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Abstract: Few-shot learning assumes that we have a very 

small dataset for each task and trains a model on the set of 

tasks. For real-world problems, however, the amount of 

available data is substantially much more; we call this a 

medium-shot setting, where the dataset often has several 

hundreds of data. Despite their high accuracy, deep neural 

networks have a drawback as they are black-box. Learning 

interpretable models has become more important over time. 

This study aims to obtain sample-based interpretability using 

the attention mechanism. The main idea is reducing the task 

training data into a small number of support vectors using 

sparse kernel methods, and the model then predicts the test 

data of the task based on these support vectors. We propose 

a sparse medium-shot learning algorithm based on a metric-

based Bayesian meta-learning algorithm whose output is 

probabilistic. Sparsity, along with uncertainty, effectively 

plays a key role in interpreting the model's behavior. In our 

experiments, we show that the proposed method provides 

significant interpretability by selecting a small number of 

support vectors and, at the same time, has a competitive 

accuracy compared to other less interpretable methods. 

Keywords: Bayesian Meta-learning, Medium-shot 

Learning, Sample-based Interpretability, Sparse Kernel, 

Attention 

 

1. Introduction 

So far, two approaches for deep learning have received more 

attention. The first approach is deep learning on a large 

dataset, which has been more successful than other machine 

learning methods in image, language, and signal processing 

[1]. In deep learning, as it is difficult for humans to analyze 

a huge amount of data, one tries to train deep neural networks 

with it so that the information in the data could be exploited 

through interaction with the model. We need a massive 

amount of data to use deep learning, but in most real-world 

problems the amount of labeled data is not enough to train a 

deep model. The second approach is known as few-shot 

learning [2]. It aims to make deep learning models like 

humans and learn new concepts well by seeing a few 

examples [3].  
In few-shot learning, the assumption is that the number of 

training data is very small. For example, in few-shot 
classification, the number of data for each class ranges 
between one and five. This assumption is contrary to the fact 
that in real-world problems, we easily have more data for 
each task, or it is even possible for the user to provide a few 
hundred samples. Therefore, many practical problems such 
as classification of medical images [4] and time series 
prediction are naturally in the medium-shot setting. Medium-
shot learning is an extension of few-shot learning in terms of 
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the number of data. In recent years, meta-learning methods 
have shown remarkable performance in solving few-shot 
learning problems [5]. In this paper, we consider meta-
learning methods for the case of medium-shot setting. 

Deep neural networks have attracted widespread attention 
due to their ability to obtain high accuracies in various 
problems. However, there is a serious debate about them 
related to interpretability [6]: to what extent and on what 
basis can we trust the response of neural networks? Because 
the nature of deep networks is black-box, many methods 
have been proposed to interpret neural networks and their 
decision-making [7]. In problems where the model has to 
make a decision, the user wants to know why the model has 
made this decision. The decision of the model can be 
described in different ways. One of these methods is that the 
model determines based on the data it has made its decision. 
Therefore, the user can determine the quality of a decision by 
examining the samples that the model has selected.  

The medium size of the data in the medium-shot setting 
provides us with the possibility and opportunity of 
interpretation based on the evaluation of the entire training 
data of the task. Our goal is to train a model in such a way 
that it determines which data have a more important role in 
its decision-making, and we consider these data as support 
vectors. Our idea to achieve this kind of interpretability is to 
follow the perspective of attention in deep learning. We want 
to learn which data to pay more attention to. For this purpose, 
we present an interpretable meta-learning algorithm. We start 
our work with Deep Kernel Transfer (DKT), a metric-based 
meta-learning algorithm [8]. DKT is a Gaussian process with 
a deep kernel, so it combines the representational power of 
neural networks and the reliable uncertainty of Gaussian 
processes simultaneously. To implement the attention 
mechanism, we use sparse kernel methods and extend the 
DKT algorithm to the medium-shot setting. By sparsifying 
the expansion of the decision function, we can have sample-
based interpretability with the selected data as support 
vectors. The resulting algorithm, Sparse DKT, reduces the 
data to a small number of support vectors for each task. In 
the Sparse DKT algorithm, only the support vectors at the 
test time directly influence the prediction of the test data 
label. The experimental results show that Sparse DKT, in 
addition to interpretability, has comparable accuracy to other 
state-of-the-art meta-learning methods, including the DKT 
algorithm. 

The main contributions of this article are: 

1. Introducing learning with the medium-shot setting and 

utilizing deep meta-learning algorithms for it; 
2. Learning a sample-based interpretable model using the 

attention mechanism; 
3. Applying sparse kernel methods for determining a small 
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subset of training data as support vectors. 
The remaining structure of this article is as follows: in 

section 2, the basic concepts about meta-learning, 
interpretability, attention perspective, sparse kernel, and 
related works are described. In section 3, the proposed 
algorithm is presented. The evaluation of the presented 
algorithm in classification will be in the section 4. In section 
5, conclusion and future works are presented. 

 

2. Preliminaries 

2.1. Meta-learning 
Meta-learning is one of the areas that has received attention 
in recent years [9-34]. In classic learning, in order to learn a 
task, the model is trained on the task data in such a way that 
it has a good generalization of the new data. The objective of 
meta-learning, also known as learning to learn, is to go to a 
higher level and understand how to solve tasks rather than 
just learning a single task (Figure 1). Humans face with 
different issues over time and develop better ways to deal 
with new ones by drawing on their experiences. Similar to 
humans, we should train the model on a set of tasks from the 
same distribution sequentially in meta-learning. By 
completing each task, we acquire metadata that the model can 
use to learn a new, unseen task more effectively and quickly. 

 

A. Meta-learning setup 
In meta-learning, as shown in Figure 2, instead of one task, 

we have a set of tasks, ℳ = {𝒟𝜏}𝜏=1
𝑇 , which are from the 

same distribution. According to Figure 2, for each task, 

indexed by τ, we have the data 𝒟𝜏 = {𝑋, 𝑦}, which can be 

divided into two parts, the train/support set, 𝐷𝜏
𝑡𝑟 , and the 

test/query set, 𝒟𝜏
𝑡𝑠. The test data that is used for meta-test is 

denoted by the asterisk symbol as 𝒟∗ = {𝒟∗
𝑡𝑟 , 𝒟∗

𝑡𝑠}.  
 

B. Few-shot learning 
Few-shot learning refers to tasks with a few training data. For 
example, in the few-shot classification represented as N way 
- K shot, N is the number of classes in the task, and K (usually 
considered 1 or 5) training samples are available for each 
class (Figure 2 shows 3 way- 2 shot classification). Few-shot 
learning aims to make deep neural networks capable of 
learning a new concept by observing a small number of 
training samples. The small amount of training data makes it 
infeasible to train the deep neural network, but the meta-
learning approach has achieved significant improvements in 
few-shot learning. Deep meta-learning learns a model that 
can solve a new task despite the small training data. Medium-
shot learning is a generalization of few-shot learning, so we 
employ the meta-learning framework.

 
 

Figure 1. Difference between a) learning and b) meta-learning. In learning, training on a task data is done to generalize new data from the 

same dataset. In meta-learning, we train the model on a set of tasks sequentially. By learning to learn, we can solve the new task more 

efficiently and quickly. 

 

 
 

Figure 2. An example of a meta-learning setup for few-shot learning. The set of tasks ℳ = {𝒟𝜏}𝜏=1
𝑇  is divided into two parts, meta-train 

and meta-test. The data of each task has train and test sets, 𝐷𝜏
𝑡𝑟 and 𝐷𝜏

𝑡𝑠 respectively 
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2.2. Interpretability in Deep Neural Networks 

In deep learning, there are two main classes of approaches to 

explain the prediction of a model: feature-based and sample-

based. In the feature-based approach, features from the input 

image that have a greater impact on the model's prediction 

are identified [35, 36]. The idea of [36] in few-shot learning 

has been applied in [37] to provide interpretable feature-

based meta-learning.  

In the sample-based approach, the data that have the most 

impact on the network's decision-making for test data are 

identified as samples to interpret its prediction (Figure 3) 

[38, 39]. ProtoAttend [40] trains a network that compares the 

input data with training data to predict it based on the 

attention mechanism and learn an attention weight that 

demonstrates the degree of similarity between them. To 

interpret the model's decision for the input data, the data 

whose weight is not zero affect the model's prediction and 

are selected as prototypes. Because there are a lot of data in 

deep learning and it is difficult to compare them all, a subset 

of the data is typically chosen as a candidate set, and 

attention weight is only learned for the candidate set. In 

contrast, the number of data is not large in medium-shot 

setting, and since we can evaluate all the training data, 

sample-based interpretability is possible. In order to achieve 

this, we proceed according to the attention point of view. 

 

 
 

Figure 3. In sample-based interpretability, the training data that 

the model used to determine the label for the input data are 

specified. 

 

A. Sample-based interpretability through Attention 

Using the attention perspective, we can learn a model with 

sample-based interpretability [41]. Simply it means to 

compare the input data with the training data and give greater 

weight to the training data that is more similar to the input 

data when determining its label. To compare the data 

properly, we need to learn a metric space in which similar 

data are placed close together, and dissimilar data are far 

apart. This method is used in the metric-based meta-learning 

algorithms presented for few-shot learning [14–16]. In these 

papers, since the number of training samples is small, there 

is no need for sample-based interpretability, and the main 

objective is to increase accuracy. Since we have more data in 

medium-shot learning, sample-based interpretability 

becomes important; in some applications, explaining the 

model's behavior with a small number of samples makes it 

easier for humans to understand and evaluate the model. 

 

B. Attention and kernel methods 

The attention mechanism and kernel methods are closely 

related [42–45]. It can be said that the idea of attention in 

deep learning is derived from kernel methods [42]. Kernel 

methods have a kernel function 𝑘(𝒙, 𝒙′) that determines the 

degree of similarity [46]. Linear kernel, polynomial, RBF 

(Radial Basis Function), and exponential are the well-known 

kernel functions. Learning the kernel function corresponds 

to learning its parameters, e.g., in the RBF kernel  

 

𝑘(𝒙, 𝒙′) = 𝑠 ∗ exp{−
1

𝑙
||𝒙 − 𝒙′||

2
}                                  (1) 

 

the parameters 𝝓 = {𝑙, 𝑠} are learned during training. 

In deep kernel learning or DKL [47–50], we first use a 

deep neural network to obtain data representations, then 

apply a kernel function to them. The new deep kernel is  

 

𝑘(𝒙, 𝒙′) = �̃�𝝓(𝑓𝜽(𝒙), 𝑓𝜽(𝒙
′))                                           (2) 

 

where �̃�𝝓(𝒙, 𝒙
′) is the kernel function with parameter 𝝓 and 

𝑓𝜽 is a deep neural network. DKL involves jointly learning 

kernel and network parameters. For example, optimization 

of the parameters in the regression of {𝑋, 𝒚}𝑛=1
𝑁  with noise 

variance 𝜎2 is based on the log marginal likelihood,  

 

𝑙𝑜𝑔 𝑝(𝒚|𝑋) = 
 

1

2
{−𝒚⊤[𝐾 + 𝜎2𝐼]−1𝒚 − 𝑙𝑜𝑔|𝐾 + 𝜎2𝐼| + N𝑙𝑜g(2π)} 

(3) 

where 𝐾 is the kernel matrix on the training data. 

 

2.3. Deep Kernel Transfer 

Deep Kernel Transfer or DKT falls into the category of 

metric-based meta-learning [8]. This class of algorithms tries 

to learn a metric space to compare representations based on 

a distance measure [14–16]. DKT is a combination of 

MAML (Model-Agnostic Meta-Learning) and DKL for few-

shot learning. MAML [21] is based on the idea of [13] 

without using an additional model as a meta-learner, learns a 

meta-parameter as an initialization for the parameters of the 

network. The meta-parameter adapts quickly to the data of 

the new task without overfitting due to a few training data.  

The computational graph of the MAML is shown in Figure 

4a Using SGD (Stochastic Gradient Descent) optimization 

on the task training data, the MAML algorithm obtains task-

specific parameter 𝝓𝜏 from the meta-parameter 𝜽. The inner 

loop (adaptation loop) of the MAML has a parametric form, 

so in the outer loop, we encounter the second gradient of 𝜽 

with respect to the optimization path in the inner loop. 

The idea of DKT is to replace the inner loop computation 

with a Gaussian process, which has a non-parametric form. 

Therefore, as shown in Figure 4b, adaptation to the task is 

eliminated. Similar to the DKL, a Gaussian process is 

applied to the representations. DKT computes the marginal 

likelihood (3) on the data of each task and optimizes the 

parameters 𝜽 and 𝝓. By meta-learning a deep kernel on a set 

of tasks, we have a kernel that can be transferred to a new 
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task without needing adaptation. By replacing the inner loop 

with the Gaussian process, the DKT algorithm provides a 

computational simplification for the MAML. Furthermore, it 

is regarded as a Bayesian meta-learning. In the regression 

and image classification in few-shot settings, DKT has 

achieved higher accuracy than MAML and other few-shot 

learning methods. 

 

2.4. Sparse kernel methods  

SVM (Support Vector Machine) is a popular sparse kernel 

method [51]. The Sparsity of SVM results from zeroing 

coefficient 𝛼 for part of the data during the quadratic 

optimization, which determines a subset of data as support 

vectors. In few-shot learning, the MetaOptNet [30] has used 

SVM to simplify the inner loop of MAML to obtain the task-

specific parameter without SGD optimization and not to 

encounter the second derivative in meta-parameter 

optimization (Figure 4c). 
 

 
Figure 4. Computational graph of a) MAML, b) DKT, c) 

MetaOptNet, and d) Sparse DKT (ours). In a), adapting to the task 

is equivalent to obtaining the task-specific parameter 𝝓𝜏. In b), 

meta-parameters 𝜽 and 𝝓 without adapting to the task are updated 

based on the marginal likelihood of the Gaussian process on the 

entire data. In c), the task-specific parameter 𝝓𝜏 is computed by 

applying SVM to the training data of the task. In d), adapting to 

the task is equivalent to specifying the support vectors, a small 

subset of the task training data 

 

The disadvantage of SVM in the MetaOptNet algorithm is 

that it becomes less effective in sparsifying as the data 

increases. Another disadvantage of SVM compared to the 

Gaussian process [52] is that it is not probabilistic. In 

contrast, the Gaussian process is not inherently sparse; the 

kernel matrix is calculated between the test data and all 𝑛 

training data at test time. Several sparse approximations have 

been proposed to overcome the computational and memory 

complexity in the Gaussian process [53, 54]. Almost all of 

these approximation methods specify a criterion to determine 

the significance of the data and greedily select a subset of the 

data of size 𝑚 ≪ 𝑛 to be used in the kernel matrix 

approximation. The main goal of methods in  [55–59] is to 

reduce the computational complexity of the Gaussian 

process by assuming that there is a set of support vectors. 

The criteria to determine the support vectors in these 

methods are usually considered for adding data to this set, so 

the number of support vectors is defined as a fixed 

hyperparameter. However, since these vectors are supposed 

to have the most impact on the model's prediction, we are 

looking for support vectors to be automatically selected with 

a small number and high accuracy. Additionally, in the 

medium-shot learning, the number of data selected as 

support vectors should depend on the task. Therefore, in the 

proposed algorithm, intending to achieve sample-based 

interpretability using Gaussian processes, we leverage the 

sparse Bayesian approach, which we will explain in the 

following section. 

 

3. Sparse DKT for medium-shot learning 
This section presents our meta-learning algorithm, Sparse 
DKT, for medium-shot learning. To achieve sample-based 
interpretability, we need to determine the importance of data 
in data modeling and prediction. We measure the degree of 
importance with the kernel function, so we use DKT. We 
modify this algorithm to attain sample-based interpretability 
and apply attention to it in two ways: attention in adaptation 
and attention in prediction. Attention in adaptation is 
independent of the test data and is performed only on the 
training data. The Sparse Gaussian process is trained on the 
task data; In other words, it adapts to it, and the result of this 
adaptation is the identification of support vectors.  

In contrast, attention in prediction depends on the test data 
but uses only support vectors from the entire training data. 
Due to the usage of Gaussian processes, we already have 
attention in prediction; that is, support vectors affect test 
label prediction based on how similar they are to it. We 
discuss the proposed algorithm for regression, but it can be 
easily generalized for classification. 
 

3.1. Sparse Gaussian process as Adaptation 

In the sparse Bayesian learning framework, Tipping 

introduces the RVM algorithm (Relevance Vector Machine) 

[60]. The advantage of this algorithm we adopted for our 

proposed algorithm is that it automatically selects the data 

that play the main role in data modeling when adapting to the 

task. 

This algorithm is essentially a Gaussian process. Assume 

that we have data = {𝑋, 𝒚} , including the inputs 𝑋 = {𝒙𝑗}𝑗=1
𝑛

 

and the labels 𝒚 = {𝑦𝑗}𝑗=1
𝑛

. Labels have Gaussian noise 𝜖𝑗 ∼

𝒩(0, 𝜎2) added to latent function 𝑓(𝒙) according to 𝑦(𝒙𝑗) =

𝑓(𝒙𝑗) + 𝜖𝑗. The prior knowledge on the function 𝑓(𝒙) is a 

Gaussian process 𝒢𝒫(𝜇, 𝑘𝝓) with mean 𝜇 and kernel 

function 𝑘𝝓. The mean is usually considered zero. 

We can rewrite the latent function 𝒇 in the parametric form 

𝒇 = 𝐾𝒘 in the equation 𝒚 = 𝒇 + 𝝐. 𝐾 is the covariance 

matrix based on the kernel function 𝑘𝝓(𝒙, 𝒙
′). In the 

Gaussian process, the weight 𝒘 has a Gaussian distribution 

𝒩(0, 𝛼0
−1𝐼), where 𝛼0 is a hyperparameter. In RVM, 

Gaussian distribution 𝑝(𝒘|𝜶) = 𝒩(0, 𝐴−1) is considered 

for weights, where 𝐴 = 𝑑𝑖𝑎𝑔(𝜶) is a diagonal covariance 

matrix. As a result, RVM is a Gaussian process with kernel 
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function: 
 

𝑐(𝒙, 𝒙′) = ∑
1

𝛼𝑖
𝑘𝝓(𝒙, 𝒙𝑖)𝑘𝝓(𝒙

′, 𝒙𝑖)
𝑛
𝑖=1                               (4) 

 

where 𝑘𝝓(𝒙, 𝒙𝑖) is equal to the kernel function that is 

defined based on the training data 𝒙𝑖. 𝑐(𝒙, 𝒙
′) is an expansion 

of the product of values of the kernel function 𝑘𝝓(𝒙, 𝒙𝑖) in 

which all data contribute. The kernel function of the data that 

will be included in the expansion is determined by 

coefficient 𝛼𝑖. When 𝛼𝑖 goes to infinity, the kernel function 

corresponding to 𝒙𝑖 data is removed; as a result, the 

expansion 𝑐(𝒙, 𝒙′) becomes sparse. The covariance matrix 

of RVM can be expressed as  
𝐶 = 𝐾𝐴−1𝐾⊤. 

The next step is that based on Bayes Equation 5, and 

having likelihood 𝑝(𝒚|𝒘) = 𝒩(𝒇, 𝜎2𝐼),  
 

𝑝(𝒘|𝜶, 𝒚) =
𝑝(𝒚|𝒘)𝑝(𝒘|𝜶)

𝑝(𝒚)
                                                 (5) 

 

obtain the posterior distribution of the weight, 
 

𝑝(𝒘|𝜶, 𝒚) = 𝒩(𝝁, Σ) 
 

𝝁 = 𝜎−2Σ𝐾⊤𝒚 
 

Σ = (𝐴 + 𝜎−2𝐾⊤𝐾)−1. 

(6) 

RVM training is similar to Gaussian process training; We 

optimize the logarithm of the marginal likelihood (7) with 

respect to the hyperparameters 𝜶 and 𝜎2. 
 

𝑝(𝒚) = 𝒩(0, 𝐶 + 𝜎2𝐼) 
 

log 𝑝(𝒚) = 
 

−1/2{𝒚⊤[𝐶 + 𝜎2𝐼]−1𝒚 + 𝑙𝑜𝑔|𝐶 + 𝜎2𝐼| + 𝑛𝑙𝑜𝑔2𝜋} 
(7) 

By deriving the Equation 7 with respect to 𝜶 and 𝜎2 and 

setting them equal to zero, optimization equations are 

obtained as follows: 
 

𝛼𝑖
𝑛𝑒𝑤 =

𝛾𝑖

𝜇𝑖
2 

𝛾𝑖 = 1 − 𝛼𝑖Σ𝑖𝑖  
 

(𝜎−2)𝑛𝑒𝑤 =
||𝒚 − 𝐾𝝁||2

𝑛 − Σ𝑗𝛾𝑗
 

(8) 

where 𝛴𝑖𝑖  is the 𝑖-th diagonal component of the covariance 

matrix Σ in (6). 𝛾𝑖 ∈ [0,1] indicates how much the data 

contributed to the determination of 𝑤𝑖 . To get 𝜶 and 𝜎2, we 

can use an iterative algorithm. During training, many 𝛼𝑖 
become infinite, which causes variance and mean 

corresponding to their weights to be zero. When weight 𝑤𝑖  

becomes zero, the kernel function at 𝒙𝑖 does not contribute 

to describing the data so that it can be removed from the 

model. The data that have non-zero weight are considered as 

support vectors. Another method to train RVM is to use the 

Expectation-Maximization algorithm [61]. In this study, we 

use the sequential algorithm proposed in the [62] (The 

authors of [62] published their code in MATLAB, and we re-

implemented it with Python. 

http://www.miketipping.com/sparsebayes.htm). In this 

algorithm, the set of support vectors is initially empty, and 

important data are added to this set sequentially. The 

computational cost of RVM is significantly decreased by 

using this addition method, which is better for learning in the 

medium-shot setting. 

 
3.2. Sparse DKT algorithm 

The Sparse DKT algorithm using RVM as the inner loop, on 

the one hand, is a simplification for the MAML; on the other 

hand, it adds interpretability to the DKT. According to 

Figure 4, the difference between DKT and Sparse DKT is the 

addition of the adaptation loop. Unlike MetaOptNet, in 

Sparse DKT, the parameters of the kernel function are part 

of the meta-parameters and are updated by loss of each task. 

Sparse DKT Pseudocode is given in Algorithm 1. In meta-

training, what is important for us from utilizing the RVM 

algorithm as the inner loop of Sparse DKT is to obtain 𝜶. We 

are interested in learning which data are most important in 

describing the whole data and consequently in the model's 

prediction. The Sparse DKT algorithm selects the data whose 

𝛼 coefficient is not infinite as task support vectors. In the 

outer loop, they are used in the optimization with RVM 

marginal likelihood (7). 
 

Algorithm 1. Sparse Deep Kernel Transfer (Sparse DKT) 

Require: ℳ = {𝒟𝜏}𝜏=1
𝑇  meta-train tasks 

Require: 𝝓 kernel hyperparameters, 𝜽 neural network 
weights 
Require: 𝛽1, 𝛽2 step size 

  while not done do 1: 

      Sample 𝒟𝜏 from ℳ 2: 

      SV= RVM(𝒟𝜏)  //Obtain support vectors of 𝒟𝜏  

      with RVM 
3: 

      //Use marginal likelihood to update parameters 4: 

      ℒτ = −𝑙𝑜𝑔𝑝(𝒚|𝑋,𝝓, 𝜽)    //Eq (7) 5: 

      𝝓 ← 𝝓− 𝛽1∇𝝓ℒτ , 𝜽 ← 𝜽 − 𝛽2∇𝜽ℒτ   6: 

  end while 7: 

function RVM(𝒟)       8: 

    //Automatically select support vectors  

    //of the dataset 𝒟                                                                       
9: 

     Initialize 𝜶 and 𝜎2 10: 

     while not converged: 11: 

         Update 𝝁 and Σ      //Eq (6) 12: 

         Update 𝜶 and 𝜎2    // (8) 13: 

     return  support vectors from 𝒟 for finite 𝛼𝑖    
                  values 

14: 

 end function     15: 

At the meta-test time, for the test task with data 𝒟∗
𝑡𝑟 =

{𝑋, 𝒚} and 𝒟∗
𝑡𝑠, the support vectors of the task are first 

selected from the training data 𝒟∗
𝑡𝑟 by running RVM. In 

addition to the support vectors, the mean and covariance of 

the posterior weight distribution are also obtained, which we 

use in the RVM prediction distribution, 

𝑝(𝑦∗|𝑋, 𝒚, 𝒙∗) = 𝒩(𝜇∗, 𝜎∗
2) 

 

𝜇∗ = 𝒌∗𝝁,𝝁 = 𝜎−2Σ𝐾𝑚𝑛𝑦 
 

𝜎∗
2 =𝜎2 + 𝒌∗Σ𝒌∗, Σ = (𝐴 + 𝜎−2𝐾𝑚𝑛𝐾𝑛𝑚)

−1 

(9) 

where 𝒌∗ is the covariance between 𝒙∗ ∈ 𝒟∗
𝑡𝑠 and 𝑚 

support vectors. 𝐾𝑚𝑛 is the covariance between support 

vectors and training data. 
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4. Experiments 

We run classification tests using common datasets in few-

shot learning in a medium-shot setting to evaluate the Sparse 

DKT algorithm. The number of samples has been chosen in 

such a way that we get out of the few-shot mode. We used 

PyTorch and GPyTorch [63] for the implementation of the 

Sparse DKT. 

To compare Sparse DKT with DKT, Feature Transfer, 

MAML, and MetaOptNet, we have considered Omniglot, 

CUB-200, and miniImageNet dataset for image 

classification (Figure 5). 

  

 
 

Figure 5. Images from datasets used in classification 

 

Omniglot consists alphabet of 50 languages and has 20 
hand-written samples for each character. CUB-200 contains 
200 classes of different bird species. MiniImageNet has 100 
classes which is a subset of ImageNet classes. Each class has 
600 images. We run 2-way and 5-way classifications test. As 
in the DKT paper, classification is done one-versus-rest 
(Figure 6), i.e., for each class, we consider a binary Gaussian 
process model with labels {-1,1} and apply the sigmoid 
function to its output in order to have a probabilistic 
interpretation (for MetaOptNet, we also used binary SVMs 
for multi-class classification in experiments). The model 
whose output has the highest probability determines the class 
of the test data. We used a linear kernel in experiments and 
a deep neural network that has a similar architecture to the 
network used in the DKT paper (Figure 7). 

In Feature Transfer, a network and classifier are first 
trained on samples for the training classes. When fine-
tuning, the network parameters are fixed, and a new classifier 
is trained on the test classes. MAML depends on the number 
of gradient steps in the inner loop and has low accuracy at a 
few steps. Increasing the gradient steps also leads to an 
increase in computation and memory consumption. In order 
to be able to test MAML in 10 steps adaptation, we used its 
first order approximation [28]. Table 1 shows the result of 
Omniglot 5 way- 15 shot classification. 

 
 

Figure 6. One-versus-rest scheme. Each model is a binary 

classifier for input data with labels {-1, 1}. For a probabilistic 

output, a sigmoid function 𝜎 is applied to it. 

 

 
 

Figure 7. The CNN used as a backbone for classification. It 

consists of 4 convolutional layers, each consisting of a 2D 

convolution, a batch-norm layer, and a ReLU non-linearity. 

 

Table 1. Average accuracy and standard deviation on Omniglot 

classification with average number of support vectors 
 

SVs Omniglot 5 way - 15 shot Method 

- 99.36±0.08 Feature Transfer 

- 95.80±0.312 MAML 

75 99.52±0.211 DKT 

13 99.46±0.141 MetaOptNet 

6 99.33±0.1 Sparse DKT 

 

Sparse DKT is more accurate than MetaOptNet and close 

to DKT, while DKT uses all training data of 5 classes as 

support vectors for its prediction. MAML can achieve more 

accuracy at the cost of more adaptation steps. Table 2 shows 

the classification results of CUB and miniImageNet. Due to 

the limited resources in this section, we had to run 2-way 

classification. The number of task training data in CUB and 

miniImageNet is 50 and 125, respectively. Feature transfer 

overfits in the few-shot setting. However, it was able to get 

higher accuracy than other methods in our experiments. We 

believe that the accuracy of Feature Transfer decreases when 

the new task's classes diverge more from the training classes. 

We leave further investigations to future works. 

Sparse DKT is more interpretable and has higher accuracy 

than MetaOptNet, with a smaller number of support vectors. 

The efficiency of MetaOptNet in sparsity decreases with the 

increase of training data due to the weakness of SVM. In 

miniImageNet classification, the proposed method has 

selected 14 support vectors on average from 250 data, while 

MetaOptNet has selected 76 support vectors. Additionally, 

the experiments on these different datasets show that the 

number of support vectors for each application depends on 

intra-class and inter-class similarity. The metric space 

learned by the Sparse DKT to separate classes affects the 

number of support vectors. 

In Figure 8, we have given an example of testing the 

trained model with the Sparse DKT and DKT on a 2 way – 

50 shot classification task from the CUB meta-test dataset. 
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In this task, Sparse DKT has the same accuracy as DKT. In 

Figure 9, task training data are shown, and the data that are 

support vectors have been marked with a red line around the 

image. 

 
Table 2. Average Accuracy and Standard Deviation on CUB and miniImageNet Classification with Average number of Support Vectors 

 

SVs miniImageNet 2 way - 125 shot SVs CUB 2 way - 50 shot Method 

- 93.13±0.530 - 95.23±0.381 Feature Transfer 

- 85.63±0.176 - 92.33±1.069 MAML 

250 92.0±0.4 100 93.98±0.448 DKT 

76 89.70±0.56 33 92.27±1.313 MetaOptNet 

14 91.08±0.913 21 93.75±0.909 Sparse DKT 

 

 
Figure 8. Comparing a) Sparse DKT and b) DKT accuracies on a CUB meta-test task. Sparse DKT has the same accuracy as DKT. 

 

 
Figure 9. Sample-based interpretability of Sparse DKT in CUB 2 way – 50 shot. Support vectors of the two classes (a, b), highlighted 

with a red square, are the basis of the model's prediction. 
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Figure 10. Comparing kernels of a) Sparse DKT and b) DKT: a) the most similar support vectors to test image, b) the most similar 

training data to test images. The green line above the images on the right, shows that they have the same label as the test image. 

 

We compared the learned kernels of Sparse DKT and 

DKT in Figure 10. For Sparse DKT similarity of test images 

to support vectors is computed. In each row, the images are 

sorted in the order of the most similar from left to right. The 

green and red lines on top of the right image, show whether 

the labels of the right images are the same or different from 

those of the test image. The vertical green line in the test 

image indicates that the model accurately predicted the label. 

The Sparse DKT kernel can detect the similarity well, even 

though the number of support vectors is very small.

 

5. Conclusion 

In this study, we introduced medium-shot learning as a 

generalization of few-shot learning for real-world 

applications. Considering that interpretability in deep 

learning models is becoming increasingly more important, 

especially in sensitive scenarios, sample-based 

interpretability can be easily obtained by reducing the data to 

a small number of support vectors in medium-shot learning. 

We considered sparse kernel methods from an attention-

based perspective to have sample-based interpretability. The 

proposed Sparse DKT algorithm leverages Sparse Gaussian 

processes in the meta-learning framework and selects the 

most important training data as support vectors. At the test 

time, it makes the predictions based on support vectors. 

The impact of marginal likelihood in the trade-off between 

accuracy and the number of support vectors, as well as the 

impact of more task training data, is one of the key areas for 

future work. Using improved versions of RVM [64, 65] 

would be effective in increasing the accuracy of Sparse DKT. 

Since SVM in MetaOptNet is less effective in sparsifying, 

When data increases, we can use GLASSO [66], which also 

has a probabilistic solution, as an alternative to SVM in 

MetaOptNet. Another future work is investigating 

variational sparse Gaussian processes [67–70] that use 

variational inference for increasing the lower bound of the 

marginal likelihood algorithm. We can use the combination 

of point processes [71] with it to determine the support 

vectors in sparse variational Gaussian processes. 
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