
Journal of Computer and Knowledge Engineering, Vol. 3, No. 1, 2020. (1-10) 1

DOI: 10.22067/cke.2020.63251.0

A Multi-Objective Dynamic Scheduling Approach for IoT Task

Offloading on Amazon EC2 Spot Instances*

Research Article

Arash Deldari1 Ghasem Akbarian 2 and Mostafa Sabzekar 3

Abstract: In the recent years, the Internet of things (IoT)

applications have affected many aspects of human life due to

the continuous innovation in hardware, software, and

communication technologies along with the growth of the

connected devices. The enormous amounts of data generated

by these devices must be stored and then processed for

analysis and decision-making. One promising solution for

this purpose is cloud computing. However, offloading tasks

to the cloud imposes costs that must be reduced by intelligent

techniques and optimization algorithms. Fortunately,

considering cloud computing instances with dynamic pricing

referred to as spot instances can significantly reduce the

processing costs. Although these instances offer a

considerable cost reduction compared to on-demand

instances, they can be evicted by the cloud providers and

require special scheduling techniques. In this paper, we

propose a dynamic scheduling method for IoT task

offloading on Amazon EC2 spot instances. The proposed

method considers both the predicted execution time of the

task and the specified deadline that can be mapped on spot

instances. The empirical results denote that the proposed

method leads to a considerable reduction in the execution

costs, while it simultaneously increases the number of

successful tasks executed before the deadline and decreases

task turnaround time.

Keywords: Index terms, Cloud computing, the Internet of

things, Spot instances, Task offloading.

1. Introduction

Nowadays, significant and rapid advances in information and

communication technology (ICT) have changed human lives

in different aspects [1]. The Internet of things (IoT) plays a

fundamental role in the ICT sector; it is estimated that the IoT

industry indicates almost $949.42 billion by the start of the

year 2025 [2]. The IoT paradigm refers to a pattern of unique

addressable chain objects that can include real and physical

tools, including sensors, tags, cars, smartphones, and so on

[3]. The data collected by the IoT tools can be transferred

over the Internet and processed. Therefore, data processing

is considered as one of the main requirements of the IoT. One

of the main challenges in the IoT is cost reduction, which is

guaranteed by optimizing operating costs [4]. In some cases,

the IoT devices face challenges, such as limited processing

power, storage, and battery constraints. In this situation,

transferring tasks to the third-party computing platforms such

as the cloud is inevitable, which is referred to as task

offloading [5].

* Manuscript received April, 10, 2020; accepted. December, 14, 2020.
1 Corresponding Author: Department of Computer Engineering, University of Torbat Heydarieh, Torbat Heydarieh, Iran.

Email: adeldari@torbath.ac.ir.
2 Department of Computer Engineering, Imamreza International University, Mashhad, Iran.
3 Department of Computer Engineering, Birjand University of Technology, Birjand, Iran.

Another issue in the IoT is to consider time constraints

because each task should be executed before the deadline.

Deadline-constrained tasks are time-limited tasks that must

be completed, and the results must be returned to the user

before the deadline expires. At the core of this technology,

cloud computing can be used to provide the required

processing and storage services. Cloud computing is a model

for universal, convenient, and on-demand access to a

network of computing resources that changes the task

execution model from traditional models to a pay-per-use

approach [7]. It offers storage and processing requirements

for a wide range of applications such as bag of tasks (BoT),

workflows, web applications, real-time tasks, and so on [9],

[11]. However, the successful execution of the IoT tasks

without deadline violations must be taken into account. Thus,

presenting an appropriate scheduling algorithm for the IoT

task offloading, which considers the issues as mentioned

earlier, is an exciting research topic [5], [6].

Major service providers such as Microsoft, Google, and

Amazon deploy cloud resource management systems in

distributed data centers worldwide. They offer services

according to their unique rules. Some cloud service providers

offer a special type of auction-based pricing model for the

idle resources in their data centers to maximize their profits.

The price of these resources varies with time according to

supply and demand rates. The most popular cloud service

providers that offer this type of service include Google cloud

pre-emptible virtual machines (VMs), Amazon EC2 spot

instances, and Microsoft Azure low priority VMs [12], [14].

Amazon offers spot instances across different geographic

regions with different memory, processing, and operating

system features as different VM types. The significant cost

saving offered by the Amazon EC2 spot instances has

increased the popularity of spot instances in the academy and

industry. Therefore, many types of research have focused on

the use of spot instances in task scheduling [15], [16]. Due to

the dynamic pricing of spot instances, offering an appropriate

bid requires an appropriate approach to price prediction.

Thus, this context has received widespread attention from

researchers [17], [19]. The price offered in these works is

specific to geographic regions. That is, each task has a

geographical range, and the number of available instances is

limited [11]. One of the main challenges that should be

considered is the reduced availability of the spot instances

due to their auctioning essence. This unguaranteed

availability of spot instances can affect task execution in

several ways. For example, if the execution of a leased spot

instance is terminated unexpectedly, a proper solution should

https://dx.doi.org/10.22067/cke.2020.63251.0
mailto:adeldari@torbath.ac.ir

2 Arash Deldari et. al.: A Multi-objective Dynamic Scheduling…

be proposed so that the computations of the executing job

remain safe and the execution recommences; therefore, the

deadline of the task is not threatened.

Task scheduling is generally divided into dynamic and

static categories. In static scheduling methods, all the tasks

are submitted to the system before execution. Therefore, the

schedule map is determined before the execution begins and

does not change during the execution. In dynamic scheduling

methods, however, the tasks and their entry time are not

specified before execution. Thus, the tasks are submitted to

the system in a dynamic manner, and the schedule map might

change during execution.

In this study, we propose a dynamic scheduling algorithm

for the IoT task offloading on Amazon EC2 spot instances.

The proposed scheduling algorithm functions in a way that

the scheduling procedure is conducted as soon as a new task

is submitted to the system, which in some cases might change

the current schedule map. Accordingly, tasks with different

CPU and memory requirements are scheduled on resources,

and the execution time of the tasks is predicted using machine

learning techniques. The IoT tasks considered in this study

are very similar to the bag of tasks (BoT) as there are no data

communications between them. On the other hand, these

tasks have user-defined deadlines to make them more similar

to real-world IoT tasks.

To increase the successful execution of the submitted

tasks, both on-demand and spot instances are considered in

the scheduling process. The main goal is to minimize the

execution fees by scheduling as many tasks as possible on

spot instances, and the decision will be made using the

predicted execution time and deadline considered for the

task. We also consider powerful on-demand instances based

on the requirements of the task at specific times, which

increases the success rate of the scheduling algorithm.

Besides, a virtual machine migration approach based on the

predicted execution time is proposed, which acts in case of

resource retrieval. We utilize the LSTM method [18] to

predict the future price of spot instances with high accuracy.

In this context, the worst scenario occurs when all of the

acquired spot instances are terminated unexpectedly.

Nevertheless, the execution cost of the proposed algorithm

will be dramatically reduced due to the increased utilization

of the leased on-demand instances.

The main contributions of this study are in the following:

• It proposes a novel dynamic scheduling algorithm for

the execution of the IoT tasks considering Amazon’s on-

demand and spot instances.

• It provides an IoT task classification method based on

the memory and processing requirements considered for the

IoT task. The dynamic scheduling method considers the

presented classification for the task in the scheduling

procedure.

• Finally, it presents a novel dynamic migration method

in the event of spot instance eviction to improve the system’s

reliability using the predicted execution time.

2. Literature Review

One of the significant advantages of Amazon EC2 spot

instances is the considerable cost reduction offered to the

users compared to on-demand instances. Task scheduling

and resource management on cloud processing instances are

considered as an NP-complete problem [20]. However,

utilizing Amazon’s auction-based instances leads to

challenges created due to the possibility of resource retrieval

in case the service provider needs the processing capacity.

Moreover, smart bidding strategies must be defined that

specify the user’s maximum willingness to pay (WTP)

according to the importance of the task. In other words,

offering higher bids for sensitive tasks decreases the

possibility of resource retrieval, which in turn enhances

reliability.

In this section, we briefly summarize the state-of-the-art

methods that consider spot instances in scheduling and

resource management in literature. A wide range of research

has been conducted to predict the price of the spot instances

that will result in an optimal bid [16], [17], [21]. Resource

migration is another policy to increase the system’s

reliability that is popular among researchers [22], [23]. Other

research has addressed the challenge of check pointing to

provide fault-tolerance for the given spot instances of the

applications [24], [25]. Most of the research seeks to

calculate the checkpoint timing and investigate the

resumption of the task in the case of resource revocation.

Given spot instances, CPU scheduling and task queuing is

another hot topic in the literature [15], [26].

The significant growth of the IoT applications and the

heterogeneity of the IoT tasks intensifies the importance of

scheduling algorithms and load balancing techniques [27].

Kabir et al. [28] presented a framework for spot price bidding

and executing deadline-constrained tasks on cloud spot

instances. Their main goal was to bargain for cheaper

processing resources to process tasks with loose deadlines.

The authors claimed that the proposed system would save an

average of more than 80% in execution costs for tasks with

loose deadlines. Therefore, the proposed approach is not

suitable for tasks with tight deadlines, such as some IoT

applications. In a similar study [10], a method for scheduling

workflows on spot instances in Amazon was presented,

which would minimize the execution fees with regard to the

deadline constraint. This approach creates a Markov

decision-making process for searching the optimal policies to

execute tasks according to user quality of service (QoS)

requirements such as time and cost. Fabra et al. [29] proposed

a framework for analyzing the spot prices and introduced a

classification method based on the history of spot price,

which would consider all the geographical regions of the

Amazon EC2. The proposed model in this research would

present provisioning plans using the long-term price history,

and applications created with this model would be able to run

with time and cost constraints.

An accurate prediction on spot instance prices can play a

significant role in offering an appropriate bid. Therefore, a

wide range of research has focused on presenting predictive

models on spot pricing [30], [31]. Agarwal et al. [17] predict

spot instance prices using the LSTM recurrent neural

network techniques. The advantage of this type of neural

network is that the error rate is much lower compared to other

neural networks due to the long-term memory available in

this type of network. However, the accuracy of the proposed

method may be improved by considering the timestamp of

the spot price. The LSTM network has also been used by

other researchers [18], [19] for predicting the spot price.

 Due to the unexpected termination of spot instances and

the lack of stringent service level agreement (SLA) in these

Journal of Computer and Knowledge Engineering, Vol.3, No.1.2020. 3

instances, extensive research has focused on improving fault-

tolerance and reliability in the applications utilizing SIs.

Accordingly, different policies such as check-pointing,

migration, redundancy, etc. have been considered in the

literature [16], [25], [32]. In one study [16], the authors

proposed a machine learning method to calculate the timing

of performing the check-pointing procedure. In this study,

the machine learning method was used to predict the optimal

price. In the next step, considering the given deadline, the

time of creating a checkpoint is calculated by using the

forecasted price in the previous step and also the machine

learning methods. Their proposed approach would improve

reliability and reduce the cost of performing tasks to an

acceptable level.

Domanal and Reddy [15] proposed a modified particle

swarm optimization algorithm to assign bag of tasks (BoT)

applications to on-demand and spot instances. A back-

propagation neural network machine learning was used to

estimate the price of spot instances and further uses a

migration method to increase the efficiency of the resources.

Given the fact that in some IoT applications tasks can be

considered similar to a bag of tasks without communications,

the proposed method can be utilized in some IoT contexts.

Resource provisioning and scheduling of a wide range of

applications in the cloud computing environment have been

widely studied in the literature [9], [11]. In addition, the fog

computing concept is considered for IoT applications to

solve the problem of data communications latency [33], [34].

However, the context of scheduling IoT applications with

loose deadlines on the cloud has not received much attention.

On the other hand, considering the service provider's idle

instances (i.e., Amazon EC2 spot instances) leads to

significant cost reduction. Therefore, the main goal of the

present research is to propose a dynamic scheduling method

which faces the challenges of using Amazon EC2 spot

instances in the scheduling of IoT tasks with loose deadlines.

3. System Design

In this section, the proposed scheduling algorithm is

presented. Two objectives are followed in this study. The

first objective is to reduce the execution fees, and the second

objective focuses on increasing the number of successfully

executed tasks without any deadline violation concerning the

price paid.

A. Basic Definitions and Assumptions

Due to the extensive scope of the IoT environment, we are

considering several specified IoT contexts for the proposed

scheduling algorithm. Moreover, due to the diversity of cloud

service provider’s instances, we consider some predefined

Amazon EC2 instances according to our assumptions and

requirements. In this paper, we assume that the processing

and memory requirements of each task submitted by the IoT

devices are known as a priori. We also assume that tasks

come with a user-defined deadline, indicating that the

execution of the task after the defined deadline is of no value.

The target environment in this study is the IoT

applications; however, an initial batch of tasks with different

features and specifications is considered due to the wide

range of applications in this field. The proposed method is

evaluated in terms of the following application categories

(i.e., healthcare applications, intelligent agriculture, smart

structures). Depending on the type of task and requirements,

each task can be considered as one of the following

processing categories:

• Data-intensive

• High data-intensive

• Compute-intensive

• High compute-intensive

• Compute-data intensive

Besides, some predefined cloud instances related to the

application categories are considered, which will be

demonstrated in the evaluation section. Moreover, along with

each category, a “low” or “high” priority is also provided by

the user, which will be used in the scheduling process. Figure

1 denotes the architecture of the proposed scheduling

algorithm below:

Figure 1. The architecture of the proposed scheduling method

4 Arash Deldari et. al.: A Multi-objective Dynamic Scheduling…

The aforementioned classification will be performed by

the information provided by the user and the context of the

submitted task. When a task scheduling request is submitted,

it will be transmitted to the cloud along with this information.

In other words, the IoT task category determines the task's

class and requirements for the scheduling process. As a

result, the scheduling procedure will determine the

appropriate mapping of IoT tasks on cloud instances.

As their name suggests, data-intensive applications

usually have a higher ratio of data to the amount of

processing, which respectively has higher main memory

demands. To meet the task requirements of the high data-

intensive category, the main memory capacity and the

number of virtual cores has been doubled compared to data-

intensive applications. However, as compute-intensive

applications have a higher ratio of processing requirements

to the amount of data processed, instances with 50 MIPS or

less are considered, and the Amazon EC2 compute-

optimized instances are the best cases. In the high compute-

intensive category, applications with high computational

requirements are considered. Therefore, instances with 100

MIPS processing power and 32 GBs of main memory are

used. Moreover, for compute-data intensive applications,

tasks with relatively high computation and data requirements

are considered. For this category, instances with 32 GB of

main memory and 50 MIPS of processing power are

respectively considered. All categories consider the Amazon

elastic block store (EBS) for the secondary memory

requirements. The details of the assumed instances will be

described in the evaluation section of the paper.

B. Application Model

Typically a task γβ is considered for processing in IoT, where

β= (i,j) is a pair consisted of i= {1,2,3,4,5} that denotes one

of the five categories of the application. Moreover, j=

{1,2,3,…,n} represents the number of times that task γ has

been executed. On the other hand, σi denotes the instance

considered for task processing. Therefore, the desired task

will be processed on a σi instance at cost pi for a period of T.

With these notations, the total execution cost to process a

task can be calculated as Equation (1):

Execution-cost (γβ) =∑ (
𝑛

𝑗=1
(𝑇(𝜎𝑖) × 𝑝𝑖))

(1)

It should be noted that for each execution, the 1-hour time

slot of the leased instance might not be used completely. In

this case, if the submitted task uses an available instance,

there will be no execution cost. The most important

challenge in using spot instances is the possibility of resource

invocation during the task execution. With this interpretation

in mind, it is possible to use multiple instances (spot and on-

demand) at different prices, and therefore price modeling is

described as follows:

Total-cost (γβ) =∑ (
𝑚

𝑗=1
∑ (𝑇(𝜎𝑖) × 𝑝𝑖.𝑡)𝑛

𝑖=1) (2)

In this equation, 𝜎𝑖={σi,1,σi,2, σi,3,…,σi,n} denotes the set of

processing resources which the γβ task will be executed on

that resource. Moreover, due to the price fluctuation of spot

instances, 𝑝𝑟.𝑡 denotes the price of the spot instance σ at

moment t.

This study also aims to increase the number of tasks

completed successfully before the deadline. These tasks can

be modeled through the following equation:

Success (𝛾𝛽,𝑗) =
µ𝛽,𝑗

 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝛾𝛽,𝑗)

 (3)

In this equation, µ𝛽,𝑗 indicates the turnaround time of task

γβ in the j-th execution. On the other hand, the output of this

equation will have two states: either greater than one (>1) or

lower than or equal to one (<=1). If the value of the

expression is lower than or equal to one, it means that task

γβ is executed without failure, and the processing result is

returned to the user before the deadline. However, if the

result is greater than one, it denotes that the execution of the

task has failed, and the scheduled task has not been

completed before the defined deadline. For example,

consider an IoT task with a defined deadline of 5 min. If the

turnaround time of the task is 4 minutes and 35 seconds, the

output of Eq.3 will be less than one. This denotes the

successful execution of the aforementioned tasks. However,

if the turnaround time of the task exceeds the deadline, the

outcome of Eq.3 will be greater than one, which indicates

that the execution of this task has violated the defined

deadline. Of course, this relationship considers a single

execution (j-th) of the task; therefore, it is possible to extend

the relationship by examining the average failure or the

failure of a task over several executions.

C. Proposed Scheduling Algorithm

Regarding spot instances for the execution of the IoT tasks,

in some cases, it will lead up to a 70-90% reduction in the

execution fees [21]. However, to utilize spot instances in the

scheduling process, some special considerations must be

examined. One of the basic features of spot instances is that

there will be no guarantee whatsoever on the start and the

termination time of the processing instances. In other words,

based on the supply and demand for spot instance capacity

and the availability of the instances in different geographical

zones, your instance may be terminated unexpectedly during

the execution.

Before considering the spot instance for the execution of

each IoT task, one crucial matter must be carefully

examined. It must be monitored that in the case of an

unexpected termination of a spot instance during the

execution of the task, the user-defined deadline will not be

violated. Thus, executing a task with a tight deadline on a

spot instance increases the risk of task failure. According to

the Amazon EC2’s spot instance specifications, there will

also be a 2-min. warning before the termination of the

instance in case the service provider decides to terminate the

instance before the end of the 1-hour time slot [35].

Consequently, in the proposed algorithm it is assumed that

this period will be sufficient to launch a new on-demand

instance in case of revocation of the spot instance.

Additionally, one of the other specifications of the spot

instances is that if the instance is terminated before the 1-

hour slot ends, users will not be charged for the last time slot.

To overcome the limited bandwidth of the Internet and to

minimize the overhead of data transmission to the processing

resources, researchers have suggested using the fog

computing (or edge computing) concept for IoT processing

Journal of Computer and Knowledge Engineering, Vol.3, No.1.2020. 5

[33], [34]. However, we assume cloud instances in

geographical regions that are closer to the IoT objects. With

this in mind, this policy in the scheduling procedure reduces

the latency of the data transmissions between the devices and

the cloud.

 Algorithm 1 represents the pseudo-code of the proposed

scheduling algorithm.

Algorithm1. The scheduling algorithm

1. Set timer and add γ to the pending tasks queue;
2. Category(γ) =Task classification and queuing; /*(DI, HDI, CI, HCI,

and DCI) */

3. if (Running_Number(γ) == 1)
Create γ’s task table;

Schedule_OnDemand(γ);

 else

Machine_Learning (γ’s Task Table, ID γ) /*Predict the

IoT task's execution time */

 Repeat

Schedule(γ);

Random_Wait(5); /* Wait for a random time of
maximum 5 mins if not scheduled */

Until (γ is scheduled);

end if

The scheduling steps of the proposed algorithm are in the

following:

Step 1) The pending tasks are classified according to the

IoT context; therefore, a timer is set up to save the entry time

of the task. This timer contains the task ID and time stamp,

which is used in the scheduling algorithm as µ.

Step 2) After fulfilling the classification of tasks in step 1,

they are inserted into their respective queues. Here, we

assume that there are five different working categories. The

reason for considering this policy is not to miss a task due to

a busy processor. Moreover, the five queues for the assumed

IoT tasks minimizes the dependency of the tasks on each

other in different categories. Given that a single queue for all

the submitted tasks may lead to the following scenario, the

processing resource considered for the execution of the task

in front of the queue may be busy, while other processing

resources are idle. In this case, an IoT task from a different

context increases the turnaround time of the tasks from other

contexts; therefore, tasks with different requirements from

different IoT contexts are scheduled independently, and

multiple queues in the scheduling process increases the

utilization of the processing resources as such. Moreover,

scheduling tasks regarding this policy increases the average

number of successful tasks. This study concentrates on task

scheduling in the IoT environment, and inherently IoT

applications are real-time. Thus, they must be executed

before any time is wasted, and time constraints are

compromised. Consequently, each task is ready to be

executed after entering the system.

Step 3) Since each pending task enters the related queue,

it is sent to the machine learning step to predict the required

execution time. The reason for doing so is that tasks do not

wait for the machine learning step when it comes to

execution. If a task is submitted to the system for the first

time, it will be executed on an on-demand instance. The

reason for considering this strategy is to minimize the

possibility of the failure of tasks without any execution

history. One important thing to keep in mind is that as the

number of executed tasks in each category increases, the

accuracy of the machine learning method increases as well.

The proposed scheduling algorithm uses the actual execution

time after the execution is fulfilled as training data for the

neural network. At the same time, the instance type,

geographical region, and the current time are sent to the

LSTM neural network to predict the price of the instance as

the user’s bid. In one study [18], the LSTM network is used

for the price prediction of the spot instances, which has been

trained with the 3-month price history of Amazon EC2.

Step 4) Algorithm 2 represents the pseudo-code of the

scheduling procedure for each IoT task. In this step, based

on the estimated execution time of the tasks and the defined

deadline, the mapping of the tasks to the processing

resources is determined using the method described below:

1. If the value of (deadline – wait time), which is

considered as slack time, is greater than or equal to

(predicted execution time x 2) the predicted execution time,

the task is considered safe to be executed on a spot instance.

The reason we have considered this equation is that if the

task execution fails due to spot instance eviction, there will

be enough time to reschedule the failed task. The worst case

occurs when the resource is evicted exactly at the end of the

task execution and before the results are saved. Therefore,

there will be enough time to reschedule the tasks either on a

new spot instance or an on-demand resource. It should be

mentioned that if the required spot instance is available, then

the mapping of the task is fulfilled on the available spot

instance. However, this is only possible if the resource is

available until the intended task is executed. Otherwise, the

algorithm bids for a new spot instance or sends a request for

an on-demand instance.

2. If the slack time is less than (predicted execution time x

2) but larger than or equal to the predicted execution time,

then the priority of the task is considered to define the type

of the resource for execution. If the defined priority of the

task is high, then the task is scheduled on an on-demand

instance to avoid the failure of high priority tasks due to the

possibility of resource eviction in spot instances. However,

if the priority of the task is low, then the scheduling

algorithm considers the task to be scheduled on a spot

instance. If the required spot instance is available and

scheduling the task on the spot instance is possible

considering the deadline, then the task is mapped to be

executed. However, if the required spot instance is not

available or scheduling the task is not possible according to

scheduling constraints, the algorithm aims to schedule the

desired task on a new spot instance.

3. If the computed slack time is lower than the predicted

execution time of the task, then this task is scheduled on a

critical instance. Accordingly, this policy decreases the

possibility of failure in tasks at risk of deadline violation.

 The primary objective of the proposed scheduling

algorithm is to schedule tasks on spot instances to reduce

costs. Moreover, the proposed scheduling algorithm aims to

avoid the failure of a task, which in turn increases the

successfully executed tasks of the system.

6 Arash Deldari et. al.: A Multi-objective Dynamic Scheduling…

Algorithm2. The scheduling procedure for each task

if (Slack_Time(γ) >=Predicted_ExeTime(γ)x2)
Schedule_Available(γ); /*Try to schedule using the

available instances*/

Price_LSTM(category(γ)); /*Use the LSTM neural network to
offer a bid for a new spot instance*/

else if (Slack_Time(γ) >Predicted_ExeTime(γ))
 if (Task_Priority==HIGH)

 Schedule-Available(γ); /* Try to schedule using the

available instances */
 Schedule_OnDemand(γ); /* Launch an on-demand

instance if not scheduled on available instances */

 else

 Price_LSTM(category(γ)); /*Try to schedule low priority

tasks on spot instances */

 endif

else

 Schedule_Critical(γ); /*Schedule tasks with risk of deadline
violation on a critical instance */

Endif

D. Task Migration

As we utilize spot instances in this study, it is likely that it

will be retrieved during the processing of a task. Therefore,

it is necessary to present an approach that minimizes the

number of failed tasks, and simultaneously does not increase

the processing overhead and costs of the system. Thus, after

receiving the 2-minute warning for resource eviction, the

waiting time of the task is deducted from the defined

deadline. According to the computed value (deadline – wait

time), two different policies are considered:

1) If the calculated value is larger than the predicted

execution time, then the scheduling algorithm reschedules

the task all over again.

2) If this value is smaller than or equal to the remaining

execution time, it denotes that the waiting time of the task

within the system is too high. However, if we schedule the

task on an on-demand from the beginning, the defined

deadline for the tasks will be violated. Accordingly, the task

is migrated to a critical instance to resume processing.

However, due to the high cost of a critical instance compared

to other instances, the scheduling algorithm aims to

maximize the utilization of the rented critical instance.

Therefore, while using the critical instance, other tasks may

be scheduled on the critical instance so that the leased period

is fully utilized.

In this study, a machine learning approach is considered

to predict the price of spot instances; therefore, the LSTM

neural network-based method [9] is used to predict spot

instance prices.

4. Performance Evaluation

In this section, the empirical results and the performance

evaluation of the proposed scheduling algorithm are

presented.

A. Experimental Setup

To evaluate the proposed scheduling algorithm, modeling

and simulation are conducted using the CloudSim toolkit

[36]. The CloudSim toolkit is an open-source cloud

simulator developed by the CLOUDS laboratory at the

University of Melbourne. This simulator provides classes for

defining data centers, virtual machines, applications, users,

processing resources, and policies for managing different

components of a scheduling system. These components can

be put together by users to evaluate new strategies for

deploying cloud computing platforms (policies, scheduling

algorithms, load balancing, mapping policies, and so on).

1) Spot Price History Dataset

Most service providers present a price history for spot

instances that have been gathered and also made them

available on the web as datasets [37]. Amazon EC2 offers a

90-day price history on spot instances that can be used for

analysis [38]. However, this price history is also provided by

third parties which in some cases are beyond 90 days [39].

The spot price history presents the price of a particular

instance in a specific geographical region over a specified

period that can be modified by the user (i.e., last day, last

week, last 90 days, etc.). We have considered the dataset

provided by Amazon EC2 to train the LSTM neural network

in order to predict prices within the scheduling algorithm.

The scheduling algorithm uses the predicted price as the

user’s bid to request a spot instance. Table 1 presents the

instances that have been considered in the scheduling

process.

Table 1. The assumed instances in the scheduling algorithm

Instance RAM(GB) vCPU ECU On –demand price

r5.xlarge 32 4 19 $0.436

r5.2xlarge 64 8 37 $0.872

c5.2xlarge 16 8 39 $0.708

c5.4xlarge 32 16 73 $1.416

m4.2xlarge 32 8 26 $0.768

c5.9xlarge 72 36 139 $3.186

To schedule the IoT tasks, the r5.xlarge and r5.2xlarge are

assumed for the data-intensive and the high data-intensive

categories. Also, the c5.2xlarge and c5.4xlarge are assumed

for the execution of compute-intensive and high compute-

intensive tasks. Moreover, the m4.2xlarge instance is

considered for the compute-data intensive category. Finally,

the c5.9xlarge is assumed as a critical instance for the

scheduling procedure.

2) IoT Tasks Dataset

Due to the execution of the IoT tasks on cloud instances

in the proposed system, we need specific configurations

according to the task requirements. Every IoT application

has its requirements that must be considered in the

scheduling process. Therefore, we considered using the IoT

tasks dataset provided online [40] for the evaluation

procedure. This dataset offers IoT tasks from various

domains such as agriculture, healthcare, and smart city.

However, we added task priority and task category to the

tasks in this dataset.

B. Evaluation

The performance of the proposed scheduling method has

been evaluated based on the following criteria:

1. Execution cost

2. Number of successful tasks

3. Task turnaround time

Journal of Computer and Knowledge Engineering, Vol.3, No.1.2020. 7

We will compare the proposed method with the modified

particle swarm optimization (MPSO) and also with the

modified throttled methods proposed in another study [15].

Although the proposed methods in this research consider the

bag of tasks (BoT) application, the IoT tasks assumed in this

paper are similar to BoT, because there are no data

communications between them. Moreover, we will also

study these criteria using migration-enabled and migration-

disabled modes.

1) Execution Cost

To show the cost savings, the cost of task execution in each

category is compared with the method that only considers the

scheduling of the tasks on on-demand instances. As can be

seen, the migration-enabled method leads to a more

significant reduction in execution costs. The reason for the

reduced cost is the policy that prevents the re-execution of

failed tasks due to spot instance interruption. In the

migration-enabled mode, two different scenarios can be

imagined for a task being processed in the event of spot

instance eviction depicted in the task migration section.

The main goal of the scenarios mentioned above is to

ensure that tasks with high priority are executed before the

deadline constraint. In these circumstances, some essential

issues must be identified and considered. First, the assumed

critical instance in this study is the highest cost compared to

all the other assumed instances. These instances are used to

minimize task failures and are utilized for specific high

priority tasks with limited deadlines. Secondly, eliminating

a task wastes the cost of processing a task. That is, the cost

required to process a task on on-demand instances will be

wasted. Third, scheduling and executing a task from the

beginning will increase the turnaround time and create

surplus execution costs. For this reason, in the conditions

outlined in the proposed method, the migration of a task will

be preferred to reduce execution costs.

In general, the proposed method performs its utmost to

execute tasks on spot instances. It is worth noting that

although the initial classification is performed at the moment

of task mapping, the resources of the other categories are also

examined. The goal is to increase resource utilization and

reduce total execution costs. Figure 2 compares the

execution costs of the proposed method with reference to on-

demand and spot instances in the defined task categories.

The results shown in the diagram below are the average of

5 runs, and the number of tasks in each run is between 9000

and 10000 tasks. The IoT applications involve mainly

healthcare and agriculture. For instance, considering the

data-intensive category, the proposed method without

migration leads to a 23% reduction in execution costs

compared to scheduling with on-demand instances.

However, the proposed method with migration leads to a

37% cost saving in this category. The reason that the

proposed method with migration yields higher cost savings

is that incomplete tasks due to spot instance eviction are not

executed from the beginning. Therefore, the number of

required on-demand instances and leased periods are

reduced. This leads to more cost savings compared to the

approach without migration. In the compute-intensive

category, the proposed method earns 13% and 29% savings

compared to the on-demand scheduling.

Figure 2. The execution costs of on-demand and spot instances

0

2

4

6

8

10

12

14

16

18

E
x
ec

u
ti

o
n
 c

o
st

 (
U

S
 $

)

On-demand

Proposed method without migration

Proposed method with migration

8 Arash Deldari et. al.: A Multi-objective Dynamic Scheduling…

2) Number of Successful Tasks

One of the main goals of the proposed scheduling algorithm

is to maximize the number of tasks executed before the

deadline constraint. Accordingly, some important issues

require attention:

1) In the modified particle swarm optimization method

[15], the processes are sent as task stacks consisting of at

least ten tasks for the load balancer. However, sending tasks

in stacks can significantly increase resource utilization and

prevent resources from being wasted and idle. Furthermore,

since this approach may lead to an increase in waiting time

for the tasks, it is not appropriate for the IoT tasks with tight

deadlines.

2) Migration is done when the processor and memory

efficiency is lower than a specified threshold [15]. The

modified throttled method also does not include a plan for

migrating tasks. However, resource retrieval is possible

when using spot instances, and a mechanism must be

considered for these conditions. With the dynamic migration

method, the successful execution of the tasks can be

increased significantly.

3) Another point is that the two methods mentioned above

[15] do not differentiate between the submitted tasks and

their requirements. The structure of the input tasks described

in these two methods differs. That is, the tasks in the

modified particle swarm optimization method are sent in

batch, while the other method considers the serial

transmission of the tasks to load balancers and the

requirements of the tasks are ignored as well. However, if we

consider these methods in environments with different

processing requirements such as IoT, the resource utilization

will be reduced, and some processes will not be processed

before the deadline constraint. With this in mind, the number

of successfully executed tasks can be seen in Fig. 3.
The total number of IoT tasks submitted to the system in

this experiment is assumed as 1000, and as denoted in Figure

3, the proposed method without migration achieves a 2% and

3% increase in the number of successful tasks compared to

MPSO and modified throttled methods. Moreover, the

proposed method with migration receives a 3% and a 4.1%

increase compared to the aforementioned methods. As

mentioned in the previous section, the proposed method with

migration does not reschedule the tasks in the case of spot

instance eviction. Therefore, the number of tasks that violate

the defined deadline decreases with regard to the migration

policy. The experimental results denote that the proposed

method with migration achieves a 98.1% success rate in

scheduling tasks before the defined deadline.

3) Task Turnaround Time

Given that the tasks are processed batch in the modified

particle swarm optimization method [15], we considered this

approach. In the modified throttled method [15], the tasks are

executed as soon as the tasks enter the load balancer and the

resources are idle, which leads to a reduced task turnaround

time. In the modified particle swarm optimization method,

the amount of time required to categorize tasks is relatively

high. Accordingly, due to the nature of the IoT environment

in which tasks are submitted at random times, it will result in

increased task turnaround time. Generally, since the

proposed method processes the tasks as soon as they enter

the system, the turnaround time of the proposed method is

less than the MPSO method [15]. However, in some cases a

short time is required for the machine learning algorithm to

offer a bid and for the spot instance to become available. This

then slightly increases the task turnaround time of the

proposed method. It must be mentioned that this reduces the

execution fees, which makes it acceptable. Normally

predicting the execution time of tasks can increase the

turnaround time; however, in the proposed method the task

table is sent to the machine learning algorithm as soon as the

task enters the related queue so as not to waste time on CPU

allocation. Figure 4 shows the turnaround time of tasks

within the system.

The number of assumed tasks is 1000, while the results

denoted in Fig. 4 are the average of 5 runs. Although the

modified throttled method leads to a lower turnaround time

compared to the proposed method without migration, the

proposed method achieves a less turnaround time compared

to MPSO. As was predicted, the turnaround time decreases

with regard to the migration approach in the scheduling

procedure.

Figure 3. The number of executed tasks before the deadline

920

930

940

950

960

970

980

990

MPSO Modified

throttled

Proposed

method

without

migration

Proposed

method with

migration

A
v
er

ag
e

n
u
m

b
er

 o
f

su
cc

es
fu

l

ta
sk

s

Journal of Computer and Knowledge Engineering, Vol.3, No.1.2020. 9

Figure 4. The average task turnaround time

5. Conclusion and Future Work

In this paper, a dynamic scheduling algorithm is proposed

that increases the reliability of executing the IoT tasks with

deadline constraints on unreliable cloud instances such as

Amazon EC2 spot instances. In the proposed scheduling

method, we pursue two goals. The first goal is to reduce the

execution costs, and the second goal is to increase the

number of successful tasks executed before the deadline. As

the main purpose of this study is not price prediction, the

proposed methods in the literature have been considered for

the price prediction step. The empirical results denote that

98.1% of input tasks to the presented scheduling system are

processed before the deadline. On the other hand, one of the

economic challenges of the IoT environment, namely lower

execution costs, improves significantly in this system. The

proposed method shows further improvements than the most

recent methods in this context in terms of the number of

successful tasks, turnaround time, and execution costs. In

other words, despite the reduction in execution costs, this

method leads to the lower turnaround time for the scheduled

IoT tasks.

 As for future directions, the initial pre-processing of the

IoT tasks can be considered in edge computing resources and

then be scheduled on cloud computing resources for further

processing. Moreover, considering the Amazon EC2 spot

blocks and reserved instances in the scheduling procedure

can be considered as a future direction. Price forecasting can

also be introduced as an avenue for future work using

intelligent methods, offering price bids according to the task

priority to decrease the possibility of out of bid failures for

sensitive tasks.

6. References

[1] M. Bhatia and S. K. Sood, “Exploring Temporal

Analytics in Fog-Cloud Architecture for Smart Office

HealthCare,” Mobile Networks and Applications, vol. 24,

no. 4, pp. 1392–1410, 2019.

[2] M. Bhatia, S. K. Sood, and S. Kaur, “Quantumized

approach of load scheduling in fog computing

environment for IoT applications,” Computing, vol.102,

pp. 1097-1115, 2020.

[3] M. Conti, A. Dehghantanha, K. Franke, and S. Watson,

“Internet of Things security and forensics: Challenges and

opportunities,” Future Generation Computer Systems,

vol. 78. Elsevier B.V., pp. 544–546, 01-Jan-2018.

[4] A. Čolaković and M. Hadžialić, “Internet of Things

(IoT): A review of enabling technologies, challenges, and

open research issues,” Computer Networks, vol. 144, pp.

17–39, 2018.

[5] H. A. Alameddine, S. Sharafeddine, S. Sebbah, S.

Ayoubi, and C. Assi, “Dynamic task offloading and

scheduling for low-latency IoT services in multi-access

edge computing,” IEEE Journal on Selected Areas in

Communications, vol. 37, no. 3, pp. 668–682, 2019.

[6] M. Aazam, S. Zeadally, and K. A. Harras, “Offloading

in fog computing for IoT: Review, enabling technologies,

and research opportunities,” Future Generation Computer

Systems, vol. 87, pp. 278–289, 2018.

[7] P. M. T. Grance, “The NIST Definition of Cloud

Computing Recommendations of the National Institute of

Standards and Technology,” Recommendation of the

National institute of Standards and Technology, vol. 145,

p. 7, 2011.

[8] D. Kumar, G. Baranwal, Z. Raza, and D. P. Vidyarthi,

“A Survey on Spot Pricing in Cloud Computing,” Journal

of Network and Systems Management, vol. 26, no. 4, pp.

809–856, Oct. 2018.

[9] C. K. Swain, N. Saini, and A. Sahu, “Reliability aware

scheduling of bag of real time tasks in cloud

environment,” Computing, vol. 102, no. 2, pp. 451–475,

2020.

[10] R. G. Martinez, A. Lopes, and L. Rodrigues, “Planning

workflow executions when using spot instances in the

cloud,” in Proceedings of the 34th ACM/SIGAPP

Symposium on Applied Computing - SAC ’19, pp. 310–

317, 2019.

[11] H. M. Nguyen, G. Kalra, T. J. Jun, S. Woo, and D. Kim,

“ESNemble: an Echo State Network-based ensemble for

workload prediction and resource allocation of Web

applications in the cloud,” The Journal of

Supercomputing, vol. 75, no. 10, pp. 6303–6323, 2019.

[12] “Amazon EC2 Spot – Save up-to 90% on On-Demand

Prices.” https://aws.amazon.com/ec2/spot/ (accessed

Mar. 12, 2019).

[13] “Preemptible VMs - Compute Instances | Google

Cloud.” https://cloud.google.com/preemptible-vms/

(accessed Apr. 16, 2019).

363.5

364

364.5

365

365.5

366

366.5

367

367.5

MPSO Modified

throttled

Proposed

method

without

migration

Proposed

method with

migration

A
v
er

ag
e

tu
rn

ar
o

u
n
d

 t
im

e

(S
ec

o
n
d

s)

10 Arash Deldari et. al.: A Multi-objective Dynamic Scheduling…

[14] “Announcing low-priority VMs on scale sets now in

public preview | Azure Blog and Updates | Microsoft

Azure.” https://azure.microsoft.com/en-us/blog/low-

priority-scale-sets/ (accessed Mar. 28, 2020).

[15] S. G. Domanal and G. R. M. Reddy, “An efficient cost

optimized scheduling for spot instances in heterogeneous

cloud environment,” Future Generation Computer

Systems, vol. 84, pp. 11–21, 2018.

[16] A. K. Mishra, D. K. Yadav, Y. Kumar, and N. Jain,

“Improving reliability and reducing cost of task execution

on preemptible VM instances using machine learning

approach,” J. Supercomput., vol. 75, no. 4, pp. 2149–

2180, Apr. 2019.

[17] S. Agarwal, A. K. Mishra, and D. K. Yadav,

“Forecasting price of amazon spot instances using neural

networks,” International Journal of Applied Engineering

Research, vol. 12, no. 20, pp. 10276–10283, 2017.

[18] M. Baughman, K. Chard, I. Foster, R. Wolski, and C.

Haas, “Predicting Amazon Spot Prices with LSTM

Networks,” Proceedings of the 9th Workshop on

Scientific Cloud Computing, pp. 1–7, 2018.

[19] H. Al-Theiabat, M. Al-Ayyoub, M. Alsmirat, and M.

Aldwair, “A Deep Learning Approach for Amazon EC2

Spot Price Prediction,” in 2018 IEEE/ACS 15th

International Conference on Computer Systems and

Applications (AICCSA), pp. 1–5, 2018.

[20] A. Deldari, M. Naghibzadeh, and S. Abrishami, “CCA:

a deadline-constrained workflow scheduling algorithm

for multicore resources on the cloud,” J. Supercomput.,

vol. 73, no. 2, pp. 756–781, 2017.

[21] Z. Cai, X. Li, R. Ruiz, and Q. Li, “Price forecasting for

spot instances in Cloud computing,” Future Generation

Computer Systems, vol. 79, pp. 38–53, 2018.

[22] S. Shastri and D. Irwin, “HotSpot: Automated Server

Hopping in Cloud Spot Markets Supreeth,” Proceedings

of the 2017 Symposium on Cloud Computing - SoCC '17,

pp. 493–505, 2017.

[23] Z. Shen, R. van Renesse, Q. Jia, H. Weatherspoon, and

W. Song, “Smart spot instances for the supercloud,”

Proceedings of the 3rd Workshop on CrossCloud

Infrastructures Platforms, pp. 1–6, 2016.

[24] I. Jangjaimon and N. F. Tzeng, “Effective cost

reduction for elastic clouds under spot instance pricing

through adaptive checkpointing,” IEEE Transactions on

Computers, vol. 64, no. 2, pp. 396–409, 2015.

[25] S. Yi, A. Andrzejak, and D. Kondo, “Monetary Cost-

Aware Checkpointing and Migration on Amazon Cloud

Spot Instances,” IEEE Transactions on Services

Computing, vol. 5, no. 4, pp. 512–524, 2012.

[26] D. Poola, K. Ramamohanarao, and R. Buyya, “Fault-

tolerant workflow scheduling using spot instances on

clouds,” Procedia Computer Science, vol. 29, pp. 523–

533, 2014.

[27] S. Basu et al., “An intelligent/cognitive model of task

scheduling for IoT applications in cloud computing

environment,” Future Generation Computer Systems, vol.

88, pp. 254–261, Nov. 2018.

[28] H. M. Dipu Kabir, A. S. Sabyasachi, A. Khosravi, M.

A. Hosen, S. Nahavandi, and R. Buyya, “A cloud bidding

framework for deadline constrained jobs,” in Proceedings

of the IEEE International Conference on Industrial

Technology, 2019.

[29] J. Fabra, J. Ezpeleta, and P. Álvarez, “Reducing the

price of resource provisioning using EC2 spot instances

with prediction models,” Future Generation Computer

Systems, vol. 96, pp. 348–367, Jul. 2019.

[30] V. Khandelwal, A. Chaturvedi, and C. P. Gupta,

“Amazon EC2 Spot Price Prediction using Regression

Random Forests,” IEEE Transactions on Cloud

Computing, pp. 1–1, 2017.

[31] D. Liu, Z. Cai, and X. Li, “Hidden markov model based

spot price prediction for cloud computing,” Proceedings -

15th IEEE International Symposium on Parallel and

Distributed Processing with Applications and 16th IEEE

International Conference on Ubiquitous Computing and

Communications, ISPA/IUCC 2017 pp. 996–1003, 2018.

[32] P. Sharma, S. Lee, T. Guo, D. Irwin, and P. Shenoy,

“SpotCheck: designing a derivative IaaS cloud on the spot

market,” Proceedings of the Tenth European Conference

on Computer Systems - EuroSys '15, pp. 1–15, 2015.

[33] A. A. Mutlag, M. K. A. Ghani, N. al Arunkumar, M. A.

Mohammed, and O. Mohd, “Enabling technologies for

fog computing in healthcare IoT systems,” Future

Generation Computer Systems, vol. 90, pp. 62–78, 2019.

[34] M. Goudarzi, H. Wu, M. S. Palaniswami, and R. Buyya,

“An Application Placement Technique for Concurrent

IoT Applications in Edge and Fog Computing

Environments,” IEEE Transactions on Mobile

Computing, vol.20, pp. 1298-1311, 2021.

[35] “Amazon EC2 Spot Two-Minute Warning is Now

Available via Amazon CloudWatch Events.”https:// aws.

amazon.com/about-aws/whats-new/2018/01/ amazon-

ec2-spot-two-minute-warning-is-now-available-via-

amazon-cloudwatch-events/(accessed Apr. 14, 2019).

[36] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De

Rose, and R. Buyya, “CloudSim: a toolkit for modeling

and simulation of cloud computing environments and

evaluation of resource provisioning algorithms,”

Software: Practice and experience., vol. 41, no. 1, pp. 23–

50, 2011.

[37] “AWS Spot Pricing Market | Kaggle.”

https://www.kaggle.com/noqcks/aws-spot-pricing-

market (accessed Apr. 07, 2019).

[38] “Spot Instance Pricing History - Amazon Elastic

Compute Cloud. ”https://docs.aws.amazon.com/

AWSEC2/latest/UserGuide/using-spot-instances-

history.html (accessed Apr. 07, 2019).

[39] O. A. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and

D. Tsafrir, “Deconstructing Amazon EC2 spot instance

pricing,” Proceedings - 2011 3rd IEEE International

Conference on Cloud Computing Technology and

Science, CloudCom 2011, pp. 304–311, 2011.

[40] “25 Datasets for Deep Learning in IoT | Packt Hub.”

https://hub.packtpub.com/25-datasets-deep-learning-iot/

(accessed Mar. 26, 2020).

