
Journal of Computer and Knowledge Engineering, Vol. 8, No. 1, 2025. (19-34)

Ferdowsi

University of

Mashhad

Journal of Computer and Knowledge

Engineering

https://cke.um.ac.ir

Information and

Communication

Technology Association of

Iran

Model-Driven Development of Android Audio-based Applications
Research Article

Reza Vakili1, Leila Samimi-Dehkordi2 , Marzieh Varposhti3

 10.22067/cke.2025.90213.1134

Abstract- This paper presents a model-driven

engineering framework designed to enhance the

development of flexible, high-quality audio-based

applications on mobile platforms. The framework

comprises domain-specific metamodels, a graphical editor,

and a transformation engine, enabling the automatic

generation of application code and supporting

customization within Android Studio. To address the

challenges faced by developers in delivering effective audio

applications, the framework provides a structured

approach to simplify design and implementation processes.

The framework’s applicability is demonstrated through

four case studies, highlighting its ability to create diverse

audio-based Android applications. A detailed evaluation

includes a comparison of development effort between the

proposed model-driven approach and traditional coding

methods, showing significant reductions in time and

manual effort. Additionally, the framework is assessed

using key software quality metrics such as maintainability,

understandability, and extensibility. The findings

demonstrate that the model-driven approach not only

streamlines development but also improves the

maintenance of applications, enabling developers to meet

the growing demand for audio applications efficiently. By

reducing development costs and enhancing productivity,

this research contributes to the field of software

engineering, offering a practical and adaptable

methodology for audio-based application development.

Key Words. Driven Development, Android Application,

Audio-based Application, Modeling Language

1. INTRODUCTION

The development of modern software, particularly for

complex systems, has driven the creation of new techniques

like model-driven engineering (MDE) [1]. MDE uses high-

 Manuscript received 2024 October 11, Revised 2024 November 30, accepted 2025 January 27.
1 Master Student, Department of Computer Engineering, Shahrekord University, Shahrekord, Iran, Email: Rv198510@gmail.com
2 Corresponding author. Assistant Professor, Department of Computer Engineering, Shahrekord University, Shahrekord, Iran,

Email: samimi@sku.ac.ir
3 Assistant Professor, Department of Computer Engineering, Shahrekord University, Shahrekord, Iran, Email: mvarposhti@sku.ac.ir

level models to facilitate the development process, thus

minimizing the time and cost of production [2]. More

recently, the growing prevalence of smartphones and

portable devices in the last few decades has resulted in an

increasing demand for a wide range of applications [3],

spanning even into audio-based applications such as

audiobooks and language-learning applications. The nature

of this rapid growth of mobile users has made it even more

obvious that we need development frameworks that speed

this process of delivery to market.

An audio-based Android application is designed to

deliver content using recorded audio or text-to-speech

(TTS) technology. Depending on their purpose, these apps

may come with a wide range of features. Audio playback is

a key feature (play, pause, and skip functions for

audiobooks, podcasts, and music). TTS will handle

everything from text-to-speech (TTS) options that allow

the app to speak back to you to setting potential language

options and even speech speed. Additional features may

include an audio file management system, offline playback,

and playlist support. Some audio-based apps also offer

customization options and support for multiple languages,

enhancing the user experience.

The explosion of smartphone usage, combined with the

development of audio-based applications, has made the

development of such applications difficult [4]. Flexibility,

speed, and precision are all common challenges in software

development, but the nature of audio-based applications

may complicate matters with issues like real-time audio

processing, multimedia integration, and even device

compatibility. It proposes a framework to address these

shortcomings by implementing a systematic, domain-

centric strategy that streamlines development, improves

maintainability, and accommodates a wide range of

application requirements. The evaluation provides metrics

https://cke.um.ac.ir/article_46279.html
https://cke.um.ac.ir/
https://doi.org/10.22067/cke.2025.90213.1134
mailto:mvarposhti@sku.ac.ir
https://orcid.org/0000-0002-2842-0256
https://creativecommons.org/licenses/by/4.0/

Reza Vakili, Leila Samimi-Dehkordi, Marzieh Varposhti 20

such as understandability, extensibility, and maintainability

to demonstrate the framework's effectiveness in addressing

these challenges.

One of the most challenging aspects of audio-

based application development is high flexibility. The

user's needs are constantly changing, but the application

must be able to accommodate them, and developers must

take advantage of this flexibility to apply it when necessary.

Furthermore, applications must be designed so that new

features can be added without requiring extensive changes

of existing code. Another major issue in this space is the

need to streamline the personal maintenance and updating

procedures for audio-based apps. As applications grow in

size and complexity, making changes becomes more

expensive and time-consuming. Such a problem is

especially difficult for systems that need to be updated

regularly. Traditional methods, with their inherent

complexities, often fall short in addressing these issues.

Research has demonstrated that MDE, by employing

high-level abstractions and automated code generation,

allows developers to manage the complexities of software

systems more effectively [5]. In the context of audio-based

applications, this approach can significantly reduce

development time, improve product quality, and enhance

maintainability.

This paper proposes a model-driven engineering

framework to address the challenges in creating

adaptable audio-based applications at scale. More

specifically, the research points towards adapting MDE

techniques to improve the development, maintenance, and

updating processes of android, audio-based applications.

This study tackles the problem of how to apply model-

driven engineering to enhance the process of developing,

maintaining, and updating mobile audio-based

applications. In other words, we combine domain-specific

metamodels and a transformation engine to automate the

code generation of audio-oriented applications. We intend

to contribute to the filling of this significant gap in the

literature, especially with regard to the development of

flexible yet superior audio applications for

android platforms.

The paper is organized as follows. Section II reviews the

related work on model-driven engineering (MDE) and its

application in Android application development. Section

III presents the proposed framework for developing

Android audio-based applications, detailing its components

and functionality. Section IV evaluates the proposed

framework through case studies and comparisons with

existing frameworks. It provides the results and analysis of

the evaluation, including a comparison of maintainability,

understandability, and extensibility with other frameworks.

Finally, Section V concludes the paper and suggests future

work.

2. RELATED WORK

The use of model-driven engineering (MDE) as a novel

approach in software development has attracted

considerable attention from researchers in recent years.

This methodology, by providing tools and techniques that

help developers manage complex systems through high-

level models and automation tools, has quickly gained

popularity among traditional software development

methods.

Vaupel et al. [6], introduced a modeling language and

infrastructure for developing Android applications that

supports various user roles. This language allows

developers to continuously adjust and modify application

content, while end users utilize specific content. This

approach enables the development of flexible applications

at different levels of abstraction and includes the modeling

of both standard and custom elements. They demonstrated

this approach by creating two applications, a phonebook

manager and a conference guide. The approach consists of

three main parts: generating Android projects from models,

deploying projects, and interpreting models by Android

applications without needing redeployment.

Derakhshandi et al. [7], proposed a solution called

MAndroid for developing 2D board games on Android.

This method uses MDE to model and automatically convert

models into code, making it easier to detect and resolve

errors. The MAndroid framework fully generates classic

multiplayer games for Android devices. The approach was

evaluated by implementing three games and assessing their

usability and performance. The software development

process is divided into two phases: modeling and

conversion in Eclipse, followed by compiling and building

the code in Android Studio.

Blanco and Lucrecio [8] addressed the challenges of

cross-platform development and proposed a new approach

that supports the expansion and inclusion of new platforms.

This approach, by using a general-purpose language, raises

the level of abstraction and separates the software from

platform details. Automatic conversions generate

executable codes that can be deployed across different

platforms. The proposed approach was evaluated in four

stages, including reconstructing an existing system and

testing with both experts and novice developers.

Additionally, support for cross-platform testing was

introduced.

Gharaat et al. [9], introduced a framework called ALBA

for developing location-based Android applications. This

framework includes a domain-specific modeling language,

modeling tools, and a plugin for converting models into

code. The modeling tool allows novice designers to model

location-based applications accurately. Evaluations

showed that ALBA is promising in terms of usability and

the quality of generated applications. The framework

allows users to design location-based applications using the

ALBA editor and then convert them into Android code.

Ammar [10] proposed a model-based approach for

developing mobile application user interfaces. This

approach, by using modeling and model transformation,

enables the automatic generation of user interfaces. The

proposed system utilizes standards and technologies such

as the Eclipse Modeling Framework (EMF) and the ATL

transformation language. The process involves two main

stages: defining meta-models (AUI, CUI, and FUI) and

converting them into source code. This approach covers

different levels of abstraction and generates the final user

interface for the Android operating system.

Mehrabi et al. [11], proposed a framework called

HealMA for model-driven development of IoT-based

21 Journal of Computer and Knowledge Engineering, Vol. 8, No. 1, 2025.

Android health monitoring applications. This framework is

designed to manage the heterogeneity of hardware and

software systems and accelerate the development of such

systems. HealMA includes a domain-specific modeling

language, a graphical modeling editor, validation rules, and

a model-to-code transformation engine. Evaluations

showed that this framework is practical and useful for the

automatic generation of health monitoring applications.

HealMA aids in the rapid development of remote health

monitoring applications and consists of four main

components: domain concepts, a graphical editor,

validation rules, and a code transformation engine.

Shamsujoha et al. [12], in a comprehensive study,

examined the use of model-driven engineering in the

development of mobile applications. They reviewed more

than a thousand research articles and demonstrated that this

method, by simplifying the development process,

increasing the level of abstraction, and improving software

quality, can address the challenges of mobile application

development. The most important objectives of MDE in

this field are architecture, domain modeling, and automatic

code generation. Additionally, the study showed that

model-driven methods can significantly improve

productivity, scalability, and software reliability. The

results of this research can be very useful for developers

and researchers in mobile software development.

José Barriga et al. [13], proposed an innovative

approach to the development and simulation of IoT

systems. This model-based approach enables the design

and deployment of the most complex IoT environments

without the need for manual programming. Using a

comprehensive meta-model, this method allows users to

graphically model various elements of an IoT system, such

as sensors, actuators, and cloud nodes. The models are then

automatically converted into code, creating the desired

simulation environment. This approach demonstrated its

practical applicability and efficiency through two case

studies in the fields of smart buildings and agriculture.

Núñez et al. [14], proposed an innovative approach

called "Web Model-Driven" for the development of mobile

applications, which focuses on the data layer. This

approach is designed to provide access to data even in

offline conditions, allowing applications to be used without

network connectivity. Moreover, the Web Model-Driven

approach is compatible with various operating systems,

helping developers easily develop applications for diverse

platforms. This approach, by using data persistence

concepts and defining meta-models and specific

architectural models, enables the design of stable data

resources and the automatic generation of code for different

platforms such as Android and Windows Phone.

These studies are compared in TABLE I based on six

criteria, including type of meta-model (MM) (UML profile

or EMF), the generated programming language (Android or

cross-platform), the type of modeling language editor

(graphical with GMF tools, graphical with Sirius tools, or

textual), the type of modeling (structural or behavioral),

and the domain of the generated application.

Although model-driven approaches for Android and

cross-platform applications have been the subject of

numerous studies, audio-based applications have received

relatively little attention in this context. By offering a

coordinated, domain-specific modeling, automated code

generation, and customization approach tailored to the

needs of audio applications development, our framework

fills this gap.

3. PROPOSED FRAMEWORK

In this section, the proposed framework for model-driven

development of Android audio-based applications is

examined. This framework is presented as a solution to

accelerate and improve the development process of mobile

audio-based applications. The various stages of this

framework include modeling processes, validation,

automatic code generation, and customization of the

generated code for finalizing the product.

The main goal of the proposed solution is to provide a

framework that improves the development of Android

audio-based applications using model-driven engineering.

This framework is based on domain-specific metamodels.

The process of using the proposed framework includes

several main steps, which are demonstrated in Figure 1.

In the first step, the requirements of the audio-based

application are accurately collected. These requirements

include various features that the application must support,

such as audio capabilities, playback controls, and user

interactions. These requirements are then represented in a

high-level model that provides an overview of the

application.

After defining the initial model, validation constraints

are applied to the model. These constraints help ensure the

model's correctness and completeness. Models containing

defects or errors are identified and corrected by the system

to prevent problems in later development stages. After the

model is approved, the transformation to code begins. For

this purpose, automatic code generation tools like Acceleo

are used to convert the defined models into Android

executable code. This code includes all the necessary

components for audio-based applications, such as classes

related to activities, fragments, layouts, and resources.

If the developer requires specific changes or further

customization, the generated code can be imported into

Android Studio. Android Studio, as a complete

development environment, allows manual modifications to

the generated code. This stage is used to improve and

finalize the code.

Innovation Boundary and Value Addition: The

proposed framework is a novel solution specifically

designed for the rapid development of audio-based mobile

applications. The originality of the framework is evident in

the following key aspects:

 Metamodel Design: The domain-specific metamodel

was designed from scratch to represent the essential

components of audio-based applications, such as audio

playback, navigation flows, and user interactions. This

metamodel distinguishes our framework from generic

modeling approaches.

 Graphical Editor: A custom graphical editor was

developed to enable intuitive modeling of applications,

simplifying the design process for developers with

Reza Vakili, Leila Samimi-Dehkordi, Marzieh Varposhti 22

limited coding knowledge.

 Model-to-Code Transformation: While the

framework uses Acceleo as the transformation engine,

the transformation templates were written specifically

for this framework. These templates address the unique

requirements of audio-based applications and generate

Android-specific code tailored to the metamodel's

constructs.

 Domain-Specific Customizations: The framework

includes adaptations for efficiently handling audio

assets and implementing real-time user interaction

logic, which are not addressed by existing tools or

frameworks.

TABLE I

Comparison of related work

R
es

ea
rc

h

Y
ea

r

Type of MM

P
ro

g
ra

m
m

in
g

L
an

g
u

ag
e

T
y
p

e
o

f
L

an
g
u

ag
e

E
d

it
o

r

A
u

to
 C

o
d

e

G
en

er
at

io
n
 Type of Model

A
p

p
li

ca
ti

o
n
 D

o
m

ai
n

U
M

L

E
M

F

S
tr

u
ct

u
ra

l

B
eh

av
io

ra

l

[6] 2014   Android
Graphical

GMF
   Daily Applications

[7] 2021   Android Graphical    2D Multiplayer Games

[8] 2021   Multi-platform Textual    GUI & Domain Model

[9] 2021   Android
Graphical

GMF
  

Location-based

Applications

[10] 2021   Multi-platform
Graphical

GMF
   Graphical Interface

[11] 2022   Android Graphical Sirius   
Health Monitoring

Application

[12] 2020   Multi-platform
Graphical

Tree-based
   Mobile Data Layer

[13] 2019   Android Textual   
Commercial Store

Application

Fig. 1. The process of using the proposed framework to develop an audio application

23 Journal of Computer and Knowledge Engineering, Vol. 8, No. 1, 2025.

By integrating these components, the framework offers
a unique, efficient, and automated approach to developing
audio applications, reducing both development time and
effort. The originality of this research lies in its tailored
approach to addressing the unique requirements of audio-
based applications. The framework provides novel
approaches that can facilitate the design and development
process in this specific domain by combining a domain-
specific metamodel, a dedicated graphical editor, and an
automation process generation engine. These zoning
features also distinguish it from more general-purpose
MDE frameworks.

The framework is structured into four main sections,
each focusing on a distinct aspect of the proposed solution.
Section III.A introduces the metamodel that forms the
foundation of the framework, III.B describes the graphical
editor for visual modeling, III.C explains the
transformation engine for automating code generation, and
III.D details the final customization process in Android
Studio.

A. Proposed Metamodel

In this section, concepts such as activities and
fragments are inspired by the Android application
architecture, as described in [15]. These elements are
integrated into the proposed metamodel to ensure
compatibility with existing Android development
practices while extending their functionality for audio-
based applications. The metamodel is presented in Figure
2. The provided image depicts a metamodel for an Android
audio-based application. Here is an overview of each class
and its relationships within the model:
1. App: The central class representing the overall

Android application. It defines the application’s name
and method of handling audio (howToPlay), making it
a starting point for defining the app's core attributes.

2. Configuration: Contains essential settings for the app,
such as version, language, SDK versions, and screen
orientation. This class is defined to centralize all
configuration-related data, which is critical for setting
up the app environment.

3. ScreenOrientation (enum): Specifies various screen
orientations like portrait, landscape, and sensor. It
helps standardize how the app adjusts to different
device orientations.

4. Language (enum): Defines the languages supported by
the app, such as English and Persian. This ensures that
the app can cater to different linguistic audiences.

5. HowToPlay (enum): Indicates the method used to play
audio, such as TextToSpeech or MediaPlayer. This
class enables flexibility in how audio is handled within
the app, based on its intended functionality.

6. Activity: Represents a screen or activity within the
app, managing its orientation and behavior. This class
is fundamental for structuring the app’s interface and
controlling how users interact with different screens.

7. SplashActivity: A specific type of Activity used for
the splash screen, with an added delay time. This class
ensures that the splash screen can be timed and
managed independently from other activities.

8. Theme: Represents the app’s visual theme, specifically
aspects like the status bar color. This class is necessary
for maintaining the design consistency across the app's
interface.

9. Color: Defines specific colors used in the app’s theme.
This class supports customization of the user interface
by specifying named colors for different elements.

10. Resource: Represents any type of app resources, such
as audio or image files. It centralizes access to different
resources, making resource management easier.

11. String: Stores text strings used within the app. This
class is essential for localization and for managing
static text in a consistent way.

12. File: Represents individual files (e.g., audio or image
files). It allows the app to manage multimedia content
efficiently by linking it to the resource management
system.

13. Layout: Defines the arrangement of UI components
within an activity or fragment. This class is crucial for
setting up how the app’s interface is structured
visually.

14. Fragment: Represents portions of a UI that can be
reused within activities. This class allows for modular
design, enabling developers to reuse UI components
across different screens.

15. Widget: Represents individual UI elements, like
buttons or images. This class is essential for managing
user interface controls and how they interact within the
app.

16. Adapter: Manages the connection between data and
views (UI elements). It is defined to allow flexible
handling of data in lists or other view components.

17. ViewHolder: Holds references to UI components,
improving performance when binding data to views.
This class is crucial in reducing resource usage when
handling large datasets.

18. Data: Represents data entities used in the app. This
class allows for the structured handling of data, linking
it to the app’s user interface and logic.

19. ObjectClass: Represents custom objects within the
app’s logic. It supports the creation of complex data
structures for handling app-specific functionality.

20. DataClass: A structured class for managing
datasets. This class helps with organizing and
processing data in a structured and reusable way.

21. Parameter: Defines parameters passed between
activities or fragments. It ensures flexibility by
allowing inputs to be defined and processed
dynamically.

22. CardView, ButtonImage, TextView, ImageView:
Specialized widgets for displaying specific types of
content, such as images, text, and buttons. These
classes help manage specific UI components
efficiently.

23. Item: Represents individual items that might appear
in lists or collections within the app. This class
ensures that each item’s data is properly organized
and managed.

In summary, each class in the metamodel is defined to
encapsulate a specific aspect of the app’s structure,
resources, or behavior. This separation of concerns ensures
that the app’s design is modular, maintainable, and
scalable.

B. Graphical Editor

A graphical editor is embedded in the proposed
framework, allowing developers to visually model the
components of their audio-based application. This editor

Reza Vakili, Leila Samimi-Dehkordi, Marzieh Varposhti 24

enables the user to easily add elements like playback
control buttons, audio files, and other user interface
components to the model. Using this graphical tool

facilitates the modeling process and allows developers to
design applications more quickly. Figure 3 shows the
graphical icon for each concept of the metamodel.

Fig. 2. The proposed metamodel

25 Journal of Computer and Knowledge Engineering, Vol. 8, No. 1, 2025.

Fig. 3. Mapping between metamodel elements and toolbox

The Section column organizes the components into

logical groupings:

 Application: Deals with the overall structure and

configuration of the app. It includes components

like App, Configuration, and String, representing

the high-level structure and setup of the app.

 Page and Activity: Focuses on user interaction

and screen organization. It covers components like

Activity, SplashActivity, Fragment, and Layout,

all related to defining the app’s pages and screen

transitions.

 Widget: Involves the interface elements that users

can interact with directly. It represents the UI

controls (e.g., CardView, Button, ImageView) that

users interact with.

 Theme: Manages the look and feel of the app. It

includes components related to the app’s

appearance, like Theme and Color.

 Resource: Contains various resources like files

and data that the app needs to function. It

represents elements such as Resource and File,

which manage assets like images, audio, and other

external files.

 Data: Handles the internal data structures and

information processing of the app. It covers

DataClass, ObjectClass, and Parameter, which are

related to handling and processing the app’s data

structure.



C. Transformation Engine

The transformation engine is one of the key

components of the framework. This engine is responsible

for converting high-level models into executable Android

code. The transformation engine uses rules and algorithms

based on the defined metamodel to generate appropriate

code. This code is generated in languages such as Kotlin

or Java and includes all the necessary components for a

complete Android application.

Reza Vakili, Leila Samimi-Dehkordi, Marzieh Varposhti 26

The provided code snippets in Figure 4, are two

Acceleo templates that generate Kotlin code for

configuration and language classes. The first template

creates a configuration class with properties like version

code, version name, package name, and SDK versions.

The second template generates an enum class for language

codes, including English and Persian languages. These

templates are used in a code generation process to

automate the creation of these classes based on specific

input data.

Fig. 4. The file to convert the model to the configuration code and the type of user language of the application

D. Code Customization in Android Studio

The code generated by the transformation engine is

transformed to Android Studio, where developers can

manually customize and improve the code. This stage

includes final optimizations, adding specific features, and

making additional adjustments. Android Studio is used as

a powerful tool for this purpose, enabling developers to

make necessary changes to prepare their applications for

release.

4. EVALUATION

The purpose of the evaluation process was to

thoroughly test the efficacy and adaptability of the

suggested framework across multiple scenarios. Using

four different case studies that provide insights into the

approach's practical usability and scalability, this study

demonstrates the framework ability to address the

obstacles involved in developing audio-based applications.

These applications were selected to demonstrate how the

framework can handle a range of requirements, such as

managing instructional content, playing sound, and

displaying images. Additionally, a significant portion of

the application code was automatically generated from the

model. The scenarios demonstrate how the framework

supports a broad range of complexity and functionality

while abstracting away the specifics of application

programming.

In the following, first, the framework is evaluated based

on four case studies in Section IV.A. Then, the

development effort is estimated for each MDE and

traditional approach in Section IV.B. Finally, in Section

IV.C, the framework is compared with two other MDE

frameworks, which are used to develop Android

applications.

A. Case Study Evaluation

In this research, four Android applications are

developed as case studies. These applications include

features such as sound playback, image display, and

management of educational information. These

applications are modeled using the proposed framework,

and the corresponding code is semi-automatically

generated. The case studies are described as follows.

1) EnglishInSound Application: This application is

designed for teaching English words with sound playback.

Users can hear the pronunciation of words by touching

images or words. The proposed framework enabled

developers to create models for sound management and the

user interface in a simple and efficient manner. Figure 5

presents the first and second pages of the app.

27 Journal of Computer and Knowledge Engineering, Vol. 8, No. 1, 2025.

Fig. 5. Implementation of the English education app

2) FlagsOfCountries Application: This application is

designed for teaching the flags of countries worldwide.

Users can see the flag of each country, and by touching

it, the name of the country is played aloud. This

application uses the TextToSpeech library for sound

playback. Figure 6 shows first and second pages of the

app.

Fig. 6. Implementation of the flag education program of the

continents of the world

3) AsiaFlags Application: The AsiaFlags application is

similar to the previous application but displays only the

flags of Asian countries. This application also utilized

the proposed framework, allowing developers to

quickly implement similar features in a simple model.

Some parts of implementation code are differed from

the previous app. Figure 7 shows one page of the app.

Fig. 7. Implementation of the AsiaFlags app

4) AsiaFlagsFragment Application: This application has

the same functionality as the AsiaFlags program but

uses the Fragment technology to load information (see

Figure 8). The proposed framework, by supporting

newer Android patterns (such as Fragments), allowed

developers to easily use these features in the generated

models and code.

Fig. 8. Implementation of the AsiaFlagsFragment app

Table II compares the features of four different Android

applications that use audio as a key component. The

applications are categorized based on their program

complexity, user interface design, data structure, purpose,

and various capabilities.

The table shows the varying levels of complexity, from

Low to High, and indicates how each program handles data

structures, either using a JSON file or a class file,

depending on the application's requirements. Additionally,

it highlights key functional aspects, such as the

information separation, display architecture patterns

(Adapter or Fragment), and the audio playback

configuration type, which ranges between TextToSpeech

and MediaPlayer. For example, some applications focus

on disaggregated training with features like displaying an

item, while others are geared towards unsegregated

training with broader functionalities, like displaying a list

of items and providing a welcome page. This comparison

gives insight into how different applications are designed

and configured to meet their unique training purposes.

Reza Vakili, Leila Samimi-Dehkordi, Marzieh Varposhti 28

TABLE II

COMPARISON OF FOUR CASE STUDIES

E
n
g

li
sh

In
S

o
u
n

d

F
la

g
sO

fC
o
u
n

tr
ie

s

A
si

aF
la

g
sF

ra
g

m
en

t

A
si

aF
la

g
s

Criterion

  Low

Program Complexity   Medium

  High

 
Display a list of

items User Interface

   Display an item

  JSON File
Data Structure

   Class File

   
Disaggregated

training Purpose of the
program


Unsegregated

training

    Yes Information

separation  No

 Welcome page
Capabilities

    Show case details

   Adapter Display architecture

pattern   Fragment

    TextToSpeech Audio playback

configuration type  MediaPlayer

The tree representation of the EnglishInSound

application model is presented in Figure 9. The model

consists of a main activity (MainActivity) that contains

various layers and widgets such as buttonsLayout and

buttons like nextButton, btnPlay, and prevButton. This

application also includes a fragment (EnglishFragment)

and a splash activity (SplashActivity). The model

comprises resources such as sound files (soundItem) and

data classes (EnglishData) with various parameters to

manage the application’s information. Additionally, a

theme (Theme) and text strings (String) are used for

different app settings. Figure 10 illustrates the graphical

view of this model, which is designed by the graphical

editor of the framework.

Table III presents the distribution of metamodel class

instances across four applications developed using the

proposed framework. Each row represents a specific

metamodel class, and the values in the columns indicate

the number of instances of that class in each application.

Subcategories such as DataClass and ObjectClass under

Data, and CardView, TextView, and other widgets under

Widget, provide additional details about the structure of

each application.

The analysis highlights the framework's adaptability in

supporting diverse application requirements. The

consistent presence of core classes, such as App,

Configuration, and Activity, demonstrates the

framework’s ability to model essential components across

different contexts. Meanwhile, the variability in the use of

classes like Fragment, Adapter, and widgets reflects the

framework's flexibility to accommodate unique

application features, such as dynamic navigation or custom

user interfaces. This adaptability enables developers to

easily tailor the framework to meet specific needs, thereby

enhancing its applicability in real-world scenarios.

Fig. 9. Tree representation of the EnglishInSound app model

Fig. 10. Graphical view of the EnglishInSound app model

29 Journal of Computer and Knowledge Engineering, Vol. 8, No. 1, 2025.

TABLE III

DISTRIBUTION OF METAMODEL CLASS INSTANCES ACROSS

APPLICATIONS

Metamodel Class

A
siaF

lag
sF

rag
m

en
t

A
siaF

lag
s

F
lag

sO
fC

o
u
n

tries

E
n
g

lish
In

S
o
u
n

d

App 1 1 1 1

Configuration 1 1 1 1

Resource 1 1 0 1

Activity 1 1 2 1

SplashActivity 0 0 0 1

Fragment 1 0 0 1

Adapter 0 1 2 0

ViewHolder 0 1 2 0

Layout 2 2 4 3

String 1 1 1 1

Theme 1 1 1 1

Color 2 1 1 1

Item 3 1 1 3

File 2 1 0 2

Parameter 6 4 4 6

Data

- DataClass 1 1 2 1

- ObjectClass 1 1 2 1

Widget

- CardView 1 1 2 1

- ButtonImage 2 0 0 3

- TextView 1 1 3 1

- ImageView 1 1 2 2

- Button 1 0 0 0

After creating a model for each case study, the code

generator of the framework is applied. By means of the

code generator in the framework, 67% of the

EnglishInSound app code is generated automatically from

the given model. Here's a breakdown of the areas that can

be automated:

 Activity and Fragment Setup: The basic structure of

the SplashActivity and MainActivity classes,

including the setup of the Fragment and the

corresponding JsonHelper class, is generated

automatically from the model.

 UI Components and Events: The layout and

interaction of the UI components, such as the buttons,

image views, and text views, is generated from the

model’s definition of the user interface. The click

event handling for the play/pause button, as well as

the previous and next buttons, is generated from the

specification of the user interactions.

 Media Player Management: The code related to

loading, playing, and controlling the audio files, as

well as the integration with the UI components, is

generated from the specification of the audio playback

functionality in the model.

 Data Model and JSON Parsing: The EnglishData data

class and the JsonHelper class, which handle the

parsing of the JSON data, is generated directly from

the data model.

 Fragment Replacement: The logic for replacing the

EnglishFragment within the MainActivity is

generated from the specification of the navigation and

content management.

The remaining of the code would require manual

implementation, such as any custom business logic or

domain-specific functionality that is not directly captured

in the metamodel.

Figure 11, the stacked bar chart, illustrates a

comparison of the number of lines of code (LOC)

generated automatically versus those written manually for

four different applications. For example, AsiaFlags has

263 total lines of code, with 247 lines (94%) automatically

generated and 16 lines must manually be written.

FlagsofCountries shows 364 total lines, 323 of which

(89%) were generated automatically. EnglishInSound had

278 total lines, 186 (67%) automatically generated, and

AsiaFlagsFragment had 269 total lines, with 209 (78%)

automatically generated. The data reveals that AsiaFlags

had the highest percentage of automatically generated

code, while EnglishInSound had the lowest.

Fig. 11. Stacked bar chart comparing automatically generated

and manually written lines of code (LOC) for the four case

studies

B. Evaluation of Development Effort and Time

In subsection IV.A, Table III demonstrates the

framework's adaptability through the distribution of

metamodel class instances. Building on this, the evaluation

in this section highlights how this flexibility reduces

development effort and supports the creation of diverse

application features, including dynamic navigation,

custom user interfaces, and efficient data handling.

To evaluate the development effort required by the

proposed model-driven framework and compare it to the

traditional manual coding approach, we conducted an

experiment with three participants of varying expertise

levels:

 Participant 1: An expert in modeling with limited

Android development experience.

 Participant 2: An expert in Android development with

no prior exposure to model-driven engineering.

 Participant 3: A beginner with no significant expertise

in either modeling or Android development.

The experiment consisted of the following stages as

shown in Table IV:

1. Learning Framework Concepts: Participants

Reza Vakili, Leila Samimi-Dehkordi, Marzieh Varposhti 30

familiarized themselves with the framework,

including the metamodel structure, graphical editor,

and transformation process. The required time

varied based on prior knowledge, ranging from 1

hour for the modeling expert to 3 hours for the

beginner. The learning phase is only required once

and was excluded from the time calculations for

individual case studies.

2. Familiarization with the Graphical Editor: All

participants learned to use the graphical modeling

tool, which has a simple and intuitive interface. The

time required ranged from 30 minutes for

Participant 1 to 1 hour for Participant 3.

3. Model Creation: For simple case studies, model

creation required 20 minutes for Participant 1, 30

minutes for Participant 2, and 45 minutes for

Participant 3. For complex models, the effort

increased to 1 hour for Participant 1, 1.5 hours for

Participant 2, and 2 hours for Participant 3.

4. Manual Code Customization: While the

framework generates a significant portion of the

code, certain custom logic must be added manually.

The time required for this step is presented in Table

VI.

5. APK Generation: The final step of generating and

deploying the APK file on an Android device took

10 to 15 minutes for all participants.
TABLE IV

MODEL-DRIVEN DEVELOPMENT EFFORT
Phase Modeling

Expert

Android

Expert

Beginner

Learning Framework

Concepts

1 hour 2 hours 3 hours

Familiarization with

Editor

30 min. 45 min. 1 hour

Model Creation

(Simple)

20 min. 30 min. 45 min.

Model Creation

(Complex)

1 hour 1.5 hours 2 hours

APK Generation 10 min. 10 min. 15 min.

For the traditional approach, we assumed that an Android

development expert manually codes the entire

application. The average effort per line of code (LOC)

was estimated at 2 minutes, excluding time for learning

Android programming. APK generation time was

considered equivalent to the model-driven approach. The

result shows in Table V. This calculation is done for

manual code of MDE approach which is presented in

Table VI.

TABLE V

Traditional Development Effort
Application LOC Manual

Effort

(Minutes)

APK

Gen.

Manual

Effort

(Hours)

AsiaFlags 263 526 10 ~9

FlagsOfCountries 364 728 10 ~12 ⅓

EnglishInSound 278 556 10 ~9.5

AsiaFlagsFragment 269 538 10 ~9⅒

TABLE VI

Manual Code Customization Effort in the Model-Driven

Approach
Application LOC Manual Effort

(Minutes)

Manual Effort

(Hours)

AsiaFlags 16 32 ~0.5

FlagsOfCountries 41 82 ~1⅕

EnglishInSound 92 184 ~3

AsiaFlagsFragment 60 120 ~2

Learning the framework’s concepts is a one-time cost

and was excluded from individual case study times. Once

familiar, all participants could complete tasks efficiently.

By automating key aspects of the development process,

the proposed framework significantly reduces the effort

and time required to develop Android applications. While

traditional coding requires 9 to 12 ⅓ hours per application,

the model-driven approach completes the same task in 1.5

to 3 hours, even for beginners. This highlights the

framework’s efficiency and its ability to simplify

application development for developers with varying

levels of expertise.

The comparison of development effort between the

model-driven and traditional approaches highlights the

efficiency of the proposed methodology. The results

demonstrate that by automating repetitive coding tasks and

providing intuitive modeling tools, the framework reduces

development time while maintaining a high standard of

application quality.

C. Comparison with Other Frameworks

To compare the proposed framework with two other

frameworks (ALBA [9] and HealMA [11]), three main

criteria are considered: maintainability [16],

understandability [17], and extensibility [18]. These

criteria are to evaluate the quality of different frameworks

in application development.

Maintainability refers to the ability to make changes

and maintain the system without major alterations to its

structure. Formula (1) shows maintainability as a function

of the number of classes (NC), attributes (NA), references

(NR), the maximum hierarchical level (DITmax), and the

maximum fan-out (Fanoutmax). Lower values shows

better maintainability [16].

𝑁𝐶 + 𝑁𝐴 + 𝑁𝑅 + 𝐷𝐼𝑇𝑀𝑎𝑥 + 𝐹𝑎𝑛𝑜𝑢𝑡𝑀𝑎𝑥

5
 (1)

Understandability refers to the developers’ ability to

understand the structure of the model and code. Formula

(2) shows that Understandability is computed based on the

number of predecessors (PREDc) and number of classes

(NC). Higher values demonstrate better

understandability [17].

∑ 𝑃𝑅𝐸𝐷 + 1𝑁𝐶

𝐾=1

𝑁𝐶
 (2)

Extensibility refers to the ability to add new features to

the system without requiring extensive changes to the

existing structure. Formula (3) for extensibility is based on

the number of inherited features (INHF) and total number

31 Journal of Computer and Knowledge Engineering, Vol. 8, No. 1, 2025.

of features (NTF). Higher values indicate better

extensibility [18].

𝐼𝑁𝐻𝐹

𝑁𝑇𝐹
 (3)

As shown in Table VII, the proposed framework has

achieved high maintainability due to the use of high-level

models and automatic code generation. It received a better

score compared to the other two frameworks, indicating its

strong maintainability capabilities. Through visual

representations and graphical tools, the proposed approach

has provided better understandability. It offers higher

understandability compared to the ALBA [9] and HealMA

[11] frameworks. Additionally, the proposed framework

excels in extensibility due to its higher flexibility in adding

new features.

TABLE VII

COMPARISON OF THREE FRAMEWORKS

Framework Maintainability Understandability Extensibility

Our approach 26.2 0.29 0.36

ALBA [9] 26.6 0.17 0.12

HealMA[11] 35.6 0.22 0.24

The results of the investigation demonstrate that the

proposed framework offers a scalable and maintainable

solution for upcoming developments in mobile software

development, in addition to addressing the technical

difficulties of creating audio-based applications. This

study adds to the larger field of model-driven engineering

by concentrating on domain-specific requirements and

providing insights that can guide both academic research

and practical uses.

5. CONCLUSION AND FUTURE WORK

This section concludes the findings of the study in

Section V.A and outlines potential directions for future

work in Section V.B.

A. Conclusion

Through this study, we highlight how model-driven

engineering can be used to facilitate development for

audio-based application domains. We describe the

comprehensive, audio-based application design

capabilities of our suggested framework, which eventually

bridges the gap between practical implementation and

high-level modeling.

The increasing demand for audio programs like

audiobooks and language-learning applications has put

this new pressure on developers to produce their products

faster and more efficiently. The domain-specific modeling

languages have shown a lot of promise in tackling these

issues. The MDE framework is beneficial to software

engineering researchers and practitioners because it can

significantly reduce development time and effort without

sacrificing application quality. Its embrace could boost

progress in fields that want speedy, high-quality

applications.

The study proposes an MDE-based holistic framework

that encompasses three critical layers: (1) a domain-

specific metamodel; (2) a graphical editor; (3) a model-to-

code transformation tool. The metamodel encapsulates the

core elements of audio-based applications, providing a

high-level abstraction that simplifies the design process.

The graphical editor allows developers to create and

modify the models visually, without requiring extensive

knowledge about programming, and the transformation

tool automatically generates an Android executable code.

All of these components work together to accelerate the

development process and allow developers to create highly

specialized apps with maximum efficiency.

The performance of the proposed framework validates

its potential to tackle important issues in the development

of audio-based applications. Establishing metrics such as

maintainability, understandability, and extensibility

highlights its potential for simplifying development

processes and adapting to a variety of application

requirements. The next steps would be to improve the

flexibility and scalability of the framework so that it can

be increasingly applicable to the more complex real-world

use cases.

Although case studies have been done that reflect

typical audio-based applications, the scalability of this

framework to more advanced, real-world use cases still

requires further research. This current evaluation

encapsulates the frameworks that allow it to automate key

aspects of the development process, reducing manual

effort and accelerating the creation of various applications.

These results indicate that the framework holds promise

for real-world applicability, especially in domains

requiring rapid development and high customization. In

the future, we plan to test the framework on complex real-

world applications to see how well it scales and performs

in harder conditions.

The demonstrated effectiveness of this paradigm in

reducing development workload and increasing software

quality suggests that similar concepts could be applied to

a variety of fields where adaptability and short time-to-

market are critical. With increasingly specialized

applications in demand, such an approach provides a solid

foundation for addressing new software engineering

challenges.

B. Future Work

Although the proposed framework yields promising

results, there is still opportunity for development to

enhance its applicability and performance:

1. Support for Dynamic Structures: Future versions of

the framework could add support for adaptation at runtime

and dynamic behaviors. This can lead to more effective

handling of resources that can be loaded on the fly as well

as components that are generated at runtime, allowing for

increased responsiveness and flexibility within

applications.

2. Scalability to Complex Applications: The current

Reza Vakili, Leila Samimi-Dehkordi, Marzieh Varposhti 32

framework has been tested with relatively simple case

studies. Future work would involve applying the

framework to real-world, complex applications to assess

its scalability and identify areas for further, and

undoubtedly necessary, improvement. This would provide

a much more robust validation of its capabilities across a

wide range of scenarios.

3. Cross-Platform Portability: Currently, the framework

is intended for Android development. To make it even

more useful, extending the training to support additional

platforms, such as iOS or cross-platform frameworks (e.g.,

Flutter), would increase its versatility and applicability

across diverse development environments.

4. Advanced Evaluation and Comparison: More in-

depth practical experiments and comparisons with

traditional development methods can help provide

additional validation of the effectiveness and efficiency of

the framework. Comparative quantitative analyses on

development costs, time savings, application performance,

etc., would yield more profound insights and showcase its

advantages.

5. Extending Metamodel and Tools: Further automating

domain-specific elements in the metamodel through the

graphical editor and transformation tool could potentially

simplify the development further. If the utility and

adaptability of the framework were increased by

supporting a wider range of programming languages and

application types.

In addressing these directions, the framework presented

in this paper will be able to evolve, allowing developers to

respond to the increasing requirements laid by the

development of larger and faster-changing applications in

a more effective and efficient manner.

REFERENCES
[1] R. F. Paige, N. Matragkas, and L. M. Rose. (2016,

Jan.). Evolving models in model-driven engineering:

State-of-the-art and future challenges. Journal of

Systems and Software. [Online]. 111(1), pp. 272–280.

Available: https://doi.org/10.1016/j.jss.2015.08.047

[2] R. France and B. Rumpe. (2007, May.). Model-driven

development of complex software: A research

roadmap. In Future of Software Engineering

(FOSE'07). [Online]. pp. 37–54. Available:

https://doi.org/10.1109/FOSE.2007.14

[3] M. Abbasi, A. Lopes, D. Rodrigues, J. Saraiva, P.

Martins, F. Sá, and F. Cardoso. (2023, Jun.). In-depth

analysis of mobile apps statistics: A study and

development of a mobile app. In 2023 18th Iberian

Conference on Information Systems and Technologies

(CISTI). pp. 1–7. [Online]. Available:

https://doi.org/10.23919/CISTI58278.2023.10211912

[4] L. M. Poupis, D. Rubin, and L. Lteif. (2021, Mar.).

Turn up the volume if you’re feeling lonely: The effect

of mobile application sound on consumer outcomes.

Journal of Business Research. [Online]. 126, pp. 263–

278. Available:

 https://doi.org/10.1016/j.jbusres.2020.12.062

[5] A. M. Rapatsalahy, H. Razafimahatratra, T. Mahatody,

M. Ilie, S. Ilie, and R. N. Razafindrakoto. (2021, Jun.).

Automatic Generation of Object-Oriented Code from

the ReLEL Requirements Model. System Theory,

Control and Computing Journal. [Online]. 1(1), pp.

36–47. Available:

 https://doi.org/10.52846/stccj.2021.1.1.9

[6] S. Vaupel, G. Taentzer, J. P. Harries, R. Stroh, R.

Gerlach, and M. Guckert. (2014, Sep.). Model-driven

development of mobile applications allowing role-

driven variants. In Model-Driven Engineering

Languages and Systems: 17th International

Conference, MODELS 2014, Valencia, Spain, 2014.

[Online]. Available: https://doi.org/10.1007/978-3-

319-11653-2_1

[7] M. Derakhshandi, S. Kolahdouz-Rahimi, J. Troya, and

K. Lano. (2021, Nov.). A model-driven framework for

developing android-based classic multiplayer 2D board

games. Automated Software Engineering. [Online].

28(2), p. 7. Available: https://doi.org/10.1007/s10515-

021-00282-1

[8] J. Z. Blanco and D. Lucrédio. (2021, Sep.). A holistic

approach for cross-platform software development.

Journal of Systems and Software. [Online]. 179, p.

110985. Available:

https://doi.org/10.1016/j.jss.2021.110985

[9] M. Gharaat, M. Sharbaf, B. Zamani, and A. Hamou-

Lhadj. (2021, May.). ALBA: A model-driven

framework for the automatic generation of android

location-based apps. Automated Software Engineering.

[Online]. 28, pp. 1–45. Available:

https://doi.org/10.1007/s10515-020-00278-3

[10] L. B. Ammar. (2021, Mar.). An automated model-

based approach for developing mobile user interfaces.

IEEE Access. [Online]. 9, pp. 51573–51581. Available:

https://doi.org/10.1109/ACCESS.2021.3066007

[11] M. Mehrabi, B. Zamani, and A. Hamou-Lhadj. (2022,

Nov.). HealMA: A model-driven framework for

automatic generation of IoT-based Android health

monitoring applications. Automated Software

Engineering. [Online]. 29(2), p. 56. Available:

https://doi.org/10.1007/s10515-022-00363-9

[12] M. Shamsujjoha, J. Grundy, L. Li, H. Khalajzadeh,

and Q. Lu. (2021, Dec.). Developing mobile

applications via model-driven development: A

systematic literature review. Information and Software

Technology. [Online]. 140, p. 106693. Available:

https://doi.org/10.1016/j.infsof.2021.106693

[13] J. A. Barriga, P. J. Clemente, E. Sosa-Sánchez, and

A. E. Prieto. (2021). SimulateIoT: Domain Specific

Language to design, code generation and execute IoT

simulation environments. IEEE Access. [Online]. 9, pp.

92531–92552. Available:

https://doi.org/10.1109/ACCESS.2021.3092528

[14] M. Núñez, D. Bonhaure, M. González, and L.

Cernuzzi. (2020, Mar.). A model-driven approach for

the development of native mobile applications

focusing on the data layer. Journal of Systems and

Software. [Online]. 161, p. 110489. Available:

https://doi.org/10.1016/j.jss.2019.110489

https://doi.org/10.1016/j.jss.2015.08.047
https://doi.org/10.1016/j.jss.2015.08.047
https://doi.org/10.1016/j.jss.2015.08.047
https://doi.org/10.1016/j.jss.2015.08.047
https://doi.org/10.1016/j.jss.2015.08.047
https://doi.org/10.1016/j.jss.2015.08.047
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.23919/CISTI58278.2023.10211912
https://doi.org/10.23919/CISTI58278.2023.10211912
https://doi.org/10.23919/CISTI58278.2023.10211912
https://doi.org/10.23919/CISTI58278.2023.10211912
https://doi.org/10.23919/CISTI58278.2023.10211912
https://doi.org/10.23919/CISTI58278.2023.10211912
https://doi.org/10.23919/CISTI58278.2023.10211912
https://doi.org/10.1016/j.jbusres.2020.12.062
https://doi.org/10.1016/j.jbusres.2020.12.062
https://doi.org/10.1016/j.jbusres.2020.12.062
https://doi.org/10.1016/j.jbusres.2020.12.062
https://doi.org/10.1016/j.jbusres.2020.12.062
https://doi.org/10.1016/j.jbusres.2020.12.062
https://doi.org/10.52846/stccj.2021.1.1.9
https://doi.org/10.52846/stccj.2021.1.1.9
https://doi.org/10.52846/stccj.2021.1.1.9
https://doi.org/10.52846/stccj.2021.1.1.9
https://doi.org/10.52846/stccj.2021.1.1.9
https://doi.org/10.52846/stccj.2021.1.1.9
https://doi.org/10.52846/stccj.2021.1.1.9
https://doi.org/10.1007/978-3-319-11653-2_1
https://doi.org/10.1007/978-3-319-11653-2_1
https://doi.org/10.1007/978-3-319-11653-2_1
https://doi.org/10.1007/978-3-319-11653-2_1
https://doi.org/10.1007/978-3-319-11653-2_1
https://doi.org/10.1007/978-3-319-11653-2_1
https://doi.org/10.1007/978-3-319-11653-2_1
https://doi.org/10.1007/978-3-319-11653-2_1
https://doi.org/10.1007/978-3-319-11653-2_1
https://doi.org/10.1007/s10515-021-00282-1
https://doi.org/10.1007/s10515-021-00282-1
https://doi.org/10.1007/s10515-021-00282-1
https://doi.org/10.1007/s10515-021-00282-1
https://doi.org/10.1007/s10515-021-00282-1
https://doi.org/10.1007/s10515-021-00282-1
https://doi.org/10.1007/s10515-021-00282-1
https://doi.org/10.1016/j.jss.2021.110985
https://doi.org/10.1016/j.jss.2021.110985
https://doi.org/10.1016/j.jss.2021.110985
https://doi.org/10.1016/j.jss.2021.110985
https://doi.org/10.1016/j.jss.2021.110985
https://doi.org/10.1007/s10515-020-00278-3
https://doi.org/10.1007/s10515-020-00278-3
https://doi.org/10.1007/s10515-020-00278-3
https://doi.org/10.1007/s10515-020-00278-3
https://doi.org/10.1007/s10515-020-00278-3
https://doi.org/10.1007/s10515-020-00278-3
https://doi.org/10.1007/s10515-020-00278-3
https://doi.org/10.1109/ACCESS.2021.3066007
https://doi.org/10.1109/ACCESS.2021.3066007
https://doi.org/10.1109/ACCESS.2021.3066007
https://doi.org/10.1109/ACCESS.2021.3066007
https://doi.org/10.1007/s10515-022-00363-9
https://doi.org/10.1007/s10515-022-00363-9
https://doi.org/10.1007/s10515-022-00363-9
https://doi.org/10.1007/s10515-022-00363-9
https://doi.org/10.1007/s10515-022-00363-9
https://doi.org/10.1007/s10515-022-00363-9
https://doi.org/10.1016/j.infsof.2021.106693
https://doi.org/10.1016/j.infsof.2021.106693
https://doi.org/10.1016/j.infsof.2021.106693
https://doi.org/10.1016/j.infsof.2021.106693
https://doi.org/10.1016/j.infsof.2021.106693
https://doi.org/10.1016/j.infsof.2021.106693
https://doi.org/10.1109/ACCESS.2021.3092528
https://doi.org/10.1109/ACCESS.2021.3092528
https://doi.org/10.1109/ACCESS.2021.3092528
https://doi.org/10.1109/ACCESS.2021.3092528
https://doi.org/10.1109/ACCESS.2021.3092528
https://doi.org/10.1109/ACCESS.2021.3092528
https://doi.org/10.1016/j.jss.2019.110489
https://doi.org/10.1016/j.jss.2019.110489
https://doi.org/10.1016/j.jss.2019.110489
https://doi.org/10.1016/j.jss.2019.110489
https://doi.org/10.1016/j.jss.2019.110489
https://doi.org/10.1016/j.jss.2019.110489

33 Journal of Computer and Knowledge Engineering, Vol. 8, No. 1, 2025.

[15] L. Guo, The First Line of Code: Android

Programming with Kotlin. Springer Nature, 2022.

[16] M. Genero and M. Piattini. (2001, Jun.). Empirical

validation of measures for class diagram structural

complexity through controlled experiments. In 5th

International ECOOP Workshop on Quantitative

Approaches in Object-Oriented Software Engineering.

[Online]. Available: https://citeseerx.ist.psu.edu

[17] F. T. Sheldon and H. Chung. (2006, Sep.). Measuring

the complexity of class diagrams in reverse

engineering. Journal of Software Maintenance and

Evolution: Research and Practice. [Online]. 18(5), pp.

333–350. Available: https://doi.org/10.1002/smr.336

[18] T. Arendt, F. Mantz, and G. Taentzer. (2009, Oct.).

UML model quality assurance techniques. Philipps-

Univ. Marburg, Marburg, Germany, Tech. Rep.

[Online]. Available:

https://citeseerx.ist.psu.edu/document

https://www.amazon.com/First-Line-Code-Android-Programming/dp/981191799X
https://www.amazon.com/First-Line-Code-Android-Programming/dp/981191799X
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=dd525d80c1f370258e56cd956bcb903706c216dc
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=dd525d80c1f370258e56cd956bcb903706c216dc
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=dd525d80c1f370258e56cd956bcb903706c216dc
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=dd525d80c1f370258e56cd956bcb903706c216dc
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=dd525d80c1f370258e56cd956bcb903706c216dc
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=dd525d80c1f370258e56cd956bcb903706c216dc
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=dd525d80c1f370258e56cd956bcb903706c216dc
https://doi.org/10.1002/smr.336
https://doi.org/10.1002/smr.336
https://doi.org/10.1002/smr.336
https://doi.org/10.1002/smr.336
https://doi.org/10.1002/smr.336
https://doi.org/10.1002/smr.336
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=519b9d88b57d0038935d01b31667513812962881
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=519b9d88b57d0038935d01b31667513812962881
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=519b9d88b57d0038935d01b31667513812962881
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=519b9d88b57d0038935d01b31667513812962881
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=519b9d88b57d0038935d01b31667513812962881

Reza Vakili, Leila Samimi-Dehkordi, Marzieh Varposhti 34

