
Journal of Computer and Knowledge Engineering, Vol. 5, No. 2, 2022. (31-44) 31

DOI: 10.22067/cke.2022.75815.1055

A Deep Neural Network Architecture for Intrusion Detection in

Software-Defined Networks*
Research Article

Somayeh Jafari Horestani1 Somayeh Soltani2 Seyed Amin Hosseini Seno3

Abstract: For more comprehensive security of a computer

network as well as the use of firewall and anti-virus security

equipment, intrusion detection systems (IDSs) are needed to

detect the malicious activity of intruders. Therefore, the

introduction of a high-precision intrusion detection system is

critical for the network. Generally, the general framework of

the proposed intrusion detection models is the use of text

classification, and today deep neural networks (DNNs) are

one of the top classifiers. A variety of DNN-based intrusion

detection models have been proposed for software-defined

networks (SDNs); however, these methods often report

performance metrics solely on one well-known dataset. In

this paper, we present a DNN-based IDS model with a 12-

layer arrangement which works well on three datasets,

namely, NSL-KDD, KDD99, and UNSW-NB15. The

layered layout of the proposed model is considered the same

for all the three datasets, which is one of the strengths of the

proposed model. To evaluate the proposed solution, six other

DNN-based IDS models have been designed. The values of

the evaluation metrics, including accuracy, precision, recall,

F-measure, and loss function, show the superiority of the

proposed model over these six models. In addition, the

proposed model is compared with several recent articles in

this field, and the superiority of the proposed solution is

shown.

Keywords: Intrusion Detection, Software-defined Network,

Deep Learning, Network Security

1. Introduction

In computer systems and networks, the attackers exploit

security vulnerabilities to attack the network; therefore, there

is a need for some methods to detect intrusions into a

computer system or network. An intrusion detection system

(IDS) is the software or hardware that detects and reacts to

intrusions. An IDS prevents illegal access and tampering

with the resources of a computer system or network [1-3].

Generally, the IDS monitors the activities of the host

computer or the entire network and reports the violations of

management and security policies to the network

administrator [4-6].

With the growing use of the Internet, network traffic is

becoming increasingly complex, and the challenge is

becoming more difficult for IDS to detect attacks or

anomalies more accurately and quickly. Therefore,

researchers leverage machine learning techniques to improve

the capability of IDSs.

In the category of machine learning, artificial neural

network (ANN) is one of the most widely used models. It is

* Manuscript received: 13 March 2022; Revised, 01 July 2022, Accepted, 01 August 2022.
1. MSc, Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
2. Corresponding Author, PhD, Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.

Email: somayeh.soltani@mail.um.ac.ir
3. Associate Professor, Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.

a computational technique widely used in data processing,

pattern recognition, and information classification. Deep

learning, a subset of machine learning, attempts to extract

high level features from the raw input using several hidden

layers. Deep neural networks are used in the design of IDSs

for software-defined networks (SDNs).
In recent years, several approaches for intrusion detection

have been proposed using machine learning techniques;
however, each of the methods has its challenges and
problems. For example, most studies have reported good
accuracy rates, while they have not reported other metrics
such as precision or recall. Some methods have reported
relatively low values for these performance measures.
Another weakness of these methods is that they work only
on one dataset and do not evaluate their methods on larger
and newer datasets. On the other hand, some studies have
compared their methods with only simple classifiers.
However, it is clear that this kind of comparison does not
have the necessary quality. In this paper, we offer an
intrusion detection method for software-based networks
using deep neural networks; the proposed method achieves
high performance on several datasets.

The contributions of this work can be summarized as

follows:

 It provides a comprehensive and complete classification

(Research Tree) in the field of intrusion detection

systems.

 It follows a deep learning approach to IDS using deep

neural networks in software-defined networks.

 It provides seven neural network-based IDS models and

evaluates them on three datasets, namely NSL-KDD,

KDD99, and UNSW-NB15. The best model, which has

the best accuracy, precision, recall, and F-measure values

on all datasets, is then introduced.

 One of the strengths of this solution is that the layered

layouts of the proposed models are the same for all three

datasets.

The paper then presents the theoretical background and

research motivation, discusses the proposed model,

evaluates the proposed model, and finally concludes the

work.

2. Research background

In general, intrusion detection systems can be categorized in

terms of various aspects, such as detection method (or

analysis technique), type of architecture, how to respond and

react to intrusion, information source, and many others [7-

12]. For example, intrusion detection systems can be divided

into two types of continuous monitoring and periodic

https://cke.um.ac.ir/
https://cke.um.ac.ir/article_42707.html
https://orcid.org/0000-0001-7152-7334

32 Somayeh Soltani et. al.: A Deep Neural Network Architecture for …

analysis in terms of continuity [13-15]. They can also be

divided into active and passive responses [16-19].

Chalapathy and Chawla [7] categorized the deep learning-

based anomaly detection techniques using three criteria:

application, type of anomaly, and type of model. Then they

defined nine applications, that is, fraud detection, cyber

intrusion detection, medical anomaly detection, sensor

network anomaly detection, video surveillance, IoT big data

anomaly detection, log anomaly detection, and industrial

damage detection. They defined three types of anomalies:

collective, contextual, and point. Moreover, they considered

four types of detection models: unsupervised, semi-

supervised, hybrid, and one-class neural networks.

Kwon et al. [9] classified the anomaly-based IDSs into

two groups: programmed and self-learning. Then they

classified the programmed IDSs into two categories of

simple-rule and statistical-based, and they categorized the

self-learning IDSs into four categories: cognition-based,

computation-intelligence, data mining, and machine

learning. In the next step, they classified the machine

learning-based IDSs into six groups: Bayesian network,

genetic algorithm, fuzzy logic, artificial neural network

(ANN), supervised vector machine (SVM), and outlier

detection. Furthermore, they defined two types of ANNs:

supervised and unsupervised. The supervised ANN IDSs can

be free-forward ANN or recurrent ANN. The unsupervised

methods include deep learning, adaptive resonance theory,

and self-organizing maps. Finally, the deep learning methods

include AutoEncoder, sum-product network, recurrent

neural network (RNN), Boltzmann machine (BM),

convolutional neural network (CNN), and deep neural

network (DNN).

Lee et al. [18] categorized deep learning-based IDS schemes

into nine classes: AutoEncoder-based, RBM-based, DBN-

based, DNN-based, CNN-based, GAN-based, LSTM-based,

RNN-based, and hybrid. They then classified the

AutoEncoder-based schemes into six groups: Stacked

AutoEncoder, Denoising AutoEncoder, NonSymmetric

AutoEncoder, Sparse AutoEncoder, Variational

AutoEncoder, and Convolutional AutoEncoder. They also

defined several hybrid schemes: AE+CNN, AE+DBN,

AE+DNN, AE+GAN, AE+LSTM, CNN+LSTM,

CNN+RNN, and DNN+RNN.

Having reviewed various articles in the field of intrusion

detection systems, we categorized these systems in different

ways. In terms of continuality, we classified intrusion

detection systems into two categories: continuous

monitoring and periodic analysis. Concerning reaction to

influence, we divided these systems into two groups: active

response and passive response. Regarding the architecture,

we divided the IDSs into two groups, centralized and

distributed. In addition, we defined two types of real-time or

offline forecasting.

In terms of the knowledge base, we considered three

classes: Boltzmann machine, descriptive languages, and

expert systems. We classified the IDSs into three groups: one

variable, multivariate, and time series model. Moreover, the

IDS systems are categorized into two classes: anomaly-based

and signature-based. We considered three signature-based

techniques: data mining, state transition, and expert systems.

Anomaly-based techniques are divided into two groups:

self-learning, and programming. The self-learning

techniques are cognition-based and relate to computation

intelligence, data mining, or machine learning. The machine

learning techniques can be semi-supervised, supervised,

unsupervised, or reinforcement learning. Each of these

techniques has so many subcategories.

We summarize various categorizations in a tree named

Research Tree in the field of intrusion detection systems.

Figure 1. shows the comprehensive classification tree.

In the following, we categorize previous research works

into two main groups in terms of the model architecture: 1)

works done on shallow architectures, 2) works done on deep

architectures.

Figure 1. Research Tree in the field of intrusion detection systems

Journal of Computer and Knowledge Engineering, Vol.5 , No.2. 2022. 33

2.1. Shallow Learning IDSs
Some intrusion detection methods use shallow architectures,
such as support vector machine (SVM), decision tree (DT),
random forests (RF), clustering, K nearest neighbor (KNN),
particle swarm optimization (PSO), simulated annealing
(SA), ANN, and ensemble methods [4, 20-27].

Lin et al. [4] used the SVM, the decision tree, and the
simulated annealing and reached 99.96% accuracy. Wang et
al. [23] used the SVM algorithm and reached 99.31%
accuracy. Baek et al. [22] achieved an 88% accuracy rate
using several simple classifications.

These methods take advantage of the mentioned
algorithms and use KDD99 or NSL-KDD datasets to
evaluate their solutions and report good accuracy or
precision rates. However, these methods report only one
metric of accuracy or precision and no other metrics. They
use only one dataset for evaluation, and they compare the
results with only ordinary classifications.

2.2. Deep Learning IDSs
In this section, we describe intrusion detection models based
on deep learning methods.

A. Convolutional Neural Network (CNN)
This category includes research works which have based
their intrusion detection techniques on convolutional neural
networks [28-32]. Zhu et al. [28] considered 6 layers of the
neural networks and used the pooling layer among them.
Moreover, they used a learning rate of 0.5 and achieved
80.34% of Accuracy. Li et al. [29] used convolution
architecture and data-to-image conversion techniques to
detect intrusion but provided a relatively low accuracy rate
(about 80%). Nguyen et al. [32] used a deep convolutional
network and used 4 main layers of CNN networks. They
reported 99.87% accuracy on the KDD99 dataset.

B. Recursive Neural Network (RNN) or Gated Recurrent

Unit RNN (GRU–RNN)
Research works in this category have used recursive neural
network techniques [33-37]. For example, Yin et al. [33]
proposed a binary classification method based on a deep
recursive neural network to detect intrusions. They first
performed pre-processing (such as normalization) on the
input dataset and then attempted to weigh the deep network
layers using a recursive neural network with forward
propagation, reporting 99.81% accuracy. Tang et al. [34]
proposed a gated recurrent unit (GRU) over SDN-based
networks. They compared their method with DNN classifiers
having different layouts, support vector machines, and
simple Bayesian, and reported 89% accuracy and 87%
precision. Zhong et al. [37] presented an IDS for IoT servers
using text-CNN and GRU methods. They reported the F-
score criterion on the KDD99 and ADFA-LD datasets.

C. Long Short-Term Memory (LSTM)
Ponkarthika and Saraswathy [38] developed an intrusion
detection system based on the RNN and its specific type, and
LSTM networks. They achieved 82% accuracy for the RNN
and 83% accuracy for the LSTM on the KDD99 dataset with
a learning rate of 200.

D. CNN-RNN

Vinayakumar et al. [39] proposed an intrusion detection

technique using the convolutional network for feature

extraction and the RNN network for classification. They

proposed a CNN-based model and showed that the CNN

network would perform better than MLP, CNN-LSTM, and

CNN-GRU in extracting and presenting features from

network traffic. Their model could report the highest

accuracy and recall on single-layer CNN and the highest

precision on almost all CNN combinations with other

networks on the KDD99 dataset at 99.9%. Chawla et al. [40]

proposed a technique using a combined convolutional

network and GRU RNN; they also could achieve 81%

accuracy on the ADFA-LD dataset with a learning rate of

0.0001.

E. CNN-LSTM

The intrusion detection method proposed by Wang et al. [41]

uses the convolution filter to extract the feature and the

LSTM network for classification. That is, it uses CNN deep

networks to learn low-level features and LSTM networks to

learn high-level features. This method reported 99.89%

accuracy on the ISCX2012 dataset. Furthermore, Hsu et al.

[42] used a hybrid method based on LSTM and convolution

network to detect intrusion and reported 94.12% accuracy on

a larger dataset. Lee et al. [43] designed an intrusion

detection system to prevent SSH and DDOS attacks in

software-defined networks, which used four deep learning

models, including MLP, CNN, LSTM, and SAE. Malik et al.

[44] designed an Efficient Reconnaissance and Surveillance

Detection in SDN using CNN and LSTM; however, they

evaluated their model using only one dataset, namely

CICIDS 2017.

F. RNN-LSTM

Jiang et al. [6] developed a multi-channel intelligent attack

detection technique based on a combination of LSTM and

RNN networks. In this LSTM-RNN architecture, multiple

feature channels are given to the network input layer. Then,

the LSTM layer, the Mean Pooling layer and finally the

logistic regression layer are used. Finally, a majority vote is

taken on the results obtained. Jiang et al. reported a detection

rate of 99.23 and an accuracy of 98.94% on the NSL-KDD

dataset.

G. Auto Encoder

The articles in this category [45-50] use deep Auto Encoder

neural networks. Mohammadi and Namadchian [45] first

performed normalization and then used a deep Auto Encoder

method to reduce the error rate. Finally, on the NSL-KDD

dataset, they achieved 92.72% accuracy and 98.11%

detection rate in the classification of R2L attacks.

Papamartzivanos et al. [49] provided a comprehensive

framework based on self-taught learning and MAPE-K

methodology. The framework included plan, monitor,

analyze, and execute activities that are applied to a

knowledge base. Their model was a Sparse Auto Encoder

and a Feedforward Auto Encoder. Their tests on the KDD99

and NSL-KDD datasets reported 99.8% and 99.6% accuracy.

H. Deep Neural Network (DNN)

The models in this category [5,51-58] use deep neural

networks to detect network intrusions. In 2019,

Vinayakumar et al. [5] proposed an IDS based on deep neural

network and tested it on six datasets. The model layers

34 Somayeh Soltani et. al.: A Deep Neural Network Architecture for …

included the fully connected layer, the normalization layer,

and the drop-out layer with a coefficient of 0.01. They used

16 consecutive layers, several ReLU activation functions,

and learning rates between 0.01 and 0.5. This model reported

good accuracy on six well-known datasets (e.g. 96.3% on the

CICIDS dataset or 93% on the KDD99 dataset).
Tang et al. [51] also proposed a DNN-based intrusion

detection method which was performed on the SDN
environment and the NSL-KDD data set, and its experiments
with a learning rate of 0.0001 reported an accuracy of 75.75.
Using the Boltzmann neural network on the KDD99 dataset,
Roy et al. [52] were able to report a very high 99.99%
accuracy for two-class mode (attack or normal).

Ustebay et al. [53] used both the deep neural network and
the shallow neural network (SNN) to detect abnormalities.
They used these two models to reduce the feature set. They
also trained the models on the CICIDS2017 dataset and
reported a 98.45% accuracy rate on the deep models. They
showed that deep models would achieve higher accuracy,
precision, and recall than shallow models.

Vigneswaran et al. [54] evaluated DNN and SNN models
on NIDS. They performed experiments on the DNN
architecture with 1 to 5 layers at a learning rate of 0.1,
considered 1000 Epochs on the KDD99 dataset, and finally
compared the results with shallow machine learning
algorithms. The results showed that the three-layer DNN had
the best accuracy of 93% and precision of 99% among all
these algorithms.

Duy et al. [57] designed a framework called DIGFuPAS
which creates attack examples and acts like deep learning-
based IDS in SDN in a Black-Box manner. They used
Wassertein Generative Adversarial (WGAN) Model, a
generative model based on deep learning. Bouria and
Guerroumi [58] presented an IDS based on a deep learning
approach to strengthen SDN network security. The
communication channel between the control layer and the
infrastructure layer of the SDN is protected against various
attacks. Moreover, they evaluated their model only on the
CICIDS 2017 dataset.

2.3. Software-Defined Networks
Software-defined network is a new type of network
architecture in which one or more central servers are
responsible for controlling all network elements, whereas the
rest of the elements only direct network traffic [59, 60].
Traditional networks were suitable for a static client-server
structure. But today's modern networks, including data
centers, cloud services, mobiles, and IoT devices, demand
new requirements.

As you know, in traditional networks, each network
device calculates routes and makes decisions on network
policies. However, in SDN networks, the network operating
system (the controller) is responsible for deciding how to
route packets and applying network policies. The most
essential concept in SDN networks is to separate the control
plane and data plane. While the control plane decides how to
route the packets, the switches and routers merely forward
packets and are not involved in decision-making.

Apart from the controller and the network devices, some

other components constitute the SDN architecture. For

example, the SDN applications express their desired network

behavior to the controller using some interfaces. Moreover,

the OpenFlow protocol communicates between the control

and the data planes.

While SDN provides easy, flexible, and integrated

management, it imposes several security issues. As the

control logic in SDN is centralized, it is more vulnerable to

cyber-attacks such as DDoS; therefore, the design of security

appliances for SDN networks is crucial [61, 62].

3. The proposed model

The proposed model consists of three phases: 1)

preprocessing phase, 2) neural network design phase, and 3)

intrusion detection phase. In the first phase, the necessary

pre-processing is performed on the raw data collected from

the SDN network traffic. In the second phase, the neural

network is designed with the appropriate layer arrangement

and the proper activating function. The model is trained on

the training dataset with the required number of repetitions.

In the third phase, the trained model is tested on a test dataset,

and the performance of the model is evaluated using various

metrics such as accuracy, precision, and recall.

In deep learning, the goal of training is to increase the

performance of the model using the defined training set. To

measure the performance, we defined a loss function and

reduced it in the hope that it would improve the overall

performance of the model. While there are many loss

functions to compute the distance between the true value and

the estimated one, Cross entropy [3] is the most popular. In

this research, we used the Cross entropy and the Adam

optimizer for all three datasets. Cross entropy for a

classification problem with 𝑛 classes is defined as (1):

𝐶𝐸 = − ∑ 𝑡𝑖 𝑙𝑜𝑔(𝑝𝑖) ,𝑛
𝑖=1 (1)

where 𝑡𝑖 is the true value and 𝑝𝑖 is the probability for the

𝑖𝑡ℎ class.

In this research, we considered seven different

configurations for the neural network and evaluated all these

seven models on three datasets, NSL-KDD, KDD99, and

UNSW-NB15. It should be noted that the architecture and

layered layout of the proposed models are the same for all

three datasets, which is one of the strengths of our solution.

To achieve proper performance, many previous models

[5,24,28,59] have offered different layout layers for each

data set, but our proposed architecture achieved good

performance for all three datasets without manipulation.

Each of these seven models had a unique layout consisting

of several layers, such as embedding, Dense, Drop out, and

activation layers. The first model was a model based on

dense layers and had nine layers. The second model was

based on the convolutional neural network (CNN) and had

the largest number of layers (22 layers). The third model was

a 10-layer LSTM-CNN hybrid network. The fourth model

was based on the dense network with the least number of

layers. The fifth model, like the second one, was a CNN-

based model with a relatively large number of layers. The

sixth model was based on the LSTM-CNN hybrid network

and had 12 layers. Finally, the seventh model was based on

the dense network and had 12 layers. The designs of these

seven models are described in Table 1. The number of

neurons in each layer is represented in parentheses.

Journal of Computer and Knowledge Engineering, Vol.5 , No.2. 2022. 35

Table 1. The layout of the seven proposed ANN-based IDSs

Model 7 Model 6 Model 5 Model 4 Model 3 Model 2 Model 1 Layers

Dense(64) Embedding Embedding Dense(128) Embedding Embedding Dense(128) Layer 1

Dense(32) Dropout Dropout Dense(64) Dropout Dropout Dense(64) Layer 2

Activation Conv(64) Conv(256) Dense(128) Conv(32) Conv(256) Dense(128) Layer 3

Dropout Dropout Dense(100) Dense(64) Conv(64) Dense(100) Dropout Layer 4

Dense(32) Dropout Dropout Dense(6) Conv(128) Dropout Dense(64) Layer 5

Activation Conv(64) Conv(128) Dense(128) LSTM(128) Conv(128) Dropout Layer 6

Dropout Dropout Dense(100) FC Dense(100) Dense(100) Dense(6) Layer 7

Dense(32) LSTM(300) Dropout --- Dropout Dropout Dropout Layer 8

Activation Dense(100) Conv(128) --- Dense(100) Conv(256) FC Layer 9

Dropout Dropout Dense(100) --- FC Dense(100) --- Layer 10

Dense(32) Dense(10) Dense(100) --- --- Dropout --- Layer 11

FC FC Dropout --- --- Dense(200) --- Layer 12

--- --- Dense(200) --- --- Dropout --- Layer 13

--- --- Conv(32) --- --- Dense(100) --- Layer 14

--- --- Conv(64) --- --- Conv(32) --- Layer 15

--- --- Conv(128) --- --- Max-pool --- Layer 16

--- --- Dense(100) --- --- Dropout --- Layer 17

--- --- Dropout --- --- Dense(256) --- Layer 18

--- --- Dense(256) --- --- Dropout --- Layer 19

--- --- Dropout --- --- Dense(100) --- Layer 20

--- --- FC --- --- Dropout --- Layer 21

--- --- --- --- --- FC --- Layer 22

We tested all seven proposed models against three datasets

NSL-KDD, KDD99, and UNSW-NB15 and selected the best

one (i.e., Model 7).

The best-proposed model (Model 7) was a unique 12-layer

deep neural network with the following layer topology:

dense, dense, activation, drop out, dense, activation, drop

out, dense, activation, drop out, dense, and finally activation

or fully connected (FC) layer which is used to select the

appropriate class using SoftMax or Tanh functions. From

now on, we will call Model 7 the proposed model. The

proposed model improves the evaluation metrics without

changing the number and layout of layers on the three

datasets. This is the superiority of our solution over other

works, which provides a different network architecture for

each dataset.

However, it should be noted that since these three datasets

are different in terms of the number of parameters and the

number of output classes, our model also considers different

parameters and final activation functions for selecting output

classes. Also, the initial values for the dense layers are

slightly different for each dataset. In the following, we will

examine the layers of the proposed model.

Dense Layer: The values of the dense layers in the

proposed model are different for each dataset and depend on

the number of dataset properties. For example, for the

UNSW-NB15 dataset, 64 values are provided for the first

layer. The activation function is also one of the best-tested

functions for the neural network. The non-linear ReLU

function is defined in the following (2):

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥), (2)

where 𝑥 is the input.

Drop out layer: The drop out layer accidentally removes

and releases some neurons, preventing the network overfit.

Therefore, it does not allow the network to retain data and to

be disturbed in predicting the testing data. In the proposed

model, a drop out layer with values of 0.15 to 0.5 is

considered after each dense layer.

Fully connected (FC) layer: A fully connected layer

(unlike a dense layer) is a layer that connects to all the

neurons in the previous layer. It considers the trained inputs

in the previous layers and assigns them to the appropriate

class using an activation function such as SoftMax or Tanh,

as defined in (3) and (4). Figure 2 illustrates the proposed

model diagram:

𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑛

𝑗=1

, (3)

𝑇𝑎𝑛ℎ(𝑥) =
𝑒2𝑥−1

𝑒2𝑥+1
, (4)

where 𝑥 is the input.

36 Somayeh Soltani et. al.: A Deep Neural Network Architecture for …

Dense(64)
...

Dense(32) Activation Dropout Dense(32) Activation Dropout Dense(32) Activation Dropout Dense(32) FC

Figure 2. The layer layout of the proposed solution

The implementation of the proposed solution is described

below. The data collected from the data sets of SDN

networks were prepared and modeled. The layout, number,

and type of network layers were set, the activation functions

were selected, and the specified attack classes were

converted into vectors. Then, the dataset was tagged with

attack and non-attack labels. Finally, the input data, the

output classes, layers, and weights of the data set in CSV

format would make the DNN neural networks. We used

TensorFlow and Keras deep learning package and Python

programming language. To train the model faster and use

powerful GPUs, we used the Google Colab service. We

trained the model and the network with a suitable number of

iterations and made sure of avoiding overfitting in each

epoch. Finally, we tested the model using the test data set and

evaluated the improvement of the model's performance in

terms of accuracy, precision, recall, and cost function.

4. The evaluation of the proposed model

4.1. Datasets

In this study, three datasets, including NSL-KDD, KDD99,

and UNSW-NB15, were used as benchmarks to select the

best model among seven models and to compare the

proposed model with other methods.

A. KDD99 dataset

The KDD99 dataset is an old dataset containing 41 features

and five different classes: normal, DoS, remote-to-local

(R2L), user-to-root (U2R), and Prob. It includes 494,021

records for training and 311,029 for testing sets. Some of the

derived features include duration, protocol_type, service,

src_bytes, dst_bytes, flag, urgent, and so on. One drawback

of KDD99 is that the sets of classes in the training and testing

sets are imbalanced. Moreover, there are many duplicates in

the dataset.

B. NSL-KDD dataset

The NSL-KDD dataset is one of the most widely used

datasets for intrusion detection research; it is a subset of the

original KDD99 and is designed to solve some of the

drawbacks of the KDD99 dataset. This dataset does not have

duplicate records in the training and testing sets, and the

number of records is considered more reasonable and

appropriate. The feature set and the type of classes are the

same as the original KDD99.

C. UNSW-NB15 dataset

UNSW-NB15 is a relatively new dataset with a hybrid of real

normal activities and synthetic contemporary attacks. It has

175,341 records in the train set and 82,332 records in the test

set. The dataset has ten classes (normal and nine types of

attacks). The attack types are DoS, backdoors, fuzzers,

analysis, exploits, generic, shellcode, reconnaissance, and

Worms. Moreover, there are 49 derived features.

4.2. Evaluation Metrics

The most important and widely used metrics to evaluate the

quality of the results of intrusion detection methods are: 1)

accuracy, 2) precision, 3) recall, 4) F-measure, and 5) loss

function [49, 63-65]. At first, it is necessary to define the four

basic terms used in the mentioned metrics [66]:

 True Positive (TP) indicates the number of records in the

dataset that our method correctly classified in the attack

class.

 True Negative (TN) is the number of records in the

dataset that our method rightly classified in the normal

category.

 False Positive (FP) indicates the number of records in the

dataset that our method incorrectly classified in the attack

class.

 False Negative (FN) is the number of records in the

dataset that our method mistakenly classified in the

normal category.

In the following, we will explain the application of these

basic terms in the mentioned evaluation metrics.

Precision: This metric estimates the ratio of correctly

identified attack records to the total number of detected

attack records (5):

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (5)

Recall: This metric estimates the ratio of correctly

classified attack records to the total number of attack records

(6):

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (6)

Accuracy: This metric estimates the ratio of correctly

classified records to the total records. In other words, the

accuracy metric shows the percentage of the data that are

correctly categorized in (7):

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (7)

F-measure: This metric establishes a tradeoff between

precision and recall. It is the harmonic mean of precision and

recall (8):

𝐹 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (8)

Loss function: This metric indicates the amount of output

error, and we can get good results by optimizing it [36, 51,

67].

4.3. The evaluation of the Proposed Solution

To implement the proposed models, we used the Jupyter

Notebook in the free Google Colaboratory service. In

particular, we used the Tensorflow 1.0 deep learning

package [68] along with Keras Backend and the Adam

optimizer with different learning rates. Moreover, we used

the most popular cost function, that is, Cross Entropy. The

seven neural network models were examined and evaluated

on the three datasets with the same conditions.

Journal of Computer and Knowledge Engineering, Vol.5 , No.2. 2022. 37

Table 2. The performance of the seven proposed models on the KDD99 dataset

Metrics Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Accuracy 53.96 98.93 50.87 61.1 98.9 88.22 99.02

Precision 83.79 88.67 78.54 98.27 88.38 63.17 99.14

Recall 76.19 86.34 79 41.24 85.94 58.77 98.93

F-measure 78.78 87.49 78.74 58.08 87.14 60 99.04

Loss function 0.046 0.03 0.054 0.415 0.031 0.077 0.107

Figure 3. The evaluation of the loss function of the seven proposed models on the KDD99 dataset

A. The evaluation of the seven models on the KDD99

dataset
We examined all seven proposed models with the KDD99
dataset. Table 2 shows the accuracy, precision, recall, F-
measure, and loss functions of all the models. The
performance of Model 7 was better than the other models in
terms of accuracy, precision, recall, and F-measure;
however, the loss function of Model 7 was higher than most
models. Model 2, with a value of 0.03, had the lowest loss
function.

Figure 3. shows the evaluation of the loss function on our
seven models for the KDD99 dataset. In Model 7, the cost
function for validation data (orange line) was approximately
tangent to the cost function for training data (blue line). For
other models, only training data were examined due to the
imbalanced training and validation data.

In Model 1, with increasing epochs, the error decreased
but with fluctuations, which can be attributed to the lack of
use of drop out layer for optimal control of overfitting.
Model 2 had a stepped decrease. In the first repetitions, it had
good learning from training data, however, in the subsequent
repetitions, the learning rate decreased. It should be noted
that this model had the best value of the loss function.

Model 3 did not reach the minimum value of the loss

function but had a good decreasing slope. The loss function
of Model 4 not only decreased after a while, but also it
showed an increase due to the high learning rate and
inappropriate layer arrangement. The lower the learning rate,
the greater the possibility of improving the loss function. The
loss function of this model was the worst loss function
among the design models.

Model 5 initially had a sudden decrease and then reached

a slow and relatively uniform decrease. The learning rate

gradually improved better in this model. In Model 6, the

overfitting fluctuations were uncontrolled, and the error

increased and decreased abruptly. The sixth model worked

well on the training data. However, after feeding new data,

the loss function increased due to not using the drop out layer

correctly.

Model 7 (i.e., the best proposed model) did not have the

least loss function among all the models, but it was able to

control overfitting with the correct arrangement of layers.

This model also performed well in the validation dataset.

B. The evaluation of the seven models on the NSL-KDD

dataset

Table 3. shows the performance values of the seven models

on the NSL-KDD dataset. It is quite clear that the proposed

38 Somayeh Soltani et. al.: A Deep Neural Network Architecture for …

solution (Model 7) performed much better than other models

in all evaluation criteria, even in the loss function. As

compared to other models, this showed the excellent

performance of the proposed solution and the proper

arrangement of the neural network layers in it.

Considering Figure 4, it is clear that Model 7 greatly

reduced the loss function. In fact, the loss function had a

slight difference in both the training and validation datasets.

If the loss function of the training data were close to the loss

function of the validation data, it would be safe to say that

the over-fitting is well controlled. The loss function in Model

7 reached the lowest possible value among the seven models.

One of the reasons for this smooth reduction of the loss

function was the correct use of drop out layers between the

dense layers.

Model 1 had the lowest loss after model 7. The value of

the loss function could be well reduced due to its good

learning rate. Of course, the loss function fluctuated with the

arrival of some new data, and the network controlled the

fluctuations using the appropriate learning rate. The cost

function of the second model initially decreased but

remained constant after a few iterations. To solve this

problem, the learning rate should be adjusted and reduced

during the training steps.

The layout of Model 3 was not able to reduce the loss

function well. Model 4, like the third model, was subject to

fluctuations in new train data. This indicated that the model

had learned well from previous data; however, the error

fluctuated with new data, which was not very acceptable.

The loss function of Model 5 remained constant very soon

and could not reduce the loss function more than this amount.

Adjusting the input weights of the next layers was very

important. In the fifth model, the input weights of the layers

were not well adjusted and had been updated with a constant

value, producing a fixed loss function.

Model 6 did not perform well in this dataset. Increasing

the learning rate initially reduced the loss function, but the

error rate then increased. It seems that by reducing the

learning rate in these models, we can solve this problem and

improve the model performance. Thus, Model 7 in the NSL-

KDD dataset is undoubtedly the best-designed model

according to the evaluation criteria under consideration.

Table 3. The performance of the seven proposed models on the NSL-KDD dataset

Metrics Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Accuracy 71.75 95.95 96.53 67.08 95.95 61.32 99.39

Precision 83.51 53.26 93.25 91.17 53.48 80.33 99.49

Recall 69.79 53.23 70.23 78.4 53.44 84.11 99.33

F-measure 75.63 53.24 79.98 83.89 53.46 81.74 99.41

Loss function 0.068 0.088 0.084 0.094 0.088 0.076 0.022

Figure 4. The evaluation of the loss function of the seven proposed models on the NSL-KDD dataset

Journal of Computer and Knowledge Engineering, Vol.5 , No.2. 2022. 39

C. The evaluation of the seven models on the UNSW-NB15

dataset

Table 4. shows the evaluation of our models on the UNSW-

NB15 dataset. Model 7 had the highest value in terms of

accuracy and F-measure. In addition, this model achieved a

recall of 99.98% (approximately one). Although the third

and fourth models achieved 100% recall, other performance

measures of these two models were lower than Model 7.

However, the loss function of Model 7 was higher than

Models 2, 4, 5, and 6. It is possible to reduce the error rate

by changing the activation function for this dataset.

However, changing the activation function is not acceptable,

and we consider fixed activation functions for three datasets.

Referring to Table 2, Table 3, and Table 4, it is clear that

the highest value for accuracy metric (one of the most

important evaluation metrics in intrusion detection systems)

on all three datasets of KDD99, NSL-KDD, and UNSW-

NB15 belonged to the proposed model (Model 7).

Figure 5 shows the loss functions of the seven models on

the UNSW-NB15 dataset. It is clear that the first model

increased the error instead of decreasing it and thus had the

worst loss function among the seven models. It can be

inferred that the final activation function of Model 1 failed

to predict the correct class. Given that changing the

activation may reduce the error, we did not change it in this

study; in fact, we considered fixed activation functions for

all three datasets.

The loss function of the second model had a decreasing

trend, which implies that the layer arrangement and the final

activation function were chosen properly. The third model is

almost the same as the second model and has the least loss

value. The loss function in the fourth model continuously

decreased; however, it did not reach the lowest level and was

fixed at approximately 0.6881%.

While the loss functions of the fifth and the sixth models

performed similarly, the fifth model acted slightly better.

The sixth model had a higher learning rate than the fifth

model, but it controlled the overfitting better. The loss

function of the proposed model also had a decreasing trend,

but its error rate was higher than the other models.

Table 4. The performance of the seven proposed models on the UNSW-NB15 dataset

Metrics Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Accuracy 4.3 64.04 55.05 55.04 64.02 66.45 68.11

Precision 3.3 68.5 55.05 55.04 69.15 74.54 68.13

Recall 2.2 65.56 100 100 64.55 59.36 99.98

F-measure 2.2 66.59 71 70.99 66.11 66.06 80.97

Loss function 8.86 0.632 0.34 0.688 0.635 0.739 7.16

Figure 5. The evaluation of the loss function of the seven proposed models on the UNSW-NB15 dataset

40 Somayeh Soltani et. al.: A Deep Neural Network Architecture for …

D. Performance Comparison

In this section, we will compare the results of our model with

the findings offered by VinayaKumar et al. [5] in which

excellent evaluation metrics values are obtained on six

datasets.

As shown in Figure 6, the proposed model performs better

than VinayaKumar et al.’s work on the KDD99 dataset in

terms of all evaluation metrics (accuracy, precision, recall,

and F-measure). Figure 7 shows a comparison of the

proposed method with VinayaKumar et al.’s method on the

NSL-KDD dataset. The proposed method works much better

than VinayaKumar et al.’s work. All four criteria in the

proposed method are close to 100%, while in VinayaKumar

et al.’s method they are about 80%.

The proposed solution and the method offered by

VinayaKumar et al. on the UNSW-NB15 dataset were also

compared. Figure 8 shows that the accuracy of the proposed

model is 68.11%, and the accuracy of the method of

VinayaKumar et al. is 65.1%, and therefore the proposed

solution works better. Regarding the Precision metric,

VinayaKumar et al.'s method is 59.7%, and the proposed

method is 68.13%. Also, in the recall metric, the proposed

method performs much better than the method of

VinayaKumar et al.

It should be noted that the UNSW-NB15 dataset is one of

the largest intrusion detection datasets, and the improvement

obtained by the proposed method on this dataset is valuable.

Figure 6. Comparison between the proposed model and

VinayaKumar et al.’s work on the KDD99 dataset

Figure 7. Comparison between the proposed model and

VinayaKumar et al.’s work on the NSL-KDD dataset

Figure 8. Comparison between the proposed model and

VinayaKumar et al.’s work on the UNSW-NB15 dataset

In the following, we will compare the performance of the

proposed model with several other models. The models in

[69-71] are evaluated using NSL-KDD. As can be seen in

Table 5, the accuracy, precision, recall, and F-score of our

model are better than these models in this dataset. The model

in [37] reports the F-measure on the KDD99 dataset.

However, as Table 5 shows, the F-measure of our model is

greater than the F-measure of [37]. Finally, the model in [72]

reports the precision equal to 93.41 on UNSW-NB15, which

is greater than our precision score on this dataset. However,

we should mention that our model, unlike [72], has

acceptable performance on each of these three datasets.

Table 5. Comparison between the proposed model and other state-

of-the-art models on the KDD99, NSL-KDD, and UNSW-NB15

datasets

DataSet
KDD99 NSL-KDD UNSW-NB15

References / Metrics

Proposed

Model

Accuracy 99.02 99.39 68.11

Precision 99.14 99.49 68.13

Recall 98.93 99.33 99.98

F-measure 99.04 99.41 80.97

[69]

Accuracy - 79.08 -

Precision - 87.27 -

Recall - 94.60 -

F-measure - 91.47 -

[72]

Accuracy - - -

Precision - - 93.41

Recall - - -

F-measure - - -

[37]

Accuracy - - -

Precision - - -

Recall - - -

F-measure 94.50 - -

[70]

Accuracy - 90.73 -

Precision - 86.38 -

Recall - 93.17 -

F-measure - 89.65 -

[71]

Accuracy - 86.70 -

Precision - 89.36 -

Recall - 86.70 -

F-measure - 87.22 -

Journal of Computer and Knowledge Engineering, Vol.5 , No.2. 2022. 41

5. Conclusion and future work

One of the challenges of SDN networks is to design an

intrusion detection system that can prevent various types of

attacks. While several methods have provided IDSs for

SDNs, none of them has been able to achieve suitable

performance values on different available datasets.

In this study, to improve the security level of the network

and prevent various attacks, we proposed an intrusion

detection system based on a 12-layer deep neural network.

This intrusion detection system was trained and tested on

three SDN-specific datasets, namely NSL-KDD, KDD99,

and UNSW-NB15. We evaluated our model over these

datasets. The accuracy, precision, recall, and F-measure of

the model on KDD99 were 99.02, 99.14, 98.93, and 99.04,

respectively. These measures on the NSL-KDD dataset were

99.39, 99.49, 99.33, and 99.41, respectively. Furthermore,

the model on the UNSW-NB15 dataset reached good results.

The results on the three datasets show that our model can

reduce the loss function significantly. Moreover, we

compared our model with six recent works. The experiment

results showed the supremacy of the proposed model over

these models.

For future work, the authors plan to work on the following:

 Working on different datasets. While only three widely

used datasets are examined in this study, we can work on

more than 20 publicly available SDN-specific datasets.

 Implementing other neural network architectures,

including CNNs, such as MobileNet, AlexNet, or LeNet.

Another possible work is to ensemble the proposed

model with other deep architectures or meta-heuristic

algorithms such as particle swarm optimization (PSO)

algorithm.

6. Reference

[1] Heady, R., Luger, G., Maccabe, A., and Servilla, M.,

"The architecture of a network level intrusion detection

system", Los Alamos National Lab., 1990.

[2] Panda, M., Abraham, A., and Patra, M. R., "A hybrid

intelligent approach for network intrusion detection",

Procedia Engineering, Vol. 30, pp. 1-9, 2012.

[3] Sheikhan, M., and Bostani, H., "A hybrid intrusion

detection architecture for internet of things", in 2016 8th

International Symposium on Telecommunications

(IST), IEEE, pp. 601-606, 2016.

[4] Lin, S.-W., Ying, K.-C., Lee, C.-Y., and Lee, Z.-J., "An

intelligent algorithm with feature selection and decision

rules applied to anomaly intrusion detection", Applied

Soft Computing, Vol. 12, No. 10, pp. 3285-3290, 2012.

[5] Vinayakumar, R., Alazab, M., Soman, K.,

Poornachandran, P., Al-Nemrat, A., and Venkatraman,

S., "Deep learning approach for intelligent intrusion

detection system", IEEE Access, Vol. 7, pp. 41525-

41550, 2019.

[6] Jiang, F., et al., "Deep learning based multi-channel

intelligent attack detection for data security", IEEE

transactions on Sustainable Computing, Vol. 5, No. 2,

pp. 204-212, 2018.

[7] Chalapathy, R., and Chawla, S., "Deep learning for

anomaly detection: A survey", arXiv preprint

arXiv,1901.03407, 2019.

[8] Sultana, N., Chilamkurti, N., Peng, W., and Alhadad,

R., "Survey on SDN based network intrusion detection

system using machine learning approaches", Peer-to-

Peer Networking and Applications, Vol. 12, No. 2, pp.

493-501, 2019.

[9] Kwon, D., Kim, H., Kim, J., Suh, S. C., Kim, I., and

Kim, K. J., "A survey of deep learning-based network

anomaly detection", Cluster Computing, Vol. 22, No. 1,

pp. 949-961, 2019.

[10] Chaabouni, N., Mosbah, M., Zemmari, A., Sauvignac,

C., and Faruki, P., "Network intrusion detection for IoT

security based on learning techniques", IEEE

Communications Surveys & Tutorials, Vol. 21, No. 3,

pp. 2671-2701, 2019.

[11] Zhong, G., Ling, X., and Wang, L. N., "From shallow

feature learning to deep learning: Benefits from the

width and depth of deep architectures", Wiley

Interdisciplinary Reviews: Data Mining and

Knowledge Discovery, Vol. 9, No. 1, pp. e1255, 2019.

[12] Hodo, E., Bellekens, X., Hamilton, A., Tachtatzis, C.,

and Atkinson, R., "Shallow and deep networks intrusion

detection system: A taxonomy and survey", arXiv

preprint arXiv, 1701.02145, 2017.

[13] Lansky, J., Ali, S., Mohammadi, M., Majeed, M. K.,

Karim, SH., Rashidi, S., Hosseinzadeh, M., Rahmani,

AM., "Deep learning-based intrusion detection

systems: a systematic review", IEEE Access. No. 14,

Vol. 9, pp. 101574-99, Jul, 2021.

[14] Ahmad Z., Shahid Khan, A., Wai Shiang, C., Abdullah,

J., Ahmad, F., "Network intrusion detection system: A

systematic study of machine learning and deep learning

approaches", Transactions on Emerging

Telecommunications Technologies, Vol. 32(1), pp.

e4150, Jan, 2021.

[15] Kocher, G., Kumar, G., "Machine learning and deep

learning methods for intrusion detection systems: recent

developments and challenges", Soft Computing, Vol.

25(15), pp. 9731-63, Aug, 2021.

[16] Jasim, A. D., "A survey of intrusion detection using

deep learning in internet of things", Iraqi Journal For

Computer Science and Mathematics,Vol. 3(1), pp. 83-

93, Jan 30, 2022.

[17] Alsoufi, M. A., Razak, S., Siraj, M. M., Nafea, I.,

Ghaleb, F. A., Saeed, F., Nasser, M., "Anomaly-based

intrusion detection systems in iot using deep learning:

A systematic literature review", Applied Sciences, No.

9, Vol. 11(18), pp. 8383, sep, 2021.

[18] Lee, S. W., Mohammadi, M., Rashidi, S., Rahmani, A.

M., Masdari, M., Hosseinzadeh, M., "Towards secure

intrusion detection systems using deep learning

techniques: Comprehensive analysis and review",

Journal of Network and Computer Applications, Aug

No. 1, Vol. 187, pp. 103111, Aug, 2021.

[19] Ahmed, M., Shatabda, S., Islam, A. K., Robin, M.,

Islam, T., "Intrusion detection system in software-

defined networks using machine learning and deep

learning techniques–a comprehensive survey", 2021.

[20] Wang, G., Hao, J., Ma, J., and Huang, L., "A new

approach to intrusion detection using Artificial Neural

Networks and fuzzy clustering", Expert systems with

applications, Vol. 37, No. 9, pp. 6225-6232, 2010.

[21] Aburomman, A. A., and Reaz, M. B. I., "A novel SVM-

kNN-PSO ensemble method for intrusion detection

system", Applied Soft Computing, Vol. 38, pp. 360-372,

42 Somayeh Soltani et. al.: A Deep Neural Network Architecture for …

2016.

[22] Baek, S., Kwon, D., Kim, J., Suh, S. C., Kim, H., and

Kim, I., "Unsupervised labeling for supervised anomaly

detection in enterprise and cloud networks", in 2017

IEEE 4th International Conference on Cyber Security

and Cloud Computing (CSCloud), IEEE, pp. 205-210,

2017.

[23] Wang, H., Gu, J., and Wang, S., "An effective intrusion

detection framework based on SVM with feature

augmentation", Knowledge-Based Systems, Vol. 136,

pp. 130-139, 2017.

[24] Aljawarneh, S., Aldwairi, M., and Yassein, M. B.,

"Anomaly-based intrusion detection system through

feature selection analysis and building hybrid efficient

model", Journal of Computational Science, Vol. 25, pp.

152-160, 2018.

[25] Pham, N. T., Foo, E., Suriadi, S., Jeffrey, H., and Lahza,

H. F. M., "Improving performance of intrusion

detection system using ensemble methods and feature

selection", in Proceedings of the Australasian

Computer Science Week Multiconference, pp. 1-6,

2018.

[26] He, D., Chen, X., Zou, D., Pei, L., and Jiang, L., "An

improved kernel clustering algorithm used in computer

network intrusion detection", in 2018 IEEE

International Symposium on Circuits and Systems

(ISCAS), IEEE, pp. 1-5, 2018.

[27] Song, J., Takakura, H., Okabe, Y., and Kwon, Y.,

"Unsupervised anomaly detection based on clustering

and multiple one-class SVM", IEICE transactions on

communications, Vol. 92, No. 6, pp. 1981-1990, 2009.

[28] Zhu, M., Ye, K., and Xu, C.-Z., "Network anomaly

detection and identification based on deep learning

methods", in International Conference on Cloud

Computing Springer, pp. 219-234, 2018.

[29] Li, Z., Qin, Z., Huang, K., Yang, X., and Ye, S.,

"Intrusion detection using convolutional neural

networks for representation learning", in International

conference on neural information processing, Springer,

Vol. ???, pp. 858-866, 2017.

[30] Liu, Y., Liu, S., and Zhao, X., "Intrusion detection

algorithm based on convolutional neural network",

DEStech Transactions on Engineering and Technology

Research, No. iceta, 2017.

[31] Potluri, S., Ahmed, S., and Diedrich, C., "Convolutional

neural networks for multi-class intrusion detection

system", in International Conference on Mining

Intelligence and Knowledge Exploration, Springer, pp.

225-238, 2018.

[32] Nguyen, S. -N., Nguyen, V.-Q., Choi, J., and Kim, K.,

"Design and implementation of intrusion detection

system using convolutional neural network for DoS

detection", in Proceedings of the 2nd international

conference on machine learning and soft computing,

pp. 34-38, 2018.

[33] Yin, C., Zhu, Y., Fei, J., and He, X., "A deep learning

approach for intrusion detection using recurrent neural

networks", Ieee Access, Vol. 5, pp. 21954-21961, 2017.

[34] Tang, T. A., Mhamdi, L., McLernon, D., Zaidi, S. A.

R., and Ghogho, M., "Deep recurrent neural network for

intrusion detection in sdn-based networks", in 2018 4th

IEEE Conference on Network Softwarization and

Workshops (NetSoft), IEEE, pp. 202-206, 2018.

[35] Vinayakumar, R., Soman, K., and Poornachandran, P.,

"A comparative analysis of deep learning approaches

for network intrusion detection systems (N-IDSs): deep

learning for N-IDSs", International Journal of Digital

Crime and Forensics (IJDCF), Vol. 11, No. 3, pp. 65-

89, 2019.

[36] Chockwanich, N., and Visoottiviseth, V.,

"Intrusion detection by deep learning with tensorflow",

in 2019 21st International Conference on Advanced

Communication Technology (ICACT), IEEE, pp. 654-

659, 2019.

[37] Zhong, M., Zhou, Y., Chen, G., "Sequential model

based intrusion detection system for IoT servers using

deep learning methods. Sensors", No. 5, Vol. 21(4), pp.

1113, Feb, 2021.

[38] Ponkarthika, M., and Saraswathy, V., "Network

intrusion detection using deep neural networks", Asian

Journal of Science and Technology, Vol. 2, No. 2, pp.

665-673, 2018.

[39] Vinayakumar, R., Soman, K., and

Poornachandran, P., "Applying convolutional neural

network for network intrusion detection", in 2017

International Conference on Advances in Computing,

Communications and Informatics (ICACCI), IEEE, pp.

1222-1228, 2017.

[40] Chawla, A., Lee, B., Fallon, S., and Jacob, P., "Host

based intrusion detection system with combined

CNN/RNN model", in Joint European Conference on

Machine Learning and Knowledge Discovery in

Databases, Springer, pp. 149-158, 2018.

[41] Wang, W., et al., "HAST-IDS: Learning hierarchical

spatial-temporal features using deep neural networks to

improve intrusion detection", IEEE access, Vol. 6, pp.

1792-1806, 2017.

[42] Hsu, C.-M., Hsieh, H.-Y., Prakosa, S. W., Azhari, M.

Z., and Leu, J.-S., "Using long-short-term memory

based convolutional neural networks for network

intrusion detection", in International wireless internet

conference, Springer, pp. 86-94, 2018.

[43] Lee T. H., Chang, L. H., Syu, C. W., "Deep learning

enabled intrusion detection and prevention system over

SDN networks", In2020 IEEE International

Conference on Communications Workshops (ICC

Workshops), Jun 7, pp. 1-6, IEEE, 2020.

[44] Malik, J., Akhunzada, A., Bibi, I., Imran, M.,

Musaddiq, A., Kim, S. W., "Hybrid deep learning: An

efficient reconnaissance and surveillance detection

mechanism in SDN", IEEE Access. No. 16, Vol. 8, pp.

134695-706, Jul, 2020.

[45] Mohammadi, S., and Namadchian, A., "A new deep

learning approach for anomaly base IDS using memetic

classifier", International Journal of Computers

Communications & Control, Vol. 12, No. 5, pp. 677-

688, 2017.

[46] Niyaz, Q., "Design and Implementation of a Deep

Learning based Intrusion Detection System in

Software-Defined Networking Environment",

University of Toledo, 2017.

[47] Shone, N., Ngoc, T. N., Phai, V. D., and Shi, Q., "A

deep learning approach to network intrusion detection",

IEEE transactions on emerging topics in computational

Journal of Computer and Knowledge Engineering, Vol.5 , No.2. 2022. 43

intelligence, Vol. 2, No. 1, pp. 41-50, 2018.

[48] Farahnakian, F., and Heikkonen, J., "A deep auto-

encoder based approach for intrusion detection system",

in 2018 20th International Conference on Advanced

Communication Technology (ICACT), IEEE, pp. 178-

183, 2018.

[49] Papamartzivanos, D., Mármol, F. G., and Kambourakis,

G., "Introducing deep learning self-adaptive misuse

network intrusion detection systems", IEEE Access,

Vol. 7, pp. 13546-13560, 2019.

[50] A. Abusitta, M. Bellaiche, M. Dagenais, and T. Halabi,

"A deep learning approach for proactive multi-cloud

cooperative intrusion detection system", Future

Generation Computer Systems, Vol. 98, pp. 308-318,

2019.

[51] Tang, T. A., Mhamdi, L., McLernon, D., Zaidi, S. A.

R., and Ghogho, M., "Deep learning approach for

network intrusion detection in software defined

networking", in 2016 international conference on

wireless networks and mobile communications

(WINCOM), IEEE, pp. 258-263, 2016.

[52] Roy, S. S., Mallik, A., Gulati, R., Obaidat, M. S., and

Krishna, P. V., "A deep learning based artificial neural

network approach for intrusion detection", in

International Conference on Mathematics and

Computing, Springer, pp. 44-53, 2017.

[53] Ustebay, S., Turgut, Z., and Aydin, M. A., "Cyber

attack detection by using neural network approaches:

shallow neural network, deep neural network and

autoencoder," in International conference on computer

networks, Springer,pp. 144-155, 2019.

[54] Vigneswaran, R. K., Vinayakumar, R., Soman, K., and

Poornachandran, P., "Evaluating shallow and deep

neural networks for network intrusion detection

systems in cyber security", in 2018 9th International

conference on computing, communication and

networking technologies (ICCCNT), IEEE, pp. 1-6,

2018.

[55] Javeed, D., Gao, T., Khan, M.T., Ahmad, I., "A hybrid

deep learning-driven SDN enabled mechanism for

secure communication in Internet of Things (IoT)",

Sensors, No. 18, Vol. 21(14), pp. 4884, Jul, 2021.

[56] Hande, Y., Muddana, A., "Intrusion detection system

using deep learning for software defined networks

(SDN)", In2019 International Conference on Smart

Systems and Inventive Technology (ICSSIT) 2019 Nov

27, pp. 1014-1018, IEEE, 2019.

[57] Duy, P. T., Khoa, N. H., Nguyen, A. G., Pham, V. H.,

"DIGFuPAS: Deceive IDS with GAN and Function-

Preserving on Adversarial Samples in SDN-enabled

networks", Computers & Security, No. 1, Vol. 109, pp.

102367, Oct, 2021.

[58] Boukria, S., Guerroumi, M., "Intrusion detection system

for SDN network using deep learning approach",

In2019 International Conference on Theoretical and

Applicative Aspects of Computer Science (ICTAACS),

Dec 15, Vol. 1, pp. 1-6, IEEE, 2019.

[59] Seyedkolaei, A. A., Seno, S. A. H., Moradi, A., and

Budiarto, R., "Cost-Effective Survivable Controller

Placement in Software-Defined Networks", IEEE

Access, Vol. 9, pp. 129130-129140, 2021.

[60] Prajapati, A., Sakadasariya, A., and Patel, J., "Software

defined network: Future of networking", in 2018 2nd

International Conference on Inventive Systems and

Control (ICISC), IEEE, pp. 1351-1354, 2018.

[61] Khairi, M. H., Ariffin, S. H., Latiff, N. A., Abdullah, A.,

and Hassan, M., "A review of anomaly detection

techniques and distributed denial of service (DDoS) on

software defined network (SDN)", Engineering,

Technology & Applied Science Research, Vol. 8, No. 2,

pp. 2724-2730, 2018.

[62] Shaghaghi, A., Kaafar, M. A., Buyya, R., and Jha, S.,

"Software-defined network (SDN) data plane security:

issues, solutions, and future directions", Handbook of

Computer Networks and Cyber Security, pp. 341-387,

2020.

[63] Ludwig, S. A., "Intrusion detection of multiple attack

classes using a deep neural net ensemble", in 2017 IEEE

Symposium Series on Computational Intelligence

(SSCI), IEEE, pp. 1-7, 2017.

[64] Faker, O., and Dogdu, E., "Intrusion detection using big

data and deep learning techniques", in Proceedings of

the 2019 ACM Southeast Conference, pp. 86-93, 2019.

[65] Rawat, S., Srinivasan, A., Ravi, V., Ghosh, U.,

"Intrusion detection systems using classical machine

learning techniques vs integrated unsupervised feature

learning and deep neural network", Internet Technology

Letters, Jan, Vol. 5(1), pp. e232, 2022.

[66] Powers, D. M., "Evaluation: from precision, recall and

F-measure to ROC, informedness, markedness and

correlation", arXiv preprint arXiv, 2010.16061, 2020.

[67] Revathi, S., and Malathi, A., "A detailed analysis on

NSL-KDD dataset using various machine learning

techniques for intrusion detection", International

Journal of Engineering Research & Technology

(IJERT), Vol. 2, No. 12, pp. 1848-1853, 2013.

[68] Abadi, M., et al., "Tensorflow: A system for large-scale

machine learning", in 12th {USENIX} symposium on

operating systems design and implementation ({OSDI}

16), pp. 265-283, 2016.

[69] Saritha Reddy, A., Ramasubba Reddy, B., Suresh Babu,

A., "An Improved Intrusion Detection System for SDN

using Multi-Stage Optimized Deep Forest Classifier",

International Journal of Computer Science & Network

Security, Vol. 22(4), pp. 374-86, 2022.

[70] Fu, Y., Du, Y., Cao, Z., Li, Q., Xiang, W. A., "Deep

Learning Model for Network Intrusion Detection with

Imbalanced Data", Electronics, Mar 14, Vol. 11(6), pp.

898, 2022.

[71] Imrana, Y., Xiang, Y., Ali, L., Abdul-Rauf, Z., "A

bidirectional LSTM deep learning approach for

intrusion detection", Expert Systems with Applications,

Dec 15, Vol. 185, pp. 115524, 2021.

[72] Toldinas, J., Venčkauskas, A., Damaševičius, R.,

Grigaliūnas, Š., Morkevičius, N., Baranauskas, E., "A

novel approach for network intrusion detection using

multistage deep learning image recognition",

Electronics, Aug 1, Vol. 10(15), pp. 1854, 2021.

44 Somayeh Soltani et. al.: A Deep Neural Network Architecture for …

