
Journal of Computer and Knowledge Engineering, Vol. 2, No. 1, 2019.

DOI: 10.22067/cke.v2i1.74607

A State-aware Approach for Robustness Testing of Embedded

Real-Time Operating Systems

Raheleh Shahpasand1 Samad Paydar2* Yasser Sedaghat3 Reza Ramezani4

Abstract: The Operating System (OS) is a major part of

embedded software systems and its robustness has

considerable influence on the robustness of the entire system.

Thus, its robustness testing is critical for assessing the

dependability of the system. In this paper, a state-aware

approach is proposed to evaluate the robustness of

components of embedded real-time OSs in the presence of

different types of faulty inputs. This approach leads to

identifying critical OS states, their criticality level, and the

maximum and minimum level of the OS robustness. It also

facilitates comparing the robustness level of OS’s

components and helps the system developers to select the

most appropriate fault tolerance techniques by considering

the robustness level and timing limitations. The experimental

results demonstrate the ability of the proposed approach in

providing more information about the robustness

vulnerabilities in the states of the system.

Keywords: Robustness testing, Embedded operating

system, Robustness level assessment, Safety-critical

systems, Fault injection.

1. Introduction

With the increasing growth in the use of embedded systems

in different applications, the importance of verifying the

correct behavior of these systems under different possible

conditions has increased. The software part of these systems

has the responsibility of controlling the functionality of the

system. Operating System (OS) is an important part of an

embedded system that manages the operations of the

embedded system and has significant impacts on its

functionality. Thus, the guaranteed correct functionality of

an embedded system highly depends on the correct behavior

of its underlying OS [1]. This issue is more crucial in safety-

critical applications, since their failure results in destroying

lives and significant properties or environmental damage [2].

 The principal role of embedded software systems is

interaction with the physical world. Thus, they are reactive

and should respond within a predefined time period specified

by their real-time constraints [3]. The increasing complexity

of embedded systems leads to the increase of the OS’s

functional complexity, which increases the size of the OS’s

source code in terms of Lines of Code (LOC). By increasing

the source code size, the residual software defects raises as

well [4]. The increase of software defects has become a

major concern in software systems, especially those

Manuscript received August, 5, 2018; accepted. February , 22, 2019.
1 M.Sc. Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
2* Assistant Professor, Department of Computer Engineering, Ferdowsi University of Mashhad. Email: s-paydar@um.ac.ir
3 Assistant Professor, Department of Computer Engineering, Ferdowsi University of Mashhad.
4 Assistant Professor, Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran

employed in safety-critical applications. Since these OSs are

usually used outside of their original context and interact

with an external environment, they are prone to more faults

[4]. Consequently, fault tolerance techniques are necessary

to assure the correct behavior of the OS’s functionalities [1].

 Robustness testing is used to evaluate the systems’ fault

tolerance [5]. In particular, OS robustness testing assesses

the OS behavior in the presence of faulty inputs to detect the

vulnerabilities that affect the correct behavior of the OS [6].

Faulty inputs fall into four categories [7-9]: 1) Invalid and

unexpected value, 2) invalid timing of an input, 3) invalid

input sequence, and 4) incorrect input format. In robustness

testing of an OS, the OS's interfaces are deliberately exposed

to faulty inputs through software-implemented fault

injection techniques (SWIFI) which are widely used for

robustness testing [4, 5]. The OS interfaces for robustness

testing include the application programming interface (API)

and device drivers [10].

 Since the interactions of embedded OSs with the

execution environment are not fully predictable at the

development phase, the robustness testing of such OSs is

challenging [5]. Embedded OSs encounter all the

aforementioned faulty input types. The system response

depends on the features of the faulty inputs and the state of

the OS components, which is determined by their properties.

A component is a part of the OS that is responsible for

managing specific resources or providing a set of services,

such as memory management and process scheduling [11].

The OS components interact with each other and their

properties may change during their interaction. The OS state

is obtained by analyzing the interactions between OS

components. The robustness testing of OSs can be improved

by taking both faulty inputs and the OS state into account

[10].

 This paper proposes a state-aware approach for robustness

testing of embedded OSs. The proposed approach takes

different types of faulty inputs and the OS state into account

and thus it has the potential to reveal how critical these states

are for system dependability. In this approach, first,

important states of the OS components are identified in the

form of a behavioral model and then, different types of faulty

inputs are injected into these states. Using the fault injection

results, the criticality value of each state and then the

robustness level of the components are determined. These

values are used to get more information about the robust

44 Paydar et. Al.: A State-aware Approach for Robustness Testing …

behavior of the OS. The proposed approach gives helpful

information about the OS robustness to developers,

including the critical OS states, the criticality level of the OS

components, and the maximum and minimum level of the

OS robustness. With this information, developers can

accurately select an appropriate fault tolerance technique to

improve the system dependability. Furthermore, the

proposed approach can be effectively used to compare the

robustness of different OS components.

 The organized of the rest of the paper is as follow: In

Section 2, the most important related studies are presented.

The proposed approach is elaborated in Section 3. In Section

4, the results of applying the proposed approach to a case

study are presented and discussed. Finally, the paper

concludes in Section 5 and offers some future work.

2. Related Studies

Due to the fundamental role of OSs in computer systems, OS

robustness testing has attracted the interest of researchers for

many years [5]. Fuzz [12] is one of the first studies in this

area that has used random inputs for robustness testing of

OSs. These inputs are injected into system’s user interface

which stochastically activate the robustness faults [6]. Four

series of Fuzz experiments [12-15], that have been conducted

in the years 1990-2006 on UNIX, Windows NT and MacOS

operating systems, have shown the effectiveness of random

inputs in OS robustness testing. These experiments have

revealed that OSs, as a mature software, are still vulnerable

to faulty inputs even against random ones. Using random

inputs in robustness testing has some drawbacks. For

example, fault activation relies on chance and the test space

is extremely large. Robustness testing based on the type of

interface parameters is an attempt to overcome such

drawbacks [6].

 The Ballista [16, 17] uses a type-specific approach to test

and benchmark the OS. Each robustness testing scenario

consists of a system call invocation with a combination of

both valid and invalid values for an input parameter. These

values are predefined for each data type that, compared to

the random faulty inputs, lead to a smaller test space. Ballista

has succeeded in finding severe robustness vulnerabilities in

several commercial OSs, but the number of test cases is still

high.

 Some studies have focused on the OS robustness testing

with respect to device driver interface. In case of robustness

testing of device drivers, a profiling framework has been

proposed by [18] that assists in finding possible error

propagation paths from device drivers to the applications.

Similarly, the presented work by [19] concerns OS

robustness testing regarding device driver interface and

focuses on testing the Driver Programming Interface (DPI).

DPI is a set of kernel core functions that implements the

interactions way between device drivers and the kernel. In

order to characterize the robustness of OSs, the faults are

injected into the parameters of these core kernel functions.

The results show the negative impacts of faulty drivers on

the responsiveness of the kernel, safety of the workload and

availability of the kernel.

 In recent years, the OS robustness testing using OS states

as well as invalid inputs have attracted the attention of many

researchers. The OS state has a considerable influence on the

OS robustness testing. The execution of a given robustness

test case in different OS states would generate rare execution

patterns which, as a result, increases the final coverage of

robustness testing [10]. In this regard, Sârbu and others [20]

have proposed a state model for testing device drivers. This

state model has been derived from run-time communications

among device driver interfaces. This study reports that the

use of a state model reduces the number of test cases.

 Johansson and others [21] have introduced the concept of

call blocks to take into account the state of the OS in

robustness testing. In this approach, the usage profile of a

device driver is split into disjoint call blocks. Call blocks,

that are recurring sequences of function calls, lead to

injecting faults into different system states. The results have

shown that controlling the time of fault injection has a

significant impact on the robustness evaluation.

 Similarly, the approach presented in [10] has the goal of

enhancing the traditional approaches by considering the OS

state in test case definition. By this approach, a test plan is

expressed through two dimensions: the exceptional inputs

and the OS states. Exceptional inputs are selected from a set

of predefined invalid values. The states vary in S = {s1, s2 …

sn}, where si is a set of component attribute values. In order

to execute a test case, state setter takes component to one of

the predefined states in S. Then, test driver injects invalid

inputs to the component interface. This study has

demonstrated that the robustness tests are able to reach

corner cases with complex interactions with other

subsystems, which cannot be covered by traditional

robustness testing methods [10].

 SABRINE [11] is an extension of the approach proposed

by [10]. The authors have claimed that SABRINE is the first

approach that applies behavioral model mining techniques in

order to test the robustness of the OS. In the first phase of

SABRINE, behavioral data about OS is collected, in terms

of interactions between OS components at run-time. At the

next phase, the behavioral data are preprocessed and are

divided into disjoint sequences. Identical sequences

represent a pattern. To have an efficient set of test cases, in

the third phase, the patterns are further grouped using a

clustering algorithm. In the fourth phase, a behavioral model

is generated for every cluster in the form of finite state

automata (FSA) in which the states are interconnected by

events. Furthermore, injectable transitions are identified. An

injectable transition is an invocation of a function in which a

fault can be injected. Only one test case is generated for

every injectable transition. In order to execute test cases, in

the fifth phase, the system is transitioned to the initial state

of the behavioral model and a fault is injected when the OS

reaches the intended state.

 SABRINE approach has overcome the limitation of

requiring knowledge about OS internals. Nevertheless, this

approach suffers from some drawbacks like neglecting

different types of faulty inputs. In an attempt to emulate

realistic scenarios, the proposed methodology in [22], deals

with four different types of programmable faults, including:

data, protocol, time-related, and state-related faults. This

methodology has employed model-based robustness testing

for embedded software. The results of applying this

methodology have indicated that the robustness testing

Journal of Computer and Knowledge Engineering, Vol. 2, No. 1, 2019. 45

method is very effective in finding vulnerabilities. The key

problem of this approach is that the state model of the system

is not based on the system behavioral model, but it is

extracted using explicit abstractions of the system and its

environment.

 The presented approach in [23], TrEKer, infers error

propagation from a faulty kernel component to other parts of

the kernel by tracing memory accesses using compile-time

instrumentation. This approach infers error propagation from

deviations in the injection target’s state and behavior that are

visible to other parts of the kernel. The data that the system

under test (SUT) operates on, has defined as SUT state. The

evaluations have demonstrated that conventional oracles

would misclassify up to 10 % of seemingly successful runs.

 Whilst numerous researches have been carried out on

embedded OS robustness testing, none of them has

adequately covered the robustness testing with respect to

different states and different types of faulty inputs.

Furthermore, they have not considered specific

characteristics of these OSs such as timeliness and

reactiveness. In our previous work [24], a state-based

approach for testing the robustness of embedded real-time

OSs has been proposed which investigates the impact of

inputs with invalid timings. In [24] the behavioral model has

revealed the critical states in respect of timing delays and has

not considered other types of faulty input. Some studies [22,

25] have attempted to address robustness testing with respect

to different types of faulty inputs, but similarly they have not

taken into account the impact of OS state in robustness

testing.

 To the best of our knowledge, there is no study that has

employed the OS behavioral model after fault injection to

build the system's behavioral profile in confronting with

faulty inputs in different OS states. The aim of this study is

to overcome the aforementioned limitations by improving

the OS behavioral model in order to handle different types of

faulty inputs and to enrich as well the model based on the

fault injection results.

3. The Proposed Approach

The proposed approach consists of three main steps:

behavioral modeling, fault injection, and robustness level

assessment. In the first step, the Component under Test

(CuT) is monitored to obtain its behavioral model. For this

purpose, the SABRINE approach is enriched with some

improved features to deal with different types of faulty

inputs. The extracted behavioral model is used in the second

step to produce and apply the fault injection test cases.

Finally, the test cases are executed, and the results of fault

injection experiments are exploited to augment the

behavioral model and provide further information about the

component’s robustness. In following, the steps of the

proposed approach are described.

3.1. Behavioral Modeling

In this step, the behavior of the CuT is modeled. An OS is

composed of a set of components, each of which is

responsible for performing one of the OS functionalities. For

example, the memory management component is responsible

for handling the access of different processes to the physical

memory. An OS provides the services through its interfaces

and the processes request these services using system calls.

When a system call is invoked, one or more OS components

interact with each other to provide the requested service [11].

Each component has an interface to be used by other

components to invoke the component services through

function calls.

 In the proposed approach, in order to make the fault

injection and robustness level assessment techniques more

effective, first, a model of the interactions between

components is created to identify the appropriate points

where the faults should be injected. This step itself is divided

into three phases:

Phase 1. Behavioral Data Collection: In this phase, the

software system is run and, using a workload, profiled under

fault-free conditions. Workload is a graph of tasks, each of

which invokes an OS service. Thus, a workload causes some

kernel calls and interactions between the OS components.

During the execution of the workload, data about the

interactions of the target component, which its robustness is

supposed to be assessed, are collected as behavioral data.

This data is then used to model the behavior of the system.

 The interactions among components along with their

details such as the ID of the operation requested by the

workload, the name of the kernel functions that have been

invoked, and the values of the functions' input parameters,

are logged. In addition, the start and finish times of

interactions are recorded in the log file. In the experiments,

by giving the highest priority to the workload, the execution

time of the workload will not include interrupts execution or

the OS scheduling time.

 The detailed information logged during the workload

execution can then be used to create a sequence of

interactions. However, some factors such as different

execution paths in kernel functions would affect the

sequence of interactions. Thus, at this phase, the execution

of the workload is repeated several times. Every execution

of this phase produces an individual log file. The log files are

then processed to extract the recurring patterns of

interactions.

Phase 2. Pattern Identification and Clustering: Since the

functionality of the OS kernel should be assessed in general,

independently of a particular workload, a sequence of

interactions is defined as the set of interactions that have

been happened during the execution of an individual kernel

function call (not the system calls or interrupt services which

are requested by the workload). Due to different execution

paths in kernel functions, two executions of a particular

kernel function call will not necessarily lead to identical

sequences. Thus, the sequences of a kernel function would

generate different patterns. In this phase, these patterns are

identified, using a clustering technique. In this regard, the

similarity of each pair of patterns is quantified using the

spectral clustering algorithm [11]. This algorithm groups a

set of elements based on their similarity, and hence, it can

group more similar patterns in the clusters. Finally,

infrequent patterns are ignored.

Phase 3. Generating the Behavioral Model: The relative

start and finish times of the interactions are recorded in the

first phase. Thus, in this phase, for each cluster identified in

46 Paydar et. Al.: A State-aware Approach for Robustness Testing …

the second phase, a behavioral model is created in the form

of a Timed Automata [26]. A behavioral model is a directed

graph in which the nodes represent the states of the

corresponding component and the edges represent the

transitions of the component to new states. Transitions are

caused by the interactions with other components.

 A cluster consists of one or more recurring patterns. If a

cluster has more than one pattern, the behavioral model is

augmented with new edges to include all patterns. Therefore,

when a particular cluster has different patterns, its

corresponding behavioral model will have more than one

edge in some states. This process is repeated to generate a

behavioral model for each cluster.

 For example, the behavioral model represented in Figure

1 shows two different patterns. Each path denotes a pattern

of interactions. The edges in the graph are labeled with the

interaction name, which is composed of the name of the

invoked service along with its relative time of occurrence.

As mentioned before, the state of a component is determined

by its properties. Thus, the properties of the component may

change in a new state. For example, when the write system

call is invoked, an interaction is occurred and the state of the

memory management component (which is the amount of

available and used memory) might be changed.

3.2. Fault Injection
Although the proposed approach has the potential of

considering different types of faulty inputs, in this paper only

the data and timing faults were taken into account. As

mentioned before, the goal of robustness testing is to

evaluate the impacts of faulty inputs on the function

responses and to assess its robust behavior. Thus, for each

faulty input type, injectable interactions in the behavioral

model are identified through the analysis of the invoked

function. Then, for each injectable interaction, a test or a set

of test cases are generated by the procedure described below.

Finally, the test cases are used in the fault injection

experiments.

Without losing generality, in this paper the test cases are

generated from these two perspectives:

A. Timing Faults: Injectable interactions for timing faults

are those interactions whose input parameters value

influence the execution path. For example, if an input

parameter value affects a loop control or conditional

statement, it will affect the execution path. Therefore, the

lines of code that contain these statements are considered as

candidate lines for injecting timing faults. An injected timing

fault actually simulates the real world conditions that may

appear due to unexpected change in the input parameter

value. For example, a Single-Event Upset (SEU) flips a

memory bit and would cause a data error [27]. If such faults

appear in the injectable line, the execution path and

consequently the execution time may change. It is

noteworthy to remark that changing the program execution

path does not necessarily increase the execution time. Thus,

in this paper, just deadline misses caused by the increased

execution time are paid attention. For this purpose, delays

are injected in functions using the timing faults generated by

the following method.

 Test Case Generation for Timing Faults. In order to

generate timing error test cases, a binary search-based

method is used based on the function call deadline. The

deadline of a function is defined as the specified time

constraint that the function guarantees to response within. If

x is the relative deadline value of a particular function, the

range of possible delays is [1, x]. The first test case is

intended to cause a delay of
x

2
. The fault injection method

translates this test case to a statement in the injectable line of

the function source code that causes a delay of
x

2
 time unit.

Then, based on the results of this fault injection experiment,

a new range is identified for timing fault injection. If the

deadline is missed, a new test case is designed to impose a

delay in the range of [1,
x

2
). Otherwise, a test case is generated

for injecting a delay in the range of (
x

2
, x]. This process

continues until the maximum deadline violation threshold

that does not miss the function deadline is found. Therefore,

the result of timing fault injection experiments is the deadline

violation threshold of each injectable transition.

B. Value Faults. For faulty inputs with invalid value,

injectable interactions are those interactions which use the

input parameter. There are three error models that are usually

employed for evaluating the OS behavior in the presence of

invalid input parameter values: bit-flip, data type, and

fuzzing [9, 21, 28]. In this paper, the data type error model is

selected, because it has the shortest execution overhead

compared to the bit-flip and fuzzing error models [28]. In

addition, the data type error model has a fair injection

efficiency [29] and it is the representative of the actual OS

errors [18].

Fig. 1 Example of a behavioral model

Journal of Computer and Knowledge Engineering, Vol. 2, No. 1, 2019. 47

C. Test Case Generation for Value Faults. For value

faults, test cases are generated based on a test methodology

like Ballista [16]. One advantage of Ballista is that the result

of fault injection is highly repeatable. In this approach, the

CuT is transited to a given initial state and its services are

invoked with faulty parameter values. As mentioned before,

faulty parameter values are defined based on the data type of

the input parameter. For example, if the type of the input

parameter is integer, the possible test cases will be 0, -1,

INT_MAX, and INT_MIN. The CuT response to the service

invocation with faulty parameter value is monitored to

identify the probable robustness failures. Robustness failures

are measured using CRASH scale [16].

 Generating fault injection test cases, in order to perform a

fault injection experiment, a workload is executed and the

interactions of the target component are monitored like the

first step. This monitoring is performed to track the states of

the component. Thus, the faults are injected when the

component reaches a specific state. The faults are then

injected into the interactions between components by a fault

injector. This means that the fault injector intercepts an

interaction, replaces its parameter with faulty ones, and then

gives the interaction back to the invoked component. When

the faults are injected, the workload, the CuT and the OS

status are monitored by the failure detector component to

identify the type of any potential failure.

3.3. Robustness Level Assessment

The fault injection results are used to augment the behavioral

model created in the first step. For this purpose, the

robustness score of every transition is computed. The idea is

that more robust paths should get higher scores while lower

scores should be assigned to the less robust paths. In order to

compute the score of each path, first the score of the

transitions is computed. For each transition of the generated

behavioral model, the score is computed based on the results

of both timing and value fault injection experiments. The

transitions are the target of fault injection, because they

represent the function calls caused by a service request.

Therefore, it can be investigated how a faulty transition can

take the CuT to a faulty state.

 In the value fault injection, the number of test cases can be

different for each injectable transition and depends on the

number of input parameters of the interaction. Therefore, the

results of the value fault injection should be normalized to

fairly compare the results. For this purpose, each class of

failure is weighted, such that the lowest weight is assigned

to the most severe failure, whereas the highest weight is

assigned to the gentle failure. For example, the failure classes

of CRASH scale are scored as shown in Table 1.

Table 1. The Score of each Failure Class in CRASH Scale

CRASH Failure Class Weight

Catastrophic 0

Restart 0.2

Abort 0.4

Silent 0.6

Hindering 0.8

No Failure (Robust) 1

 It can be seen from Table 1 that the weight of a

catastrophic failure, which is the most severe one, is zero (wC

= 0) and the weight of a robust response is one (wR = 1). The

weight of other classes is increased with a fixed rate. Once

the value fault injection results are weighted, the average is

calculated for each injectable transition based on the results

of the value fault injection.

 In order to compute the scores based on the results of

timing fault injection, which are deadline violation

thresholds, the behavioral model’s deadline is divided into

six intervals (similar to the number of failure classes in the

value fault injection) in such a way that each interval has one

score. The largest deadline threshold gets the highest score

and the smallest one gets the lowest score. Thus, the scores

of transitions are obtained based on their deadline violation

threshold. After obtaining the scores of timing and value

fault injections, the robustness of the transition (Rt), is

calculated as follows:

Definition 1: For a given transition t, let TSt denote the

robustness score of t in timing fault injection and VSt is the

robustness score of t in value fault injection. The robustness

score of t, denoted by Rt, is obtained as (TSt + VSt) / 2.

Once the robustness of every transition is calculated, the

robustness of each path of the behavioral model is computed.

Definition 2: Let P denotes a given path in the behavioral

model and f(P) represents the probability of passing P. Thus,

the robustness of P is obtained by:

RP = f(P) ∑ Rti
 (1)

where Rti
denotes the robustness scores of transition i in P.

RP quantifies the robustness score of P using the robustness

scores of its transitions. Finally, the maximum and minimum

robustness level of the CuT are obtained by comparing the

robustness of different paths in its behavioral model. The

maximum and minimum RP among all paths in the

behavioral model of CuT represent the maximum and

minimum robustness level of the CuT, respectively.

4. Evaluation

In order to evaluate the proposed approach, it has been

implemented to perform robustness testing on Linux

PREEMPT-RT v3.14.3-rt4, which is a real-time OS used in

embedded systems [30]. In the experiments, the memory

management component was selected as the CuT.

Furthermore, Mibench [31], which is a representative

benchmark for embedded programs, was employed as the

workload. In this benchmark, automotive category of

Mibench is intended for safety-critical applications. Qsort,

which is in the automotive category was executed on the

underlying OS, as the workload.

 In order to record the interactions between the memory

management component and other components, SystemTap

[32] is utilized. SystemTap is also responsible for storing the

recorded information as a log file. It uses a dynamic method

for monitoring and tracing the operations of the running

Linux kernel. Thus, it makes it possible to investigate the

behavior of the kernel. SystemTap has a low overhead when

48 Paydar et. Al.: A State-aware Approach for Robustness Testing …

it monitors or instruments the kernel operations [32]. As

mentioned in [11], there are some tools with the same

functionality as SystemTap for most modern OSs. Hence, the

experiments discussed in this section can be ported to other

OSs.

 Fig. 2 shows the behavioral model of generic_

file_aio_read kernel function, as a timed automata. This

behavioral model has been created by the proposed approach

during the experimental evaluations. The role of the

generic_file_aio_read kernel function is to implement both

synchronous and asynchronous read operations and it is

invoked when a system call for reading the memory occurs.

As Fig. 2 shows, clock c is reset at State 0. State 1 represents

the CuT state before calling the generic_segment_checks

kernel function. When the execution of

generic_segment_checks finishes, the CuT is transitioned to

State 2.

 In this model, clock c specifies the deadline of each

function call in microseconds. Since there is no predefined

deadline for the Qsort benchmark, the worst execution time

of every interaction, which is the execution time of the kernel

function, was considered as its deadline. The deadline of

each interaction was obtained in the first step of the proposed

approach. Starting from State 0, clock c is increased in

microsecond. The label (c<39us)? shows that the deadline of

generic_segment_checks is 39us, and the label (c<86us)?,

which belongs to the find_get_page kernel function, means

that the deadline of this function from the initial state is 86us.
 In Fig. 2, States 0 to 4 are connected by unique

interactions. As this figure shows, there exist two different

paths between States 4 to 7. Thus, it contains two patterns.

 The paths and the injectable transitions of this behavioral

model have been marked in Fig. 3. The injectable transitions

of timing faults and value faults are identified based on the

definition of an injectable transition in the second step of the

proposed approach. For example, file_read_actor kernel

function, which transitions the CuT from State 5 to State 6,

has an input parameter (*desc) that affects a conditional

statement and influences the execution path. Therefore,

file_read_actor is an injectable interaction of timing faults.

Because it has input parameters, file_read_actor is also an

injectable interaction of value faults. In this experiment,

injectable transitions of timing faults and value faults are the

same, but they can be different for each fault type.

 To the best of our knowledge, there is not a similar study

which considers the stateful robustness testing in OSs in the

presence of different types of faulty inputs. Therefore, as the

goal of this paper is to demonstrate the effects of using fault

injection results on increasing the robustness of components

based on their behavioral model, the results and effects of

timing and value fault injection experiments are presented

and evaluated separately.

4.1. Timing Fault Injection

In order to generate timing test cases, first, the candidate

lines for injecting delays are detected. Then, one of them is

randomly selected and the intended delays are injected using

the binary search-based method. The result of this

experiment is the deadline violation threshold of injectable

transitions.

 Since the proposed approach considers the OS state, it is

expected that the result of fault injection in put_page 1

(put_page function call in path No. 1) differs from that of

put_page 2 (put_page function call in path No. 2). The

impacts of applying timing fault injection to put_page 1 and

put_page 2 have been depicted in Fig. 4 and Fig. 5,

respectively. In these figures, the horizontal axis shows the

amount of delays injected into the function source code and

the vertical axis shows the execution time. Fig. 4

demonstrates the effects of timing fault injections of

put_page 1 on deadline violation of generic_file_aio_read.

Similarly, Fig. 5 shows the same results for put_page 2.

 Based on the values recorded in the log file, the worst

execution time of the generic_file_aio_read function is

266us. This time value is considered as the deadline of the

generic_file_aio_read function and has been shown by a red

dashed horizontal line in Fig. 4 and 5. As it can be seen from

these figures, the generic_file_aio_read deadline has been

missed by injecting delays more than 213us into put_page 1

and 61us into put_page 2. As a result, in some cases, the

deadline violation in one of the interactions like put_page 1

or put_page 2 does not necessarily lead to deadline violation

of the generic_file_aio_read function, because the deadline

of this function is sufficient to tolerate some delay imposed

to the functions that it interacts with. Let us bear in mind that

the deadline of put_page function is 6us.

Fig. 1. Behavioral model of generic_file_aio_read

Fig. 3. The paths and injectable transitions in the behavioral model of generic_file_aio_read

Journal of Computer and Knowledge Engineering, Vol. 2, No. 1, 2019. 49

Fig.4. Impacts of timing fault injection on put_page 1

Fig.5. Impacts of timing fault injection on put_page 2

 As shown in Fig. 5, another observation of this

experiment is that, compared to put_page 1, the fault

injection in put_page 2 has more impact on the execution

time of the generic_file_aio_read function. Actually, the

tolerable delay –an injected delay which does not lead to the

deadline violation– of put_page 2 is 61us whereas it is 213us

for put_page 1. More transitions in path No. 2 can increase

the execution time of generic_file_aio_read. Thus, by

considering the deadline of generic_file_aio_read function

(which is 266us and is independent of the passed path),

increasing the number of transitions in path No. 2 leads to

decreasing the tolerable delay of put_page 2. It also causes

fault injection in put_page 2 increases the execution time of

generic_file_aio_read with a higher rate. In contrast, as Fig.

4 shows, the execution time of generic_file_aio_read

increases with a constant rate with respect to the execution

time of put_page 1.

 The results of applying the proposed timing fault injection

method to 5 out of 8 transitions of Fig. 3, which are injectable

transitions, have been summarized in Table 2. This table

shows the number of injectable lines in injectable transitions

and their deadline violation thresholds in us. Such results

help developers to identify the critical OS states in the

presence of timing faults. For example, in this experiment,

one can conclude that put_page 2 has a low robustness level,

since it has more impact on deadline violation of

generic_file_aio_read function. Thus, some low-cost fault

tolerance techniques are required to increase its robustness.

Table 2. Deadline violation thresholds obtained by the proposed

approachand the random approach

Transition

Number

of

injectable

lines

Deadline

violation

threshold

(us)

Proposed

approach

generic_segment_checks 3 76

find_get_page 5 99

file_read_actor 2 99

put_page 1
2

213

put_page 2 61

Random

approach
- 18 90

 To the best of our knowledge, no study has been

conducted to compare it with the proposed timing fault

injection method. Hence, in order to evaluate the efficiency

of the proposed approach in assessing the robustness level of

the OS's components, it was compared with a random timing

fault injection method. In the random fault injection method,

there is not any behavioral model to identify the execution

paths. Thus, the timing faults are injected in timing injectable

lines of the generic_file_aio_read function and the functions

it calls. In the random approach, one of the identified

injectable lines is selected randomly and the delays are

injected into it. Moreover, in order to specify the deadline

violation threshold, the binary search-based method is used.

In this approach, the deadline violation threshold of

generic_file_aio_read is 90us.

 In the experiments, six timing injectable lines have been

identified in the source code of the generic_file_aio_read

function and the total number of identified injectable lines in

the functions which are called by the generic_file_aio_read

function is 12. Thus, the random approach identified 18

injectable lines for timing fault injection. In our proposed

approach, this number depends on the existing paths of the

behavioral model and varies from 10 to 12. Thus, in this

experiment, the number of injectable lines effectively

decreases about 33.3% to 44.4%. This leads to a reduction in

the number of test cases for finding the deadline violation

threshold using the binary search-based method.
 As this Table 2 shows, the proposed approach has a fine-

grain view and assesses the criticality of injectable

interactions separately. Thus, developers can use lower-cost

yet content aware fault tolerance techniques for such small

components of the OS. On the other hand, the random

approach does not consider interactions and just examines

the function and its direct function calls. Thus, the

assessment and improvement of CuT's robustness based on

its behavior model is not possible. For example, according to

the proposed approach, put_page 2 with 61us deadline

threshold is the most critical transition in the presence of

delays, whereas the random approach provides deadline

violation threshold just for the entire generic_file_aio_read

function.

4.2. Value Fault Injection

In the proposed approach, the test cases of value fault

injection are generated for every value injectable transition

by extending the Ballista test methodology which is the most

well-known technique in OS robustness testing [33]. In our

50 Paydar et. Al.: A State-aware Approach for Robustness Testing …

approach, different states of the CuT are considered in the

value fault injection whereas Ballista just considers a given

initial state to execute all test cases. Thus, in order to execute

the test cases in our proposed approach, the CuT is transited

to the intended state and then a value fault is injected. The

observed failures of both approaches are presented in Table

3.

 In this experiment, the observed failures are different in

our proposed approach when the CuT is in different states

during the fault injections. For this experiment, a unique test

case of value fault injection was used for put_page 1 and

put_page 2. In the obtained results, there is one catastrophic

failure in value fault injection of put_page 1 which indicates

that put_page 1 is more exposed to a robustness failure. The

reason is that put_page 1 and put_page 2 are in different

execution paths. The put_page function checks some

conditions, which depend on the state of the CuT. Thus, the

response of this function to a unique input value can change

based on the state of the CuT.

In this experiment, due to the repeatability of the value

fault injection method, the number of robustness failures of

both approaches is the same for each injectable transition. As

the results show, the type and the number of robustness

failures of generic_segment_checks are the same. The reason

is that, according to the log file, the generic_segment_checks

function is called only when the generic_file_aio_read

function executes. On the other hand, other functions (which

have different type and the number of robustness failures)

are called by some functions other than

generic_file_aio_read. In such case, Ballisa approach

focuses on the target function, regardless of the CuT state,

whereas the proposed approach accurately detects when the

target function is called by the CuT in the intended state and

then it injects the fault. For example, the proposed approach

discriminates between the put_page function in different

paths of the model. In contrast, the Ballista method, tests the

put_page function independent of the execution path. This

makes differences in the results of fault injections in the two

approaches. For example, as can be seen from the Table 3,

Ballista has detected a catastrophic failure for find_get_page

function whereas the proposed approach has been faced with

a silent one. The proposed approach indicates that the

execution of find_get_page in the execution path of the

model, does not lead to a catastrophic failure. Thus, it can be

concluded that by considering the OS state, it is possible to

accurately identify the robustness problems of the CuT, since

it determines the execution paths and the transitions which

robustness failures occur in.

 As the experimental results show, it is possible to

determine the criticality of CuT states in the presence of

incoming delays using the results of timing fault injections.

In addition, the value fault injection can help to identify the

possible class of robustness failures for each state of the CuT.

These results can be used together to assess the robustness

level of the CuT.

Table 3. Results of Value Fault Injection

Transition/

Function Name

Number

of Test

Cases

Number and Type of Failures

Approach

C
at

as
tr

o
p
h
ic

R
es

ta
rt

A
b
o
rt

S
il

en
t

H
in

d
er

in
g

T
o
ta

l

generic_segment_checks 19
2 0 6 4 0

12
Proposed

2 0 6 4 0 Ballista

find_get_page 10
0 0 4 4 0

8
Proposed

1 0 4 3 0 Ballista

find_read_actor 19
2 0 4 8 0

14
Proposed

1 0 4 9 0 Ballista

put_page 1

4

1 0 3 0 0

4
Proposed

put_page 2 0 0 3 1 0

put_page 2 0 2 0 0 Ballista

Table 4. The value of Rt for Injectable Transitions

Transition Name
The Score in Value

Fault Injection (VSt)

The Score in Timing

Fault Injection (TSt)
Rt

generic_segment_checks 0.62 0.20 0.41

find_get_page 0.60 0.40 0.50

file_read_actor 0.60 0.40 0.50

put_page 1 0.30 0.80 0.55

put_page 2 0.45 0.20 0.32

Journal of Computer and Knowledge Engineering, Vol. 2, No. 1, 2019. 51

4.3. Robustness Level Assessment

In this step, the results of timing and value fault injections

are used to augment the behavioral model generated in the

first step. The augmented behavioral model will show the

CuT states and execution paths which suffer from robustness

vulnerabilities. As a result, the system developer can

appropriately use this behavioral model to make the system

more robust using some fault tolerance techniques. In this

regard, the robustness of every injectable transition t,

denoted as Rt, is needed to augment the behavioral model.

Rt, can be calculated using the robustness score of t in timing

fault injection (denoted by TSt) and the robustness score of t

in value fault injection (denoted by VSt). Table 4 presents the

results of this calculation based on Definition 1 in Section

3.3.

 As illustrated in Fig. 3, there are two paths in the

behavioral model of the case study. By analyzing the log file,

it was observed that the probability of passing path No. 1

(denoted by f(P1)) is 26.6%. Similarly, the probability of

passing path No. 2 (denoted by f(P2)), is 73.4%.

Consequently, based on the Definition 2 in Section 3.3, RP1,

the robustness of path No. 1, is obtained by multiplying the

f(P1) by the average of Rt for transitions of path No. 1 (i.e.

generic_segamet_checks, find_get_page, and put_page1

transitions) which results in 0.1294.

 According to the proposed approach, the minimum and

maximum robustness level of a CuT is acquired based on the

minimum and maximum values of RPj
 where Pj is a path in

the behavioral model. In the behavioral model of the case

study (Fig. 3), RP1 equals to 0.1294 and RP2 equals to 0.3174.

Hence, the maximum robustness level of the CuT is 31.7%

and its minimum robustness level is 12.9%, with respect to

the fault free execution. In other words, if the CuT is called

with a faulty input value, it is at least 12.9% and at most

31.7% probable that the CuT will not fail. Indeed, the

augmented behavioral model can also be used to select a

suitable fault tolerance technique and the precise location to

apply it. Moreover, timing fault injection results determine

the acceptable time overhead of the selected fault tolerance

technique. For example, the augmented behavioral model

can specify the states that require redundancy and determine

whether their timing limitation allows using redundancy.

5. Conclusion and Future Work

The aim of this paper was to propose a state-aware approach

for assessing the robustness of components of embedded

real-time OSs. This approach can be used to evaluate the OS

behavior in the presence of different types of faulty inputs in

different OS states. In addition to effective decrease of test

cases, the proposed approach can specify the precise location

of robustness vulnerabilities.

This is the first study that suggests augmenting the

behavioral model of the OS by using the results of fault

injection experiments. The proposed approach employs the

augmented behavioral model in order to extract valuable

information about the robust behavior of the OS. Using this

approach, it is possible to identify the critical OS states, their

criticality level, and the maximum and minimum level of the

OS robustness. For example, it can be shown what classes of

robustness failure are probable to happen in specific system

states. The proposed approach also facilitates comparing the

robustness level of OS’s components and helps the system

developer to assess the effectiveness of different fault

tolerance techniques. Therefore, the OS components are

comparable with respect to their robustness level.

 For further work it is suggested to consider the stressful

environmental conditions in state-based robustness testing

and investigating their effects in different OS states. Another

possible area of future research would be to extend this

approach to be used on the fly. Hence, the possible

robustness failures can be forecasted based on the execution

path of the system to apply appropriate fault tolerance

techniques while the system is running.

References

[1] R. Ramezani, and Y. Sedaghat, "An overview of fault

tolerance techniques for real-time operating systems".

Proceedings of the 3rd International Conference on

Computing and Knowledge Engineering, IEEE,

Mashhad, Iran, October 31 - November 01, 2013, pp. 1-

6.

[2] J. C. Knight, "Safety critical systems: Challenges and

directions". Proceedings of the 24rd International

Conference on Software Engineering, IEEE, Orlando,

Florida, USA, May 19-25, 2002, pp. 547-550.

[3] E. A. Lee, "Embedded software". Advances in

Computers, vol. 56, pp. 55-95, 2002.

[4] R. Natella, D. and H. S. Cotroneo, Madeira, "Assessing

dependability with software fault injection: A survey",

ACM Computing Surveys (CSUR), vol. 48, no. 3, pp.

44:1-44:55, 2016.

[5] S. M. A. Shah, D. Sundmark, B. Lindström, and S. F.

Andler, Robustness testing of embedded software

systems: An industrial interview study. IEEE Access,

vol. 4, pp. 1859-1871, 2016.

[6] Z. Micskei, H. Madeira, A. Avritzer, I. Majzik, M.

Vieira, and N. Antunes, "Robustness Testing

Techniques and Tools," In Resilience Assessment and

Evaluation of Computing Systems, Springer, 2012; 323-

339.

[7] W. Torres-Pomales, "Software fault tolerance: A

tutorial", Technical Report, NASA Langley Research

Center, Hampton, VA United States, NASA-2000-

tm210616, 2000.

[8] A. Shahrokni, and R. Feldt, "RobusTest: A framework

for automated testing of software robustness",

Proceedings of the 18th Asia Pacific Software

Engineering Conference, IEEE, 2011, pp. 171-178.

[9] D. Cotroneo, and H. Madeira, "Introduction to software

fault injection," In Innovative Technologies for

Dependable OTS-based Critical Systems, Springer:

Milan, 2013, pp. 1-15.

[10] D. Cotroneo, D. Di Leo, R. Natella, and R.

Pietrantuono, "A case study on state-based robustness

testing of an operating system for the avionic domain".

Proceedings of the 30th International SAFECOMP

Conference, Springer, Naples, Italy, September 19-22,

2011, pp. 213-227.

[11] D. Cotroneo, D. Di Leo, R. Natella, "SABRINE: State-

based robustness testing of operating systems".

Proceedings of the 28th International Conference on

Automated Software Engineering, IEEE, 2013, pp. 125-

135.

52 Paydar et. Al.: A State-aware Approach for Robustness Testing …

[12] B. P. Miller, L. Fredriksen, and B. So, "An empirical

study of the reliability of UNIX utilities",

Communications of the ACM, vol. 33, no. 12, pp. 32-44,

1990.

[13] B. P. Miller, D. Koski, C. Lee, V. Maganty, R. Murthy,

A. Natarajan, and J. Steidl, "Fuzz revisited: A re-

examination of the reliability of UNIX utilities and

services", Technical Report, University of Wisconsin-

Madison, Technical Report #1268, 1995, pp. 1-23.

[14] J. E. Forrester, and B. P. Miller, "An empirical study of

the robustness of Windows NT applications using

random testing". Proceedings of the 4th USENIX

Windows System Symposium, Seattle, 2000, pp. 59-68.

[15] B. P. Miller, G. Cooksey, and F. Moore, "An empirical

study of the robustness of macos applications using

random testing". Proceedings of the 1st international

workshop on Random testing, ACM, 2006, pp. 46-54.

[16] P. Koopman, and J. DeVale, "The exception handling

effectiveness of POSIX operating systems", IEEE

Transactions on Software Engineering; vol. 26, no. 9,

pp. 837-848, 2000.

[17] P. Koopman, and J. DeVale, "Comparing the robustness

of POSIX Operating Systems". Proceedings of the 29th

Annual International Symposium on Fault-Tolerant

Computing, IEEE, 1999, pp. 30-37.

[18] A. Johansson, et al., "On enhancing the robustness of

commercial operating systems". Proceedings of the 1st

International Service Availability Symposium (ISAS),

Munich, Germany, May 13-14 , 2004, Springer, pp. 148-

159.

[19] A. Albinet, J. Arlat, and J.-C. Fabre, "Characterization

of the impact of faulty drivers on the robustness of the

linux kernel". Proceedings of the in International

Conference on Dependable Systems and Networks,

IEEE, 2004, pp. 867-876.

[20] C. Sârbu, A. Johansson, N. Suri, and N. Nagappan,

"Profiling the operational behavior of OS device

drivers", Empirical Software Engineering, vol. 15, no. 4,

380-422, 2010.

[21] A. Johansson, N. Suri, and B. Murphy, "On the impact

of injection triggers for OS robustness evaluation".

Proceeding of the 18th IEEE International Symposium

on Software Reliability, IEEE, 2007, pp. 127-136.

[22] S. Yang, B., Liu, S. Wang, and M. Lu, "Model-based

robustness testing for avionics-embedded software".

Chinese Journal of Aeronautics, vol. 26, no. 3, pp. 730-

740, 2013.

[23] N. Coppik, O. Schwahn, S. Winter, and N. Suri,

"TrEKer: Tracing error propagation in operating system

kernels". Proceedings of the 32nd IEEE/ACM

International Conference on Automated Software

Engineering, IEEE, 2017, pp. 377-387.

[24] R. Shahpasand, Y. Sedaghat, and S. Paydar, "Improving

the stateful robustness testing of embedded real-time

operating systems". Proceedings of the 6th International

Conference on Computing and Knowledge Engineering,

IEEE, Mashhad, Iran, October 20-21, 2016, pp. 159-164.

[25] Z. Zhou, Y. Zhou, M. Cai, and L. Sun, "A workload

model based approach to evaluate the robustness of real-

time operating system". Proceedings of the 10th

International Conference on High Performance

Computing and Communications & International

Conference on Embedded and Ubiquitous Computing,

IEEE, 2013, pp. 2027-2033.

[26] R. Alur, and D. L. Dill, "A theory of timed automata.

Theoretical computer science, vol.126, no. 2, pp. 183-

235, 1994.

[27] L. Parra, A., Lindoso, M. Portela, L. Entrena, F.

Restrepo-Calle, S. Cuenca-Asensi, and A. Martínez-

Álvarez, "Efficient mitigation of data and control flow

errors in microprocessors", IEEE Transactions on

Nuclear Science, vol. 61, no. 4, pp. 1590-1596, 2014.

[28] A. Johansson, N. Suri, B. Murphy, "On the selection of

error model (s) for OS robustness evaluation".

Proceedings of the 37th Annual International

Conference on Dependable Systems and Networks,

IEEE, 2007, pp. 502-511.

[29] S. Winter, C. Sârbu, N. Suri, and B. Murphy, "The

impact of fault models on software robustness

evaluations". Proceedings of the 33rd International

Conference on Software Engineering, ACM, 2011, pp.

51-60.

[30] H. Fayyad-Kazan, L. Perneel, and M. Timmerman,

"Linux PREEMPT-RT vs. commercial RTOSs: How big

is the performance gap? GSTF Journal on Computing,

vol. 3, no. 1, pp. 135-142, 2013.

[31] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,

T. Mudge,and R. B. Brown, "MiBench: A free,

commercially representative embedded benchmark

suite". International Workshop on Workload

Characterization, IEEE, 2001, pp. 3-14.

[32] V. Prasad, W. Cohen, F. C. Eigler, M. Hunt, J. Keniston,

and J. Chen, "Locating system problems using dynamic

instrumentation". Proceedings of the Linux Symposium,

Ottawa, Ontario, Canada, July 20-23, 2005, pp.49-64.

[33] A. Shahrokni, and R. Feldt, "A systematic review of

software robustness", Information and Software

Technology, vol. 55, no. 1, pp. 1-17, 2013.

