
Journal of Computer and Knowledge Engineering, Vol. 4, No. 1, 2021.(11-24) 11

DOI: 10.22067/cke.2021.72575.1025

A Semantic Web Enabled Approach to Automate Test Script

Generation for Web Applications*
Research Article

Mahbobe Dadkhah1 Saeed Araban2 Samad Paydar3

Abstract: Software testing is one of the most important

activities for ensuring quality of software products. It is a

complex and knowledge-intensive activity which can be

improved by reusing tester knowledge. Generally, testing

web applications involve writing manual test scripts, which

is a tedious and labor-intensive process. Manually written

test scripts are valuable assets encapsulating the knowledge

of the testers. Reusing these scripts to automatically generate

new test scripts can improve the effectiveness of software

testing and reduce the cost of required manual interventions.

In this paper, a semantic web enabled approach is proposed

for automatically adapting and generating test scripts; it

reduces the cost of human intervention across multiple

scripts by accumulating the human knowledge as semantic

annotations on test scripts. This is supported by designing an

ontology which defines the concepts and relationships

required for test script annotation. The proposed approach is

based on novel algorithms for adapting and generating new

test scripts. The initial experiments show that the proposed

approach is promising as it successfully increases the level of

test automation.

Keywords: Automated testing, semantic web, Test

adaptation, Test generation, Test ontology.

1. Introduction

Web applications are one of the mostly used software

systems in our everyday life which require repetitive testing

of their existing and new features due to their inherently

evolving nature. Modern web applications within a domain

usually implement a set of common features to be performed

on a wide range of entities. For example, in the context of

educational systems, features such as sorting or filtering are

implemented for multiple entities such as presenting courses,

and taking courses or classes. Rigorous testing of such

systems requires creating a large number of scripts for testing

each feature on every entity of the system. Testers usually

tend to write as few test scripts as possible for a small number

of entities due to the high cost of testing (i.e. time and

budget). This leads to a limited test coverage and undetected

errors, which will be mostly discovered by the end users.

Moreover, there are common features such as pagination or

login among many web applications which are implemented

similarly. These similarities in implementing features can be

translated into similarities of their test scrips structures.

Reusing such scripts and adapting them to automatically

generate multiple new test scripts can reduce the cost of

testing.

* Manuscript received August; 18, 2021, accepted. October, 16, 2021.
1 PhD Candidate, Ferdowsi University of Mashhad, Iran.

2 Corresponding author. Assistant Professor, Ferdowsi University of Mashhad, Iran. Email: araban@um.ac.ir.

3 Assistant Professor, Ferdowsi University of Mashhad, Iran.

 Manually, writing test scripts is a complex, costly, and

labor-intensive activity, especially if the number of needed

test scripts is large. However, manual testing benefits from

the domain knowledge of the tester who is writing the test

scripts. Testers rely on their domain knowledge to recognize

entities relevant to each feature. They also use their

knowledge of testing to design a script consisting of a

sequence of required steps to cover the business logic of a

feature. In some test steps, testers should specify elements of

the GUI as entities and describes their attributes to interact

with, and they can also identify test data for each entity. The

time and effort that testers put into writing manual test scripts

makes them valuable assets of the system. Reusing these

scripts requires explicitly specifying knowledge of the tester

and separating it from the test data, test elements, and the

structure of the Application Under Test (AUT).

 In this paper, a semantic web enabled approach is

proposed for reusing test scripts and adapting them to test the

same feature on another entity of the same application, or to

test a similar feature on another application. This process is

based on proposing a three-level test script abstraction

hierarchy that is conceptualized by semantic annotations

representing the tester's knowledge. An ontology is defined

to represent the concepts and relationships associated with

test scripts. In addition, novel algorithms are proposed based

on the ontological annotations to adapt and generate new test

scripts.

 The contributions of the present study is to propose a

semi-automatic process for reusing test scripts. This process

employs the following:

 Three levels of test script abstraction

 New algorithms for system-level and entity-level test

script adaptation

 New test script generation algorithm

 The initial experiments demonstrate that the proposed

approach is appropriate and promising although more works

are still needed to fully achieve the potentials.

 The paper is organized as follows: a brief literature

review is described in section two. In section three, the

proposed approach is introduced and its underlying concepts

and algorithms are described in details. The evaluation of the

proposed approach is presented in section four, and finally,

section five concludes the paper.

2. Related works

In this section, we briefly review works related to the

proposed approach which fall into two categories: automated

web application testing and semantic web enabled testing.

12 Saeed Araban et. al.: A Semantic Web Enabled Approach to Automate …

2.1 Automated web application testing
Web applications have been increasingly growing during the

past two decades, and today they play an important role in

our everyday life. The demand for quality web applications

has resulted in proposing various automated techniques by

researchers.
 Crawling-based technique is one of the most studied
approaches. In this technique, crawlers explore the state
spaces and mine the behavior models of the applications.
However, they are limited by the required manual
configurations for input value selection [1]. Moreover, they
are often application-specific which result in redundant test
cases. The test dependency associated with the test cases
obtained from a crawling session are used to eliminate
redundant tests and produce minimized test suites [2]. A rule-
based approach using input topic identification and GUI state
comparison is proposed to represent DOM elements as
vectors in a vector space formed by the words used in the
elements [3].
 The feedback-directed automated test generation is
another technique proposed to use previously generated test
cases for leveraging dynamic data [4]. A feedback-directed
automated test generation framework is proposed by Artzi et
al. [5], which collects execution information to generate test
inputs leading to increased coverage. Yuan and Memon [1]
proposed an approach to iteratively run generated test cases
and use run-time information to enhance those test cases.
Elbaum et al. [6] leverage user-session data gathered in the
operation of web applications to assists test data generation.
In another study [7], the captured user-session data are used
for the automation of the replay and the oracle components
of web applications.
 Search-based test data regeneration technique introduced
by Yoo and Harman [8] uses a meta-heuristic search
algorithm for generating additional test data from existing
test data. Mirzaaghaei et al. [9] define a set of heuristics to
repair test cases and generate new test cases for evolved
software. Rule-based approaches [3] use input topic
identification and GUI state comparison. Gao et al. [10] use
human knowledge in the form of tester annotations to
automatically repair unusable test scripts. Testers annotate
the automatically generated Event Flow Diagram (EFG), and
the repairing transformations are then used to synthesize a
new test script. The results showed that the proposed
technique is effective and the annotations would reduce
human costs. Milani et al. [11] proposed leveraging the
existing crawling-based generated tests with human
knowledge to extend the test suite for increasing code
coverage.

2.2 Semantic web enabled testing
In our previous work [12], we conducted a systematic
literature review to identify the state of the art and the
benefits of semantic web enabled software testing in both
industry and academia. The results showed that semantic web
technologies would improve various activities in software
testing process. Among these activities, test generation and
test data generation gained more attention which would
mostly rely on two significant test methods, including model-
based and rule-based. It was found that model-based
approaches would mostly use different UML diagrams, while
rule-based approaches would utilize ontologies to model

interactions, behaviors, EFGs, or GUI elements relations for
test generation. In one study [13], for example, an ontology-
based Behavior-Driven Development (BDD) approach is
proposed for automated assessment of web GUIs. In this
approach, a set of interactive behaviors on GUIs are
predefined which can be implemented once and then are
automatically reused to generate tests by building different
scenarios in different business domains.
 Most of the proposed test data generation approaches use
ontology mapping. Hajiabadi and Kahani [14] proposed a test
data generation technique in which test input for filling forms
are automatically generated to model and evaluate dynamic
features of the web application. In another research [15],
semantic annotations are used for enriching Event Flow
Graph (EFG) based on an ontology of GUI events. Semantic
annotations have been used to automatically generate test
data and test oracle [16]. In another study [17], the web of
data is utilized to map GUI model to the classes and predicate
them in the semantic knowledge-bases to generate realistic
test data matching the semantics of the correlated test input
fields.
 Test reuse is another activity benefiting from semantic
web technologies which is mostly based on semantic
similarity metrics. For example, the semantic similarity
between the existing test cases and test requirements of the
application is tested as a basis for test reuse [18]. In another
study, ontology matching technique is used for matching
ontology of the AUT with the ontology of applications in
which test cases are going to be reused.

3. The proposed approach
In this study, three levels of test script abstractions shown in

Figure 1 are proposed based on the following observations:
1. Web applications within a specific domain usually provide

some common features implemented in a similar way.
For example, sorting feature provided in most web
applications in the e-commerce domain. While the core
logic of these features is similar (i.e., the main
interactions between the user and the application), detail
implementation of them may have some differences. This
leads to some similarities in scripts considered for testing
these features. For example, testing the sorting feature in
every system requires first choosing the sorting criteria,
and then verifying whether all the items are ordered based
on the value of a specific attribute corresponding to the
chosen sort criteria (e.g. price). These main interactions
form the logic of a feature that are similar in most web
applications and can be considered as logical test steps
required for testing this feature. However,
implementation of each interaction may be different in
various systems. For example, one application includes
only clicking on one of the presented links (each link
representing one sorting criteria), while another
application includes first opening a drop-down list of
options and then clicking a link for choosing the sorting
criteria. Based on this observation, a system-level
abstraction is proposed to generalize a test script in a way
that can be reused and adapted for testing a similar feature
on other web applications. Such scripts are called test
interfaces, which are independent of the AUT, entity
under test, and test data.

2. Modern web applications perform their functionality
through features that are usually implemented for

Journal of Computer and Knowledge Engineering, Vol. 4, No. 1. 2021. 13

multiple entities. For example, filtering feature in most
web applications in the e-commerce domain is provided
for various types of entities. Users can filter the given
products by choosing them from a list of data options for
each of their attributes. For example, one can filter
products representing Laptop entity based on Operating
system attribute and choose Windows from the list of
presented operating systems. Investigating scripts for
testing such feature on various entities of an application
shows that the structures of these scripts, including
number and order of test steps along with some system-
dependent elements and variables, are similar. Based on
this observation, an entity-level abstraction is proposed to
generalize a test script in a way that can be reused and
adapted for testing the same feature on multiple entities
of the same web application. Such scripts are called
abstract test scripts, which are independent from test data
but are written for a specific web application.

 The lowest level of abstraction includes concrete test
scripts, which are dependent on a specific data for the
attribute of a specific entity in an application. This test script
abstraction hierarchy can support automatic generation of
concrete test scripts for testing a feature with various test
data.

Figure 1. The proposed three levels of test script adaptation

 The proposed approach utilizes test script annotation as a
mechanism to realize these levels of abstractions and makes
a test script independent of a specific application, entity, or
test data. In the following, we will propose test script
annotations in details along with the adaptation and
generation algorithms designed based on these annotations.

3.1 Test Script Annotation
The proposed approach utilizes semantic web technologies,
including semantic annotations and ontologies, to represent
testers knowledge. Required concepts for annotating test
scripts along with their properties and relations are formally
defined by Test Script Ontology (TSO) which is shown in
Figure 2. It is an application ontology [20] and hence does
not cover all the concepts and relations in the software testing
domain, except the concepts required for annotating test
scripts used in the proposed approach. TSO is developed
based on the ROoST ontology [21], which is a reference
ontology in the software testing domain. The basic concepts
of software testing domain, especially those that define a test
script and different parts of it (e.g. test script, Test result, test
input), are defined in the ROoSTs. Meanwhile, testing

4 https://www.selenium.dev/

artifacts sub-ontology is reused in the TSO ontology.
The concepts defined in this ontology are used by the tester
to increase the abstraction level of test scripts to be
automatically reused by test script adaptation and generation
algorithms. The TSO ontology defines five categories of
concepts for test script annotation:

 1) Concepts that define a test element as a test data
provider. The scripts written for testing web applications
determine the elements in the GUI of the AUT to interact
with. These elements are determined by locators in the
test steps of the scripts. Some of these elements can be
used to locate and extract test data (i.e., test input and
expected result) from the GUI that they belong to.

 2) Concepts that define parts of a test script or a test step

(e.g. test input, expected result). The main usage of these

concepts is to determine the placeholder for test data that

are provided by the annotations from previous category.

When tester define an element as a provider, she/he must

define where that provided data should be placed in the

new generated test script.

 3) Concepts that determine the dependency level of the

parts of a test script or a test step (i.e., system dependent

and entity dependent). System dependent annotation

indicates that a part of script remains similar in testing all

entities of the AUT. In contrast, entity dependent shows

that a part of the test script needs to be adapted for

different entities of an AUT.

 4) Concepts that determine logical steps. The testers use

these annotations to specify logical test steps based on

their expertise in the testing domain and their knowledge

of test scenario in order to test a common feature. Logical

test steps are a bundle of multiple test steps which can be

seen as a one logically meaningful step.

 5) Concepts that determine a test step to be optional or

mandatory. The mandatory test steps are the basic

building blocks of the test script and should be present in

all derived test scripts (i.e., adapted or generated). The

optional test steps, in contrast, are dependent on the

implementation of the AUT, and in some cases, they may

not be present.

 For better understanding of the proposed annotations, two

annotated test script are described based on the level of

independency they provide (see T and

T). These scripts are written using Selenium4, which is a

popular test tool in academy and industry. Each test step in

selenium scripts has three parts: command, target, and value.

Command specifies the action to be applied on a web element

which is identified in the target. Some test steps require a data

or a variable called value. If a test step has annotation,

annotations and the step are presented in continuous line

numbers of the script. For example, in

T, line two includes annotations for the test step in line three

and line four includes annotations for the test step in line five.

It is possible for a test step not to have any annotation (see

line 8, 11, and 12 in Table 2). That is, these steps can be

copied without any changes to the end scripts in the

generation and adaptation algorithms. Some test steps might

have multiple annotations. It is worth noting that if a test step

has multiple annotations, the order of the annotations is not

14 Saeed Araban et. al.: A Semantic Web Enabled Approach to Automate …

important for the adaptation and generation algorithms.

Figure 2. Test Script Ontology (TSO)

 The annotated script in T 1 represents a test interface.

This script is written to test login feature in Yahoo5 web

application and contains two logical steps. The first logical

step (line 2-6) is for inserting the username and the second

(line 7-11) is for inserting the password. In both logical steps,

there is an optional step for clicking a button which may not

be present in all applications. This script contains

annotations from category four and five in addition to

annotations from the first three categories. Annotations of

category four and five give information about the whole test

step, and they are thus used to annotate the command part of

the test step.

 The annotated script in

T 2 represent an abstract test script. This script is written for

testing filter feature in Banimode6 web application and

contains annotations from the first three categories of

annotations. In this application products are presented in web

pages along with a set of filter sections. In each section, a list

of possible data options is presented based on an attribute of

the products (i.e., entities). For example, a filter section is

based on brand attribute of the products including a list of

checkboxes representing names of all brands that the

products belong to. In this script, after opening the web page

(line 1), one of the checkboxes representing a filter option is

clicked (Reebok in this example). Then, all of the presented

products are verified to have the same brand (Reebok in this

script). The element of test step in line three is annotated as

a provider (for both adaptation and generation processes)

using annotations from category one. The English name tag

of this element is the expected result of the script which is

5 https://www.yahoo.com/

the value part of test step in line 10. The expected result is

specified by the tester using annotations from category two

in value part of the line nine (@Expected_Result). The

automatically provided data for the expected result in the

new adapted or generated test scripts should be placed in

value part of the line 10. The value for variable in line 7 and

the element of the verification step in line 10 are the same

for all scripts testing filter feature in this application.

Therefore, they are identified by the tester as system-

dependent using annotations from category three.

 As described in the previous test scripts, annotations

from the first categories provide entity independency and can

be used to create an abstract test script. Annotations from the

last two categories provide system independency and can be

used to create test interface.

 Annotated test scripts are input to the proposed

algorithms. The tester annotates test scripts manually; thus,

it is possible that the tester forgets some annotations or that

he/she has some inconsistencies in his/her annotations.

Therefore, it is reasonable to perform some validations on

the given annotations. A simple preprocessing is used in the

experiments of this paper, including two steps:

1. Any inconsistencies in annotations are checked. For

example, a test step cannot be both system-dependent and

entity-dependent.

2. Any missing annotations are checked. For example, if

there is an @Expected_Result_Provider annotation in the

script, there must also be another annotation which

defines the placeholder (an @Expected_Result

annotation).

6 https://www.banimode.com/

Journal of Computer and Knowledge Engineering, Vol. 4, No. 1. 2020. 15

Table 1. A case of test interface: An ATS for the feature of ‘login' at Yahoo

TS1: Testing the feature of ‘Login’ at Yahoo with username and password data

Command Target Value

1 open https://login.yahoo.com

2 @Start_ Logical_Step @Test_Input_Data

3 Type id=login-username username

4 @Optional @Test_Input_Link

5 Click id=login-signin

6 @End_Logical_Step

7 @Start_Logical_Step @Test_Input_Data

8 Type id=login-passwd password

9 @Optional @Test_Input_Link

10 Click id=login-signin

11 @End_Logical_Step

12 @Optional @System_Dependent_Link

13 click linkText=Mail

14 @ @System_Dependent_Link

15 Assert-element -present linkText=Compose

Table 2. An abstract test script: An ATS for the feature of ‘Filter’ in Banimode web application

TS1: Testing the feature of ‘Filter’ for entity ‘Shoes’ based on the attribute of ‘Brand’ with data ‘Reebok’

Command Target Value

1 open https://www.banimode.com

2 @
@Expected_Result_Data_Adapter(xpath_suffix=/span/span[2]),

@Expected_Result_Data_Generator(xpath_suffix=//span[@class='ename ename']),

3 click xpath=//div[@id='filter-manufacturers']/div/label

4 @ @System_Dependent_Link

5 store xpath count xpath=//div[@id='product_list']/article n

6 @ @System_Dependent_Variable

7 execute script return 1 i

8 while ${i} <= ${n}

9 @ @System_Dependent_Link
@Expected_Result_

Data

10 verify text css=.col-4:nth-child(${i}) .product-card-brand Reebok

11 execute script return ${i}+1 i

12 end

 The annotation preprocessing step aims at checking an
annotated script to detect problematic issues to which the
proposed approach is sensitive. If such an issue exists, the
tester is asked to verify the script.
 As annotated test scripts have an important role in the
proposed approach, it is necessary to describe how they are
defined in this approach.
 Definition 1 (Annotated test script): An annotated test
script (ATS) is formally defined as a tuple of the form

𝐴𝑇𝑆 = {𝑇𝐶, 𝑆𝐺𝑈𝐼, 𝐹, 𝐸, 𝐴, 𝐴𝑈𝑇}
where:

 𝑇𝐶 is a sequence of (𝑠1, … , 𝑠𝑘) where each 𝑠𝑖 (1 ≤ 𝑖 ≤

𝐾) is an annotated test step

 𝑠𝑖 is a tuple of the form {𝐶𝑖, 𝐴𝐶𝑖 , 𝑇𝑖 , 𝐴𝑇𝑖 , 𝑉𝑖 , 𝐴𝑉𝑖} where:

o 𝐶𝑖 is the command of test step
o 𝐴𝐶𝑖 is a set of annotations for 𝐶𝑖
o 𝑇𝑖 is a set of locators to target the element
o 𝐴𝑇𝑖 is a set of annotations for 𝑇𝑖
o 𝑉𝑖 is the test data (if there is any)
o 𝐴𝑉𝑖 is a set of annotations for 𝑉𝑖

 𝑆𝐺𝑈𝐼 is the root web page to run the test script
 F is the feature of the 𝐴𝑈𝑇 to be tested
 𝐸 is an entity in the domain of 𝐴𝑈𝑇

 𝐴 is an attribute of E

16 Saeed Araban et. al.: A Semantic Web Enabled Approach to Automate …

 Source GUI (SGUI) is part of the GUI of the AUT

through which the test is done. The tester creates the test

script for this GUI either manually or through testing tools

such as Selenium. Therefore, the tester is expected to know

this GUI and its elements, and he can annotate it based on

the concepts defined in the TSO ontology to create an ATS.

 Destination GUI (DGUI) is a GUI which we want to test

it by adapting the given ATS. In entity-level adaptation,

DGUI and SGUI are parts of the GUI of the same AUT;

however, in the system-level adaptation they are part of the

GUI of different applications.

3.2 Entity-Level Test Script Adaptation

The process of entity-level test script adaptation is defined as

below:

 Definition 2 (Entity-level test script adaptation). It is a

process which takes an annotated test script 𝐴𝑇𝑆 =
 {𝑇𝐶, 𝑆𝐺𝑈𝐼, 𝐹, 𝐸, 𝐴, 𝐴𝑈𝑇} with 𝑇𝐶 as a sequence of

annotated test steps (𝑠1, … , 𝑠𝑘) which is created to test feature

𝐹 on attribute 𝐴 of entity 𝐸 in 𝑆𝐺𝑈𝐼 of 𝐴𝑈𝑇, and then adapt

it to test feature 𝐹 on attribute 𝐴 of entity 𝐸′ in interface

𝐷𝐺𝑈𝐼 of 𝐴𝑈𝑇 and produce an Adapted Test Script

𝐴𝑑𝑎𝑝𝑡𝑒𝑑𝑇𝑆 = {𝑇𝐶′, 𝐷𝐺𝑈𝐼, 𝐹, 𝐸′, 𝐴, 𝐴𝑈𝑇} with 𝑇𝐶′ as a

sequence of (𝑠1
′ , … , 𝑠𝑘

′).

 In this level of adaptation, the number (𝑘) and order of

test steps will not be affected. This is based on the idea that

developers try to preserve consistency in the implementation

of a feature and the structure of GUIs presented to the users

throughout the whole system. The entity-level test script

adaptation algorithm is described by the entity-level

adaptation procedure shown in Figure 3. This algorithm

involves a loop at a high level which iterates through each

test step 𝑠𝑖 and tries to adapt it to be executed successfully

on 𝐷𝐺𝑈𝐼. If the test step is not annotated, it can be copied to

the 𝐴𝑑𝑎𝑝𝑡𝑒𝑑𝑇𝑆 (lines 4,5). If it is annotated as a system

dependent step and contains an element, the element is

checked to be present in DGUI and then is copied to the

𝐴𝑑𝑎𝑝𝑡𝑒𝑑𝑇𝑆 (lines 6-9). In other cases, element step (𝑒𝑖) of a

test specified by a set of locators 𝑇𝑖 in SGUI needs to be

adapted. The goal is to find a corresponding element 𝑒𝑖
′ in

𝐷𝐺𝑈𝐼 as the target element of test step 𝑠𝑖
′ in such a way that

𝑠𝑖
′ can be executed successfully on DGUI.

Figure 3. Entity-level test script adaptation algorithm

 The entity-level adaptation algorithm contains two major functions for element adaptation. The first one is GUI-based

Journal of Computer and Knowledge Engineering, Vol. 4, No. 1. 2021. 17

element adaptation, which aims to adapt elements only
based on the information presented in the SGUI and DGUI
in two phases. The first phase looks for exactly the same
element in DGUI (lines 24, 25). Exact elements are defined
by their Id attribute, because Ids should be unique in a web
page as stated by W3C standards. Therefore, if the element
has an Id attribute for each element of test steps in ATS, the
DGUI is searched for an element with the exact same Id. If
such an element found in DGUI, it will be considered as the
adapted element of that test step.
 This phase of element adaptation is also applicable for
locators that specify test data. For example, consider the test
script for examining the feature of ‘Filter’ in the attribute
Brand of different entities in Banimode website. In this
application, each one of the data options for selecting a brand
in the ‘Filter’ section has a unique Id which is identic for all
the entities and web pages in the whole system. Therefore, if
such test script is adapted with test data ‘jeanswest’ for
another entity in this application, then the exact test data
‘jeanswest’’ will be a valid test data for the adapted test
script. If an adapted element could not be find in this phase,
then the second phase will be performed.
 The second phase includes searching DGUI for an
element which is located in the same place of that element in
SGUI (lines 26, 27). This is based on the idea that the
structure of GUIs is normally organized in order to assure
consistency in the web page appearance and to increase the
usability of the application. But, if there is such an element
in DGUI, the similarity of its associated text will be checked

against the associated text of 𝑒𝑖. The associated text of an
element is defined with the nearest text to that element in the
DOM structure. If the element itself does not contain a text
or label, then its inner or outer text of will be considered as
its associated text. Since in the entity-level adaptation both
GUIs belong to the same AUT, it is expected that developers
use similar phrases for representing a concept through the
system.

 If the element cannot be adapted only based on GUI

information, then a semantic web enabled approach is used

to find semantically similar elements. It is based on the idea

that in a script for testing a feature there may be a meaningful

relation between test elements and test data of the script. This

relation in scripts for testing similar attributes on different

entities can be similar. For example, consider a script for

testing the feature of ‘Filter’ over ‘Laptop’ entity based on

their operating system in Digikala7 website. The script is

similar to the one in
T 2. In this script, the entity name and the data options for
the attribute under test (a list of existing operating systems
for laptops) can be extracted from the elements in the script
using testers annotations. Therefore, we have a set of
semantically related data in the test script extracted from
SGUI to which the ATS belongs using annotations. For
example, this set of data can be {laptop, {Microsoft
Windows 10, Apple Mac OS, Google Chrome}}. When
reusing this script for testing the same feature on another
entity (e.g. Smart Phone) due to the differences in number
and names of attributes in two entities, GUI-based adaptation
is not successful. However, the same semantic relation may
exist between a corresponding set of data in DGUI. For

7 https://www.digikala.com

example, the corresponding set of data in Digikala is {smart
phone, {Android 10, iOS 10, Windows Phone 8}. Therefore,
in this phase the GUI is searched for finding a set of elements
that their associated texts have the same semantic relation to
the set of data in SGUI extracted from ATS. The semantic
web data sources are searched in this phase to find the
semantic relation between two sets of data.

 This process is described and is performed by semantic-
enabled element adaptation in four phases.
 Phase one: It includes searching for candidate elements
in the DGUI (line 4). The first group of candidate elements
includes elements of the DGUI with associated text similar

to the 𝑒𝑖 when it is expected that developers use similar
phrases for representing a concept in the application. The
second group of candidates includes elements with the same

type of the 𝑒𝑖 when it is expected that developers use the
same type of elements for implementing a feature for similar
attributes of various entities.
 Phase two: It includes identifying the candidate set of
data in DGUI using provider annotations. For this purpose,
annotations from category two are used to find elements that
have structural relations with each one of candidate

elements. If 𝑒𝑖 has provider annotations (adapter or
generator), the provided data options in the SGUI are
identified (line 6). The provider annotations in ATS specify

a structural relation between 𝑒𝑖 and the provided set of data
options in SGUI using relative XPath or XPath Axes. This

set of data is {𝑒𝑖, {SGUIEs}}. As it is expected that the

adapted element 𝑒𝑖
′ has similar structural relation with its

own provided data options, this structural relation is checked
for each candidate elements of DGUI too (lines 3-5). If such
structural relation exists for any of the candidate elements,
then that set of data would be considered for finding semantic

relations. A set of data for each 𝑒𝑖
′ in candidate elements is

{𝑒𝑖
′, {DGUIEs}}.

 Phase three: This phase involves finding semantic
relations between data in each set of data using the semantic
web. In this phase, the existence of any semantic relation
between the two sets of data is checked. First, the semantic

relation between 𝑒𝑖 and provided data options by 𝑒𝑖
(SGUIEs) is searched (line 7) as the first set of data. Then,

the semantic relation between each candidate element 𝑒𝑖
′ and

provided data options by 𝑒𝑖
′ (DGUIEs) is searched (line 8) as

the second set of data. For this purpose, a SPARQL query is

created using sets of data. The associated texts of 𝑒𝑖, 𝑒𝑖
′, and

their provided data are mapped to the data of the semantic
web knowledge-bases using a SPARQL query that looks for
predicates. Since predicates are used more often than classes
to represent attributes, and attribute under test is supposed to
be similar for various entities, we only try to map associated
texts to a predicate. If no predicate is found, this process can
be extended to search alternative namespaces in a knowledge
base or other knowledge bases. In the experiments of this
paper, DBpedia is searched as one of the largest knowledge
bases available on the web. DBpedia knowledge base is
accessed online through its SPARQL endpoint, which is an
interface that supports information retrieval from DBpedia
through SPARQL queries. Therefore, the proposed approach
can work with other knowledge bases that implement a
SPARQL endpoint. If a semantic relation is found in

18 Saeed Araban et. al.: A Semantic Web Enabled Approach to Automate …

DBpedia between data in any candidate sets of data, then the

similarity of this relation to the relation between 𝑒𝑖 and its
provided data is checked.
 Phase four: This phase involves checking the similarity
of semantic relations between sets of data in SGUI and

DGUI. For this purpose, the equivalent procedure is used.
The simplest situation is when the semantic relation between
two sets of elements is exactly the same, i.e., exactly the

same predicate. In this situation 𝑒𝑖
′ is considered as the

adapted element of 𝑒𝑖. If the two semantic relations are not
exactly the same, the semantic similarity of these relations is
checked. In the semantic web, the similarity of the relations
can be represented by defined properties. In this work, the
existence of owl:equivalent property between two relations
is considered as their similarity. If the two relations were

similar based on this property, then 𝑒𝑖
′ is considered as the

adapted element of 𝑒𝑖. Therefore, in this stage, an element in
the DGUI will be considered as an adapted element when
both the structural and semantic relation exist.
 After adapting test elements, the tester can modify the

𝐴𝑑𝑎𝑝𝑡𝑒𝑑𝑇𝑆 manually if it is needed. The resulted 𝑇𝐶′
includes a set of adapted test steps with adapted elements.
However, in case the script has provider annotations of type
adapted, its test data should be updated. Consider the
example for feature ‘Filter’ in Digikala, where the ATS is
written for ‘Laptop’ entity with data Microsoft Windows 10
as its expected result. Now that this script is adapted to test
‘Smart phone’ entity, the expected result should be updated

to a valid data for this entity. The test data adaptation
process is performed to adapt the test data on DGUI based
on the provider annotations specified by the tester (line 19).

3.3 System-Level Test Script Adaptation
This level of adaptation is performed on two different
systems that implement a similar feature. Therefore, the
SGUI and DGUI have different structures and belong to
different AUTs. At this level, if the entity under test in DGUI
is different from the entity in SGUI, then adaptation is not

effective due to the differences in both structure and
semantic of the DGUI to the SGUI. Adapting a script for
testing a similar feature on a different entity of a different
application requires changing many parts of the script. The
automated adaptation is not logical in this case due to the
minimum automation and maximum manual intervention.
Therefore, in this experiment, entity-less test scripts are
considered for system-level adaptation.These scripts test
features are independent from a specific entity or its
attributes (e.g. sorting).
 The proposed system-level adaptation process takes as
input a test interface, which represents a general and
comprehensive scenario for testing a given feature. In test
interfaces, tester can specify the most general condition with
all required test steps and then annotate the optional test steps
that may not be present in all applications. In this case, the
number of required test steps in a logical test step of the is
fewer than the number of test steps in that logical step of the
ATS. In contrast, if the tester does not create a general and
comprehensive test interface, the input ATS may lack some
required test steps in logical steps for examining specified
feature on DGUI. In the proposed semi-automated approach,
it is assumed that the tester creates a comprehensive enough
ATS and otherwise he/she can manually modify the

produced 𝐴𝑑𝑎𝑝𝑡𝑒𝑑𝑇𝑆. Therefore, the number of test steps in

the 𝐴𝑑𝑎𝑝𝑡𝑒𝑑𝑇𝑆 (𝑘′) may be different from 𝐴𝑇𝑆 (𝑘), but the
order of existent steps will not be affected. Based on these
assumptions, the process of system-level test script
adaptation is defined as below:
 Definition 3 (System-level test script adaptation). It is a

process which takes an annotated test script 𝐴𝑇𝑆 =
 {𝑇𝐶, 𝑆𝐺𝑈𝐼, 𝐹, 𝐴𝑈𝑇1} with 𝑇𝐶 as a sequence of annotated

test steps (𝑠1, … , 𝑠𝑘), which is created to test feature 𝐹 in

interface 𝑆𝐺𝑈𝐼 of 𝐴𝑈𝑇1 and then adapt it to test feature 𝐹 in

𝐷𝐺𝑈𝐼 of 𝐴𝑈𝑇2 and produce an adapted test script

𝐴𝑑𝑎𝑝𝑡𝑒𝑑𝑇𝑆 = {𝑇𝐶′, 𝐷𝐺𝑈𝐼, 𝐹, 𝐴𝑈𝑇2} with 𝑇𝐶′ as a

sequence of (𝑠1
′ , … , 𝑠𝑘′

′) where 𝑘′ ≤ 𝑘.

Figure 4. System-level test script adaptation algorithm

 The system-level test script adaptation algorithm is described by the system level adaptation procedure shown in

Journal of Computer and Knowledge Engineering, Vol. 4, No. 1. 2021. 19

Figure 4. The whole adaptation process involves two nested

loops at a high level: 1) The outer loop iterates through each

logical test step 𝐿𝑇𝑆𝑗 and processes each logical test step as

a whole (lines 4-15). 2) The inner loop iterates through each

test step 𝑠𝑖 from a particular logical test step 𝑠𝑖 𝐿𝑇𝑆𝑗 and

aims to adapt it to be successfully executed on DGUI. The

system-level adaptation algorithm uses semantic similarity

for element adaptation. The goal is to adapt element (𝑒𝑖) of a

test step specified by a set of locators 𝑇𝑖 in SGUI of AUT1

and find a corresponding element 𝑒𝑖
′ in 𝐷𝐺𝑈𝐼 of AUT2 as

the target element of test step 𝑠𝑖
′ in such a way that 𝑠𝑖

′ can be

executed successfully on DGUI.

In entity-level adaptation, structural information from

GUI and semantic relations between elements of GUI are

used for element adaptation. This is based on the idea that

developers maintain consistency in implementing a feature

for various entities of an application. In system-level

adaptation, such similarity does not exist between structures

of GUIs in two different web applications. Therefore, at this

level of adaptation, semantic similarity of web elements is

used. This is based on WordNet, which is a lexical database

of semantic relations between different words in a network

of words.

 In the proposed approach, semantic similarity between

the two web elements is computed as a weighted sum of the

similarity of their Ids, names, and associated texts. This is

based on the idea that the developers intentionally use

meaningful id and name attributes that probably represent

the semantic of that element. The associated texts of an

element include its text or label. If the element itself does not

contain a text or label, then the inner or outer text of that

element will be considered as its associated text. Therefore,

the associated texts of an element represent the function of

that element to the end users and should be a meaningful

phrase which indicates its usage. In the proposed approach,

the semantic similarity between web elements is computed

by the following formula:

Semantic similarity (𝐸𝑙𝑒𝑚𝑒𝑛𝑡1, 𝐸𝑙𝑒𝑚𝑒𝑛𝑡2) =

𝑊𝑖𝑑 * WNSimilarity (𝑖𝑑1, 𝑖𝑑2) +

𝑊𝑛𝑎𝑚𝑒 * WNSimilarity (𝑛𝑎𝑚𝑒1, 𝑛𝑎𝑚𝑒2) +

𝑊𝑡𝑒𝑥𝑡 * WNSimilarity (𝑡𝑒𝑥𝑡1, 𝑡𝑒𝑥𝑡2)

 where 𝑊𝑖𝑑, 𝑊𝑛𝑎𝑚𝑒 , and 𝑊𝑡𝑒𝑥𝑡 are the weights which

determine importance of similarity of the id, name, and

associated texts of the two elements. Having two lists of

terms 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛} and 𝑇′ = {𝑡1
′ , 𝑡2

′ , … , 𝑡𝑛
′ } so that | 𝑇

|≤|𝑇′|, WNSimilarity (𝑇, 𝑇′) is equal to the value of the best

correspondence between 𝑇 and 𝑇′. Each correspondence is a

set of assignments of 𝑡𝑗
′ (1≤j≤n) elements to 𝑡𝑖 (1≤i≤m)

elements where no 𝑡𝑗
′ is assigned to more than one. The best

correspondence is the one which has the largest value among

all possible correspondences. Finally, the value of a

correspondence R is computed based on the proposed

formula by Paydar [PaydarInfsoft].

3.4 Test Script Generation

The proposed three levels of test script abstraction along with

the entity-level and system-level adaptation algorithms

provide the foundation for automatically generating test

scripts.

 Automatic test script generation involves two activities.

First, generating a correct sequence of test steps to test the

intended feature of the AUT. Second, it generates a set of test

data in accordance to that sequence of test steps. The

proposed adaptation algorithms perform the first activity and

provide a sequence of test steps. This sequence can be used

to generate multiple test scripts with different test data.

 Test script generation process takes as input an abstract

test script in the form of an ATS; therefore, this script is

adapted to implementation details of the application under

test and the underlying entity. The abstract test script can be

created in two ways. First, tester can write a test script for the

intended entity of the AUT and annotate it with concepts

from annotation categories one, two, and three to create an

abstract test script. Second, a test script that is written for

another entity or another application is reused to produce an

abstract test script through entity-level or system-level

adaptation algorithms. In both cases, the test script includes

required annotations to provide test data for automatically

generating multiple concrete test scripts. The process of test

script generation is defined as below:

 Definition 4 (Test script generation). It is a process

which takes as input an annotated test script 𝐴𝑇𝑆 =

 {𝑇𝐶, 𝑆𝐺𝑈𝐼, 𝐹, 𝐸, 𝐴, 𝐴𝑈𝑇} with 𝑇𝐶 as a sequence of

annotated test steps (𝑠1, … , 𝑠𝑘) which is created to test feature

𝐹 on attribute 𝐴 of entity 𝐸 in 𝑆𝐺𝑈𝐼 of 𝐴𝑈𝑇, and then

generate a set of test scripts {𝑇𝑆1, …, 𝑇𝑆𝑛} with a set of test

data {𝑇𝐷1, …, 𝑇𝐷𝑛} in which 𝑇𝑆𝑥 =

 {𝑇𝐶𝑥 , 𝑆𝐺𝑈𝐼, 𝐹, 𝐸, 𝐴, 𝐴𝑈𝑇} with 𝑇𝐶𝑥 (𝑠1, … , 𝑠𝑘) to test

feature 𝐹 on attribute 𝐴 of entity 𝐸 in 𝑆𝐺𝑈𝐼 of 𝐴𝑈𝑇.

 There are different approaches proposed in the literature

for generating test data such as ontology mapping [22], rule-

based approaches [23], using the web of data as a source of

test data generation [24], or simply specifying a repository

for importing required data. In the proposed approach, the

required test data is extracted from the GUI of AUT based

on the annotations of the tester. This is based on the idea that

in some features such as ‘Filter’ the required test data (e.g.

test input and expected result) are presented as options in the

GUI that can be extracted. The tester can enrich the test

scripts with his/her knowledge of the AUT using

annotations. Then, these annotations can be used to

automatically generate test data.

4. Evaluation

For the purpose of evaluation, a prototype of the proposed

approach is implemented in Java, and then it is evaluated.

Two popular web applications from the e-commerce domain

are selected, i.e., Digikala and Banimode, respectively

referred to as APP1 and APP2. Four features of these

applications with different levels of complexity are selected,

which are ‘Filter, ‘Sort’, ‘Pagination’, and ‘ Login’. For

brevity, we refer to these features as F1, F2, F3, F4. In this

20 Saeed Araban et. al.: A Semantic Web Enabled Approach to Automate …

experiment, Selenium is used for creating ATSs and also for

executing produced test scripts. The experiment is performed

on a Macbook Pro laptop running Mac OS X10 with Intel

Core i5 processor (2.4 GHz) and 8 GB memory.
 The proposed approach includes three main processes:

entity-level test script adaptation, system-level test script

adaptation and test script generation. In this section,

evaluation of these processes is separately discussed. Then,

the efficiency of the proposed approach and the effectivity of

semantic web for the proposed approach are evaluated.

4.1 Entity-level test script adaptation

In order to evaluate the proposed entity-level adaptation

algorithm, an experiment for testing three common features

of four applications is conducted (i.e., F1, F2, F3). For this

experiment, first, a test script for each feature on every

application is manually created. Then the test scripts are

annotated to create abstract Test scripts (6 test scripts in

total). Each abstract test script is adapted to a set of 20

randomly selected DGUIs of the same application with the

same feature (120 in total).

 For measuring the effectiveness of this algorithm, the

percentage of executable, modified, preserved, and adapted

test steps in the result test scripts produced by entity-level

adaptation algorithm are reported. The concept of executable

indicates the percentage of successfully executable test steps

to the all test steps of produced 𝐴𝑑𝑎𝑝𝑡𝑒𝑑𝑇𝑆s and shows how

successful the proposed algorithm is in adapting test scripts.

The concept of modified indicates the percentage of test

steps that the proposed algorithm failed to adapt and hence

needed manual modification by the tester to the all test steps

of produced 𝐴𝑑𝑎𝑝𝑡𝑒𝑑𝑇𝑆s. The goal is to increase the level

of automation by decreasing these manual interventions by

the tester. The concept of adapted indicates the percentage of

successfully adapted test steps to the executable test steps of

produced 𝐴𝑑𝑎𝑝𝑡𝑒𝑑𝑇𝑆s. The concept of preserved indicates

the percentage of test steps that are copied from ATS to the

𝐴𝑑𝑎𝑝𝑡𝑒𝑑𝑇𝑆s without any change. These are test steps

without any annotation or test steps annotated as system-

dependent that can be reused without any change. The results

are shown in T 3 for each feature of every application.

Table 3. Results of the entity-level test script adaptation

Application APP1 APP2

Feature F1 F2 F3 F1 F2 F3

Executable (%) 89.1 97.3 93.4 97.1 98.4 99

Modified (%) 10.9 2.7 6.6 2.9 1.6 1

Adapted (%) 18.7 16.2 13.2 12.5 3.5 28.6

Preserved (%) 81.3 83.8 86.8 87.5 96.5 71.4

 Analysis of the results shows that the average percentage

of executable test steps for the proposed entity-level

adaptation is about 95.7%. Among these executable test

steps, about 84.5 are preserved from the given ATS. This

shows that when adapting a test script for the same feature of

a system, more than 80% of test steps can be reused without

any changes. About 15.5% of executable test steps are

adapted successfully by the proposed approach. Test

elements in the resulted test steps are adapted using the two

proposed procedures. T 4. shows percentage of test elements

adapted using each one. About 19% of the test elements in a

script are adapted using the proposed semantic web enabled

procedure. Automatically adapting these elements is a

challenging task and is one of the strengths of the proposed

approach which is provided by the Semantic Web.

Table 4. Percentage of elements adapted based on each proposed

procedure

Entity-level element

adaptation procedures
GUI-based

Semantic

enabled
Total

Percent (%) 80.6% 19.4% 100%

4.2 System-level test script adaptation

Evaluating the proposed system-level adaptation algorithm,

is done by another experiment for testing three features of

the two applications (i.e., F2, F3, F4). The system-level

adaptation algorithm needs a Test Interface as its input.

Therefore, first test scripts for each feature on every

application is manually created. Then, test scripts are

annotated to create a test interface which is comprehensive

enough to be able to test a similar feature on other

applications. The results are shown in T 5. for each feature

in every application. The effectiveness of this algorithm is

measured in a similar way to the entity-level adaptation

algorithm.

Table 5. Results of the system-level test script adaptation

Feature F2 F3 F4

Application
AP

P1

AP

P2

AP

P1

AP

P2

AP

P1

AP

P2

Executable (%) 85.7 80.9 84.2 94.7 80 73.3

Modified (%) 14.3 19.1 15.8 5.3 20 26.7

Adapted (%) 25 20 0 13.3 85.7 87.5

Preserved (%) 75 80 100 86.7 14.3 12.5

 The percentage of executable test steps for features F2

and F3 is more than 80% in two applications, but the

percentage of adapted test steps is less than about 25%,

which indicates that most of the executable test steps were

preserved. This shows that entity-less scripts for testing some

similar features in different systems have more than 80%

similar test steps. In contrast, the percentage of adapted test

steps for feature F4 is more than about 85%. That is, most of

the steps in scripts for testing this feature needs to be adapted

and the proposed approach successfully adapts them. The

low percentage of the preserved test steps in this feature is

due to the fact that most of the steps in the script are actions

to be applied on an element of the GUI and thus these test

elements should be adapted to the application under test.

 The percentage of modified test steps in features F2 and

F4 are more than F3. The proposed approach fails at adapting

these test steps and tester manually modified them. One of

the main reasons is that scripts for testing these features

include test steps that execute JavaScript functions on a

variable. The proposed approach fails at adapting targets

Journal of Computer and Knowledge Engineering, Vol. 4, No. 1. 2021. 21

including variables in such test steps. Another reason is

related to the difference in verification steps of testing

similar features on different applications. Verification steps

are usually very dependent to the application under test,

which makes adapting the elements of these steps to be a

challenging task. The average percentage of executable test

steps for the proposed system-level adaptation is 83.1%. The

percentage of adapted test steps is different and dependent

on the feature under test.

4.3 Test Script Generation

The proposed test generation algorithm is evaluated by

conducting an experiment to generate concrete test scripts

for feature F1 in the two applications. The proposed

generation algorithm uses tester’s knowledge of the AUT in

the form of semantic annotations. The proposed test script

generation algorithm is evaluated by the percentage of

automatically generated test scripts with valid test data that

can be executed successfully. The results for APP2 is 100%,

which means that all the possible test scripts for APP2 are

automatically generated and a maximum test coverage is

provided. Filter F1 in APP2 is implemented with constant

and similar attributes for all products of the system which

facilitates test script generation. The results of APP1 is about

87% because feature F1 in this application is implemented

for a wide range of products with different test data options

for each attribute. Based on these results, the automation

level provided by the proposed approach is promising. The

most test steps that the proposed approach fails to

successfully generate are verification steps. When using

different data for testing this feature on various products, the

element to be verified is located in different places of the

DOM structure which makes generating test data harder.

4.4 Efficiency
The proposed approach is a semi-automated approach which

requires tester’s intervention in some cases. In this approach,

tester can perform two types of manual operations: 1)

modification and confirmation. Modification requires modification

of a GUI element, test data, or a test step, while Confirmation

includes selecting, deleting or confirming the suggested test data

or GUI elements, and deleting an optional test step. For evaluating

efficiency of the proposed approach, the cost of human

intervention is measured in terms of time spent on each operation;

therefore, the number of operations is counted. The average

number of modified, confirmed, and automatic operations for all

the three experiments described above are shown in

Figure 5.

 The results show that for all algorithms and features in

these experiments the percentage of manual operations is

quite small compared to the automatic operations. The

proportion of manual operations in system-level adaptation

algorithm is more than other two algorithms and in

generation algorithm is less than others. In entity-level

adaptation algorithm and generation algorithm, the

proportion of manual confirm operations is more than

manual modify operations while in system-level adaptation

algorithm, this is the opposite. And for all features, the

automatic operations performed by the proposed algorithms

are much larger than those performed manually.

Figure 5. The operation cost of the proposed algorithms

4.5 Semantic Web Readiness
The proposed entity-level test script adaptation algorithm

utilizes the Web of Data for finding web elements that have

semantically meaningful relations. Therefore, we conducted

an experiment to evaluate the possibility of finding such

relations between web elements. This experiment seeks to

find out for what percent of the web elements in a GUI it is

possible to find a semantic relation on the semantic web.

However, since the semantic web contains various sources,

it is not possible to search all of them. In this experiment,

DBpedia is used as representative of the semantic web

sources. For this experiment a set of 10 GUIs are selected

from the APP1. The results show that for 81% of the

attributes, there is a subject with that attribute linking with at

least one of its data options. Amon these attributes, there are

similar attributes for different entities. For example, different

digital devices such as tablets, laptops, computers, and

mobile phones have similar attributes (e.g. memory,

processor type, and display size). Results show that for 86%

of these attributes are represented with similar predicates on

the semantic web. These results provide good potential for

the proposed entity-level element adaptation.

4.6 Fault detection
In this section, an experiment for measuring the effect of the

proposed approach on test coverage and fault detection is described.

At the end of the year 2020, the ‘Sort’ feature in Digikala website

was extended to sort the products based on their discount in a way

to show the most discounted products first. This feature was

released without proper testing and undetected errors were

discovered by the end users in many pages of the application. This

was probably the result of a limited test coverage due to the required

time and cost of testing. In November and December 2020, we

conducted an experiment to evaluate the ability of the proposed

approach in improving test coverage and fault detection. For this

purpose, the required scripts for testing this feature on different

pages of this application were automatically generated. The input

ATS for proposed test script generation was created in two ways

(see Figure 6).

 The first one is to directly create a script for this feature

in Digikala website and annotate it to be an abstract test

script ready for test generation process. The second one is to

reuse an existing test interface in another application (shown

in grey). The ‘Sort’ feature based on most discount was

supported in Banimode application and its test interface was

previously created for the previous experiment. Then, it is

required to adapt this test interface for the Digikala

application using the proposed system-level adaptation

algorithm. This adaptation required only three manual

22 Saeed Araban et. al.: A Semantic Web Enabled Approach to Automate …

operations: two modification operations and one

confirmation operation. Both ATSs were used by the test

script generation process to create multiple test scripts for a

set of 20 DGUIs. The produced test scripts were run

automatically by Selenium tool. These DGUIs were also

investigated manually to discover existing faults. The faults

discovered by running scripts produced by the proposed

approach were compared to the manually discovered faults.

The results show that about 99.3% of faults are discovered.

Figure 6. Different ways of creating an entity-less script for test

generation process

5. Conclusion

This work was motivated by two observations: 1) web

applications in a domain providing common features and

implementing these features in a similar way, 2) several web

applications providing features that have been implemented

for multiple entities and attributes. Usually, test scripts have

to be re-written for each attribute of every entity in the

system domain. Human-written test scripts are valuable

sources of knowledge that can be reused. Reusing test scripts

is a knowledge-intensive activity and can be improved by

effective utilization of semantic web technologies. The goals

of the proposed approach are to increase the level of test

automation and reduce testing cost by introducing a three-

level test abstraction hierarchy to separate test logic and

structure from underlying application, entity and test data.

These levels of test script abstraction are realized by

annotating test scripts based on the concepts defined by the

TSO ontology.
 Our approach consists of algorithms for test script reuse

that are designed based on these abstraction level: 1) an

entity-level test script adaptation algorithm which adapt

annotated scripts for testing the same feature on other entities

of an application, 2) a system-level test script adaptation

algorithm which adapt annotated scripts for testing a similar

feature on other applications, and 3) a test script generation

algorithm to automatically generate concrete test scripts. Our

evaluation results of the two real-world applications show

that the proposed approach is promising in terms of

effectivity and efficiency.

 The results also demonstrate that the automatic

operations performed by the proposed approach are much

larger than the required manual operations. The approach is

related to the semantic web in two ways. First, it exploits

ontologies for semantic annotation and provides testers with

mechanisms to annotate test scripts with their knowledge.

Second, it uses the semantic web sources to automatically

obtain its required information. In a nutshell, the empirical

results suggest that this idea is both feasible and promising.

References

[1] X. Yuan and A. M. Memon, “Iterative execution-

feedback model-directed GUI testing,” Information and

Software Technology, Vol. 52, No. 5, pp. 559–575,

(2010).

[2] M. Biagiola, A. Stocco, F. Ricca, and P. Tonella,

“Dependency-aware web test generation,” in 2020 IEEE

13th International Conference on Software Testing,

Validation and Verification, pp. 175–185 (2020).

[3] J.-W. Lin, F. Wang, and P. Chu, “Using Semantic

Similarity in Crawling-Based Web Application Testing,”

in Proceedings - 10th IEEE International Conference on

Software Testing, Verification and Validation, pp. 138–

148 (2017).

[4] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball,

“Feedback-directed random test generation,” in 29th

International Conference on Software Engineering

(ICSE’07), pp. 75–84 (2007).

[5] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, and F. Tip,

“A framework for automated testing of JavaScript web

applications,” in Proceedings of the 33rd International

Conference on Software Engineering, pp. 571–580

(2011).

[6] S. Elbaum, G. Rothermel, S. Karre, and M. Fisher II,

“Leveraging user-session data to support web application

testing,” IEEE Tranaction on Software Engineering, vol.

31, no. 3, pp. 187–202 (2005).

[7] S. E. Sprenkle, L. L. Pollock, and L. M. Simko,

“Configuring effective navigation models and abstract

test cases for web applications by analysing user

behaviour,” Software Testing, Verification, and

Reliability, vol. 23, no. 6, pp. 439–464 (2013).

[8] S. Yoo and M. Harman, “Test data regeneration:

generating new test data from existing test data,”

Software Testing, Verification, and Reliability, vol. 22,

no. 3, pp. 171–201 (2012).

[9] M. Mirzaaghaei, F. Pastore, and M. Pezzè, “Supporting

test suite evolution through test case adaptation,” IEEE

International Conference on Software Testing,

Veriication and. Validation, ICST 2012, vol. 2, pp. 231–

240 (2012).

[10] Z. Gao, Z. Chen, Y. Zou, and A. M. Memon, “SITAR:

GUI Test Script Repair,” IEEE Transaction on Software

Engineering, vol. 42, no. 2, pp. 170–186 (2016).

[11] A. Milani Fard, M. Mirzaaghaei, and A. Mesbah,

“Leveraging existing tests in automated test generation

for web applications,” in Proceedings of the 29th

ACM/IEEE international conference on Automated

software engineering - ASE ’14, pp. 67–78 (2014).

[12] M. Dadkhah, S. Araban, and S. Paydar, “A systematic

literature review on semantic web enabled software

Journal of Computer and Knowledge Engineering, Vol. 4, No. 1. 2021. 23

testing,” Journal of Systems and Software, vol. 162, p.

110485 (2020).

[13] T. R. Silva, M. Winckler, and H. Trætteberg, “Ensuring

the Consistency Between User Requirements and

Graphical User Interfaces: A Behavior-Based Automated

Approach,” in International Conference on

Computational Science and Its Applications, pp. 616–

632 (2019).

[14] H. Hajiabadi and M. Kahani, “An automated model

based approach to test web application using ontology,”

in IEEE Conference on Open Systems, pp. 354–359

(2011).

[15] A. Rauf, S. Anwar, M. Ramzan, S. ur Rehman, and A.

A. Shahid, “Ontology driven semantic annotation based

GUI testing,” in International Conference on Emerging

Technologies (ICET), pp. 261–264 (2010).

[16] R. Tönjes, E. S. Reetz, M. Fischer, and D. Kuemper,

“Automated testing of context-aware applications,”

(2015).

[17] L. Mariani and M. Pezze, “Link : Exploiting the Web of

Data to Generate Test Inputs,” (2014).

[18] R. Li and S. Ma, “The Use of Ontology in Case Based

Reasoning for Reusable Test Case Generation,” in

International Conference on Artificial Intelligence and

Industrial Engineering, pp. 369–374 (2015).

[19] S. Dalal, S. Kumar, and N. Baliyan, “An Ontology-

Based Approach for Test Case Reuse,” in Intelligent

Computing, Communication and Devices, pp. 361–366

(2015).

[20] C. Menzel, “Reference Ontologies — Application

Ontologies : Either / Or or Both / And ?,” (2003).

[21] É. F. de Souza, R. de A. Falbo, and N. L. Vijaykumar,

“ROoST: Reference Ontology on Software Testing,”

Appl. Ontol., vol. 12, no. 1, pp. 59–90 (2017).

[22] Z. Szatmári, J. Oláh, and I. Majzik, “Ontology-based

test data generation using metaheuristics,” in

Proceedings of the 8th International Conference on

Informatics in Control, Automation and Robotics, vol. 2,

pp. 217–222 (2011).

[23] C. D. Nguyen, A. Perini, and P. Tonella, “Ontology-

based Test Generation for Multiagent Systems,” in

Proceedings of the 7th International Joint Conference on

Autonomous Agents and Multiagent Systems - Volume 3,

pp. 1315–1320 (2008).

[24] L. Mariani, M. Pezzè, O. Riganelli, and M. Santoro,

“Automatic Testing of GUI-based Applications,”

Software Testing, Verification, and Reliability, vol. 24,

no. 5, pp. 341–366 (2014).

24 Saeed Araban et. al.: A Semantic Web Enabled Approach to Automate …

