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Abstract: Social networks have become a central part of our 

lives these days and have real effects on the world's events. 

However, social networks greatly boost spreading 

misinformation and rumors that are becoming more and more 

dangerous each day. As fighting rumors first requires 

detecting them, several researchers tried to propose novel 

approaches for automatic early detection of rumors. 

However, most of them rely on handcrafted content features 

which makes them prone to deception and threats the 

adaptability of the model. Furthermore, a great deal of work 

have concentrated on event-level rumor detection while it 

faces early detection with serious challenges. There are also 

deficiencies in proposed methods in terms of time and 

resource complexity. This study proposes a deep learning 

approach to automate the detection of rumors on Twitter. The 

proposed method relies on automatically extracted features 

through word and sentence embeddings along with profile 

and network-based features. It then uses Recurrent Neural 

Networks (RNN) leveraging Gated Recurrent Units (GRU) 

for detecting the veracity of a tweet. The proposed method 

also improves time efficiency. The achieved experimental 

evaluation results on RumorEval2019 dataset demonstrate 

that the proposed method outperforms other rival models on 

the same dataset in terms of both performance and time 

complexity. By the way, the proposed method is more 

resilient to deception by avoiding the use of handcrafted 

content features and leveraging features that are out of the 

control of the user. 

Keywords: Deception, Deep Learning, Rumor Detection, 

Social Network, Twitter 

 

1. Introduction 

The explosive growth of online social media is an evidence 

for their crucial role in spreading news in the modern society. 

Nowadays, a large number of users actively engage in 

producing or propagating news about different trending 

topics. The convenience of publishing news in online social 

networks causes also the spreading of misinformation and 

rumors. 

There have been numerous definitions for rumor in the 

literature, each offering its interpretation. However, the 

definition provided in [1] seems to be more popular which 

defines rumor as "a story or statement in general circulation 

without confirmation or certainty." Another essential 

research on rumor has been undertaken by [2], which defines 

three characteristics for rumors: 1) Rumors have a distinct 

mode of transmission, 2) Rumors always provide 

information about some particular person, happening, or 

condition, and 3) Rumors satisfy audiences. The second and 

the third characteristics refer to the fact that people feel 
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unsafe in the absence of information, and rumors satisfy them 

by providing information. Spreading rumors imposes 

potentially harmful effects on public perception and 

behavior. One can point to the alleged Russian interference 

in the 2016 US Presidential Election with the spread of 

rumors and misinformation through social media [3–5]. 

Online social networks facilitate rapid propagation of fake 

news and rumors which thereby greatly amplify the impact 

of harmful effects.  

The most effective and operational approach in rumor 

detection and debunking todays is manual detection, which 

is done by authoritative centers and websites like Snopes 

(www.snopes.com) and Politifact (www.politifact.com). 

However, although this approach seems to be very accurate, 

it is slow and ineffective with the nature of fast-spreading 

rumors in social networks. Another approach used these days 

is automatic detection using artificial intelligence, which 

leverages machine learning techniques to detect social 

network rumors. Although the performances of the proposed 

systems are lower than manual detection, the upside is the 

constant innovations that are making this approach a likely 

candidate to replace manual detection. Automatic rumor 

detection facilitates detecting and preventing rumors in early 

stages of spreading prior to affecting the public opinion. 

Although several researches have been conducted for 

detecting rumors, the previous methods mostly rely on 

handcrafted content features. Along with dynamic changing 

of social network conversations, the content of rumors and 

the signs of fake or verified news also change. Therefore, 

feature extraction process should be also dynamic in order to 

reflex the specifications of the rumors, which is not achieved 

in the case of developing detection model based on the 

handcrafted features. Furthermore, handcrafted features 

make the rumor detection system more susceptible to 

deception. Employing these features provides more chance 

to design fake news with appearance similar to verified news. 

In addition, handcrafted features could bias the prediction 

model without any explicit improvement in the performance. 

Again, most of the prior works operate at the event-level, 

meaning that it can only detect whether a general topic is a 

rumor or not and cannot decide about the veracity of a single 

post. Moreover, event-level rumor detection requires an 

extensive set of messages in each topic which is not available 

in the first stages of rumor propagation. Hence event-level 

models are hardly applicable for early detection. Moreover, 

the scalability of previously presented rumor detection 

systems is low due to extensive computational complexity. 

In this work, due to mentioned shortcomings of the previous 

works, we propose a deep learning approach for detecting 

rumors on Twitter. The proposed method operates at the 
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tweet level i.e., detecting rumor using a tweet and its 

responses. While handcrafted features can improve a deep 

learning system in doing its task, we do not directly use 

handcrafted content features and let the system extract them 

by itself through feeding it the raw text of tweets. Instead, 

word and sentence level embedding for content feature 

extraction are utilized which makes the model more resilient 

to user deception, more scalable to social network dynamics, 

and less susceptible to model biasing. Our insight also is that 

analyzing social and profile features is a rich information 

source for developing deception resilient models. This is 

because these features are independent from the content of 

the claims and are out of the direct control of the user that 

was neglected in most of researches. Therefore, we use social 

and profile features in our model. Lastly, we emphasize on 

the system's performance, taking the time efficiency and 

scalability of the system into account.  

The main contributions of this work can be summarized 

as: 

1. Avoiding the use of handcrafted content features for 

better dealing with the dynamic nature of social networks 

and providing more resiliency against the deception; 

2. Using profile and network features that provide the 

system with valuable information about the users and 

propagation state; 

3. Proposing a new deep learning model with RNN 

architecture leveraging GRU cells for automatic rumor 

tweet detection; 

4. Detection of rumors at the tweet level in order to facilitate 

early detection; 

5. Emphasis on performance, especially in the training 

phase, that make the system more scalable in comparison 

to the similar works. 

The proposed method is evaluated and compared using the 

RumorEval 2019 dataset. The overall performance of the 

system is first compared to the state of the art methods in 

terms of Macro F-score. The achieved results show that the 

proposed method outperforms nearly all similar methods. 

The experimental results also show the superiority of the 

proposed method in terms of time efficiency comparing the 

baseline. Furthermore, some experiments are conducted in 

order to prove the resiliency of the proposed method against 

the intended content alteration with the aim of deception. We 

believe that the proposed rumor detection model has enough 

capabilities to be applied efficiently in early, tweet-level 

rumor detection task with remarkable tolerance to deception. 

Section 2 of the paper will briefly introduce the concepts 

that were used in our research. Section 3 will discuss the 

researches that are similar and related to our work. The 

problem statement will be described in Section 4. Section 5 

is devoted to the proposed method description and its details. 

The evaluation process and the experimental results and 

comparisons are presented in Section 6, and finally Section 7 

will conclude the paper. 

 

2. Background 
In this section some preliminary concepts about RNNs and 

text embedding methods are provided.  

 

2.1. Recurrent neural network 

As described in [6], recurrent neural networks are a family of 

neural networks for processing sequential data. These 

networks arise from the idea of sharing parameters across 

different parts of a sequence, making them very efficient and 

effective in processing sequential data as well as in extraction 

and learning of sequential features. One of the most exciting 

features of RNNs is that they can process data of different 

length as an ability not seen in other types of neural networks 

which require fixed-size inputs. Another feature of these 

networks is the concept of memory, which arises from the 

fact that by sharing parameters and processing the data in 

sequence, each input will contribute to the model's output in 

a later stage, which acts as a memory. As also described in 

[7], one significant shortcoming of conventional RNN cells 

is that by applying Backpropagation through time, they 

cannot learn or extract dependencies in a long sequence due 

to the problem of vanishing or exploding gradients; This can 

be described as a sort of memory loss, which means 

conventional RNNs have a very short term memory. 

 

2.2. Bidirectional RNNs 

RNNs usually process data in a feed-forward approach, 

meaning at each timestep, the output is calculated using the 

information from the past, which is the hidden state and the 

current input [6]. However, in some cases giving the network 

information about the whole sequence (past and future 

timesteps) will help solving the problem. Bidirectional RNNs 

are the combination of two RNNs, one moving forward 

through time from the start of the sequence and the other 

moving backward through the time from the end of the 

sequence. In this way, the output at each timestep is 

calculated using the information from the past and the future, 

but more dependent on the data nearest to the current 

timestep. 

 

2.3. Long Short-Term Memory (LSTM) 

To combat the memory loss in conventional RNN cells, 

LSTM was proposed, which defines a pathway for long 

dependencies, which acts as long-term memory [6]. This 

pathway can be seen as a cell inside the LSTM cell with its 

parameters which can add data to the cell and remove 

unnecessary data when needed. By giving the network, the 

option of adding data to and removing it from this pathway, 

the network can memorize essential data in the sequence and 

forget unnecessary information, which has made LSTM cells 

a very successful architecture for solving problems, where 

the input is a sequence. 

 

2.4. Gated recurrent unit 

Although LSTMs are considered the go-to architecture when 

dealing with sequential data, they have a crucial shortcoming 

that arises from its too many parameters. These parameters 

burden the model, which has to do the standard calculations 

and with learning the parameters of the LSTM. Moreover, 

due to the high number of parameters, LSTMs are more 

susceptive to overfitting, which is a prevalent problem in 

neural networks and deep learning tasks. 

To combat the mentioned shortcomings, the GRU cell was 

proposed in [8], which is very similar to the LSTM cell but 

differs in that it combines some parts of the LSTM cell into 

a unified part and causes a reduction in the number of 

parameters compared to the LSTM cell. This modification 

has two benefits: 1) it gives the model less space for 

overfitting compared to LSTM, and 2) it puts less burden on 
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the model in terms of calculations that in turn makes it run 

faster. 

 

2.5. Text embedding 

In the field of natural language processing, which deals with 

human language, there is no straightforward way of using 

words in a neural network. One possible solution might be 

using one-hot encoding on a lengthy dictionary of words, but 

this approach has two problems: 1) it wastes memory and 

processing resources, which can be used elsewhere; (2) by 

giving the one-hot code based on the alphabetic order, this 

approach might give close codes to words with different 

meaning and remote codes to words with similar meaning 

(the distances are in terms of points in a hyperspace), which 

might give the model the wrong impression about the 

similarity of the words. 

Word embeddings were proposed to overcome the 

enumerated challenges by using dense vectors for word 

representation, reducing memory, and processing the needed 

resources. The proposed embeddings also put similar words 

in respect to their concepts and meaning in close vectors in 

terms of distance, giving the model the ability to understand 

those words' meanings. Google's word2vec [9] and 

Stanford's Glove [10] are examples of word embeddings. 

Although word embeddings are very useful, since the words 

in a language get their meaning in a sentence, they are not an 

optimal solution for sentence-level embeddings. One trivial 

solution for sentence-level embedding is using arithmetic 

operations to combine the word vectors of a sentence, but this 

approach can alter the sentence's meaning. In response to 

these challenges, sentence-level embeddings were proposed 

to turn a sentence into a dense vector preserving the meaning 

of sentences in the terms that similar sentences will be given 

close vectors. Universal sentence encoder (USE) [11] and 

Fast Sentence Embedding (FSE) are examples of popular 

sentence-level embeddings. 

 

3. Review of related works 
There are two different objectives in the automatic rumor 

detection literature, including event-level and tweet-level 

rumor detections. The purpose of event-level approach is to 

identify the veracity of a general topic related to an event 

represented by a set of conversations with similar topic. 

Formally, given an event E containing conversations C1 to Cn 

(i.e. E = {C1, …, Cn}) the label L(E) indicates whether the 

whole event is rumor or not. In contrast, in tweet-level 

approach, given a source tweet of each conversation, its 

responses, and some metadata about the tweets and users, the 

model should be able to decide whether the source tweet is 

rumor, non-rumor, or unverified. In fact, in tweet level view, 

for each conversation C, L(C) specifies the veracity of its 

single source tweet.  

One of the earliest attempts to automate rumor detection 

was undertaken by [12], in which the effectiveness of 

different feature categories was studied for identifying 

rumors. The proposed system can track known rumors but 

cannot detect new rumors on Twitter. 

The first attempt to detect new rumors has been performed 

in [13], which uses the fact that users respond to rumors by 

asking questions about them, which was also reported by 

[14]. The proposed system utilizes conventional machine 

learning for detection of rumors. However, their system 

relies on handcrafted content features. Moreover, it operates 

at the event-level mode.  

Another interesting work on automatic rumor detection 

based on conventional machine learning on Twitter is [15], 

which states that although users' stances used in [13] offers 

an indicator for detecting rumors, but detecting these stances 

itself is a big challenge. The proposed system leverages a few 

interesting and lesser-used features; however, it detects 

unverified stories and does not detect rumors in the context 

of false information. Moreover, the proposed system operates 

at the event-level, which was discussed before. 

One of the first works in detecting rumors leveraging deep 

learning techniques is [7], which proposes to use RNN 

architecture, containing LSTM and GRU cells in detection of 

rumors. The proposed system considers content data, but it 

operates at the event level. 

Yu et al. [16] have also employed deep learning techniques 

for rumor detection. They used Convolutional Neural 

Network (CNN) architecture, reasoning that the proposed 

system will be more suited due to the fact that RNN 

architecture is more biased towards the last elements of input 

while the indicators of rumor are not necessarily in the last 

elements of the input. They also point out that RNN 

architecture requires a lengthy input for reliable detection, 

while many microblog posts are short. Although their work 

is innovative in that few works are using CNN to detect 

rumors, but their system, like the ones before, works at the 

event level. 

The closest research to our work is [17], which was later 

refined and presented as the baseline for RumourEval 2019 

[18], and we also consider this research as the baseline for 

our work. Furthermore, working on this base code and the 

RumourEval framework makes evaluation of the work more 

straightforward and clear. In their work, the authors propose 

a system based on RNN architecture leveraging LSTM cells. 

One significant contribution of their work is that the 

proposed system uses some novel features as the feature 

vector, and it also detects rumors at the tweet level. However, 

their proposed system uses many handcrafted content 

features which makes it more susceptible to deception. In 

addition, it neglects social and profile features which can be 

potentially used for efficient rumor detection. 

Another crucial work similar to our work is [19], which is 

the winner of SemEval-2019 and the state of the art system. 

This system is trained with Twitter data and has an exciting 

innovation that is using fine-tuned word-level embedding 

specific for the task of rumor detection. Unfortunately, due 

to the unavailability of the source code and development 

details of this system, few comments on this work can be 

made. The proposed system again uses many handcrafted 

features that makes their system more susceptible to 

deception. Furthermore, their proposed system relies on 

some machine learning systems that are still in R&D phase 

and are considered as open problems in the field of machine 

learning and natural language processing. To be more 

specific, this work relies on: 1) a system for detection of parts 

of sentences like named entities, verbs, etc.; 2) a system for 

detection of user stances; 3) a system to detect the topic area 

of the rumor. Hence the overall performance of the proposed 

method significantly depends on the performance of these 

underlying systems.  
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Again, a research related to our work is [15] in which we 

used some of the features that they have proposed for the task 

of detection. However, our work is different from [15] in 

some issues. We are trying to detect false rumors contrary to 

their work, which can only detect unverified stories. Also we 

work at the tweet level while their research detects rumors at 

the event-level. 

Another interesting works in automatic rumor detection is 

[20], which takes a novel approach to detect rumors by 

leveraging spatial-temporal rumor aspects in social media. 

Other work is [21] that leverages multi-loss bidirectional 

RNNs for rumor detection. The work reported in [22] is also 

another exciting work in rumor detection that has utilized 

ensemble method for rumor detection. 

Table 1 summarizes some of the most important aspects of 

the more relevant researches to our work. As it can be 

inferred from Table 1, most of the previous important 

researches developed rumor detection models in event level, 

hence they cannot judge about the veracity of each individual 

tweet. Many papers employed handcrafted features which 

results in low generalization in detecting new rumor forms 

and make these systems more prone to deception. Some 

systems used user’s stance as a representative of the crowd 

wisdom about the specified tweet. Just one research has used 

the network and user profile features in detecting rumors. As 

a consequence, the proposed method is designed so that it 

operates in tweet level, it uses nearly all information sources 

including content, profile and network features along with 

users’ stances. This is while the proposed method does not 

inherit the weaknesses of using handcrafted features. 

 

4. Statement of the problem  
In this research we aim to automatically detect rumors in 

Twitter. We attempt to develop a rumor detection system 

which is resilient to deception. Moreover, the system should 

detect rumors at tweet-level. The metadata includes profile 

and network features. Profile features are used to determine 

the user’s credibility, while network features are used to 

show the state of the rumor propagation in the social network. 

While automatic rumor detection has attracted the 

attention of many researchers over the past few years, a huge 

bulk of studies rely on handcrafted features which leads the 

developed models susceptible to deception. In psychological 

studies, deception is defined as an intentional and knowing 

attempt of the writer of a message to create a false deduction 

or belief in the reader’s mind [23, 24]. Humans often do not 

detect fake contents, in most situations. It has been proved 

that people can distinguish a truthful statement from a lie 

with the accuracy of 54% which is just a bit above the random 

decision [25]. This fact highlights the role of automatic 

rumor detection under the intended deception process. When 

a statement is created with the aim of deceiving people, its 

content appearance should mimic a legitimate statement. 

Thus a rumor detection system should detect the veracity 

of a message regardless of its appearance in order to have 

resiliency to deception. The appearance of the message can 

be defined in terms of punctuations, letters cases, image 

inclusion, and so on. Since most of the handcrafted features 

used in rumor detection task are describing the message 

appearance, the resulting models are prone to deception. In 

this study we attempt to propose a model for rumor detection 

which can detect rumors efficiently, while neglecting the 

appearance based features.  

Furthermore, event-level approaches require large volume 

of messages in each topic which is not available in the first 

stages of rumor propagation. Thus, the aim of this research is 

developing a tweet-level rumor detection system that will be 

applicable for early detection. In Twitter, after a user posts a 

tweet, others can reply to it, and it is also possible to post a 

reply to a previous reply, and so on. This results in a tree 

structure of tweets and replies that is called a conversation. 

Each conversation can be broken up into several branches, 

each starting from the source tweet and ending at a tree leaf. 

It is possible to break the conversation into its branches by 

running a depth-first search on the tree, and each time the 

algorithm reaches a leaf, the current branch can be extracted 

by backtracking the steps. 

To better understand the concepts of branch and 

conversation, Figure 1 shows an example, in which a 

conversation is represented in two branches. One branch 

containing the source, User1 and User2 posts and another 

including the source plus User3 and User4 posts. 

 
Table 1. Important aspects of related researches 

 

Research 
Operation 

level 

Using handcrafted 

content features 
Using user’s stance 

Using profile 

features 

Using network 

features 

Yu et al. [1] Event Low Not used Not used Not used 

Zhao et al. [2] Event Medium Low(only inquires) Not used Not used 

Ma et al. [3] Event Low Not used Not used Not used 

Li et al. [4] Tweet High High (all possible stances) Yes Yes 

Kochkina et al. [5] Tweet High High (all possible stances) Not used Not used 

Huang et al. [6] Event None Not used Not used Yes 

Sujana et al. [7] Event None Not used Not used Not used 

Mouli Madhav Kotteti et al. [8] Event None Not used Not used 
only tweet time 

stamps 

Proposed method Tweet None High (all possible stances) Yes Yes 
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Figure 1. Branches of a conversation 

 

5. The proposed method 

In this section, we introduce the proposed method in detail. 

The section begins with the explanation of the system 

architecture and continues with the detail description of each 

individual phase. 

 

5.1. System architecture 

The proposed method is composed of three main phases: 

preprocessing, feature extraction, and modeling. The overall 

architecture of the proposed system is depicted in Figure 2. 

As it is shown in this figure, having a row conversation C, it 

is decomposed initially into the set of branches {b1, b2, … 

bk} where each branch bi is composed of the sequence of 

tweets ti,1, ti,2 , …., 
, ii b

t  in which ti,j is the ith tweet of the jth 

branch. Then different features are extracted from the tweet 

contents and metadata. After that feature vectors can be used 

to train the model in the training phase and predicting the 

veracity as label L(C) in the testing phase. 

 

5.2. Preprocessing  

Due to the tree’s nature, the conversation data processing 

with a neural network is particularly challenging. To combat 

this challenge, some researches, such as [5, 9], suggested 

representation of conversation in terms of its branches. 

Therefore, the conversation is fed to the network branch by 

branch. Figure 3 shows the prepressing phase, in which 

branches b1 to bk are first extracted and tweets of each 

branches are then extracted in terms of ,1 ,
,...,

i
i i b

t t  for each 

bi where 1 i k  . In this notation, k is the number of 

different branches in C and 
ib is the number of tweets in 

branch bi. 

 

5.3. Feature extraction  

Feature extraction phase is illustrated in Figure 4. For each 

tweet ti,j, the corresponding network, profile and content 

features are extracted respectively and concatenated to form 

the overall tweet feature vector 
,i jt . The network and profile 

features are characterizing the social context of the tweet and 

content features are representing the text of the tweet itself. 

The feature vector associated with tweets of a branch are then 

concatenated to form the branch feature vector 

,1 ,
{ ,..., }

i
i i i b

b t t and a conversation is finally represented as 

a set of branch feature vectors (i.e. 
1{ ,..., }kC b b ). One of 

the innovations of our work is the novel feature set proposed 

for detection of rumors. Although many of these features 

have been used before in rumor detection, we have not seen 

them used together in other previous works. The proposed 

method also relies on user’s stances based on the fact that the 

users' reactions to rumors are different from non-rumors, 

which was first pointed out in [10]. 

An important aspect of the proposed feature set is that we 

use word and sentence level embeddings for content feature 

extraction which makes the model more resilient to user 

deception. 

The feature set we use can be described in the following three 

categories: 

1. Profile features (the features of the user who posted the 

tweet): 

 Number of followers 

 Number of followings 

 Whether the account is verified or not 

 Number of total tweets 

2. Network features (the features related to state of the 

propagation): 

 Number of retweets of the tweet 

 Number of likes of the tweet 

 Whether the tweet is the source or response 

 The stance of each tweet towards the source tweet with 

values of Supporting, Denying, Querying, and 

Commenting 

3. Content features (the features of the tweet itself by 

dense vectors leveraging word and sentence level 

embeddings) 

 Avg2Vec, used in [5, 9], uses Google's word2vec to 

create a sentence level embedding for tweets by 

averaging between the word level embedding vectors of 

the words in the tweet. 

 Universal Sentence Encoder (USE), which is a sentence 

level embedding also introduced by Google. 

It is also worth mentioning that the features used in our 

work can be categorized in two set: 

1. Manually extracted features containing profile and 

network features; 

2. Automatically extracted features containing content 

features. 
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Figure 2. System architecture 

 

 
Figure 3. Preprocessing phase 

 

   
Figure 4. Feature extraction phase 

 

6. Modeling 

The core of the proposed system is the modeling phase that 

is comprised from training and testing phases. In training 

phase, the branch feature vectors along with the source tweet 

label are feed to RNN for learning. After training, the learnt 

model can be deployed in automatic rumor detection system 

as it is demonstrated in Figure 5. In this phase, given a 

conversation feature vector, the feature vector of each branch 

is extracted and inputted to RNN model. After predicting the 

corresponding labels for individual branches, a voting 

module is used to determine the final label for the 

conversation as the majority label predicted by its branches.  
We employed RNN deep learning architecture because the 
nature of the input data in the underlying system is a 
sequence. It means that we want the learning system to 
recognize the patterns and relations between consecutive 
words, sentences and tweets in processing a conversation. 
Since RNN is memory-based architecture and learns 
sequences well, it is appropriate for our purpose. 
Furthermore, RNNs support learning sequences with variant 
lengths which is the case in rumor detection systems for 
branches. Since the tweet branches may form as long 
sequences, memory based unites such as LSTM and GRU 
are needed for learning these sequences. Using GRUs is 

more preferable because of their speed and efficiency and 
also to give the model less space for overfitting, which 
contributes to the overall model performance. We also 
leverage bidirectional GRUs for two reasons: 1) giving the 
model more information at each time step; 2) reducing the 
model's bias towards the end of sequence by processing the 
sequence from both directions. 

The detail architecture of RNN units are revealed in 
Figure 6. The model is comprised of one bidirectional GRU 
Layer, and the output of this layer is passed to two dense 
layers with ELU (exponential linear units) function as their 
activation [26]. It is worth mentioning that before each layer, 
the input of that layer is normalized with the batch 
normalization layer. This has two effects: 
1.  The data is scaled and the training phase's noise is 

reduced, where in turn makes the training phase faster 
and more stable; 

2. By feeding data in different batches, it has a slight 
regularization effect on the model, which reduces the 
chance of overfitting. 

For improving the generalization of the network and avoid 
overfitting, L2-regularization mechanisms are adopted. The 
complexity of the network and subsequently the overfitting 
issue are controlled in this way. 
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Figure 5. Modeling phase 
 

 
 

Figure 6. The architecture of the RNN unit 

 

Due to social networks' dynamic nature, the rumor 

detection model should be adapted and retrained many times 

after deployment. To achieve this goal, we have leveraged 

CuDNN libraries in designing the model in order to improve 

the time complexity in the training phase. The use of CuDNN 

has one big downside: the loss of some layer features like 

dropout in GRU layers, but it helps a lot in the model's 

generalization. Therefore, there is a tradeoff between the 

time complexity and the generalization and hence we took 

the middle way through utilizing CuDNN. 

 

7. Experimental evaluations and results 

In this section after describing the evaluation configurations 

including the dataset specification and the system setup, the 

proposed rumor detection system is evaluated in terms of 

macro F-Score, time efficiency and deception resiliency. The 

experimental results are also compared to the results of the 

state of the art methods.  

 

7.1. Dataset 

The dataset used in this research is associated with 

RumorEval 2019 competitions which is a refined and 

updated version of the Pheme dataset [27]. This dataset is 

comprised of conversations categorized into topics, each 

topic containing conversations with one of the below labels: 

1. True: Conversations that are spreading verified 

information; 

2. False: Conversations that are spreading rumors; 

3. Unverified: Conversations that are spreading unverified 

information that was neither verified nor denied up to the 

time of their retrieval. 

Table 2 shows the distribution of conversations and 

branches between the training, development, and testing sets, 

while Table 3 and Table 4 show the distribution of labels in 

conversations and branches in different sets. Note that the 

development dataset in RumoreEval context is equivalent to 

validation dataset known in machine learning literature. 

 
Table 2. Distribution of conversations and branches 

 

 Train Development Test 

Conversation 297 28 56 

Branch 3245 768 1010 

  

Table 3. Label distribution in conversations 
 

 Train Development Test 

True 137 8 22 

False 62 12 30 

Unverified 98 8 4 

 
Table 4. Label distribution in branches 

 

 Train Development Test 

True 1470 124 341 

False 549 514 558 

Unverified 1226 130 111 

 
7.2. Setup 

All of the experiments were run on a single system with the 

same hardware setting for all of them. Table 5 shows the 

system details. 
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Table 5. System setup 
 

Processor Intel Core i7 6700HQ 

RAM 16GB DDR4 2133MHz 

GPU Nvidia GeForce GTX 980M 

 

One of the most important parts of every deep learning 

model is the hyper parameters setting presented in Table 6. 

Hyper parameters include parameters that define the model 

and cannot be learnt by the model during the training phase. 

In order to find the optimal hyper parameters, we leveraged 

Tree-structured Parzen Estimator (TPE) algorithm [11] 

implemented in python library called Hyperopt which helps 

automating some of the tasks in hyper parameter search and 

model tuning. TPE is a sequential model-based optimization 

approach, which sequentially estimates the conditional 

probability density function of the objective function based 

on hyperparameters. In each iteration, the next set of 

hyperparameters are configured based on their evaluation on 

the estimated probability model and the model is refined 

accordingly. Sequential model-based optimization is a 

formalization of Bayesian optimization which is more 

efficient than random or grid search in finding the best set of 

hyperparameters [11]. Table 6 shows the best hyper 

parameters found by TPE for the proposed system. 

 
Table 6. Hyper parameter setting 

 

Hyper Parameter Value 

Number of GRU Layers 1 

Number of GRU Units 400 

Number of hidden dense layers 2 

Number of dense units in 1st dense layer 600 

Number of dense units in 2nd dense layer 400 

Training Steps 50 

L2 Regularization Parameter in 1st dense layer 1e-4 

L2 Regularization Parameter in 2nd dense layer 1e-4 

L2 Regularization Parameter in output layer 1e-6 

L2 Regularization Parameter in GRU layer 1e-6 

Minibatch size 64 

Optimization Algorithm Adam 

 

7.3. Overall performance 

Table 7 shows the results of evaluation metrics of the 

proposed method as well as those in [5, 9] as the baseline. 

The performance is measured in terms of precision, recall, 

and F1-score. It can be deduced from the table that our model 

outperforms the baseline in the overall metric used by the 

RumourEval 2019 competitions (i.e., Macro-F1 Avg.). A 

more detailed look shows that the proposed method 

outperforms the baseline in the rue class but slightly lags 

behind it in the other classes. It is due to low false negative 

rate of the proposed method which is a critical necessity of a 

rumor detection system. The performance of the baseline can 

be attributed to many features, but as we will show later, this 

gives their model a significant disadvantage regarding 

resilience to deception.  

The results of all RumorEcval 2019 participants can be 

found in [9]. As it can be inferred from the table, the overall 

performance of the proposed method is better than other 

models. There are also some works like [4] that uses some 

auxiliary data for training. Utilizing auxiliary dataset gives 

the model some advantages and not only makes the 

comparison a little unfair, but also we believe it threatens the 

scalability of the method. When the model is trained and 

evaluated based on the auxiliary datasets, its performance is 

not guaranteed for rumor detection in other environments in 

which this data volume is not available.  

 
Table 7. Comparison to the baseline 

 

 Class Precision Recall F1 

Baseline [5, 9] 

True - - 0.31 

False - - 0.53 

Unverified - - 0.17 

Macro Avg. - - 0.33 

Proposed 

method 

True 0.85 0.37 0.51 

False 0.48 0.45 0.47 

Unverified 0.05 0.25 0.08 

Macro Avg. 0.46 0.36 0.35 

 

Table 8 shows the performance comparison of the 

proposed method with the most successful related models, 

which operate on RumorEval 2019 dataset. 

  
Table 8. Comparison to other models 

 

Model Name Macro-F1 score 

Baseline [5, 9] 0.33 

VANTA and Aono[12] 0.32 

WeST (CLEARumor) [13] 0.28 

GWU NLP LAB [14] 0.26 

BLCU NLP [15] 0.25 

FINKI NLP (reported in [9]) 0.33 

EventAI [4] 0.58 

Proposed method 0.35 

 

7.4. Resilience to deception 

Since many rumors are created with the aim of user 

deception, the appearance of the claim is designed to mimic 

a legitimated news post. A successful rumor detection 

system should not be sensitive to simple apparent signs. In 

the proposed method, we tried to develop a model that is 

resilient to these changes. To evaluate the models' resilience 

to deception, we propose changes to the tweet text, keeping 

in mind that it is entirely in the user's control and can be 

changed easily without changing the tweet's overall 

meaning. The applied changes, enumerated below, are 

minimal and do not affect the meaning of the text: 

1. Removing the periods or adding one if does not exists 

any; 

2. Removing question marks or adding one if does not 

exists any; 

3. Removing exclamation mark or adding one if does not 
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exists any; 

4. Removing pictures or adding one if does not exists any; 

5. Changing the capital ratio of the characters to a random 

value. 

We assume that these changes can simulate the changes 

that a rumor creator made intentionally in the rumor content 

so that it looks like a normal verified claim. These changes 

are chosen regarding the experiences reported in [5, 9], 
which is the only model that shared its details and code. After 

applying the changes on the test set, both models trained on 

the original training set (the proposed model and the baseline 

model) were rerun on the modified test set, and the results 

were compared to the original run. Since our model ignores 

all the mentioned handcrafted content features due to the use 

of embeddings for extracting features from the text, these 

changes do not affect the model's performance. In contrast, 

the predicted labels in works reported in [5, 9] were changed 

in 34% of the conversations after applying the modifications. 

It can be inferred from the experiment that even simple text 

changes can easily mislead the baseline model. 

Since the described issue arises due to the employment of 

handcrafted features, it seems that other researches that 

model the rumor based on these features (e.g., [4]) also suffer 

from the similar weaknesses. In fact, current experiment 

compares the resiliency of two categories of approaches to 

deception, the models based on automatic feature extracted 

and the models based on handcrafted features. To this end, 

the proposed method and the baseline are selected as 

representatives for these two categories of approaches, in the 

absence of source code of other related methods. 

This test shows the downside of handcrafted features, 

especially for content features, since they are in the control 

of the user and can be changed easily. For that reason, all the 

content features used in the proposed method are 1) the ones 

that are determined by the network and are not controlled by 

the user, or 2) the ones that are extracted using methods like 

embedding that focuse on the meaning instead of the looks 

which minimizes the user's influence on the model. 

 

7.5. Time efficiency  

Table 9 shows the training time of the proposed method and 

the baseline model. It can be seen that our model outperforms 

the baseline significantly in training time, giving it a valuable 

advantage for deployment. This means it saves much time in 

training, which leads to savings in resources and capital 

making it more suitable for deployment. 

Although, as discussed before, our model cannot use 

dropout in the GRU layer, which can give it a significant 

advantage in generalization, we showed that it outperforms 

the baseline while being much faster in training. 
 

Table 9. Time efficiency  
 

Model Training Time (seconds) 

Baseline [5, 9] 2406.13 

Proposed method 40.25 
 

7.6. The role of profile and network features 

Another exciting aspect that needs discussing is the proposed 

feature set. Regarding content features, we have already 

shown that using embeddings instead of handcrafted features 

gives our model a significant advantage regarding resilience 

to deception. Regarding other features, it can be deduced that 

all of the profile and network features are a part of the social 

network and they are out of the control of the user, especially 

for trending topics, and one or a group of users cannot 

meaningfully change them to mislead the model. 

We can also show that the proposed non-content features 

are needed to achieve the results shown in Table 7. Table 10 

compares the model's performance using the proposed 

feature set to the model using only the content features. It 

shows that the full feature set outperforms the content 

features, which in turn shows that network and profile 

features provide essential information for rumor detection. 

Another important aspect of our model is the use of GRU 

cells instead of LSTM. Although LSTMs are more common 

in RNN architecture, as discussed before, the use of GRU 

leads to reducing the training time and increasing the 

generalization.  

 
Table 10. The role of different feature sets 

 

Feature Set Macro-F1 Avg. 

Content Features only 0.31 

Full Feature Set 0.35 

 

Table 11 compares the proposed method with the same 

model with LSTMs instead of GRUs. It can be seen that the 

GRU model slightly outperforms the LSTM with fewer 

parameters and much faster run time. 

 
Table 11. The comparison of GRU and LSTM unites 

 

Model Macro-F1 

LSTM based model 0.34 

Proposed method (GRU) 0.35 

 

8. Conclusion 
While a considerable research effort has been done recently 
to develop automatic rumor detection models, most of prior 
approaches have had the problem of relying on handcrafted 
features. Using these features make the model more 
susceptible to deception and reduces the scalability of the 
system. Moreover, a great deal of work is devoted to event 
level rumor detection which is not applicable for early 
detection and prevention in real world. This research 
proposed a rumor detection system based on RNN model and 
GRU cells for specifying the veracity of tweets in Twitter 
network. One of the most important innovations of this 
research is a novel feature set that avoids the extraction of 
handcrafted content features and uses network and profile 
features that are out of users’ control. Considering these 
features makes the model more resilient against deception. 
We focused on efficiency and scalability, especially in the 
training phase, keeping in mind that social networks' 
dynamic nature requires the model to be retrained many 
times to adapt to the users and network behavioral changes, 
making our model more suitable for deployment.  

A number of experiments were conducted to analyze the 

effectiveness of the proposed rumor detection system. 

Experimental results show that the proposed method 

outperforms most similar research in terms of macro F-score. 
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It also revealed that the proposed system is less prone to 

deception. Furthermore, the results indicate the superiority 

of the proposed method comparing the baseline in terms of 

time efficiency. Consequently, the proposed rumor detection 

system is suitable for being applied efficiently in early tweet-

level rumor detection task with remarkable tolerance to 

deception. 

As the future work in our research direction, we tend to 

use pertained pre-trained contextual deep neural networks 

for both content embedding and tweet classification tasks in 

order to improve the overall performance. 
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