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Abstract: For more comprehensive security of a computer 

network as well as the use of firewall and anti-virus security 

equipment, intrusion detection systems (IDSs) are needed to 

detect the malicious activity of intruders. Therefore, the 

introduction of a high-precision intrusion detection system is 

critical for the network. Generally, the general framework of 

the proposed intrusion detection models is the use of text 

classification, and today deep neural networks (DNNs) are 

one of the top classifiers. A variety of DNN-based intrusion 

detection models have been proposed for software-defined 

networks (SDNs); however, these methods often report 

performance metrics solely on one well-known dataset. In 

this paper, we present a DNN-based IDS model with a 12-

layer arrangement which works well on three datasets, 

namely, NSL-KDD, KDD99, and UNSW-NB15. The 

layered layout of the proposed model is considered the same 

for all the three datasets, which is one of the strengths of the 

proposed model. To evaluate the proposed solution, six other 

DNN-based IDS models have been designed. The values of 

the evaluation metrics, including accuracy, precision, recall, 

F-measure, and loss function, show the superiority of the 

proposed model over these six models. In addition, the 

proposed model is compared with several recent articles in 

this field, and the superiority of the proposed solution is 

shown. 

Keywords: Intrusion Detection, Software-defined Network, 

Deep Learning, Network Security 

 

1. Introduction 

In computer systems and networks, the attackers exploit 

security vulnerabilities to attack the network; therefore, there 

is a need for some methods to detect intrusions into a 

computer system or network. An intrusion detection system 

(IDS) is the software or hardware that detects and reacts to 

intrusions. An IDS prevents illegal access and tampering 

with the resources of a computer system or network [1-3]. 

Generally, the IDS monitors the activities of the host 

computer or the entire network and reports the violations of 

management and security policies to the network 

administrator [4-6].  

With the growing use of the Internet, network traffic is 

becoming increasingly complex, and the challenge is 

becoming more difficult for IDS to detect attacks or 

anomalies more accurately and quickly. Therefore, 

researchers leverage machine learning techniques to improve 

the capability of IDSs. 

In the category of machine learning, artificial neural 

network (ANN) is one of the most widely used models. It is 
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a computational technique widely used in data processing, 

pattern recognition, and information classification. Deep 

learning, a subset of machine learning, attempts to extract 

high level features from the raw input using several hidden 

layers. Deep neural networks are used in the design of IDSs 

for software-defined networks (SDNs). 
In recent years, several approaches for intrusion detection 

have been proposed using machine learning techniques; 
however, each of the methods has its challenges and 
problems. For example, most studies have reported good 
accuracy rates, while they have not reported other metrics 
such as precision or recall. Some methods have reported 
relatively low values for these performance measures. 
Another weakness of these methods is that they work only 
on one dataset and do not evaluate their methods on larger 
and newer datasets. On the other hand, some studies have 
compared their methods with only simple classifiers. 
However, it is clear that this kind of comparison does not 
have the necessary quality. In this paper, we offer an 
intrusion detection method for software-based networks 
using deep neural networks; the proposed method achieves 
high performance on several datasets. 

The contributions of this work can be summarized as 

follows: 

 It provides a comprehensive and complete classification 

(Research Tree) in the field of intrusion detection 

systems. 

 It follows a deep learning approach to IDS using deep 

neural networks in software-defined networks. 

 It provides seven neural network-based IDS models and 

evaluates them on three datasets, namely NSL-KDD, 

KDD99, and UNSW-NB15. The best model, which has 

the best accuracy, precision, recall, and F-measure values 

on all datasets, is then introduced. 

 One of the strengths of this solution is that the layered 

layouts of the proposed models are the same for all three 

datasets. 

The paper then presents the theoretical background and 

research motivation, discusses the proposed model, 

evaluates the proposed model, and finally concludes the 

work. 
 

2. Research background 

In general, intrusion detection systems can be categorized in 

terms of various aspects, such as detection method (or 

analysis technique), type of architecture, how to respond and 

react to intrusion, information source, and many others [7-

12]. For example, intrusion detection systems can be divided 

into two types of continuous monitoring and periodic 
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analysis in terms of continuity [13-15]. They can also be 

divided into active and passive responses [16-19].  

Chalapathy and Chawla [7] categorized the deep learning-

based anomaly detection techniques using three criteria: 

application, type of anomaly, and type of model. Then they 

defined nine applications, that is, fraud detection, cyber 

intrusion detection, medical anomaly detection, sensor 

network anomaly detection, video surveillance, IoT big data 

anomaly detection, log anomaly detection, and industrial 

damage detection. They defined three types of anomalies: 

collective, contextual, and point. Moreover, they considered 

four types of detection models: unsupervised, semi-

supervised, hybrid, and one-class neural networks. 

Kwon et al. [9] classified the anomaly-based IDSs into 

two groups: programmed and self-learning. Then they 

classified the programmed IDSs into two categories of 

simple-rule and statistical-based, and they categorized the 

self-learning IDSs into four categories: cognition-based, 

computation-intelligence, data mining, and machine 

learning. In the next step, they classified the machine 

learning-based IDSs into six groups: Bayesian network, 

genetic algorithm, fuzzy logic, artificial neural network 

(ANN), supervised vector machine (SVM), and outlier 

detection. Furthermore, they defined two types of ANNs: 

supervised and unsupervised. The supervised ANN IDSs can 

be free-forward ANN or recurrent ANN. The unsupervised 

methods include deep learning, adaptive resonance theory, 

and self-organizing maps. Finally, the deep learning methods 

include AutoEncoder, sum-product network, recurrent 

neural network (RNN), Boltzmann machine (BM), 

convolutional neural network (CNN), and deep neural 

network (DNN). 

Lee et al. [18] categorized deep learning-based IDS schemes 

into nine classes: AutoEncoder-based, RBM-based, DBN-

based, DNN-based, CNN-based, GAN-based, LSTM-based, 

RNN-based, and hybrid. They then classified the 

AutoEncoder-based schemes into six groups: Stacked 

AutoEncoder, Denoising AutoEncoder, NonSymmetric 

AutoEncoder, Sparse AutoEncoder, Variational 

AutoEncoder, and Convolutional AutoEncoder. They also 

defined several hybrid schemes: AE+CNN, AE+DBN, 

AE+DNN, AE+GAN, AE+LSTM, CNN+LSTM, 

CNN+RNN, and DNN+RNN. 

Having reviewed various articles in the field of intrusion 

detection systems, we categorized these systems in different 

ways. In terms of continuality, we classified intrusion 

detection systems into two categories: continuous 

monitoring and periodic analysis. Concerning reaction to 

influence, we divided these systems into two groups: active 

response and passive response. Regarding the architecture, 

we divided the IDSs into two groups, centralized and 

distributed. In addition, we defined two types of real-time or 

offline forecasting.  

In terms of the knowledge base, we considered three 

classes: Boltzmann machine, descriptive languages, and 

expert systems. We classified the IDSs into three groups: one 

variable, multivariate, and time series model. Moreover, the 

IDS systems are categorized into two classes: anomaly-based 

and signature-based. We considered three signature-based 

techniques: data mining, state transition, and expert systems. 

Anomaly-based techniques are divided into two groups: 

self-learning, and programming. The self-learning 

techniques are cognition-based and relate to computation 

intelligence, data mining, or machine learning. The machine 

learning techniques can be semi-supervised, supervised, 

unsupervised, or reinforcement learning. Each of these 

techniques has so many subcategories. 

We summarize various categorizations in a tree named 

Research Tree in the field of intrusion detection systems. 

Figure 1. shows the comprehensive classification tree. 

In the following, we categorize previous research works 

into two main groups in terms of the model architecture: 1) 

works done on shallow architectures, 2) works done on deep 

architectures.  
 

 
 

Figure 1. Research Tree in the field of intrusion detection systems
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2.1. Shallow Learning IDSs 
Some intrusion detection methods use shallow architectures, 
such as support vector machine (SVM), decision tree (DT), 
random forests (RF), clustering, K nearest neighbor (KNN), 
particle swarm optimization (PSO), simulated annealing 
(SA), ANN, and ensemble methods [4, 20-27]. 

Lin et al. [4] used the SVM, the decision tree, and the 
simulated annealing and reached 99.96% accuracy. Wang et 
al. [23] used the SVM algorithm and reached 99.31% 
accuracy. Baek et al. [22] achieved an 88% accuracy rate 
using several simple classifications.  

These methods take advantage of the mentioned 
algorithms and use KDD99 or NSL-KDD datasets to 
evaluate their solutions and report good accuracy or 
precision rates. However, these methods report only one 
metric of accuracy or precision and no other metrics. They 
use only one dataset for evaluation, and they compare the 
results with only ordinary classifications. 
 

2.2. Deep Learning IDSs 
In this section, we describe intrusion detection models based 
on deep learning methods. 
 

A. Convolutional Neural Network (CNN) 
This category includes research works which have based 
their intrusion detection techniques on convolutional neural 
networks [28-32]. Zhu et al. [28] considered 6 layers of the 
neural networks and used the pooling layer among them. 
Moreover, they used a learning rate of 0.5 and achieved 
80.34% of Accuracy. Li et al. [29] used convolution 
architecture and data-to-image conversion techniques to 
detect intrusion but provided a relatively low accuracy rate 
(about 80%). Nguyen et al. [32] used a deep convolutional 
network and used 4 main layers of CNN networks. They 
reported 99.87% accuracy on the KDD99 dataset. 
 

B. Recursive Neural Network (RNN) or Gated Recurrent 

Unit RNN (GRU–RNN) 
Research works in this category have used recursive neural 
network techniques [33-37]. For example, Yin et al. [33] 
proposed a binary classification method based on a deep 
recursive neural network to detect intrusions. They first 
performed pre-processing (such as normalization) on the 
input dataset and then attempted to weigh the deep network 
layers using a recursive neural network with forward 
propagation, reporting 99.81% accuracy. Tang et al. [34] 
proposed a gated recurrent unit (GRU) over SDN-based 
networks. They compared their method with DNN classifiers 
having different layouts, support vector machines, and 
simple Bayesian, and reported 89% accuracy and 87% 
precision. Zhong et al. [37] presented an IDS for IoT servers 
using text-CNN and GRU methods. They reported the F-
score criterion on the KDD99 and ADFA-LD datasets. 
 

C. Long Short-Term Memory (LSTM) 
Ponkarthika and Saraswathy [38] developed an intrusion 
detection system based on the RNN and its specific type, and 
LSTM networks. They achieved 82% accuracy for the RNN 
and 83% accuracy for the LSTM on the KDD99 dataset with 
a learning rate of 200. 
 

D. CNN-RNN 

Vinayakumar et al. [39] proposed an intrusion detection 

technique using the convolutional network for feature 

extraction and the RNN network for classification. They 

proposed a CNN-based model and showed that the CNN 

network would perform better than MLP, CNN-LSTM, and 

CNN-GRU in extracting and presenting features from 

network traffic. Their model could report the highest 

accuracy and recall on single-layer CNN and the highest 

precision on almost all CNN combinations with other 

networks on the KDD99 dataset at 99.9%. Chawla et al. [40] 

proposed a technique using a combined convolutional 

network and GRU RNN; they also could achieve 81% 

accuracy on the ADFA-LD dataset with a learning rate of 

0.0001.  

 

E. CNN-LSTM 

The intrusion detection method proposed by Wang et al. [41] 

uses the convolution filter to extract the feature and the 

LSTM network for classification. That is, it uses CNN deep 

networks to learn low-level features and LSTM networks to 

learn high-level features. This method reported 99.89% 

accuracy on the ISCX2012 dataset. Furthermore, Hsu et al. 

[42] used a hybrid method based on LSTM and convolution 

network to detect intrusion and reported 94.12% accuracy on 

a larger dataset. Lee et al. [43] designed an intrusion 

detection system to prevent SSH and DDOS attacks in 

software-defined networks, which used four deep learning 

models, including MLP, CNN, LSTM, and SAE. Malik et al. 

[44] designed an Efficient Reconnaissance and Surveillance 

Detection in SDN using CNN and LSTM; however, they 

evaluated their model using only one dataset, namely 

CICIDS 2017. 

 

F. RNN-LSTM 

Jiang et al. [6] developed a multi-channel intelligent attack 

detection technique based on a combination of LSTM and 

RNN networks. In this LSTM-RNN architecture, multiple 

feature channels are given to the network input layer. Then, 

the LSTM layer, the Mean Pooling layer and finally the 

logistic regression layer are used. Finally, a majority vote is 

taken on the results obtained. Jiang et al. reported a detection 

rate of 99.23 and an accuracy of 98.94% on the NSL-KDD 

dataset. 
 

G. Auto Encoder  

The articles in this category [45-50] use deep Auto Encoder 

neural networks. Mohammadi and Namadchian [45] first 

performed normalization and then used a deep Auto Encoder 

method to reduce the error rate. Finally, on the NSL-KDD 

dataset, they achieved 92.72% accuracy and 98.11% 

detection rate in the classification of R2L attacks. 

Papamartzivanos et al. [49] provided a comprehensive 

framework based on self-taught learning and MAPE-K 

methodology. The framework included plan, monitor, 

analyze, and execute activities that are applied to a 

knowledge base. Their model was a Sparse Auto Encoder 

and a Feedforward Auto Encoder. Their tests on the KDD99 

and NSL-KDD datasets reported 99.8% and 99.6% accuracy. 
 

H. Deep Neural Network (DNN) 

The models in this category [5,51-58] use deep neural 

networks to detect network intrusions. In 2019, 

Vinayakumar et al. [5] proposed an IDS based on deep neural 

network and tested it on six datasets. The model layers 
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included the fully connected layer, the normalization layer, 

and the drop-out layer with a coefficient of 0.01. They used 

16 consecutive layers, several ReLU activation functions, 

and learning rates between 0.01 and 0.5. This model reported 

good accuracy on six well-known datasets (e.g. 96.3% on the 

CICIDS dataset or 93% on the KDD99 dataset). 
Tang et al. [51] also proposed a DNN-based intrusion 

detection method which was performed on the SDN 
environment and the NSL-KDD data set, and its experiments 
with a learning rate of 0.0001 reported an accuracy of 75.75. 
Using the Boltzmann neural network on the KDD99 dataset, 
Roy et al. [52] were able to report a very high 99.99% 
accuracy for two-class mode (attack or normal). 

Ustebay et al. [53] used both the deep neural network and 
the shallow neural network (SNN) to detect abnormalities. 
They used these two models to reduce the feature set. They 
also trained the models on the CICIDS2017 dataset and 
reported a 98.45% accuracy rate on the deep models. They 
showed that deep models would achieve higher accuracy, 
precision, and recall than shallow models. 

Vigneswaran et al. [54] evaluated DNN and SNN models 
on NIDS. They performed experiments on the DNN 
architecture with 1 to 5 layers at a learning rate of 0.1, 
considered 1000 Epochs on the KDD99 dataset, and finally 
compared the results with shallow machine learning 
algorithms. The results showed that the three-layer DNN had 
the best accuracy of 93% and precision of 99% among all 
these algorithms. 

Duy et al. [57] designed a framework called DIGFuPAS 
which creates attack examples and acts like deep learning-
based IDS in SDN in a  Black-Box manner. They used 
Wassertein Generative Adversarial (WGAN) Model, a 
generative model based on deep learning. Bouria and 
Guerroumi [58] presented an IDS based on a deep learning 
approach to strengthen SDN network security. The 
communication channel between the control layer and the 
infrastructure layer of the SDN is protected against various 
attacks. Moreover, they evaluated their model only on the 
CICIDS 2017 dataset. 

 

2.3. Software-Defined Networks 
Software-defined network is a new type of network 
architecture in which one or more central servers are 
responsible for controlling all network elements, whereas the 
rest of the elements only direct network traffic [59, 60]. 
Traditional networks were suitable for a static client-server 
structure. But today's modern networks, including data 
centers, cloud services, mobiles, and IoT devices, demand 
new requirements. 

As you know, in traditional networks, each network 
device calculates routes and makes decisions on network 
policies. However, in SDN networks, the network operating 
system (the controller) is responsible for deciding how to 
route packets and applying network policies. The most 
essential concept in SDN networks is to separate the control 
plane and data plane. While the control plane decides how to 
route the packets, the switches and routers merely forward 
packets and are not involved in decision-making.  

Apart from the controller and the network devices, some 

other components constitute the SDN architecture. For 

example, the SDN applications express their desired network 

behavior to the controller using some interfaces. Moreover, 

the OpenFlow protocol communicates between the control 

and the data planes. 

While SDN provides easy, flexible, and integrated 

management, it imposes several security issues. As the 

control logic in SDN is centralized, it is more vulnerable to 

cyber-attacks such as DDoS; therefore, the design of security 

appliances for SDN networks is crucial [61, 62]. 

 

3. The proposed model  

The proposed model consists of three phases: 1) 

preprocessing phase, 2) neural network design phase, and 3) 

intrusion detection phase. In the first phase, the necessary 

pre-processing is performed on the raw data collected from 

the SDN network traffic. In the second phase, the neural 

network is designed with the appropriate layer arrangement 

and the proper activating function. The model is trained on 

the training dataset with the required number of repetitions. 

In the third phase, the trained model is tested on a test dataset, 

and the performance of the model is evaluated using various 

metrics such as accuracy, precision, and recall. 

In deep learning, the goal of training is to increase the 

performance of the model using the defined training set. To 

measure the performance, we defined a loss function and 

reduced it in the hope that it would improve the overall 

performance of the model. While there are many loss 

functions to compute the distance between the true value and 

the estimated one, Cross entropy [3] is the most popular. In 

this research, we used the Cross entropy and the Adam 

optimizer for all three datasets. Cross entropy for a 

classification problem with 𝑛 classes is defined as (1): 
 

𝐶𝐸 = − ∑ 𝑡𝑖 𝑙𝑜𝑔(𝑝𝑖) ,𝑛
𝑖=1                                                     (1) 

 

where 𝑡𝑖 is the true value and 𝑝𝑖  is the probability for the 

𝑖𝑡ℎ class.  

In this research, we considered seven different 

configurations for the neural network and evaluated all these 

seven models on three datasets, NSL-KDD, KDD99, and 

UNSW-NB15. It should be noted that the architecture and 

layered layout of the proposed models are the same for all 

three datasets, which is one of the strengths of our solution. 

To achieve proper performance, many previous models 

[5,24,28,59] have offered different layout layers for each 

data set, but our proposed architecture achieved good 

performance for all three datasets without manipulation. 

Each of these seven models had a unique layout consisting 

of several layers, such as embedding, Dense, Drop out, and 

activation layers. The first model was a model based on 

dense layers and had nine layers. The second model was 

based on the convolutional neural network (CNN) and had 

the largest number of layers (22 layers). The third model was 

a 10-layer LSTM-CNN hybrid network. The fourth model 

was based on the dense network with the least number of 

layers. The fifth model, like the second one, was a CNN-

based model with a relatively large number of layers. The 

sixth model was based on the LSTM-CNN hybrid network 

and had 12 layers. Finally, the seventh model was based on 

the dense network and had 12 layers. The designs of these 

seven models are described in Table 1. The number of 

neurons in each layer is represented in parentheses. 
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Table 1. The layout of the seven proposed ANN-based IDSs 

 
Model 7 Model 6 Model 5 Model 4 Model 3 Model 2 Model 1 Layers 

Dense(64) Embedding Embedding Dense(128) Embedding Embedding Dense(128) Layer 1 

Dense(32) Dropout Dropout Dense(64) Dropout Dropout Dense(64) Layer 2 

Activation Conv(64) Conv(256) Dense(128) Conv(32) Conv(256) Dense(128) Layer 3 

Dropout Dropout Dense(100) Dense(64) Conv(64) Dense(100) Dropout Layer 4 

Dense(32) Dropout Dropout Dense(6) Conv(128) Dropout Dense(64) Layer 5 

Activation Conv(64) Conv(128) Dense(128) LSTM(128) Conv(128) Dropout Layer 6 

Dropout Dropout Dense(100) FC Dense(100) Dense(100) Dense(6) Layer 7 

Dense(32) LSTM(300) Dropout --- Dropout Dropout Dropout Layer 8 

Activation Dense(100) Conv(128) --- Dense(100) Conv(256) FC Layer 9 

Dropout Dropout Dense(100) --- FC Dense(100) --- Layer 10 

Dense(32) Dense(10) Dense(100) --- --- Dropout --- Layer 11 

FC FC Dropout --- --- Dense(200) --- Layer 12 

--- --- Dense(200) --- --- Dropout --- Layer 13 

--- --- Conv(32) --- --- Dense(100) --- Layer 14 

--- --- Conv(64) --- --- Conv(32) --- Layer 15 

--- --- Conv(128) --- --- Max-pool --- Layer 16 

--- --- Dense(100) --- --- Dropout --- Layer 17 

--- --- Dropout --- --- Dense(256) --- Layer 18 

--- --- Dense(256) --- --- Dropout --- Layer 19 

--- --- Dropout --- --- Dense(100) --- Layer 20 

--- --- FC --- --- Dropout --- Layer 21 

--- --- --- --- --- FC --- Layer 22 

We tested all seven proposed models against three datasets 

NSL-KDD, KDD99, and UNSW-NB15 and selected the best 

one (i.e., Model 7).  

The best-proposed model (Model 7) was a unique 12-layer 

deep neural network with the following layer topology: 

dense, dense, activation, drop out, dense, activation, drop 

out, dense, activation, drop out, dense, and finally activation 

or fully connected (FC) layer which is used to select the 

appropriate class using SoftMax or Tanh functions. From 

now on, we will call Model 7 the proposed model. The 

proposed model improves the evaluation metrics without 

changing the number and layout of layers on the three 

datasets. This is the superiority of our solution over other 

works, which provides a different network architecture for 

each dataset. 

However, it should be noted that since these three datasets 

are different in terms of the number of parameters and the 

number of output classes, our model also considers different 

parameters and final activation functions for selecting output 

classes. Also, the initial values for the dense layers are 

slightly different for each dataset. In the following, we will 

examine the layers of the proposed model. 

Dense Layer: The values of the dense layers in the 

proposed model are different for each dataset and depend on 

the number of dataset properties. For example, for the 

UNSW-NB15 dataset, 64 values are provided for the first 

layer. The activation function is also one of the best-tested 

functions for the neural network. The non-linear ReLU 

function is defined in  the following (2): 

 

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥),                                                      (2) 

 

where 𝑥 is the input. 

Drop out layer: The drop out layer accidentally removes 

and releases some neurons, preventing the network overfit. 

Therefore, it does not allow the network to retain data and to 

be disturbed in predicting the testing data. In the proposed 

model, a drop out layer with values of 0.15 to 0.5 is 

considered after each dense layer. 

Fully connected (FC) layer: A fully connected layer 

(unlike a dense layer) is a layer that connects to all the 

neurons in the previous layer. It considers the trained inputs 

in the previous layers and assigns them to the appropriate 

class using an activation function such as SoftMax or Tanh, 

as defined in (3) and (4). Figure 2 illustrates the proposed 

model diagram: 
 

𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑛

𝑗=1

,                                                    (3) 

 

𝑇𝑎𝑛ℎ(𝑥) =
𝑒2𝑥−1

𝑒2𝑥+1
,                                                               (4) 

 

where 𝑥 is the input.
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Dense(64)
...

Dense(32) Activation Dropout Dense(32) Activation Dropout Dense(32) Activation Dropout Dense(32) FC

 
Figure 2. The layer layout of the proposed solution 

 

The implementation of the proposed solution is described 

below. The data collected from the data sets of SDN 

networks were prepared and modeled. The layout, number, 

and type of network layers were set, the activation functions 

were selected, and the specified attack classes were 

converted into vectors. Then, the dataset was tagged with 

attack and non-attack labels. Finally, the input data, the 

output classes, layers, and weights of the data set in CSV 

format would make the DNN neural networks. We used 

TensorFlow and Keras deep learning package and Python 

programming language. To train the model faster and use 

powerful GPUs, we used the Google Colab service. We 

trained the model and the network with a suitable number of 

iterations and made sure of avoiding overfitting in each 

epoch. Finally, we tested the model using the test data set and 

evaluated the improvement of the model's performance in 

terms of accuracy, precision, recall, and cost function. 
 

4. The evaluation of the proposed model 

4.1. Datasets  

In this study, three datasets, including NSL-KDD, KDD99, 

and UNSW-NB15, were used as benchmarks to select the 

best model among seven models and to compare the 

proposed model with other methods. 
 

A. KDD99 dataset 

The KDD99 dataset is an old dataset containing 41 features 

and five different classes: normal, DoS, remote-to-local 

(R2L), user-to-root (U2R), and Prob. It includes 494,021 

records for training and 311,029 for testing sets. Some of the 

derived features include duration, protocol_type, service, 

src_bytes, dst_bytes, flag, urgent, and so on. One drawback 

of KDD99 is that the sets of classes in the training and testing 

sets are imbalanced. Moreover, there are many duplicates in 

the dataset. 

 

B. NSL-KDD dataset 

The NSL-KDD dataset is one of the most widely used 

datasets for intrusion detection research; it is a subset of the 

original KDD99 and is designed to solve some of the 

drawbacks of the KDD99 dataset. This dataset does not have 

duplicate records in the training and testing sets, and the 

number of records is considered more reasonable and 

appropriate. The feature set and the type of classes are the 

same as the original KDD99.  
 

C. UNSW-NB15 dataset 

UNSW-NB15 is a relatively new dataset with a hybrid of real 

normal activities and synthetic contemporary attacks. It has 

175,341 records in the train set and 82,332 records in the test 

set. The dataset has ten classes (normal and nine types of 

attacks). The attack types are DoS, backdoors, fuzzers, 

analysis, exploits, generic, shellcode, reconnaissance, and 

Worms. Moreover, there are 49 derived features. 
 

4.2. Evaluation Metrics 

The most important and widely used metrics to evaluate the 

quality of the results of intrusion detection methods are: 1) 

accuracy, 2) precision, 3) recall, 4) F-measure, and 5) loss 

function [49, 63-65]. At first, it is necessary to define the four 

basic terms used in the mentioned metrics [66]: 

 True Positive (TP) indicates the number of records in the 

dataset that our method correctly classified in the attack 

class.  

 True Negative (TN) is the number of records in the 

dataset that our method rightly classified in the normal 

category.  

 False Positive (FP) indicates the number of records in the 

dataset that our method incorrectly classified in the attack 

class.  

 False Negative (FN) is the number of records in the 

dataset that our method mistakenly classified in the 

normal category. 

In the following, we will explain the application of these 

basic terms in the mentioned evaluation metrics. 

Precision: This metric estimates the ratio of correctly 

identified attack records to the total number of detected 

attack records (5): 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                      (5) 

 

Recall: This metric estimates the ratio of correctly 

classified attack records to the total number of attack records 

(6): 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                          (6) 

 

Accuracy: This metric estimates the ratio of correctly 

classified records to the total records. In other words, the 

accuracy metric shows the percentage of the data that are 

correctly categorized in (7): 
 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                     (7) 

 

F-measure: This metric establishes a tradeoff between 

precision and recall. It is the harmonic mean of precision and 

recall (8): 
 

𝐹 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                    (8) 

 

Loss function: This metric indicates the amount of output 

error, and we can get good results by optimizing it [36, 51, 

67]. 

 

4.3. The evaluation of the Proposed Solution 

To implement the proposed models, we used the Jupyter 

Notebook in the free Google Colaboratory service. In 

particular, we used the Tensorflow 1.0 deep learning 

package [68] along with Keras Backend and the Adam 

optimizer with different learning rates. Moreover, we used 

the most popular cost function, that is, Cross Entropy. The 

seven neural network models were examined and evaluated 

on the three datasets with the same conditions. 
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Table 2.  The performance of the seven proposed models on the KDD99 dataset 
 

Metrics Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Accuracy 53.96 98.93 50.87 61.1 98.9 88.22 99.02 

Precision 83.79 88.67 78.54 98.27 88.38 63.17 99.14 

Recall 76.19 86.34 79 41.24 85.94 58.77 98.93 

F-measure 78.78 87.49 78.74 58.08 87.14 60 99.04 

Loss function 0.046 0.03 0.054 0.415 0.031 0.077 0.107 
 

 
Figure 3. The evaluation of the loss function of the seven proposed models on the KDD99 dataset 

 

A. The evaluation of the seven models on the KDD99 

dataset 
We examined all seven proposed models with the KDD99 
dataset. Table 2 shows the accuracy, precision, recall, F-
measure, and loss functions of all the models. The 
performance of Model 7 was better than the other models in 
terms of accuracy, precision, recall, and F-measure; 
however, the loss function of Model 7 was higher than most 
models. Model 2, with a value of 0.03, had the lowest loss 
function. 

Figure 3. shows the evaluation of the loss function on our 
seven models for the KDD99 dataset. In Model 7, the cost 
function for validation data (orange line) was approximately 
tangent to the cost function for training data (blue line). For 
other models, only training data were examined due to the 
imbalanced training and validation data.  

In Model 1, with increasing epochs, the error decreased 
but with fluctuations, which can be attributed to the lack of 
use of drop out layer for optimal control of overfitting. 
Model 2 had a stepped decrease. In the first repetitions, it had 
good learning from training data, however, in the subsequent 
repetitions, the learning rate decreased. It should be noted 
that this model had the best value of the loss function. 

Model 3 did not reach the minimum value of the loss 

function but had a good decreasing slope. The loss function 
of Model 4 not only decreased after a while, but also it 
showed an increase due to the high learning rate and 
inappropriate layer arrangement. The lower the learning rate, 
the greater the possibility of improving the loss function. The 
loss function of this model was the worst loss function 
among the design models. 

Model 5 initially had a sudden decrease and then reached 

a slow and relatively uniform decrease. The learning rate 

gradually improved better in this model. In Model 6, the 

overfitting fluctuations were uncontrolled, and the error 

increased and decreased abruptly. The sixth model worked 

well on the training data. However, after feeding new data, 

the loss function increased due to not using the drop out layer 

correctly.  

Model 7 (i.e., the best proposed model) did not have the 

least loss function among all the models, but it was able to 

control overfitting with the correct arrangement of layers. 

This model also performed well in the validation dataset. 

 

B. The evaluation of the seven models on the NSL-KDD 

dataset 

Table 3. shows the performance values of the seven models 

on the NSL-KDD dataset. It is quite clear that the proposed 
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solution (Model 7) performed much better than other models 

in all evaluation criteria, even in the loss function. As 

compared to other models, this showed the excellent 

performance of the proposed solution and the proper 

arrangement of the neural network layers in it. 

Considering Figure 4, it is clear that Model 7 greatly 

reduced the loss function. In fact, the loss function had a 

slight difference in both the training and validation datasets. 

If the loss function of the training data were close to the loss 

function of the validation data, it would be safe to say that 

the over-fitting is well controlled. The loss function in Model 

7 reached the lowest possible value among the seven models. 

One of the reasons for this smooth reduction of the loss 

function was the correct use of drop out layers between the 

dense layers. 

Model 1 had the lowest loss after model 7. The value of 

the loss function could be well reduced due to its good 

learning rate. Of course, the loss function fluctuated with the 

arrival of some new data, and the network controlled the 

fluctuations using the appropriate learning rate. The cost 

function of the second model initially decreased but 

remained constant after a few iterations. To solve this 

problem, the learning rate should be adjusted and reduced 

during the training steps.  

The layout of Model 3 was not able to reduce the loss 

function well. Model 4, like the third model, was subject to 

fluctuations in new train data. This indicated that the model 

had learned well from previous data; however, the error 

fluctuated with new data, which was not very acceptable. 

The loss function of Model 5 remained constant very soon 

and could not reduce the loss function more than this amount. 

Adjusting the input weights of the next layers was very 

important. In the fifth model, the input weights of the layers 

were not well adjusted and had been updated with a constant 

value, producing a fixed loss function. 

Model 6 did not perform well in this dataset. Increasing 

the learning rate initially reduced the loss function, but the 

error rate then increased. It seems that by reducing the 

learning rate in these models, we can solve this problem and 

improve the model performance. Thus, Model 7 in the NSL-

KDD dataset is undoubtedly the best-designed model 

according to the evaluation criteria under consideration.
 

Table 3. The performance of the seven proposed models on the NSL-KDD dataset 

Metrics Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Accuracy 71.75 95.95 96.53 67.08 95.95 61.32 99.39 

Precision 83.51 53.26 93.25 91.17 53.48 80.33 99.49 

Recall 69.79 53.23 70.23 78.4 53.44 84.11 99.33 

F-measure 75.63 53.24 79.98 83.89 53.46 81.74 99.41 

Loss function 0.068 0.088 0.084 0.094 0.088 0.076 0.022 

 
 

 

 
 

Figure 4. The evaluation of the loss function of the seven proposed models on the NSL-KDD dataset 
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C. The evaluation of the seven models on the UNSW-NB15 

dataset 

Table 4. shows the evaluation of our models on the UNSW-

NB15 dataset. Model 7 had the highest value in terms of 

accuracy and F-measure. In addition, this model achieved a 

recall of 99.98% (approximately one). Although the third 

and fourth models achieved 100% recall, other performance 

measures of these two models were lower than Model 7. 

However, the loss function of Model 7 was higher than 

Models 2, 4, 5, and 6. It is possible to reduce the error rate 

by changing the activation function for this dataset. 

However, changing the activation function is not acceptable, 

and we consider fixed activation functions for three datasets. 

Referring to Table 2, Table 3, and Table 4, it is clear that 

the highest value for accuracy metric (one of the most 

important evaluation metrics in intrusion detection systems) 

on all three datasets of KDD99, NSL-KDD, and UNSW-

NB15 belonged to the proposed model (Model 7). 

Figure 5 shows the loss functions of the seven models on 

the UNSW-NB15 dataset. It is clear that the first model 

increased the error instead of decreasing it and thus had the 

worst loss function among the seven models. It can be 

inferred that the final activation function of Model 1 failed 

to predict the correct class. Given that changing the 

activation may reduce the error, we did not change it in this 

study; in fact, we considered fixed activation functions for 

all three datasets. 

The loss function of the second model had a decreasing 

trend, which implies that the layer arrangement and the final 

activation function were chosen properly. The third model is 

almost the same as the second model and has the least loss 

value. The loss function in the fourth model continuously 

decreased; however, it did not reach the lowest level and was 

fixed at approximately 0.6881%. 

While the loss functions of the fifth and the sixth models 

performed similarly, the fifth model acted slightly better. 

The sixth model had a higher learning rate than the fifth 

model, but it controlled the overfitting better. The loss 

function of the proposed model also had a decreasing trend, 

but its error rate was higher than the other models.
 

Table 4. The performance of the seven proposed models on the UNSW-NB15 dataset 

Metrics Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Accuracy 4.3 64.04 55.05 55.04 64.02 66.45 68.11 

Precision 3.3 68.5 55.05 55.04 69.15 74.54 68.13 

Recall 2.2 65.56 100 100 64.55 59.36 99.98 

F-measure 2.2 66.59 71 70.99 66.11 66.06 80.97 

Loss function 8.86 0.632 0.34 0.688 0.635 0.739 7.16 

 

 

 
 

Figure 5. The evaluation of the loss function of the seven proposed models on the UNSW-NB15 dataset 

 



40  Somayeh Soltani et. al.: A Deep Neural Network Architecture for … 

 

D. Performance Comparison  

In this section, we will compare the results of our model with 

the findings offered by VinayaKumar et al. [5] in which 

excellent evaluation metrics values are obtained on six 

datasets.  

As shown in Figure 6, the proposed model performs better 

than VinayaKumar et al.’s work on the KDD99 dataset in 

terms of all evaluation metrics (accuracy, precision, recall, 

and F-measure). Figure 7 shows a comparison of the 

proposed method with VinayaKumar et al.’s method on the 

NSL-KDD dataset. The proposed method works much better 

than VinayaKumar et al.’s work. All four criteria in the 

proposed method are close to 100%, while in VinayaKumar 

et al.’s method they are about 80%. 

The proposed solution and the method offered by 

VinayaKumar et al. on the UNSW-NB15 dataset were also 

compared. Figure 8 shows that the accuracy of the proposed 

model is 68.11%, and the accuracy of the method of 

VinayaKumar et al. is 65.1%, and therefore the proposed 

solution works better. Regarding the Precision metric, 

VinayaKumar et al.'s method is 59.7%, and the proposed 

method is 68.13%. Also, in the recall metric, the proposed 

method performs much better than the method of 

VinayaKumar et al. 

It should be noted that the UNSW-NB15 dataset is one of 

the largest intrusion detection datasets, and the improvement 

obtained by the proposed method on this dataset is valuable. 

 

 
 

Figure 6. Comparison between the proposed model and 

VinayaKumar et al.’s work on the KDD99 dataset 

 

 
 

Figure 7. Comparison between the proposed model and 

VinayaKumar et al.’s work on the NSL-KDD dataset 

 
Figure 8. Comparison between the proposed model and 

VinayaKumar et al.’s work on the UNSW-NB15 dataset 

 

In the following, we will compare the performance of the 

proposed model with several other models. The models in 

[69-71] are evaluated using NSL-KDD. As can be seen in 

Table 5, the accuracy, precision, recall, and F-score of our 

model are better than these models in this dataset. The model 

in [37] reports the F-measure on the KDD99 dataset. 

However, as Table 5 shows, the F-measure of our model is 

greater than the F-measure of [37]. Finally, the model in [72] 

reports the precision equal to 93.41 on UNSW-NB15, which 

is greater than our precision score on this dataset. However, 

we should mention that our model, unlike [72], has 

acceptable performance on each of these three datasets. 
 

Table 5. Comparison between the proposed model and other state-

of-the-art models on the KDD99, NSL-KDD, and UNSW-NB15 

datasets 

DataSet 
KDD99 NSL-KDD UNSW-NB15 

References / Metrics 

Proposed 

Model 

Accuracy 99.02 99.39 68.11 

Precision 99.14 99.49 68.13 

Recall 98.93 99.33 99.98 

F-measure 99.04 99.41 80.97 

[69] 

Accuracy - 79.08 - 

Precision - 87.27 - 

Recall - 94.60 - 

F-measure - 91.47 - 

[72] 

Accuracy - - - 

Precision - - 93.41 

Recall - - - 

F-measure - - - 

[37] 

Accuracy - - - 

Precision - - - 

Recall - - - 

F-measure 94.50 - - 

[70] 

Accuracy - 90.73 - 

Precision - 86.38 - 

Recall - 93.17 - 

F-measure - 89.65 - 

[71] 

Accuracy - 86.70 - 

Precision - 89.36 - 

Recall - 86.70 - 

F-measure - 87.22 - 
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5. Conclusion and future work 

One of the challenges of SDN networks is to design an 

intrusion detection system that can prevent various types of 

attacks. While several methods have provided IDSs for 

SDNs, none of them has been able to achieve suitable 

performance values on different available datasets. 

In this study, to improve the security level of the network 

and prevent various attacks, we proposed an intrusion 

detection system based on a 12-layer deep neural network. 

This intrusion detection system was trained and tested on 

three SDN-specific datasets, namely NSL-KDD, KDD99, 

and UNSW-NB15. We evaluated our model over these 

datasets. The accuracy, precision, recall, and F-measure of 

the model on KDD99 were 99.02, 99.14, 98.93, and 99.04, 

respectively. These measures on the NSL-KDD dataset were 

99.39, 99.49, 99.33, and 99.41, respectively. Furthermore, 

the model on the UNSW-NB15 dataset reached good results. 

The results on the three datasets show that our model can 

reduce the loss function significantly. Moreover, we 

compared our model with six recent works. The experiment 

results showed the supremacy of the proposed model over 

these models.   

For future work, the authors plan to work on the following: 

 Working on different datasets. While only three widely 

used datasets are examined in this study, we can work on 

more than 20 publicly available SDN-specific datasets.  

 Implementing other neural network architectures, 

including CNNs, such as MobileNet, AlexNet, or LeNet. 

Another possible work is to ensemble the proposed 

model with other deep architectures or meta-heuristic 

algorithms such as particle swarm optimization (PSO) 

algorithm. 
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