
Journal of Computer and Knowledge Engineering, Vol. 5, No. 2, 2022. (21-30) 21

DOI: 10.22067/cke.2022.75685.1054

Efficient and Deception Resilient Rumor Detection in Twitter*
Research Article

Milad Radnejad1 Zahra Zojaji2 Behrouz Tork Ladani3

Abstract: Social networks have become a central part of our

lives these days and have real effects on the world's events.

However, social networks greatly boost spreading

misinformation and rumors that are becoming more and more

dangerous each day. As fighting rumors first requires

detecting them, several researchers tried to propose novel

approaches for automatic early detection of rumors.

However, most of them rely on handcrafted content features

which makes them prone to deception and threats the

adaptability of the model. Furthermore, a great deal of work

have concentrated on event-level rumor detection while it

faces early detection with serious challenges. There are also

deficiencies in proposed methods in terms of time and

resource complexity. This study proposes a deep learning

approach to automate the detection of rumors on Twitter. The

proposed method relies on automatically extracted features

through word and sentence embeddings along with profile

and network-based features. It then uses Recurrent Neural

Networks (RNN) leveraging Gated Recurrent Units (GRU)

for detecting the veracity of a tweet. The proposed method

also improves time efficiency. The achieved experimental

evaluation results on RumorEval2019 dataset demonstrate

that the proposed method outperforms other rival models on

the same dataset in terms of both performance and time

complexity. By the way, the proposed method is more

resilient to deception by avoiding the use of handcrafted

content features and leveraging features that are out of the

control of the user.

Keywords: Deception, Deep Learning, Rumor Detection,

Social Network, Twitter

1. Introduction

The explosive growth of online social media is an evidence

for their crucial role in spreading news in the modern society.

Nowadays, a large number of users actively engage in

producing or propagating news about different trending

topics. The convenience of publishing news in online social

networks causes also the spreading of misinformation and

rumors.

There have been numerous definitions for rumor in the

literature, each offering its interpretation. However, the

definition provided in [1] seems to be more popular which

defines rumor as "a story or statement in general circulation

without confirmation or certainty." Another essential

research on rumor has been undertaken by [2], which defines

three characteristics for rumors: 1) Rumors have a distinct

mode of transmission, 2) Rumors always provide

information about some particular person, happening, or

condition, and 3) Rumors satisfy audiences. The second and

the third characteristics refer to the fact that people feel

* Manuscript Received: 06 March 2022; Revised, 22 September 2022. Accepted, 26 September 2022.
1. MSc. Of Information Technology, Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran,
2. Corresponding author, Assistant Professor, Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran.

Email: z.zojaji@eng.ui.ac.ir.
3. Professor, Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran.

unsafe in the absence of information, and rumors satisfy them

by providing information. Spreading rumors imposes

potentially harmful effects on public perception and

behavior. One can point to the alleged Russian interference

in the 2016 US Presidential Election with the spread of

rumors and misinformation through social media [3–5].

Online social networks facilitate rapid propagation of fake

news and rumors which thereby greatly amplify the impact

of harmful effects.

The most effective and operational approach in rumor

detection and debunking todays is manual detection, which

is done by authoritative centers and websites like Snopes

(www.snopes.com) and Politifact (www.politifact.com).

However, although this approach seems to be very accurate,

it is slow and ineffective with the nature of fast-spreading

rumors in social networks. Another approach used these days

is automatic detection using artificial intelligence, which

leverages machine learning techniques to detect social

network rumors. Although the performances of the proposed

systems are lower than manual detection, the upside is the

constant innovations that are making this approach a likely

candidate to replace manual detection. Automatic rumor

detection facilitates detecting and preventing rumors in early

stages of spreading prior to affecting the public opinion.

Although several researches have been conducted for

detecting rumors, the previous methods mostly rely on

handcrafted content features. Along with dynamic changing

of social network conversations, the content of rumors and

the signs of fake or verified news also change. Therefore,

feature extraction process should be also dynamic in order to

reflex the specifications of the rumors, which is not achieved

in the case of developing detection model based on the

handcrafted features. Furthermore, handcrafted features

make the rumor detection system more susceptible to

deception. Employing these features provides more chance

to design fake news with appearance similar to verified news.

In addition, handcrafted features could bias the prediction

model without any explicit improvement in the performance.

Again, most of the prior works operate at the event-level,

meaning that it can only detect whether a general topic is a

rumor or not and cannot decide about the veracity of a single

post. Moreover, event-level rumor detection requires an

extensive set of messages in each topic which is not available

in the first stages of rumor propagation. Hence event-level

models are hardly applicable for early detection. Moreover,

the scalability of previously presented rumor detection

systems is low due to extensive computational complexity.

In this work, due to mentioned shortcomings of the previous

works, we propose a deep learning approach for detecting

rumors on Twitter. The proposed method operates at the

https://cke.um.ac.ir/
https://cke.um.ac.ir/article_42912.html
mailto:z.zojaji@eng.ui.ac.ir
https://orcid.org/0000-0003-0921-0170

22 Zahra Zojaji et. al.: Efficient and Deception Resilient Rumor …

tweet level i.e., detecting rumor using a tweet and its

responses. While handcrafted features can improve a deep

learning system in doing its task, we do not directly use

handcrafted content features and let the system extract them

by itself through feeding it the raw text of tweets. Instead,

word and sentence level embedding for content feature

extraction are utilized which makes the model more resilient

to user deception, more scalable to social network dynamics,

and less susceptible to model biasing. Our insight also is that

analyzing social and profile features is a rich information

source for developing deception resilient models. This is

because these features are independent from the content of

the claims and are out of the direct control of the user that

was neglected in most of researches. Therefore, we use social

and profile features in our model. Lastly, we emphasize on

the system's performance, taking the time efficiency and

scalability of the system into account.

The main contributions of this work can be summarized

as:

1. Avoiding the use of handcrafted content features for

better dealing with the dynamic nature of social networks

and providing more resiliency against the deception;

2. Using profile and network features that provide the

system with valuable information about the users and

propagation state;

3. Proposing a new deep learning model with RNN

architecture leveraging GRU cells for automatic rumor

tweet detection;

4. Detection of rumors at the tweet level in order to facilitate

early detection;

5. Emphasis on performance, especially in the training

phase, that make the system more scalable in comparison

to the similar works.

The proposed method is evaluated and compared using the

RumorEval 2019 dataset. The overall performance of the

system is first compared to the state of the art methods in

terms of Macro F-score. The achieved results show that the

proposed method outperforms nearly all similar methods.

The experimental results also show the superiority of the

proposed method in terms of time efficiency comparing the

baseline. Furthermore, some experiments are conducted in

order to prove the resiliency of the proposed method against

the intended content alteration with the aim of deception. We

believe that the proposed rumor detection model has enough

capabilities to be applied efficiently in early, tweet-level

rumor detection task with remarkable tolerance to deception.

Section 2 of the paper will briefly introduce the concepts

that were used in our research. Section 3 will discuss the

researches that are similar and related to our work. The

problem statement will be described in Section 4. Section 5

is devoted to the proposed method description and its details.

The evaluation process and the experimental results and

comparisons are presented in Section 6, and finally Section 7

will conclude the paper.

2. Background
In this section some preliminary concepts about RNNs and

text embedding methods are provided.

2.1. Recurrent neural network

As described in [6], recurrent neural networks are a family of

neural networks for processing sequential data. These

networks arise from the idea of sharing parameters across

different parts of a sequence, making them very efficient and

effective in processing sequential data as well as in extraction

and learning of sequential features. One of the most exciting

features of RNNs is that they can process data of different

length as an ability not seen in other types of neural networks

which require fixed-size inputs. Another feature of these

networks is the concept of memory, which arises from the

fact that by sharing parameters and processing the data in

sequence, each input will contribute to the model's output in

a later stage, which acts as a memory. As also described in

[7], one significant shortcoming of conventional RNN cells

is that by applying Backpropagation through time, they

cannot learn or extract dependencies in a long sequence due

to the problem of vanishing or exploding gradients; This can

be described as a sort of memory loss, which means

conventional RNNs have a very short term memory.

2.2. Bidirectional RNNs

RNNs usually process data in a feed-forward approach,

meaning at each timestep, the output is calculated using the

information from the past, which is the hidden state and the

current input [6]. However, in some cases giving the network

information about the whole sequence (past and future

timesteps) will help solving the problem. Bidirectional RNNs

are the combination of two RNNs, one moving forward

through time from the start of the sequence and the other

moving backward through the time from the end of the

sequence. In this way, the output at each timestep is

calculated using the information from the past and the future,

but more dependent on the data nearest to the current

timestep.

2.3. Long Short-Term Memory (LSTM)

To combat the memory loss in conventional RNN cells,

LSTM was proposed, which defines a pathway for long

dependencies, which acts as long-term memory [6]. This

pathway can be seen as a cell inside the LSTM cell with its

parameters which can add data to the cell and remove

unnecessary data when needed. By giving the network, the

option of adding data to and removing it from this pathway,

the network can memorize essential data in the sequence and

forget unnecessary information, which has made LSTM cells

a very successful architecture for solving problems, where

the input is a sequence.

2.4. Gated recurrent unit

Although LSTMs are considered the go-to architecture when

dealing with sequential data, they have a crucial shortcoming

that arises from its too many parameters. These parameters

burden the model, which has to do the standard calculations

and with learning the parameters of the LSTM. Moreover,

due to the high number of parameters, LSTMs are more

susceptive to overfitting, which is a prevalent problem in

neural networks and deep learning tasks.

To combat the mentioned shortcomings, the GRU cell was

proposed in [8], which is very similar to the LSTM cell but

differs in that it combines some parts of the LSTM cell into

a unified part and causes a reduction in the number of

parameters compared to the LSTM cell. This modification

has two benefits: 1) it gives the model less space for

overfitting compared to LSTM, and 2) it puts less burden on

Journal of Computer and Knowledge Engineering, Vol.5 , No.2. 2022. 23

the model in terms of calculations that in turn makes it run

faster.

2.5. Text embedding

In the field of natural language processing, which deals with

human language, there is no straightforward way of using

words in a neural network. One possible solution might be

using one-hot encoding on a lengthy dictionary of words, but

this approach has two problems: 1) it wastes memory and

processing resources, which can be used elsewhere; (2) by

giving the one-hot code based on the alphabetic order, this

approach might give close codes to words with different

meaning and remote codes to words with similar meaning

(the distances are in terms of points in a hyperspace), which

might give the model the wrong impression about the

similarity of the words.

Word embeddings were proposed to overcome the

enumerated challenges by using dense vectors for word

representation, reducing memory, and processing the needed

resources. The proposed embeddings also put similar words

in respect to their concepts and meaning in close vectors in

terms of distance, giving the model the ability to understand

those words' meanings. Google's word2vec [9] and

Stanford's Glove [10] are examples of word embeddings.

Although word embeddings are very useful, since the words

in a language get their meaning in a sentence, they are not an

optimal solution for sentence-level embeddings. One trivial

solution for sentence-level embedding is using arithmetic

operations to combine the word vectors of a sentence, but this

approach can alter the sentence's meaning. In response to

these challenges, sentence-level embeddings were proposed

to turn a sentence into a dense vector preserving the meaning

of sentences in the terms that similar sentences will be given

close vectors. Universal sentence encoder (USE) [11] and

Fast Sentence Embedding (FSE) are examples of popular

sentence-level embeddings.

3. Review of related works
There are two different objectives in the automatic rumor

detection literature, including event-level and tweet-level

rumor detections. The purpose of event-level approach is to

identify the veracity of a general topic related to an event

represented by a set of conversations with similar topic.

Formally, given an event E containing conversations C1 to Cn

(i.e. E = {C1, …, Cn}) the label L(E) indicates whether the

whole event is rumor or not. In contrast, in tweet-level

approach, given a source tweet of each conversation, its

responses, and some metadata about the tweets and users, the

model should be able to decide whether the source tweet is

rumor, non-rumor, or unverified. In fact, in tweet level view,

for each conversation C, L(C) specifies the veracity of its

single source tweet.

One of the earliest attempts to automate rumor detection

was undertaken by [12], in which the effectiveness of

different feature categories was studied for identifying

rumors. The proposed system can track known rumors but

cannot detect new rumors on Twitter.

The first attempt to detect new rumors has been performed

in [13], which uses the fact that users respond to rumors by

asking questions about them, which was also reported by

[14]. The proposed system utilizes conventional machine

learning for detection of rumors. However, their system

relies on handcrafted content features. Moreover, it operates

at the event-level mode.

Another interesting work on automatic rumor detection

based on conventional machine learning on Twitter is [15],

which states that although users' stances used in [13] offers

an indicator for detecting rumors, but detecting these stances

itself is a big challenge. The proposed system leverages a few

interesting and lesser-used features; however, it detects

unverified stories and does not detect rumors in the context

of false information. Moreover, the proposed system operates

at the event-level, which was discussed before.

One of the first works in detecting rumors leveraging deep

learning techniques is [7], which proposes to use RNN

architecture, containing LSTM and GRU cells in detection of

rumors. The proposed system considers content data, but it

operates at the event level.

Yu et al. [16] have also employed deep learning techniques

for rumor detection. They used Convolutional Neural

Network (CNN) architecture, reasoning that the proposed

system will be more suited due to the fact that RNN

architecture is more biased towards the last elements of input

while the indicators of rumor are not necessarily in the last

elements of the input. They also point out that RNN

architecture requires a lengthy input for reliable detection,

while many microblog posts are short. Although their work

is innovative in that few works are using CNN to detect

rumors, but their system, like the ones before, works at the

event level.

The closest research to our work is [17], which was later

refined and presented as the baseline for RumourEval 2019

[18], and we also consider this research as the baseline for

our work. Furthermore, working on this base code and the

RumourEval framework makes evaluation of the work more

straightforward and clear. In their work, the authors propose

a system based on RNN architecture leveraging LSTM cells.

One significant contribution of their work is that the

proposed system uses some novel features as the feature

vector, and it also detects rumors at the tweet level. However,

their proposed system uses many handcrafted content

features which makes it more susceptible to deception. In

addition, it neglects social and profile features which can be

potentially used for efficient rumor detection.

Another crucial work similar to our work is [19], which is

the winner of SemEval-2019 and the state of the art system.

This system is trained with Twitter data and has an exciting

innovation that is using fine-tuned word-level embedding

specific for the task of rumor detection. Unfortunately, due

to the unavailability of the source code and development

details of this system, few comments on this work can be

made. The proposed system again uses many handcrafted

features that makes their system more susceptible to

deception. Furthermore, their proposed system relies on

some machine learning systems that are still in R&D phase

and are considered as open problems in the field of machine

learning and natural language processing. To be more

specific, this work relies on: 1) a system for detection of parts

of sentences like named entities, verbs, etc.; 2) a system for

detection of user stances; 3) a system to detect the topic area

of the rumor. Hence the overall performance of the proposed

method significantly depends on the performance of these

underlying systems.

24 Zahra Zojaji et. al.: Efficient and Deception Resilient Rumor …

Again, a research related to our work is [15] in which we

used some of the features that they have proposed for the task

of detection. However, our work is different from [15] in

some issues. We are trying to detect false rumors contrary to

their work, which can only detect unverified stories. Also we

work at the tweet level while their research detects rumors at

the event-level.

Another interesting works in automatic rumor detection is

[20], which takes a novel approach to detect rumors by

leveraging spatial-temporal rumor aspects in social media.

Other work is [21] that leverages multi-loss bidirectional

RNNs for rumor detection. The work reported in [22] is also

another exciting work in rumor detection that has utilized

ensemble method for rumor detection.

Table 1 summarizes some of the most important aspects of

the more relevant researches to our work. As it can be

inferred from Table 1, most of the previous important

researches developed rumor detection models in event level,

hence they cannot judge about the veracity of each individual

tweet. Many papers employed handcrafted features which

results in low generalization in detecting new rumor forms

and make these systems more prone to deception. Some

systems used user’s stance as a representative of the crowd

wisdom about the specified tweet. Just one research has used

the network and user profile features in detecting rumors. As

a consequence, the proposed method is designed so that it

operates in tweet level, it uses nearly all information sources

including content, profile and network features along with

users’ stances. This is while the proposed method does not

inherit the weaknesses of using handcrafted features.

4. Statement of the problem
In this research we aim to automatically detect rumors in

Twitter. We attempt to develop a rumor detection system

which is resilient to deception. Moreover, the system should

detect rumors at tweet-level. The metadata includes profile

and network features. Profile features are used to determine

the user’s credibility, while network features are used to

show the state of the rumor propagation in the social network.

While automatic rumor detection has attracted the

attention of many researchers over the past few years, a huge

bulk of studies rely on handcrafted features which leads the

developed models susceptible to deception. In psychological

studies, deception is defined as an intentional and knowing

attempt of the writer of a message to create a false deduction

or belief in the reader’s mind [23, 24]. Humans often do not

detect fake contents, in most situations. It has been proved

that people can distinguish a truthful statement from a lie

with the accuracy of 54% which is just a bit above the random

decision [25]. This fact highlights the role of automatic

rumor detection under the intended deception process. When

a statement is created with the aim of deceiving people, its

content appearance should mimic a legitimate statement.

Thus a rumor detection system should detect the veracity

of a message regardless of its appearance in order to have

resiliency to deception. The appearance of the message can

be defined in terms of punctuations, letters cases, image

inclusion, and so on. Since most of the handcrafted features

used in rumor detection task are describing the message

appearance, the resulting models are prone to deception. In

this study we attempt to propose a model for rumor detection

which can detect rumors efficiently, while neglecting the

appearance based features.

Furthermore, event-level approaches require large volume

of messages in each topic which is not available in the first

stages of rumor propagation. Thus, the aim of this research is

developing a tweet-level rumor detection system that will be

applicable for early detection. In Twitter, after a user posts a

tweet, others can reply to it, and it is also possible to post a

reply to a previous reply, and so on. This results in a tree

structure of tweets and replies that is called a conversation.

Each conversation can be broken up into several branches,

each starting from the source tweet and ending at a tree leaf.

It is possible to break the conversation into its branches by

running a depth-first search on the tree, and each time the

algorithm reaches a leaf, the current branch can be extracted

by backtracking the steps.

To better understand the concepts of branch and

conversation, Figure 1 shows an example, in which a

conversation is represented in two branches. One branch

containing the source, User1 and User2 posts and another

including the source plus User3 and User4 posts.

Table 1. Important aspects of related researches

Research
Operation

level

Using handcrafted

content features
Using user’s stance

Using profile

features

Using network

features

Yu et al. [1] Event Low Not used Not used Not used

Zhao et al. [2] Event Medium Low(only inquires) Not used Not used

Ma et al. [3] Event Low Not used Not used Not used

Li et al. [4] Tweet High High (all possible stances) Yes Yes

Kochkina et al. [5] Tweet High High (all possible stances) Not used Not used

Huang et al. [6] Event None Not used Not used Yes

Sujana et al. [7] Event None Not used Not used Not used

Mouli Madhav Kotteti et al. [8] Event None Not used Not used
only tweet time

stamps

Proposed method Tweet None High (all possible stances) Yes Yes

Journal of Computer and Knowledge Engineering, Vol.5, No.2. 2022. 25

Figure 1. Branches of a conversation

5. The proposed method

In this section, we introduce the proposed method in detail.

The section begins with the explanation of the system

architecture and continues with the detail description of each

individual phase.

5.1. System architecture

The proposed method is composed of three main phases:

preprocessing, feature extraction, and modeling. The overall

architecture of the proposed system is depicted in Figure 2.

As it is shown in this figure, having a row conversation C, it

is decomposed initially into the set of branches {b1, b2, …

bk} where each branch bi is composed of the sequence of

tweets ti,1, ti,2 , ….,
, ii b

t in which ti,j is the ith tweet of the jth

branch. Then different features are extracted from the tweet

contents and metadata. After that feature vectors can be used

to train the model in the training phase and predicting the

veracity as label L(C) in the testing phase.

5.2. Preprocessing

Due to the tree’s nature, the conversation data processing

with a neural network is particularly challenging. To combat

this challenge, some researches, such as [5, 9], suggested

representation of conversation in terms of its branches.

Therefore, the conversation is fed to the network branch by

branch. Figure 3 shows the prepressing phase, in which

branches b1 to bk are first extracted and tweets of each

branches are then extracted in terms of ,1 ,
,...,

i
i i b

t t for each

bi where 1 i k . In this notation, k is the number of

different branches in C and
ib is the number of tweets in

branch bi.

5.3. Feature extraction

Feature extraction phase is illustrated in Figure 4. For each

tweet ti,j, the corresponding network, profile and content

features are extracted respectively and concatenated to form

the overall tweet feature vector
,i jt . The network and profile

features are characterizing the social context of the tweet and

content features are representing the text of the tweet itself.

The feature vector associated with tweets of a branch are then

concatenated to form the branch feature vector

,1 ,
{ ,..., }

i
i i i b

b t t and a conversation is finally represented as

a set of branch feature vectors (i.e.
1{ ,..., }kC b b). One of

the innovations of our work is the novel feature set proposed

for detection of rumors. Although many of these features

have been used before in rumor detection, we have not seen

them used together in other previous works. The proposed

method also relies on user’s stances based on the fact that the

users' reactions to rumors are different from non-rumors,

which was first pointed out in [10].

An important aspect of the proposed feature set is that we

use word and sentence level embeddings for content feature

extraction which makes the model more resilient to user

deception.

The feature set we use can be described in the following three

categories:

1. Profile features (the features of the user who posted the

tweet):

 Number of followers

 Number of followings

 Whether the account is verified or not

 Number of total tweets

2. Network features (the features related to state of the

propagation):

 Number of retweets of the tweet

 Number of likes of the tweet

 Whether the tweet is the source or response

 The stance of each tweet towards the source tweet with

values of Supporting, Denying, Querying, and

Commenting

3. Content features (the features of the tweet itself by

dense vectors leveraging word and sentence level

embeddings)

 Avg2Vec, used in [5, 9], uses Google's word2vec to

create a sentence level embedding for tweets by

averaging between the word level embedding vectors of

the words in the tweet.

 Universal Sentence Encoder (USE), which is a sentence

level embedding also introduced by Google.

It is also worth mentioning that the features used in our

work can be categorized in two set:

1. Manually extracted features containing profile and

network features;

2. Automatically extracted features containing content

features.

26 Zahra Zojaji et. al.: Efficient and Deception Resilient Rumor …

Figure 2. System architecture

Figure 3. Preprocessing phase

Figure 4. Feature extraction phase

6. Modeling

The core of the proposed system is the modeling phase that

is comprised from training and testing phases. In training

phase, the branch feature vectors along with the source tweet

label are feed to RNN for learning. After training, the learnt

model can be deployed in automatic rumor detection system

as it is demonstrated in Figure 5. In this phase, given a

conversation feature vector, the feature vector of each branch

is extracted and inputted to RNN model. After predicting the

corresponding labels for individual branches, a voting

module is used to determine the final label for the

conversation as the majority label predicted by its branches.
We employed RNN deep learning architecture because the
nature of the input data in the underlying system is a
sequence. It means that we want the learning system to
recognize the patterns and relations between consecutive
words, sentences and tweets in processing a conversation.
Since RNN is memory-based architecture and learns
sequences well, it is appropriate for our purpose.
Furthermore, RNNs support learning sequences with variant
lengths which is the case in rumor detection systems for
branches. Since the tweet branches may form as long
sequences, memory based unites such as LSTM and GRU
are needed for learning these sequences. Using GRUs is

more preferable because of their speed and efficiency and
also to give the model less space for overfitting, which
contributes to the overall model performance. We also
leverage bidirectional GRUs for two reasons: 1) giving the
model more information at each time step; 2) reducing the
model's bias towards the end of sequence by processing the
sequence from both directions.

The detail architecture of RNN units are revealed in
Figure 6. The model is comprised of one bidirectional GRU
Layer, and the output of this layer is passed to two dense
layers with ELU (exponential linear units) function as their
activation [26]. It is worth mentioning that before each layer,
the input of that layer is normalized with the batch
normalization layer. This has two effects:
1. The data is scaled and the training phase's noise is

reduced, where in turn makes the training phase faster
and more stable;

2. By feeding data in different batches, it has a slight
regularization effect on the model, which reduces the
chance of overfitting.

For improving the generalization of the network and avoid
overfitting, L2-regularization mechanisms are adopted. The
complexity of the network and subsequently the overfitting
issue are controlled in this way.

Raw
Conversation

(C)
Preprocessing

Feature
Extraction

Modeling L(C)

Raw
Conversation

(C)
Branch

Extraction
Tweet

Extraction

C = {b1, …, bk}

Preprocessing

Network Feature
Extraction

Tweet
(ti,j)

Profile Feature
Extraction

 Content
 Feature
 Extraction

USE

Word2vec

Tweet Feature

Vector ()

Feature
Extraction

 C = {b1, …, bk}

1{ ,..., }kC b b

Journal of Computer and Knowledge Engineering, Vol.5, No.2. 2022. 27

Figure 5. Modeling phase

Figure 6. The architecture of the RNN unit

Due to social networks' dynamic nature, the rumor

detection model should be adapted and retrained many times

after deployment. To achieve this goal, we have leveraged

CuDNN libraries in designing the model in order to improve

the time complexity in the training phase. The use of CuDNN

has one big downside: the loss of some layer features like

dropout in GRU layers, but it helps a lot in the model's

generalization. Therefore, there is a tradeoff between the

time complexity and the generalization and hence we took

the middle way through utilizing CuDNN.

7. Experimental evaluations and results

In this section after describing the evaluation configurations

including the dataset specification and the system setup, the

proposed rumor detection system is evaluated in terms of

macro F-Score, time efficiency and deception resiliency. The

experimental results are also compared to the results of the

state of the art methods.

7.1. Dataset

The dataset used in this research is associated with

RumorEval 2019 competitions which is a refined and

updated version of the Pheme dataset [27]. This dataset is

comprised of conversations categorized into topics, each

topic containing conversations with one of the below labels:

1. True: Conversations that are spreading verified

information;

2. False: Conversations that are spreading rumors;

3. Unverified: Conversations that are spreading unverified

information that was neither verified nor denied up to the

time of their retrieval.

Table 2 shows the distribution of conversations and

branches between the training, development, and testing sets,

while Table 3 and Table 4 show the distribution of labels in

conversations and branches in different sets. Note that the

development dataset in RumoreEval context is equivalent to

validation dataset known in machine learning literature.

Table 2. Distribution of conversations and branches

 Train Development Test

Conversation 297 28 56

Branch 3245 768 1010

Table 3. Label distribution in conversations

 Train Development Test

True 137 8 22

False 62 12 30

Unverified 98 8 4

Table 4. Label distribution in branches

 Train Development Test

True 1470 124 341

False 549 514 558

Unverified 1226 130 111

7.2. Setup

All of the experiments were run on a single system with the

same hardware setting for all of them. Table 5 shows the

system details.

Conversation
Feature Vector

(C)

RNN Model

RNN Model

Voting
Module

L()

L()

L(C)

Modeling

Branch
label
(L1)

In
p
u

t
la

y
er

Branch feature
vector M

as
k

in
g
 l

ay
er

B
at

ch
 N

o
rm

al
iz

at
io

n
 l

ay
er

B
id

ir
ec

ti
o
n

al
 G

R
U

B
at

ch
 N

o
rm

al
iz

at
io

n
 l

ay
er

D
en

se
 l

ay
er

R
N

N
 I

n
p

u
t

la
y

er
 M

o
d

el
 M

as
k

in
g

la

y
er

B
at

ch
 N

o
rm

al
iz

at
io

n

D
en

se
 l

ay
er

28 Zahra Zojaji et. al.: Efficient and Deception Resilient Rumor …

Table 5. System setup

Processor Intel Core i7 6700HQ

RAM 16GB DDR4 2133MHz

GPU Nvidia GeForce GTX 980M

One of the most important parts of every deep learning

model is the hyper parameters setting presented in Table 6.

Hyper parameters include parameters that define the model

and cannot be learnt by the model during the training phase.

In order to find the optimal hyper parameters, we leveraged

Tree-structured Parzen Estimator (TPE) algorithm [11]

implemented in python library called Hyperopt which helps

automating some of the tasks in hyper parameter search and

model tuning. TPE is a sequential model-based optimization

approach, which sequentially estimates the conditional

probability density function of the objective function based

on hyperparameters. In each iteration, the next set of

hyperparameters are configured based on their evaluation on

the estimated probability model and the model is refined

accordingly. Sequential model-based optimization is a

formalization of Bayesian optimization which is more

efficient than random or grid search in finding the best set of

hyperparameters [11]. Table 6 shows the best hyper

parameters found by TPE for the proposed system.

Table 6. Hyper parameter setting

Hyper Parameter Value

Number of GRU Layers 1

Number of GRU Units 400

Number of hidden dense layers 2

Number of dense units in 1st dense layer 600

Number of dense units in 2nd dense layer 400

Training Steps 50

L2 Regularization Parameter in 1st dense layer 1e-4

L2 Regularization Parameter in 2nd dense layer 1e-4

L2 Regularization Parameter in output layer 1e-6

L2 Regularization Parameter in GRU layer 1e-6

Minibatch size 64

Optimization Algorithm Adam

7.3. Overall performance

Table 7 shows the results of evaluation metrics of the

proposed method as well as those in [5, 9] as the baseline.

The performance is measured in terms of precision, recall,

and F1-score. It can be deduced from the table that our model

outperforms the baseline in the overall metric used by the

RumourEval 2019 competitions (i.e., Macro-F1 Avg.). A

more detailed look shows that the proposed method

outperforms the baseline in the rue class but slightly lags

behind it in the other classes. It is due to low false negative

rate of the proposed method which is a critical necessity of a

rumor detection system. The performance of the baseline can

be attributed to many features, but as we will show later, this

gives their model a significant disadvantage regarding

resilience to deception.

The results of all RumorEcval 2019 participants can be

found in [9]. As it can be inferred from the table, the overall

performance of the proposed method is better than other

models. There are also some works like [4] that uses some

auxiliary data for training. Utilizing auxiliary dataset gives

the model some advantages and not only makes the

comparison a little unfair, but also we believe it threatens the

scalability of the method. When the model is trained and

evaluated based on the auxiliary datasets, its performance is

not guaranteed for rumor detection in other environments in

which this data volume is not available.

Table 7. Comparison to the baseline

 Class Precision Recall F1

Baseline [5, 9]

True - - 0.31

False - - 0.53

Unverified - - 0.17

Macro Avg. - - 0.33

Proposed

method

True 0.85 0.37 0.51

False 0.48 0.45 0.47

Unverified 0.05 0.25 0.08

Macro Avg. 0.46 0.36 0.35

Table 8 shows the performance comparison of the

proposed method with the most successful related models,

which operate on RumorEval 2019 dataset.

Table 8. Comparison to other models

Model Name Macro-F1 score

Baseline [5, 9] 0.33

VANTA and Aono[12] 0.32

WeST (CLEARumor) [13] 0.28

GWU NLP LAB [14] 0.26

BLCU NLP [15] 0.25

FINKI NLP (reported in [9]) 0.33

EventAI [4] 0.58

Proposed method 0.35

7.4. Resilience to deception

Since many rumors are created with the aim of user

deception, the appearance of the claim is designed to mimic

a legitimated news post. A successful rumor detection

system should not be sensitive to simple apparent signs. In

the proposed method, we tried to develop a model that is

resilient to these changes. To evaluate the models' resilience

to deception, we propose changes to the tweet text, keeping

in mind that it is entirely in the user's control and can be

changed easily without changing the tweet's overall

meaning. The applied changes, enumerated below, are

minimal and do not affect the meaning of the text:

1. Removing the periods or adding one if does not exists

any;

2. Removing question marks or adding one if does not

exists any;

3. Removing exclamation mark or adding one if does not

Journal of Computer and Knowledge Engineering, Vol.5, No.2. 2022. 29

exists any;

4. Removing pictures or adding one if does not exists any;

5. Changing the capital ratio of the characters to a random

value.

We assume that these changes can simulate the changes

that a rumor creator made intentionally in the rumor content

so that it looks like a normal verified claim. These changes

are chosen regarding the experiences reported in [5, 9],
which is the only model that shared its details and code. After

applying the changes on the test set, both models trained on

the original training set (the proposed model and the baseline

model) were rerun on the modified test set, and the results

were compared to the original run. Since our model ignores

all the mentioned handcrafted content features due to the use

of embeddings for extracting features from the text, these

changes do not affect the model's performance. In contrast,

the predicted labels in works reported in [5, 9] were changed

in 34% of the conversations after applying the modifications.

It can be inferred from the experiment that even simple text

changes can easily mislead the baseline model.

Since the described issue arises due to the employment of

handcrafted features, it seems that other researches that

model the rumor based on these features (e.g., [4]) also suffer

from the similar weaknesses. In fact, current experiment

compares the resiliency of two categories of approaches to

deception, the models based on automatic feature extracted

and the models based on handcrafted features. To this end,

the proposed method and the baseline are selected as

representatives for these two categories of approaches, in the

absence of source code of other related methods.

This test shows the downside of handcrafted features,

especially for content features, since they are in the control

of the user and can be changed easily. For that reason, all the

content features used in the proposed method are 1) the ones

that are determined by the network and are not controlled by

the user, or 2) the ones that are extracted using methods like

embedding that focuse on the meaning instead of the looks

which minimizes the user's influence on the model.

7.5. Time efficiency

Table 9 shows the training time of the proposed method and

the baseline model. It can be seen that our model outperforms

the baseline significantly in training time, giving it a valuable

advantage for deployment. This means it saves much time in

training, which leads to savings in resources and capital

making it more suitable for deployment.

Although, as discussed before, our model cannot use

dropout in the GRU layer, which can give it a significant

advantage in generalization, we showed that it outperforms

the baseline while being much faster in training.

Table 9. Time efficiency

Model Training Time (seconds)

Baseline [5, 9] 2406.13

Proposed method 40.25

7.6. The role of profile and network features

Another exciting aspect that needs discussing is the proposed

feature set. Regarding content features, we have already

shown that using embeddings instead of handcrafted features

gives our model a significant advantage regarding resilience

to deception. Regarding other features, it can be deduced that

all of the profile and network features are a part of the social

network and they are out of the control of the user, especially

for trending topics, and one or a group of users cannot

meaningfully change them to mislead the model.

We can also show that the proposed non-content features

are needed to achieve the results shown in Table 7. Table 10

compares the model's performance using the proposed

feature set to the model using only the content features. It

shows that the full feature set outperforms the content

features, which in turn shows that network and profile

features provide essential information for rumor detection.

Another important aspect of our model is the use of GRU

cells instead of LSTM. Although LSTMs are more common

in RNN architecture, as discussed before, the use of GRU

leads to reducing the training time and increasing the

generalization.

Table 10. The role of different feature sets

Feature Set Macro-F1 Avg.

Content Features only 0.31

Full Feature Set 0.35

Table 11 compares the proposed method with the same

model with LSTMs instead of GRUs. It can be seen that the

GRU model slightly outperforms the LSTM with fewer

parameters and much faster run time.

Table 11. The comparison of GRU and LSTM unites

Model Macro-F1

LSTM based model 0.34

Proposed method (GRU) 0.35

8. Conclusion
While a considerable research effort has been done recently
to develop automatic rumor detection models, most of prior
approaches have had the problem of relying on handcrafted
features. Using these features make the model more
susceptible to deception and reduces the scalability of the
system. Moreover, a great deal of work is devoted to event
level rumor detection which is not applicable for early
detection and prevention in real world. This research
proposed a rumor detection system based on RNN model and
GRU cells for specifying the veracity of tweets in Twitter
network. One of the most important innovations of this
research is a novel feature set that avoids the extraction of
handcrafted content features and uses network and profile
features that are out of users’ control. Considering these
features makes the model more resilient against deception.
We focused on efficiency and scalability, especially in the
training phase, keeping in mind that social networks'
dynamic nature requires the model to be retrained many
times to adapt to the users and network behavioral changes,
making our model more suitable for deployment.

A number of experiments were conducted to analyze the

effectiveness of the proposed rumor detection system.

Experimental results show that the proposed method

outperforms most similar research in terms of macro F-score.

30 Zahra Zojaji et. al.: Efficient and Deception Resilient Rumor …

It also revealed that the proposed system is less prone to

deception. Furthermore, the results indicate the superiority

of the proposed method comparing the baseline in terms of

time efficiency. Consequently, the proposed rumor detection

system is suitable for being applied efficiently in early tweet-

level rumor detection task with remarkable tolerance to

deception.

As the future work in our research direction, we tend to

use pertained pre-trained contextual deep neural networks

for both content embedding and tweet classification tasks in

order to improve the overall performance.

9. References

[1] Yu, F., Liu, Q., Wu, S., et al., "A Convolutional

Approach for Misinformation Identification", In: IJCAI

International Joint Conference on Artificial

Intelligence, pp. 3901-3907, 2017.

[2] Zhao, Z., Resnick, P., Mei, Q., "Enquiring minds: Early

detection of rumors in social media from enquiry posts",

In: WWW 2015 - Proceedings of the 24th International

Conference on World Wide Web, pp. 1395-1405, 2015.

[3] Ma, J., Gao, W., Mitra, P., et al., "Detecting rumors

from microblogs with recurrent neural networks", In:

IJCAI International Joint Conference on Artificial

Intelligence, pp. 3818-3824, 2016.

[4] Li, Q., Zhang, Q., Si, L., "eventAI at SemEval-2019

Task 7: Rumor Detection on Social Media by

Exploiting Content", User Credibility and Propagation

Information, 2019.

[5] Kochkina, E., Liakata, M., Augenstein, I., Turing at

SemEval-2017 Task 8: Sequential Approach to Rumour

Stance Classification with Branch-LSTM, 2018.

[6] Huang, Q., Zhou, C., Wu, J., et al., "Deep spatial–

temporal structure learning for rumor detection on

Twitter. Neural Comput Appl",

https://doi.org/10.1007/s00521-020-05236-4, 2020.

[7] Sujana, Y., Li, J., Kao, H-Y., "Rumor Detection on

{T}witter Using Multiloss Hierarchical {B}i{LSTM}

with an Attenuation Factor", Aacl, 2020.

[8] Kotteti, C. M. M., Dong, X., Qian, L., "Ensemble deep

learning on time-series representation of tweets for

rumor detection in social media", Appl Sci 10:.

https://doi.org/10.3390/app10217541, 2020.

[9] Gorrell, G., Kochkina, E., Liakata, M., et al., "SemEval-

2019 Task 7: RumourEval", Determining Rumour

Veracity and Support for Rumours, 2019.

[10] Mendoza, M., Poblete, B., Castillo, C., Twitter under

crisis: Can we trust what we RT? In: SOMA 2010 -

Proceedings of the 1st Workshop on Social Media

Analytics, 2010.

[11] Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.,

"Algorithms for hyper-parameter optimization", In:

Advances in Neural Information Processing Systems

24: 25th Annual Conference on Neural Information

Processing Systems 2011, NIPS, 2011.

[12] Vanta, T., Aono, M., "Stance Classification and Rumor

Analysis: Using New Dialog-Act Features and

Augmenting Input Tweets", In: 2020 7th International

Conference on Advance Informatics: Concepts, Theory

and Applications (ICAICTA). IEEE, pp 1–6, 2020.

[13] Baris, I., Schmelzeisen, L., Staab, S., CLEARumor at

SemEval-2019 Task 7: ConvoLving ELMo Against

Rumors, 2019.

[14] Hamidian, S., Diab, M., GWU NLP at SemEval-2019

Task 7: Hybrid Pipeline for Rumour Veracity and

Stance Classification on Social Media,2019.

[15] Yang, R., Xie, W., Liu, C., Yu, D., BLCU_NLP at

SemEval-2019 Task 7: An Inference Chain-based GPT

Model for Rumour Evaluation,2019.

