑇𝑇𝑚

𝑎𝑣𝑔𝑠𝑖𝑧𝑒
 

4:  end for 
5:  calculate total weight for the current epoch: 

  

𝑤𝑡𝑜𝑡𝑎𝑙
𝑒𝑝

= ∑ 𝑤𝑗
𝑒𝑝

3

𝑚=1

 

 
6:  for m=0;m<3;m++ do 

7:   𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠 = 𝐶𝐼𝑚

𝑐𝑜𝑟𝑒𝑠 + 1 

8:   𝐴𝐶 = 𝐴𝐶 − 1 

9:   calculate coefficient for task type m in 
epoch ep: 

   
𝑐𝑜𝑚

𝑒𝑝
=

𝑤𝑚
𝑒𝑝

𝑤𝑡𝑜𝑡𝑎𝑙
𝑒𝑝  

10:   allocate the floor of calculated number of 
cores to the instance of task type m: 

   𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠 = ⌊𝑐𝑜𝑚

𝑒𝑝
× 𝐴𝐶⌋ 

11:   𝐴𝐶 = 𝐴𝐶 − 𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠 

12:  end for 

13:  while 𝐴𝐶 > 0 do 

14:   generate a random number from 0 to 100 

15:   if Random number is in range of  𝐶𝐼𝑚
𝑙𝑢𝑐𝑘 

do  
16:    𝐴𝐶 = 𝐴𝐶 − 1 

17:    𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠 = 𝐶𝐼𝑚

𝑐𝑜𝑟𝑒𝑠 + 1 

18:   end if 

19:  end while 

20: end for 

21: return 𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠 

5. EVALUATION 

In this section, we evaluate the performance of our 

proposed weighted algorithm by conducting a series of 

simulation experiments under various scenarios and 

comparing the corresponding numerical results. 

 

5.1. Simulation Setup 

Our experiment was conducted using Python 3.10.4 to 

simulate a VEC environment with multiple users. The 

simulation was performed on a computer with the 

following specifications: an AMD Ryzen 7 5800X3D 

processor, 32 GB of RAM, and an NVIDIA RTX 3080 

GPU. The total number of time slots was set to 1000, 

divided into four epochs. Each time slot had a duration of 

1000 ms, with the time slot indices assigned to the epochs 

being [0, 250, 500, 750]. TABLE 2 presents other simulation 

parameters used in the experiments. 

 

TABLE 2 

Simulation parameters 

Parameter Value 

Number of CPU cores 15 

CPU core power 2000 MIPS 

Set of task types [1, 2, 3] 

Task type deadlines [200, 800, 4000] (ms) 

Task type rejection penalties [-0.2, -0.05, -0.02] ($) 

Task type size means [200, 1000, 4000] 

Task type size standard 

deviations 

[20, 100, 400] 

On time income [0.5, 0.8, 1] ($) 

β income for task type 2 0.5 $ 

Φ1 and Φ2 income for task type 

3 

[2, 4] ($) 

Memory usage for task types  [0.1, 0.2, 0.5] (MB/ms) 

θ 1.5 

Δ1, Δ2 [2, 4] 

Cost of memory per 100 MB [0.002, 0.004, 0.008] ($) 

Idle memory usage for 

instances 

[200, 500, 1000] 

(MB/ms) 

 

5.2. Experiment Scenarios 

We compared our proposed weighted algorithm with other 

algorithms across three distinct scenarios, each 

characterized by unique task generation rates for every task 

type within each epoch. This dynamic task generation rate 

allowed us to assess the effectiveness of our algorithm and 

its impact on the metrics considered in this experiment. The 

task generation parameters for all three scenarios are 

presented in TABLE 3. For each task type in each scenario, 

a list is provided, where the index corresponds to the epoch 

index, and the value represents the task generation rate for 

that task type in the respective epoch. 

 

TABLE 3 

Scenarios parameters 

 𝛌1 𝛌2 𝛌3 

Scenario 1 [4, 16, 10, 2] [4, 6, 6, 0] [2, 3, 4, 1] 

Scenario 2 [10, 2, 13, 0] [2, 1, 0, 4] [4, 1, 3, 2] 

Scenario 3 [1, 8, 5, 12] [0, 4, 4, 6] [3, 3, 1, 4] 

 

5.3. Compared Algorithms 

We evaluated the performance of our proposed weighted 

algorithm by comparing it with the following algorithms: 

1) RAND-RAND: In this approach, the state of each 

instance is assigned randomly (either On or Off), and the 
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number of cores allocated to each instance in the 'On' state 

is also determined randomly. 

2) WARM-EVEN [21]: This algorithm maintains all 

instances in a warm state (On) and distributes the CPU 

cores evenly among them. 

3) WARM-RAND [22]: In this method, all instances are 

kept in a warm state, and the allocation of CPU cores is 

performed randomly. 

5.4. Metrics 

In this subsection, we present the metrics used to evaluate 

the performance of our proposed algorithm. These metrics 

offer a comprehensive assessment of the algorithm's 

effectiveness in comparison to other algorithms. The 

selected metrics are designed to capture various dimensions 

of performance and include: 

1) Memory Cost: This metric quantifies the total memory 

cost, calculated based on memory consumption across all 

instances in each scenario. It considers both active and idle 

runtime, as outlined in Eq. (9) and Eq. (10). 

2) Penalty: This metric assesses the total penalty incurred 

by the system for each algorithm within each scenario. The 

penalty is determined by the number of rejected tasks, 

reflecting the algorithm's impact on task acceptance 

3) Income: This metric measures the total net income 

earned by the system in each scenario. It captures the 

financial performance of the system based on task 

execution and resource utilization. 

4) Profit: This metric calculates the total profit by 

accounting for both costs and income, as described in Eq. 

(12). It provides an overarching measure of the algorithm’s 

effectiveness in optimizing the system’s financial 

outcomes. 

These metrics collectively provide a comprehensive 

view of the algorithm's performance, enabling a detailed 

comparison with other algorithms. 

 

5.5. Results 

In this subsection, we analyze the different metrics in our 

experiments and review the numeral results. As shown in 
Fig. 2, the RAND-RAND algorithm exhibits lower 

memory costs, primarily because instances can be 

completely turned off during some epochs, thereby 

reducing memory consumption. However, this approach 

has several drawbacks, including a decrease in QoS due to 

an increase in rejected tasks. This increase in rejected tasks 

leads to higher penalties incurred by the system and 

ultimately results in a reduction in total profit. Examining 

the numerical results of the other three algorithms, where 

all instances remain in the 'On' state, we observe that our 

proposed algorithm reduces memory cost by an average of 

2.54% across all three scenarios compared to the WARM-

EVEN algorithm. Additionally, WARM-EVEN 

outperforms WARM-RAND by an average of 2.17%. 

 

Fig. 2. Comparison of total memory cost 

 

Fig. 3 illustrates the impact of penalties incurred by the 

system as a result of the number of rejected tasks. Our 

proposed algorithm demonstrates superior performance 

compared to the other three algorithms, achieving an 

average penalty reduction of 11.4% relative to the WARM-

EVEN algorithm, which outperforms the other two 

algorithms in this metric. Notably, in scenario two, our 

proposed algorithm achieves a remarkable 25.98% 

reduction in penalties. This significant improvement is 

attributed to the algorithm's sophisticated allocation 

strategy, which intelligently assigns CPU cores to each 

instance based on the load of each task type's queue. By 

effectively managing resources and minimizing task 

rejection, our algorithm reduces the associated penalties 

and enhances overall system efficiency. This reduction in 

penalties highlights the algorithm's ability to optimize 

resource use and improve system performance, even when 

task loads and demands fluctuate. 

 

 

Fig. 3. Comparison of total penalty 

 

Fig. 4 illustrates the impact of different algorithms on 

system income, highlighting that our proposed weighted 
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algorithm consistently demonstrates superior optimization 

performance. It can be observed that our proposed 

algorithm outperforms the other three algorithms across all 

three scenarios. On average, our proposed algorithm 

achieves a 10.43% increase in income compared to the 

WARM-EVEN algorithm, which consistently outperforms 

the remaining two algorithms across all scenarios in this 

metric. In particular, scenario 2 reveals an even more 

pronounced advantage, with our algorithm exceeding the 

income earned by WARM-EVEN by 18.79%. This 

enhancement in performance is primarily due to the 

proposed algorithm's more effective resource allocation 

strategy. By optimizing the distribution of resources, the 

algorithm enables a higher number of tasks to be executed. 

Since each successfully executed task contributes to the 

overall income of the system, this improved allocation 

significantly boosts the system's total income. The results 

represent the impact of our proposed algorithm in 

maximizing system income through better management of 

computational resources.  

 

 

Fig. 4. Comparison of total income 

 

Fig. 5 represents the total profit of the system which is 

the main objective of this optimization problem. When 

comparing the algorithms across all three scenarios, it is 

evident that our algorithm outperforms the other three by a 

significant margin. On average, the weighted algorithm 

increases the system's total profit by 18.26% compared to 

the WARM-EVEN algorithm, which has the best 

performance among the remaining three. The most notable 

improvement is observed in scenario 2, where the total 

profit increases by 34.16%. This substantial gain is 

attributable to the weighted algorithm's capacity to 

minimize system penalties by maintaining instances in a 

warm state, thereby reducing memory consumption and 

overall costs. Moreover, the algorithm facilitates the 

execution of a greater number of tasks through efficient 

resource allocation, tailored to the load of each instance. 

This enhanced resource management not only boosts the 

total income but also contributes to a considerable increase 

in the system's total profit. The synergy of effective 

instance management and optimized resource allocation 

results in a markedly improved overall system profit. 

 
Fig. 5. Comparison of total profit 

6. CONCLUSION AND FUTURE WORK 

 In this paper, we reviewed the task offloading and 

resource allocation problem in vehicular edge computing 

and formulated the problem mathematically. We proposed 

a weighted algorithm to optimize this problem, considering 

QoS, cost, and profit. We compared our algorithm across 

three different scenarios with other algorithms based on 

metrics such as memory cost, penalties, income, and profit. 

The results showed that our algorithm increased total profit 

by an average of 18.26%, while also reducing total costs 

and increasing system income. These experiments 

demonstrate that our algorithm is well-suited for real-time 

environments due to its low response time. This study did 

not account for heterogeneous CPU cores, which could be 

explored in future research. Additionally, energy 

consumption should be addressed by implementing 

strategies such as turning off unused instances, disabling 

unnecessary cores, or leveraging technologies like 

Dynamic Voltage and Frequency Scaling (DVFS) to reduce 

energy usage. Furthermore, utilizing deep learning 

methods to predict system workload may enhance resource 

allocation and overall responsiveness. These aspects could 

be incorporated into future work to further improve the 

proposed solution. 
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