
Journal of Computer and Knowledge Engineering, Vol. 3, No. 2, 2020. (31-36) 31 

DOI: 10.22067/cke.2020.39288 

Accelerating Iterative Methods for Bounded Reachability 

Probabilities in Markov Decision Processes* 
Research Article 

Mohammadsadegh Mohagheghi 1 

 

Abstract: Probabilistic model checking is a formal method 

for verification of the quantitative and qualitative properties 

of computer systems with stochastic behaviors. Markov 

Decision Processes (MDPs) are well-known formalisms for 

modeling this class of systems. Bounded reachability 

probabilities are an important class of properties that are 

computed in probabilistic model checking. Iterative 

numerical computations are used for this class of properties. 

A significant draw-back of the standard iterative methods is 

the redundant computations that do not affect the final results 

of the computations, but increase the running time of the 

computations. The study proposes two new approaches to 

avoid redundant computations for bounded reachability 

analysis. The general idea of these approaches is to identify 

and avoid useless numerical computations in iterative 

methods for computing bounded reachability probabilities. 

 

Keywords: Probabilistic model checking, Iterative 

numerical methods, Bounded Reachability probabilities, 

Markov decision processes. 

 

1. Introduction 

Model checking is a well-known formal approach for 

verifying quantitative and qualitative properties of computer 

systems. In this way, the system is modeled by a labeled 

transition system and the properties of the system are 

specified in temporal logic. Because of some stochastic 

behaviors of the computer systems, the probabilistic 

alternative of transitions systems are used for modeling the 

underlying system and probabilistic model checking is used 

to analyze the quantitative property specifications of these 

systems [1&2]. Markov chains and Markov Decision 

Processes (MDPs) are widely used as probabilistic transition 

systems [13]. On the other hand, probabilistic reachabilities 

(also called reachability probabilities) and expected rewards 

are considered to specify the desired properties of the system 

[3&4]. In probabilistic reachability, the maximum of 

minimum probability of reaching a goal state should be 

computed [20]. Probabilistic reachability can be bounded or 

unbounded. In bounded reachability, the number of steps is 

limited but in unbounded reachability the number of steps of 

the system is not limited to any bound [11]. 

 Iterative numerical methods are the standard approaches 

to compute the bounded or unbounded probabilistic 

reachability. These methods start from an initial vector of 

values and iteratively updates the reachability probabilities 

according to the computed values from the previous iteration 

[6&18]. A main drawback of the iterative methods for 

probabilistic reachability is the redundant (useless) 

computations, that is, those computations that do not affect 
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the computed value of a state [3&15]. Several approaches 

have been proposed in other works to avoid the useless 

computations and accelerate the iterative computations [5, 9, 

14, 16, & 21]. In most cases, the proposed approaches are 

used for computing unbounded reachability probabilities and 

do not show promising improvements for bounded 

properties. The study focuses on the bounded probabilistic 

reachabilities and proposes two new techniques to accelerate 

the standard iterative method for these properties. The main 

contributions of this work are as follows: 

 A technique is proposed that considers the set of 

transitions that lead to a Dirac distribution (a transition 

with probability one) to improve the performance of the 

iterative computations. This technique directly uses the 

related reachability probability to avoid redundant 

computations. In this case, the proposed technique 

divides the transitions of a model into Dirac and non-

Dirac ones. For Dirac transition, the method only needs 

to consider the value of the destination state and can 

avoid the multiplications that are performed in the 

standard approach. 

 A new approach is proposed to avoid useless updates in 

each iteration. In this case, the value of a state in iteration 

should be updated only if the value of some successors of 

the state has been updated in the previous iteration. 

Otherwise, the method avoids the update and its related 

computations. 

The two techniques are considered as an improved method 

for computing bounded reachability probabilities. The 

experiments of the study show more than 50% improvement 

in the running time when the improved method is used. 

 The remainder of this paper is structured as follows: 

Section 2 reviews some related definitions and methods. In 

section 3, the techniques for accelerating the standard 

iterative method for bounded reachability probabilities are 

proposed. Section 4 proposes the experimental results and 

Section 5 concludes the paper. 

 

2. Review of Related Definitions and Methods 

In this section   the definitions and standard algorithm for 

bounded reachability probabilities are reviewed [2, 8].   

 

2.1. Definition 1 (MarkovDecision Process) 

A Markov Decision Process (MDP) is a tupple  𝑀 =
(𝑆, 𝑠0, 𝐴𝑐𝑡, 𝛿, 𝐺) where 𝑆 is a finite set of states, 𝑠0 ∈ 𝑆 is an 

initial state, 𝐴𝑐𝑡  is a finite set of actions, 𝛿: 𝑆 × 𝐴𝑐𝑡 →
𝐷𝑖𝑠𝑡(𝑆) is a probabilistic transition function and 𝐺 ⊂ 𝑆 is 

the set of goal states. The size of 𝑀 which is shown as |𝑀| 
is defined as the number of states of 𝑀 plus the number of its 

transitions. For every state 𝑠 ∈ 𝑆 of an MDP 𝑀, one or more 
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actions of 𝐴𝑐𝑡  are defined as enabled actions. This set is 

defined as 𝐴𝑐𝑡(𝑠) = {𝛼 ∈ 𝐴𝑐𝑡|𝛿(𝑠, 𝛼) is defined} . For a 

state 𝑠 ∈ 𝑆 and 𝛼 ∈ 𝐴𝑐𝑡(𝑠) we use 𝑃𝑜𝑠𝑡(𝑠, 𝛼) for the set of 

𝑎 successor states of 𝑠, 𝑃𝑜𝑠𝑡(𝑠) for all possible successor 

states of 𝑠 and 𝑃𝑟𝑒(𝑠) for possible predecessor states of 𝑠 

[2]: 

 

𝑃𝑜𝑠𝑡(𝑠, 𝛼) = {𝑠′ ∈ 𝑆 | 𝛿(𝑠, 𝛼, 𝑠′) > 0},        (1) 
𝑃𝑜𝑠𝑡(𝑠) =∪𝑎∈𝐴𝑐𝑡(𝑠) 𝑃𝑜𝑠𝑡(𝑠, 𝛼),  (2) 

𝑃𝑟𝑒(𝑠) = {𝑠′ ∈ 𝑆 | 𝑠 ∈ 𝑃𝑜𝑠𝑡(𝑠)},        (3) 

 

 The semantic of an MDP is defined as its possible 

transtions and paths. Two steps are considered to take a 

transition from a state 𝑠 ∈  𝑆. First, one enabled action 𝛼 ∈
𝐴𝑐𝑡(𝑠) is selected non-deterministically. Second, using the 

probability distribution 𝛿(𝑠, 𝛼) , a successor state 𝑠′  is 

chosen randomly. Note that 𝛿(𝑠, 𝛼)(𝑠′)  determines the 

probability of a transition from 𝑠  to 𝑠′  by the action 𝑎 ∈
𝐴𝑐𝑡(𝑠).  A transition (𝑠, 𝛼, 𝑠′)  is called Dirac transition if 

𝛿(𝑠, 𝛼)(𝑠′) = 1.  A discrete-time Markov chain (DTMC) is 

an MDP for which every state has exactly one enabled action 

[17, 18, & 23]. A finite or infinite path in 𝑀 is a non-empty 

sequence of the form 𝜋 = 𝑠0

𝑎0
→ 𝑠1

𝑎1
→ …  where 𝑠𝑖 ∈ 𝑆  and 

𝑎𝑖 ∈ 𝐴𝑐𝑡(𝑠𝑖)  and 𝑠𝑖+1 ∈ 𝑃𝑜𝑠𝑡(𝑠𝑖 , 𝑎𝑖)  for every 𝑖 ≥ 0.  
𝑃𝑎𝑡ℎ𝑠 is used to denote the set of all infinite paths of 𝑀 that 

start in a state 𝑠 and 𝐹𝑃𝑎𝑡ℎ𝑠 for all finite paths of 𝑀.   𝜋[𝑖] 
is used to denote the (𝑖 + 1) − 𝑡ℎ state in the path 𝜋, that is, 

𝜋[𝑖] = 𝑠𝑖 .   

 A policy is a function that maps each state 𝑠 ∈ 𝑆 to one 

of its enabled actions 𝛼 ∈ 𝐴𝑐𝑡(𝑠) . Policies are used to 

resolve the non-deterministic selections of MDPs [8]. 

Depending on the selected actions of an MDP, a probability 

measure is defined on the set of related paths. More details 

about policies and their induced probability measure are 

available in [2, 13, 8, & 11]. 

 For bounded reachabilities and for any state 𝑠 ∈ 𝑆,  it is 

normal to define 𝑟𝑒𝑎𝑐ℎ𝑠
≤𝑘 (𝐺) as the set of all paths that start 

from s and reach a state in G within at most k steps: 

 

𝑟𝑒𝑎𝑐ℎ𝑠
≤𝑘(𝐺) = {𝜋 ∈ 𝑃𝑎𝑡ℎ𝑠𝑠|𝜋[𝑖] ∈ 𝐺 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖 ≤ 𝑘} 

 

   𝑃𝑟𝑚𝑎𝑥(𝑟𝑒𝑎𝑐ℎ𝑠
≤𝑘

 (𝐺)) is defined as the maximal 

probability of reaching to one state in G in at most k 

iterations. The maximal (or minimal) probability is defined 

over the set of policies of the model [2&8]. 

 

2.1. Iterative Methods for Probabilistic Model Checking 

The aim of probabilistic model checking is to verify a desired 

quantitative or qualitative property of a system with 

stochastic behavior, which is modeled by an MDP. To this 

end, a probabilistic extension of transition systems is used to 

model the system and probabilistic temporal logics are used 

to specify the desired properties of the system [1&2]. In most 

cases, verifiation of the proposed properties is reduced to the 

computation of the optimal probability of reaching or the 

optimal expected cost before reaching a goal state [2, 6, & 

8].  

 The standard approach for computing the optimal 

bounded or unbounded reachability probabilities is to use a 

vector  �̅� of reachability probability values and update the 

vector iteratively [4]. For a state 𝑠 ∈ 𝑆 , let 𝑥𝑠
𝑘  denote the 

maximum probability of reaching at least one state of 𝐺 

within at most 𝑘 steps, that is, 𝑥𝑠
𝑘  = Pr

𝑚𝑎𝑥
 (𝑟𝑒𝑎𝑐ℎ𝑠

≤𝑘 (𝐺)). An 

iterative method computes the bounded reachability by 

computing the value of each state 𝑠 ∈ 𝑆  according to the 

value of the states in 𝑃𝑜𝑠𝑡(𝑠). For initiating �̅� , we set 𝑥𝑠
0  =

 1 if 𝑠 ∈ 𝐺 and 𝑥𝑠
0  =  0 otherwise. For any iteration 𝑘 >  0 

se have: so we have: 
 

𝑥𝑠
𝑘 = {

1                                                         𝑖𝑓 𝑠 ∈ 𝐺

max
𝛼∈𝐴𝑐𝑡(𝑠)

∑ 𝛿(𝑠, 𝛼)(𝑠′). 𝑥𝑠′
𝑘−1

𝑠′∈𝑆

      𝑖𝑓  𝑠 ∉ 𝐺 

 

 Note that in this computations, the policies are 

considered implicitly, that is, for each state 𝑠 ∈ 𝑆 , the 
method selects the action that maximizes the reachability 
probability. In practice, a model checker does not need to 
store all vectors. It only needs a vector for the current 
iteration and another for the previous iteration [18]. 
Algorithm 1 presents the standard iterative method to 

compute Pr
𝑚𝑎𝑥

(𝑟𝑒𝑎𝑐ℎ𝑠
≤𝑘 (𝐺)) [4]. 

 The algorithm uses two vectors �̅�  and 𝑥′̅  to store the 
reachability probabilities of each state. In each iteration, it 

first stores the computed values of all states in the vector 𝑥′̅ 
and after the computation of all values, it updates the vector 

�̅�. The algorithm performs 𝑘 iterations and in each iteration, 
updates the value of all state. 
 

 
3. Avoiding Redundant Computations for Bounded 

Reachability Probabilities 

In most model checkers, the standard iterative method 

(Algorithm 1) is used to compute the bounded reachability 

probabilities [10, 12, & 17]. One drawback of this method is 

that it considers all states of the model in every iteration. A 

learning based method has been proposed in [4] for 

accelerating the computations of bounded reachability 

probabilities, but it is more useful for small values of the 

bound k. Two new techniques are proposed to accelerate the 

iterative computations for bounded reachability 

probabilities. The approaches outperform the standard 

method (Algorithm 1) and the learning-based method of [4]. 

The idea of these approaches is to identify and avoid useless 

updates and redundant multiplications in each iteration.  
 

3.1. Avoiding Redundant Multiplications for Dirac 

Transitions 
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Algorithm 1 performs at least one multiplication for each 

action 𝛼 ∈ 𝐴𝑐𝑡(𝑠) (line 8). However, if there  

is only one state 𝑠 ∈  𝑃𝑜𝑠𝑡(𝑠, 𝛼) the method can directly use 

the value of 𝑠′ because (𝑠, 𝛼, 𝑠′) is a Dirac transition, that is, 

𝛿(𝑠, 𝛼)(𝑠′) = 1. To use this idea in the proposed method,   

the set  𝐴𝑐𝑡 of actions of 𝑀 are separated to DiracAct and 

nonDiracAct sets: 
 

𝐷𝑖𝑟𝑎𝑐𝐴𝑐𝑡 = {𝛼 ∈ 𝐴𝑐𝑡|∃𝑠, 𝑠′ ∈ 𝑆, 𝛿(𝑠, 𝛼)(𝑠′) = 1} 

𝑛𝑜𝑛𝐷𝑖𝑟𝑎𝑐𝐴𝑐𝑡 =
𝐴𝑐𝑡

𝐷𝑖𝑟𝑎𝑐𝐴𝑐𝑡
 

 

 The proposed approach is to use each set of actions 

separately. For each state 𝑠 ∈ 𝑆, the method first considers 

those transitions that are of the form (𝑠, 𝛼, 𝑠′), where 𝛼 ∈
 𝐷𝑖𝑟𝑎𝑐𝐴𝑐𝑡(𝑠). For such transitions (which are a main part of 

transitions in most cases) the method considers the value of 

𝑠′ from the previous iteration to update the value of s in the 

current iteration. In this case, the method does not perform 

any multiplication. The intuition behind this approach is to 

reduce the total number of multiplications as the main time 

consuming operation in computations. For non-Dirac 

actions, the method uses the standard approach (the same as 

lines 5-7 of Algorithm 1). 

 

3.2. Avoiding Useless Updates 

An update of a state 𝑠 ∈ 𝑆 in an iterative method is useless if 

it does not change the value of 𝑠. To avoid useless updates, 

in each iteration, the proposed method (explained in 

Algorithm 2). If the value of any state 𝑠 ∈ 𝑆 is changed in an 

iteration 𝑘, the method marks the states in 𝑃𝑟𝑒(𝑠) as enabled 

for iteration 𝑘 +  1 . To have an efficient access to the 

members of 𝑃𝑟𝑒(𝑠), these states should be stored for each 

state 𝑠 ∈ 𝑆.  However, the method only needs the list of 

predecessor states of each state and do not need to restore 

their actions and probabilities. In this case, the memory 

overhead reduces to the number of states of the model. 

 Algorithm 2 shows the proposed approach for 

accelerating bounded reachability probabilities. For the first 

iteration, the algorithm marks those states 𝑠 ∈ 𝑆 that have at 

least one transition to a state in G. In each iteration 𝑖 ≤ 𝑘and 

for each marked state 𝑠 ∈ 𝑆, the algorithm first considers the 

set of actions 𝛼 ∈ 𝐷𝑖𝑟𝑎𝑐𝐴𝑐𝑡(𝑠) and uses the value of the 

state 𝑠′ ∈ 𝑃𝑜𝑠𝑡(𝑠, 𝛼) (lines 15-20). For simplicity,   𝑠′ =
 𝑃𝑜𝑠𝑡(𝑠, 𝛼) is used because 𝑃𝑜𝑠𝑡(𝑠, 𝛼)  has only one 

member. It next considers non-Dirac actions. For each of 

these actions the algorithm computes the related reachability 

probability in line 22 and compares the computed value with 

the maximum previous one (which is stored in 𝑑). For each 

state 𝑠, if the computed value is more than its previous one 

(that is checked in line 27), the new value is stored in 𝑥𝑠
′  and 

the algorithm marks the states in 𝑃𝑟𝑒(𝑠) as enabled for the 

next iteration (line 29). 
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Table 1. Description of case study models 

 

Model 

(Parameters) 

Parameter 

Value(s) 

Number of 

States 

Number of 

Actions 

Number of 

Transitions 

Number of Dirac 

Transitions 

 

Consensus 

(n, k) 

5, 15 1,179K 3,944K 4,927K 2,961K 

5, 32 2,496K 8,350K 10,435K 6,266K 

6, 8 4,612K 18,445K 23,032K 13,857K 

6, 20 11,322K 45,318K 45,318K 34,012K 

leader 

(K) 

7 2,095K 6,729K 7,714K 5,745K 

8 18,674K 67,761K 77,708K 57,815K 

phil_lss 

(K) 

40 3,574K 11,689K 13,122K 10,256K 

60 8,115K 26,817K 30,106K 23,527K 

80 14,491K 48,139K 54,045K 42,232K 

 
4. Implementation and Experimental Results 

The proposed approaches have been implemented as a 

package in the PRISM model checker.  This implementation 

is based on the sparse engine of PRISM [17] which is 

developed in C and JAVA.  Three classes of standard case 

studies are considered which have been used in previous 

works [3, 7, 8, 16, 18, 20, & 21].  The Consensus, leader and 

phil_lss case studies are used to compare the performance of 

the proposed methods for bounded reachabilities. Table 1 

shows the common characteristics of case study models. 

More information about theses case studies are available in 

[8&21]. Table 1 shows the name of the model, the parameter 

values, the number of states, and total number of actions of 

each model. In addition, the total number of transitions and 

number of Dirac transitions are proposed in the last two 

columns. K is used for 103. We see that more than 50% of 

transitions of each model are Dirac transitions. 

  The running time of the iterative method with the 

proposed approaches (which is called the improved method 

in this section), are compared with the running time of the 

standard iterative method and the learning based method 

from [4]. All benchmarks have been run on a machine with 

Corei7 CPU (2.8 GHz, 4 main cores) and 8GB RAM running 

Ubuntu 16. Figure 1 to Figure 9 show the results of the 

experiments. Three values for the bound of iterations are 

considered, where are shown in the horizontal axis of figures. 

The vertical axis shows the running times in second. 

  

 
Figure 1. Running times for consensus_5_16 

 
 

Figure 2. Running times for consensus_5_32 

 

 
Figure 3. Running times for consensus_6_12 

 

 
Figure 4. Running times for consensus_6_20 
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Figure 5. Running times for leader_7 

 

 
Figure 6. Running times for leader_8 

 

 
Figure 7. Running times for phil_lss_40 

 

 
Fig 8. Running times for phil_lss_60 
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Figure 9. Running times for phil_lss_80 

 
 For some cases, the running time of the learning based 
method is at least ten times more than the running time of the 
other methods. To have better presentation,   the running 
times of learning based method is avoided for these cases. 
The results show that in most cases the proposed improved 
approaches outperform the standard and learning based 
methods. Learning based method is faster for small values of 
the bound. However, it is time consuming for large bounds. 
 
5. Conclusion 
In this paper,   two new approaches are proposed to improve 
the performance of iterative methods for computing bounded 
reachability probabilities in MDPs. The first approach avoids 
useless multiplications for Dirac transitions. This approach 
relies on the fact that a main part of transitions of the studied 
cases are Dirac transitions. The second proposed approach 
marks useful updates for the next iteration and avoid useless 
updates. Experimental results show promising 
improvements in the performance of the iterative 
computations for bounded reachabilities. In most cases, the 
running time reduces to less than the running time of the 
standard method. For future works, the proposed techniques 
can be extended for cost-bounded or multi-objective 
properties. The possibility of using these techniques for 
multi-core model checking is another direction for future 
studies. 
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