
Journal of Computer and Knowledge Engineering, Vol. 3, No. 2, 2020. (31-36) 31

DOI: 10.22067/cke.2020.39288

Accelerating Iterative Methods for Bounded Reachability

Probabilities in Markov Decision Processes*
Research Article

Mohammadsadegh Mohagheghi 1

Abstract: Probabilistic model checking is a formal method

for verification of the quantitative and qualitative properties

of computer systems with stochastic behaviors. Markov

Decision Processes (MDPs) are well-known formalisms for

modeling this class of systems. Bounded reachability

probabilities are an important class of properties that are

computed in probabilistic model checking. Iterative

numerical computations are used for this class of properties.

A significant draw-back of the standard iterative methods is

the redundant computations that do not affect the final results

of the computations, but increase the running time of the

computations. The study proposes two new approaches to

avoid redundant computations for bounded reachability

analysis. The general idea of these approaches is to identify

and avoid useless numerical computations in iterative

methods for computing bounded reachability probabilities.

Keywords: Probabilistic model checking, Iterative

numerical methods, Bounded Reachability probabilities,

Markov decision processes.

1. Introduction

Model checking is a well-known formal approach for

verifying quantitative and qualitative properties of computer

systems. In this way, the system is modeled by a labeled

transition system and the properties of the system are

specified in temporal logic. Because of some stochastic

behaviors of the computer systems, the probabilistic

alternative of transitions systems are used for modeling the

underlying system and probabilistic model checking is used

to analyze the quantitative property specifications of these

systems [1&2]. Markov chains and Markov Decision

Processes (MDPs) are widely used as probabilistic transition

systems [13]. On the other hand, probabilistic reachabilities

(also called reachability probabilities) and expected rewards

are considered to specify the desired properties of the system

[3&4]. In probabilistic reachability, the maximum of

minimum probability of reaching a goal state should be

computed [20]. Probabilistic reachability can be bounded or

unbounded. In bounded reachability, the number of steps is

limited but in unbounded reachability the number of steps of

the system is not limited to any bound [11].

 Iterative numerical methods are the standard approaches

to compute the bounded or unbounded probabilistic

reachability. These methods start from an initial vector of

values and iteratively updates the reachability probabilities

according to the computed values from the previous iteration

[6&18]. A main drawback of the iterative methods for

probabilistic reachability is the redundant (useless)

computations, that is, those computations that do not affect

* Manuscript received Jun, 5; 2019, accepted. October, 30, 2020.
1 Assistant Professor, Department of Computer science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.

Email: mohagheghi@vru.ac.ir

the computed value of a state [3&15]. Several approaches

have been proposed in other works to avoid the useless

computations and accelerate the iterative computations [5, 9,

14, 16, & 21]. In most cases, the proposed approaches are

used for computing unbounded reachability probabilities and

do not show promising improvements for bounded

properties. The study focuses on the bounded probabilistic

reachabilities and proposes two new techniques to accelerate

the standard iterative method for these properties. The main

contributions of this work are as follows:

 A technique is proposed that considers the set of

transitions that lead to a Dirac distribution (a transition

with probability one) to improve the performance of the

iterative computations. This technique directly uses the

related reachability probability to avoid redundant

computations. In this case, the proposed technique

divides the transitions of a model into Dirac and non-

Dirac ones. For Dirac transition, the method only needs

to consider the value of the destination state and can

avoid the multiplications that are performed in the

standard approach.

 A new approach is proposed to avoid useless updates in

each iteration. In this case, the value of a state in iteration

should be updated only if the value of some successors of

the state has been updated in the previous iteration.

Otherwise, the method avoids the update and its related

computations.

The two techniques are considered as an improved method

for computing bounded reachability probabilities. The

experiments of the study show more than 50% improvement

in the running time when the improved method is used.

 The remainder of this paper is structured as follows:

Section 2 reviews some related definitions and methods. In

section 3, the techniques for accelerating the standard

iterative method for bounded reachability probabilities are

proposed. Section 4 proposes the experimental results and

Section 5 concludes the paper.

2. Review of Related Definitions and Methods

In this section the definitions and standard algorithm for

bounded reachability probabilities are reviewed [2, 8].

2.1. Definition 1 (MarkovDecision Process)

A Markov Decision Process (MDP) is a tupple 𝑀 =
(𝑆, 𝑠0, 𝐴𝑐𝑡, 𝛿, 𝐺) where 𝑆 is a finite set of states, 𝑠0 ∈ 𝑆 is an

initial state, 𝐴𝑐𝑡 is a finite set of actions, 𝛿: 𝑆 × 𝐴𝑐𝑡 →
𝐷𝑖𝑠𝑡(𝑆) is a probabilistic transition function and 𝐺 ⊂ 𝑆 is

the set of goal states. The size of 𝑀 which is shown as |𝑀|
is defined as the number of states of 𝑀 plus the number of its

transitions. For every state 𝑠 ∈ 𝑆 of an MDP 𝑀, one or more

32 Mohammadsadegh Mohagheghi.: Accelerating Iterative Methods for…

actions of 𝐴𝑐𝑡 are defined as enabled actions. This set is

defined as 𝐴𝑐𝑡(𝑠) = {𝛼 ∈ 𝐴𝑐𝑡|𝛿(𝑠, 𝛼) is defined} . For a

state 𝑠 ∈ 𝑆 and 𝛼 ∈ 𝐴𝑐𝑡(𝑠) we use 𝑃𝑜𝑠𝑡(𝑠, 𝛼) for the set of

𝑎 successor states of 𝑠, 𝑃𝑜𝑠𝑡(𝑠) for all possible successor

states of 𝑠 and 𝑃𝑟𝑒(𝑠) for possible predecessor states of 𝑠

[2]:

𝑃𝑜𝑠𝑡(𝑠, 𝛼) = {𝑠′ ∈ 𝑆 | 𝛿(𝑠, 𝛼, 𝑠′) > 0}, (1)
𝑃𝑜𝑠𝑡(𝑠) =∪𝑎∈𝐴𝑐𝑡(𝑠) 𝑃𝑜𝑠𝑡(𝑠, 𝛼), (2)

𝑃𝑟𝑒(𝑠) = {𝑠′ ∈ 𝑆 | 𝑠 ∈ 𝑃𝑜𝑠𝑡(𝑠)}, (3)

 The semantic of an MDP is defined as its possible

transtions and paths. Two steps are considered to take a

transition from a state 𝑠 ∈ 𝑆. First, one enabled action 𝛼 ∈
𝐴𝑐𝑡(𝑠) is selected non-deterministically. Second, using the

probability distribution 𝛿(𝑠, 𝛼) , a successor state 𝑠′ is

chosen randomly. Note that 𝛿(𝑠, 𝛼)(𝑠′) determines the

probability of a transition from 𝑠 to 𝑠′ by the action 𝑎 ∈
𝐴𝑐𝑡(𝑠). A transition (𝑠, 𝛼, 𝑠′) is called Dirac transition if

𝛿(𝑠, 𝛼)(𝑠′) = 1. A discrete-time Markov chain (DTMC) is

an MDP for which every state has exactly one enabled action

[17, 18, & 23]. A finite or infinite path in 𝑀 is a non-empty

sequence of the form 𝜋 = 𝑠0

𝑎0
→ 𝑠1

𝑎1
→ … where 𝑠𝑖 ∈ 𝑆 and

𝑎𝑖 ∈ 𝐴𝑐𝑡(𝑠𝑖) and 𝑠𝑖+1 ∈ 𝑃𝑜𝑠𝑡(𝑠𝑖 , 𝑎𝑖) for every 𝑖 ≥ 0.
𝑃𝑎𝑡ℎ𝑠 is used to denote the set of all infinite paths of 𝑀 that

start in a state 𝑠 and 𝐹𝑃𝑎𝑡ℎ𝑠 for all finite paths of 𝑀. 𝜋[𝑖]
is used to denote the (𝑖 + 1) − 𝑡ℎ state in the path 𝜋, that is,

𝜋[𝑖] = 𝑠𝑖 .

 A policy is a function that maps each state 𝑠 ∈ 𝑆 to one

of its enabled actions 𝛼 ∈ 𝐴𝑐𝑡(𝑠) . Policies are used to

resolve the non-deterministic selections of MDPs [8].

Depending on the selected actions of an MDP, a probability

measure is defined on the set of related paths. More details

about policies and their induced probability measure are

available in [2, 13, 8, & 11].

 For bounded reachabilities and for any state 𝑠 ∈ 𝑆, it is

normal to define 𝑟𝑒𝑎𝑐ℎ𝑠
≤𝑘 (𝐺) as the set of all paths that start

from s and reach a state in G within at most k steps:

𝑟𝑒𝑎𝑐ℎ𝑠
≤𝑘(𝐺) = {𝜋 ∈ 𝑃𝑎𝑡ℎ𝑠𝑠|𝜋[𝑖] ∈ 𝐺 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖 ≤ 𝑘}

 𝑃𝑟𝑚𝑎𝑥(𝑟𝑒𝑎𝑐ℎ𝑠
≤𝑘

 (𝐺)) is defined as the maximal

probability of reaching to one state in G in at most k

iterations. The maximal (or minimal) probability is defined

over the set of policies of the model [2&8].

2.1. Iterative Methods for Probabilistic Model Checking

The aim of probabilistic model checking is to verify a desired

quantitative or qualitative property of a system with

stochastic behavior, which is modeled by an MDP. To this

end, a probabilistic extension of transition systems is used to

model the system and probabilistic temporal logics are used

to specify the desired properties of the system [1&2]. In most

cases, verifiation of the proposed properties is reduced to the

computation of the optimal probability of reaching or the

optimal expected cost before reaching a goal state [2, 6, &

8].

 The standard approach for computing the optimal

bounded or unbounded reachability probabilities is to use a

vector �̅� of reachability probability values and update the

vector iteratively [4]. For a state 𝑠 ∈ 𝑆 , let 𝑥𝑠
𝑘 denote the

maximum probability of reaching at least one state of 𝐺

within at most 𝑘 steps, that is, 𝑥𝑠
𝑘 = Pr

𝑚𝑎𝑥
 (𝑟𝑒𝑎𝑐ℎ𝑠

≤𝑘 (𝐺)). An

iterative method computes the bounded reachability by

computing the value of each state 𝑠 ∈ 𝑆 according to the

value of the states in 𝑃𝑜𝑠𝑡(𝑠). For initiating �̅� , we set 𝑥𝑠
0 =

 1 if 𝑠 ∈ 𝐺 and 𝑥𝑠
0 = 0 otherwise. For any iteration 𝑘 > 0

se have: so we have:

𝑥𝑠
𝑘 = {

1 𝑖𝑓 𝑠 ∈ 𝐺

max
𝛼∈𝐴𝑐𝑡(𝑠)

∑ 𝛿(𝑠, 𝛼)(𝑠′). 𝑥𝑠′
𝑘−1

𝑠′∈𝑆

 𝑖𝑓 𝑠 ∉ 𝐺

 Note that in this computations, the policies are

considered implicitly, that is, for each state 𝑠 ∈ 𝑆 , the
method selects the action that maximizes the reachability
probability. In practice, a model checker does not need to
store all vectors. It only needs a vector for the current
iteration and another for the previous iteration [18].
Algorithm 1 presents the standard iterative method to

compute Pr
𝑚𝑎𝑥

(𝑟𝑒𝑎𝑐ℎ𝑠
≤𝑘 (𝐺)) [4].

 The algorithm uses two vectors �̅� and 𝑥′̅ to store the
reachability probabilities of each state. In each iteration, it

first stores the computed values of all states in the vector 𝑥′̅
and after the computation of all values, it updates the vector

�̅�. The algorithm performs 𝑘 iterations and in each iteration,
updates the value of all state.

3. Avoiding Redundant Computations for Bounded

Reachability Probabilities

In most model checkers, the standard iterative method

(Algorithm 1) is used to compute the bounded reachability

probabilities [10, 12, & 17]. One drawback of this method is

that it considers all states of the model in every iteration. A

learning based method has been proposed in [4] for

accelerating the computations of bounded reachability

probabilities, but it is more useful for small values of the

bound k. Two new techniques are proposed to accelerate the

iterative computations for bounded reachability

probabilities. The approaches outperform the standard

method (Algorithm 1) and the learning-based method of [4].

The idea of these approaches is to identify and avoid useless

updates and redundant multiplications in each iteration.

3.1. Avoiding Redundant Multiplications for Dirac

Transitions

Journal of Computer and Knowledge Engineering, Vol.3, No.2. 2020. 33

Algorithm 1 performs at least one multiplication for each

action 𝛼 ∈ 𝐴𝑐𝑡(𝑠) (line 8). However, if there

is only one state 𝑠 ∈ 𝑃𝑜𝑠𝑡(𝑠, 𝛼) the method can directly use

the value of 𝑠′ because (𝑠, 𝛼, 𝑠′) is a Dirac transition, that is,

𝛿(𝑠, 𝛼)(𝑠′) = 1. To use this idea in the proposed method,

the set 𝐴𝑐𝑡 of actions of 𝑀 are separated to DiracAct and

nonDiracAct sets:

𝐷𝑖𝑟𝑎𝑐𝐴𝑐𝑡 = {𝛼 ∈ 𝐴𝑐𝑡|∃𝑠, 𝑠′ ∈ 𝑆, 𝛿(𝑠, 𝛼)(𝑠′) = 1}

𝑛𝑜𝑛𝐷𝑖𝑟𝑎𝑐𝐴𝑐𝑡 =
𝐴𝑐𝑡

𝐷𝑖𝑟𝑎𝑐𝐴𝑐𝑡

 The proposed approach is to use each set of actions

separately. For each state 𝑠 ∈ 𝑆, the method first considers

those transitions that are of the form (𝑠, 𝛼, 𝑠′), where 𝛼 ∈
 𝐷𝑖𝑟𝑎𝑐𝐴𝑐𝑡(𝑠). For such transitions (which are a main part of

transitions in most cases) the method considers the value of

𝑠′ from the previous iteration to update the value of s in the

current iteration. In this case, the method does not perform

any multiplication. The intuition behind this approach is to

reduce the total number of multiplications as the main time

consuming operation in computations. For non-Dirac

actions, the method uses the standard approach (the same as

lines 5-7 of Algorithm 1).

3.2. Avoiding Useless Updates

An update of a state 𝑠 ∈ 𝑆 in an iterative method is useless if

it does not change the value of 𝑠. To avoid useless updates,

in each iteration, the proposed method (explained in

Algorithm 2). If the value of any state 𝑠 ∈ 𝑆 is changed in an

iteration 𝑘, the method marks the states in 𝑃𝑟𝑒(𝑠) as enabled

for iteration 𝑘 + 1 . To have an efficient access to the

members of 𝑃𝑟𝑒(𝑠), these states should be stored for each

state 𝑠 ∈ 𝑆. However, the method only needs the list of

predecessor states of each state and do not need to restore

their actions and probabilities. In this case, the memory

overhead reduces to the number of states of the model.

 Algorithm 2 shows the proposed approach for

accelerating bounded reachability probabilities. For the first

iteration, the algorithm marks those states 𝑠 ∈ 𝑆 that have at

least one transition to a state in G. In each iteration 𝑖 ≤ 𝑘and

for each marked state 𝑠 ∈ 𝑆, the algorithm first considers the

set of actions 𝛼 ∈ 𝐷𝑖𝑟𝑎𝑐𝐴𝑐𝑡(𝑠) and uses the value of the

state 𝑠′ ∈ 𝑃𝑜𝑠𝑡(𝑠, 𝛼) (lines 15-20). For simplicity, 𝑠′ =
 𝑃𝑜𝑠𝑡(𝑠, 𝛼) is used because 𝑃𝑜𝑠𝑡(𝑠, 𝛼) has only one

member. It next considers non-Dirac actions. For each of

these actions the algorithm computes the related reachability

probability in line 22 and compares the computed value with

the maximum previous one (which is stored in 𝑑). For each

state 𝑠, if the computed value is more than its previous one

(that is checked in line 27), the new value is stored in 𝑥𝑠
′ and

the algorithm marks the states in 𝑃𝑟𝑒(𝑠) as enabled for the

next iteration (line 29).

34 Mohammadsadegh Mohagheghi.: Accelerating Iterative Methods for…

Table 1. Description of case study models

Model

(Parameters)

Parameter

Value(s)

Number of

States

Number of

Actions

Number of

Transitions

Number of Dirac

Transitions

Consensus

(n, k)

5, 15 1,179K 3,944K 4,927K 2,961K

5, 32 2,496K 8,350K 10,435K 6,266K

6, 8 4,612K 18,445K 23,032K 13,857K

6, 20 11,322K 45,318K 45,318K 34,012K

leader

(K)

7 2,095K 6,729K 7,714K 5,745K

8 18,674K 67,761K 77,708K 57,815K

phil_lss

(K)

40 3,574K 11,689K 13,122K 10,256K

60 8,115K 26,817K 30,106K 23,527K

80 14,491K 48,139K 54,045K 42,232K

4. Implementation and Experimental Results

The proposed approaches have been implemented as a

package in the PRISM model checker. This implementation

is based on the sparse engine of PRISM [17] which is

developed in C and JAVA. Three classes of standard case

studies are considered which have been used in previous

works [3, 7, 8, 16, 18, 20, & 21]. The Consensus, leader and

phil_lss case studies are used to compare the performance of

the proposed methods for bounded reachabilities. Table 1

shows the common characteristics of case study models.

More information about theses case studies are available in

[8&21]. Table 1 shows the name of the model, the parameter

values, the number of states, and total number of actions of

each model. In addition, the total number of transitions and

number of Dirac transitions are proposed in the last two

columns. K is used for 103. We see that more than 50% of

transitions of each model are Dirac transitions.

 The running time of the iterative method with the

proposed approaches (which is called the improved method

in this section), are compared with the running time of the

standard iterative method and the learning based method

from [4]. All benchmarks have been run on a machine with

Corei7 CPU (2.8 GHz, 4 main cores) and 8GB RAM running

Ubuntu 16. Figure 1 to Figure 9 show the results of the

experiments. Three values for the bound of iterations are

considered, where are shown in the horizontal axis of figures.

The vertical axis shows the running times in second.

Figure 1. Running times for consensus_5_16

Figure 2. Running times for consensus_5_32

Figure 3. Running times for consensus_6_12

Figure 4. Running times for consensus_6_20

Journal of Computer and Knowledge Engineering, Vol.3, No.2. 2020. 35

Figure 5. Running times for leader_7

Figure 6. Running times for leader_8

Figure 7. Running times for phil_lss_40

Fig 8. Running times for phil_lss_60

36 Mohammadsadegh Mohagheghi.: Accelerating Iterative Methods for…

Figure 9. Running times for phil_lss_80

 For some cases, the running time of the learning based
method is at least ten times more than the running time of the
other methods. To have better presentation, the running
times of learning based method is avoided for these cases.
The results show that in most cases the proposed improved
approaches outperform the standard and learning based
methods. Learning based method is faster for small values of
the bound. However, it is time consuming for large bounds.

5. Conclusion
In this paper, two new approaches are proposed to improve
the performance of iterative methods for computing bounded
reachability probabilities in MDPs. The first approach avoids
useless multiplications for Dirac transitions. This approach
relies on the fact that a main part of transitions of the studied
cases are Dirac transitions. The second proposed approach
marks useful updates for the next iteration and avoid useless
updates. Experimental results show promising
improvements in the performance of the iterative
computations for bounded reachabilities. In most cases, the
running time reduces to less than the running time of the
standard method. For future works, the proposed techniques
can be extended for cost-bounded or multi-objective
properties. The possibility of using these techniques for
multi-core model checking is another direction for future
studies.

References
[1] C. Baier, L. de Alfaro and V. Forejt. “Probabilistic Model

Checking”, Dependable Software Systems Engineering,
Vol. 45, pp. 1-23, 2016.

[2] C. Baier and J. Katoen. “Principles of model checking”
MIT Press, USA. 2008.

[3] C. Baier, J. Klein, L. Leuschner, D. Parker and S.
Wunderlich, “Ensuring the reliability of your model
checker: Interval iteration for Markov Decision
Processes”, International Conference on Computer
Aided Verification, Springer Cham, Vol. 27, pp. 160-180.
2017.

[4] T. Brazdil, K. Chatterjee, M. Chmelik, V. Forejt, J.
Kretinsky, M. Kwiatkowska, D. Parker and M. Ujma.
“Verification of Markov decision processes using
learning algorithms”, International Symposium on
Automated Technology for Verification and Analysis,
Vol. 12, pp. 98-114. 2014

[5] F. Ciesinski, C. Baier, M. Gromer and J. Klein.
“Reduction techniques for model checking Markov
decision processes”, Fifth International Conference on
Quantitative Evaluation of Systems, pp. 45-54. 2008.

[6] L. De Alfaro. “Formal verification of probabilistic
systems.” PhD thesis. Stanford University, US, 1997.

[7] C. Dehnert, S. Junges, J. Katoen and M. Volk. “A storm
is coming: A modern probabilistic model checker”,
International Conference on Computer Aided
Verification, pp. 592-600. Springer. 2017.

[8] V. Forejt, M. Kwiatkowska, G. Norman and D. Parker.
“Automated Verification Techniques for Probabilistic
Systems”, InSFM, Vol. 11, pp. 53-113. 2011.

[9] L. Gui, J. Sun, S. Song, Y. Liu and J.S. Dong. “SCC-
based improved reachability analysis for Markov
decision processes”, In: International Conference on
Formal Engineering Methods, pp. 171-186. Springer.

[10] E.M. Hahn, Y. Li, S. Schewe, A. Turrini and L. Zhang.
“iscas M c: a web-based probabilistic model checker”,
International Symposium on Formal Methods, Springer.
pp. 312-317. 2014.

[11] A. Hartmanns. “On the analysis of stochastic timed
systems”, PhD thesis. Saarland University, Germany.
2015.

[12] A. Hartmanns and H. Hermanns. “The modest toolset:
an integrated environment for quantitative modeling and
verification”. International Conference on Tools and
Algorithms for the Construction and Analysis of
Systems,Springer. pp. 593-598. 2014.

[13] J. Katoen. “The probabilistic model checking
landscape”. In Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science,
Vol. 5, pp. 31-45. 2013.

[14] M. Kattenbelt, M. Kwiatkowska, G. Norman and D.
Parker. “Abstraction refinement for probabilistic
software”, In: International Workshop on Verification,
Model Checking, and Abstract Interpretation, Springer.
pp. 182-197. 2009.

[15] J. Klein, C. Baier, P. Chrszon, M. Daum, C. Dubslaf, S.
Kluppelholz, S. Marcker and D. Muller. “Advances in
probabilistic model checking with PRISM: variable
reordering, quantiles and weak deterministic Buchi
automata”. International Journal on Software Tools for
Technology Transfer, Vol. 20(2), pp. 179-194. 2018.

[16] M. Kwiatkowska, G. Norman and D. Parker. ”symmetry
reduction for probabilistic model checking”,
International Conference on Computer Aided
Verification, Springer. pp. 234-248. 2006.

[17] M. Kwiatkowska, G. Norman and D. Parker. “The
PRISM benchmark suite”, 9th International Conference
on Quantitative Evaluation of SysTems, IEEE CS press.
pp. 203-204. 2010.

[18] M. Kwiatkowska, D. Parker and H. Qu. “Incremental
quantitative verification for Markov decision processes”,
Dependable Systems & Networks (DSN), IEEE/IFIP 41st
International Conference, IEEE, Vol. 41, pp. 359-370.
2011.

[19] M. L. Puterman. “Markov decision processes: Discrete
stochastic dynamic programming”, In: Journal of the
Operational Research Society, Vol. 46(6), pp. 792-792.
1994.

[20] T. Quatmann and J. Katoen. “Sound value iteration”,
International Conference on Computer Aided
Verification, Springer, Vol. 27, pp. 643-661. 2018.

[21] M. Ujma. “On verification and controller synthesis for
probabilistic systems at runtime”, Ph.D. thesis,
University of Oxford. 2015.

Journal of Computer and Knowledge Engineering, Vol.3, No.2. 2020. 37

