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Abstract: In the recent years, the Internet of things (IoT) 

applications have affected many aspects of human life due to 

the continuous innovation in hardware, software, and 

communication technologies along with the growth of the 

connected devices. The enormous amounts of data generated 

by these devices must be stored and then processed for 

analysis and decision-making. One promising solution for 

this purpose is cloud computing. However, offloading tasks 

to the cloud imposes costs that must be reduced by intelligent 

techniques and optimization algorithms. Fortunately, 

considering cloud computing instances with dynamic pricing 

referred to as spot instances can significantly reduce the 

processing costs. Although these instances offer a 

considerable cost reduction compared to on-demand 

instances, they can be evicted by the cloud providers and 

require special scheduling techniques. In this paper, we 

propose a dynamic scheduling method for IoT task 

offloading on Amazon EC2 spot instances. The proposed 

method considers both the predicted execution time of the 

task and the specified deadline that can be mapped on spot 

instances. The empirical results denote that the proposed 

method leads to a considerable reduction in the execution 

costs, while it simultaneously increases the number of 

successful tasks executed before the deadline and decreases 

task turnaround time. 
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1.  Introduction 

Nowadays, significant and rapid advances in information and 

communication technology (ICT) have changed human lives 

in different aspects [1]. The Internet of things (IoT) plays a 

fundamental role in the ICT sector; it is estimated that the IoT 

industry indicates almost $949.42 billion by the start of the 

year 2025 [2]. The IoT paradigm refers to a pattern of unique 

addressable chain objects that can include real and physical 

tools, including sensors, tags, cars, smartphones, and so on 

[3]. The data collected by the IoT tools can be transferred 

over the Internet and processed. Therefore, data processing 

is considered as one of the main requirements of the IoT. One 

of the main challenges in the IoT is cost reduction, which is 

guaranteed by optimizing operating costs [4].  In some cases, 

the IoT devices face challenges, such as limited processing 

power, storage, and battery constraints. In this situation, 

transferring tasks to the third-party computing platforms such 

as the cloud is inevitable, which is referred to as task 

offloading [5]. 
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Another issue in the IoT is to consider time constraints 

because each task should be executed before the deadline. 

Deadline-constrained tasks are time-limited tasks that must 

be completed, and the results must be returned to the user 

before the deadline expires. At the core of this technology, 

cloud computing can be used to provide the required 

processing and storage services. Cloud computing is a model 

for universal, convenient, and on-demand access to a 

network of computing resources that changes the task 

execution model from traditional models to a pay-per-use 

approach [7]. It offers storage and processing requirements 

for a wide range of applications such as bag of tasks (BoT), 

workflows, web applications, real-time tasks, and so on [9], 

[11]. However, the successful execution of the IoT tasks 

without deadline violations must be taken into account. Thus, 

presenting an appropriate scheduling algorithm for the IoT 

task offloading, which considers the issues as mentioned 

earlier, is an exciting research topic [5], [6]. 

Major service providers such as Microsoft, Google, and 

Amazon deploy cloud resource management systems in 

distributed data centers worldwide. They offer services 

according to their unique rules. Some cloud service providers 

offer a special type of auction-based pricing model for the 

idle resources in their data centers to maximize their profits. 

The price of these resources varies with time according to 

supply and demand rates. The most popular cloud service 

providers that offer this type of service include Google cloud 

pre-emptible virtual machines (VMs), Amazon EC2 spot 

instances, and Microsoft Azure low priority VMs [12], [14].  

Amazon offers spot instances across different geographic 

regions with different memory, processing, and operating 

system features as different VM types. The significant cost 

saving offered by the Amazon EC2 spot instances has 

increased the popularity of spot instances in the academy and 

industry. Therefore, many types of research have focused on 

the use of spot instances in task scheduling [15], [16]. Due to 

the dynamic pricing of spot instances, offering an appropriate 

bid requires an appropriate approach to price prediction. 

Thus, this context has received widespread attention from 

researchers [17], [19]. The price offered in these works is 

specific to geographic regions. That is, each task has a 

geographical range, and the number of available instances is 

limited [11]. One of the main challenges that should be 

considered is the reduced availability of the spot instances 

due to their auctioning essence. This unguaranteed 

availability of spot instances can affect task execution in 

several ways. For example, if the execution of a leased spot 

instance is terminated unexpectedly, a proper solution should 
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be proposed so that the computations of the executing job 

remain safe and the execution recommences; therefore, the 

deadline of the task is not threatened. 

Task scheduling is generally divided into dynamic and 

static categories. In static scheduling methods, all the tasks 

are submitted to the system before execution. Therefore, the 

schedule map is determined before the execution begins and 

does not change during the execution. In dynamic scheduling 

methods, however, the tasks and their entry time are not 

specified before execution. Thus, the tasks are submitted to 

the system in a dynamic manner, and the schedule map might 

change during execution.  

In this study, we propose a dynamic scheduling algorithm 

for the IoT task offloading on Amazon EC2 spot instances. 

The proposed scheduling algorithm functions in a way that 

the scheduling procedure is conducted as soon as a new task 

is submitted to the system, which in some cases might change 

the current schedule map. Accordingly, tasks with different 

CPU and memory requirements are scheduled on resources, 

and the execution time of the tasks is predicted using machine 

learning techniques. The IoT tasks considered in this study 

are very similar to the bag of tasks (BoT) as there are no data 

communications between them. On the other hand, these 

tasks have user-defined deadlines to make them more similar 

to real-world IoT tasks.  

To increase the successful execution of the submitted 

tasks, both on-demand and spot instances are considered in 

the scheduling process. The main goal is to minimize the 

execution fees by scheduling as many tasks as possible on 

spot instances, and the decision will be made using the  

predicted execution time and deadline considered for the 

task. We also consider powerful on-demand instances based 

on the requirements of the task at specific times, which 

increases the success rate of the scheduling algorithm. 

Besides, a virtual machine migration approach based on the 

predicted execution time is proposed, which acts in case of 

resource retrieval. We utilize the LSTM method [18] to 

predict the future price of spot instances with high accuracy. 

In this context, the worst scenario occurs when all of the 

acquired spot instances are terminated unexpectedly. 

Nevertheless, the execution cost of the proposed algorithm 

will be dramatically reduced due to the increased utilization 

of the leased on-demand instances. 

The main contributions of this study are in the following:  

• It proposes a novel dynamic scheduling algorithm for 

the execution of the IoT tasks considering Amazon’s on-

demand and spot instances.  

• It provides an IoT task classification method based on 

the memory and processing requirements considered for the 

IoT task. The dynamic scheduling method considers the 

presented classification for the task in the scheduling 

procedure.  

• Finally, it presents a novel dynamic migration method 

in the event of spot instance eviction to improve the system’s 

reliability using the predicted execution time.  

 

2.  Literature Review 

One of the significant advantages of Amazon EC2 spot 

instances is the considerable cost reduction offered to the 

users compared to on-demand instances. Task scheduling 

and resource management on cloud processing instances are 

considered as an NP-complete problem [20]. However, 

utilizing Amazon’s auction-based instances leads to 

challenges created due to the possibility of resource retrieval 

in case the service provider needs the processing capacity. 

Moreover, smart bidding strategies must be defined that 

specify the user’s maximum willingness to pay (WTP) 

according to the importance of the task. In other words, 

offering higher bids for sensitive tasks decreases the 

possibility of resource retrieval, which in turn enhances 

reliability.  

In this section, we briefly summarize the state-of-the-art 

methods that consider spot instances in scheduling and 

resource management in literature. A wide range of research 

has been conducted to predict the price of the spot instances 

that will result in an optimal bid [16], [17], [21]. Resource 

migration is another policy to increase the system’s 

reliability that is popular among researchers [22], [23]. Other 

research has addressed the challenge of check pointing to 

provide fault-tolerance for the given spot instances of the 

applications [24], [25]. Most of the research seeks to 

calculate the checkpoint timing and investigate the 

resumption of the task in the case of resource revocation. 

Given spot instances, CPU scheduling and task queuing is 

another hot topic in the literature [15], [26].  

The significant growth of the IoT applications and the 

heterogeneity of the IoT tasks intensifies the importance of 

scheduling algorithms and load balancing techniques [27]. 

Kabir et al. [28] presented a framework for spot price bidding 

and executing deadline-constrained tasks on cloud spot 

instances. Their main goal was to bargain for cheaper 

processing resources to process tasks with loose deadlines. 

The authors claimed that the proposed system would save an 

average of more than 80% in execution costs for tasks with 

loose deadlines. Therefore, the proposed approach is not 

suitable for tasks with tight deadlines, such as some IoT 

applications. In a similar study [10], a method for scheduling 

workflows on spot instances in Amazon was presented, 

which would minimize the execution fees with regard to the 

deadline constraint. This approach creates a Markov 

decision-making process for searching the optimal policies to 

execute tasks according to user quality of service (QoS) 

requirements such as time and cost. Fabra et al. [29] proposed 

a framework for analyzing the spot prices and introduced a 

classification method based on the history of spot price, 

which would consider all the geographical regions of the 

Amazon EC2. The proposed model in this research would 

present provisioning plans using the long-term price history, 

and applications created with this model would be able to run 

with time and cost constraints.   

An accurate prediction on spot instance prices can play a 

significant role in offering an appropriate bid. Therefore, a 

wide range of research has focused on presenting predictive 

models on spot pricing [30], [31]. Agarwal et al. [17] predict 

spot instance prices using the LSTM recurrent neural 

network techniques. The advantage of this type of neural 

network is that the error rate is much lower compared to other 

neural networks due to the long-term memory available in 

this type of network. However, the accuracy of the proposed 

method may be improved by considering the timestamp of 

the spot price. The LSTM network has also been used by 

other researchers [18], [19] for predicting the spot price.   

    Due to the unexpected termination of spot instances and 

the lack of stringent service level agreement (SLA) in these 
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instances, extensive research has focused on improving fault-

tolerance and reliability in the applications utilizing SIs. 

Accordingly, different policies such as check-pointing, 

migration, redundancy, etc. have been considered in the 

literature [16], [25], [32]. In one study [16], the authors 

proposed a machine learning method to calculate the timing 

of performing the check-pointing procedure. In this study, 

the machine learning method was used to predict the optimal 

price. In the next step, considering the given deadline, the 

time of creating a checkpoint is calculated by using the 

forecasted price in the previous step and also the machine 

learning methods. Their proposed approach would improve 

reliability and reduce the cost of performing tasks to an 

acceptable level.  

Domanal and Reddy [15] proposed a modified particle 

swarm optimization algorithm to assign bag of tasks (BoT) 

applications to on-demand and spot instances. A back-

propagation neural network machine learning was used to 

estimate the price of spot instances and further uses a 

migration method to increase the efficiency of the resources. 

Given the fact that in some IoT applications tasks can be 

considered similar to a bag of tasks without communications, 

the proposed method can be utilized in some IoT contexts.  

Resource provisioning and scheduling of a wide range of 

applications in the cloud computing environment have been 

widely studied in the literature [9], [11]. In addition, the fog 

computing concept is considered for IoT applications to 

solve the problem of data communications latency [33], [34]. 

However, the context of scheduling IoT applications with 

loose deadlines on the cloud has not received much attention. 

On the other hand, considering the service provider's idle 

instances (i.e., Amazon EC2 spot instances) leads to  

significant cost reduction. Therefore, the main goal of the 

present research is to propose a dynamic scheduling method 

which faces the challenges of using Amazon EC2 spot 

instances in the scheduling of IoT tasks with loose deadlines. 

 

3.  System Design 

In this section, the proposed scheduling algorithm is 

presented. Two objectives are followed in this study. The 

first objective is to reduce the execution fees, and the second 

objective focuses on increasing the number of successfully 

executed tasks without any deadline violation concerning the 

price paid. 

 

A.  Basic Definitions and Assumptions 

Due to the extensive scope of the IoT environment, we are 

considering several specified IoT contexts for the proposed 

scheduling algorithm. Moreover, due to the diversity of cloud 

service provider’s instances, we consider some predefined 

Amazon EC2 instances according to our assumptions and 

requirements. In this paper, we assume that the processing 

and memory requirements of each task submitted by the IoT 

devices are known as a priori. We also assume that tasks 

come with a user-defined deadline, indicating that the 

execution of the task after the defined deadline is of no value. 

The target environment in this study is the IoT 

applications; however, an initial batch of tasks with different 

features and specifications is considered due to the wide 

range of applications in this field. The proposed method is 

evaluated in terms of the following application categories 

(i.e., healthcare applications, intelligent agriculture, smart 

structures). Depending on the type of task and requirements, 

each task can be considered as one of the following 

processing categories:  

• Data-intensive   

• High data-intensive  

• Compute-intensive   

• High compute-intensive  

• Compute-data intensive  

Besides, some predefined cloud instances related to the 

application categories are considered, which will be 

demonstrated in the evaluation section. Moreover, along with 

each category, a “low” or “high” priority is also provided by 

the user, which will be used in the scheduling process.  Figure 

1 denotes the architecture of the proposed scheduling 

algorithm below:

 

 
 

Figure 1. The architecture of the proposed scheduling method 
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The aforementioned classification will be performed by 

the information provided by the user and the context of the 

submitted task. When a task scheduling request is submitted, 

it will be transmitted to the cloud along with this information. 

In other words, the IoT task category determines the task's 

class and requirements for the scheduling process. As a 

result, the scheduling procedure will determine the 

appropriate mapping of IoT tasks on cloud instances.  

As their name suggests, data-intensive applications 

usually have a higher ratio of data to the amount of 

processing, which respectively has higher main memory 

demands. To meet the task requirements of the high data-

intensive category, the main memory capacity and the 

number of virtual cores has been doubled compared to data-

intensive applications. However, as compute-intensive 

applications have a higher ratio of processing requirements 

to the amount of data processed, instances with 50 MIPS or 

less are considered, and the Amazon EC2 compute-

optimized instances are the best cases. In the high compute-

intensive category, applications with high computational 

requirements are considered. Therefore, instances with 100 

MIPS processing power and 32 GBs of main memory are 

used. Moreover, for compute-data intensive applications, 

tasks with relatively high computation and data requirements 

are considered. For this category, instances with 32 GB of 

main memory and 50 MIPS of processing power are 

respectively considered. All categories consider the Amazon 

elastic block store (EBS) for the secondary memory 

requirements. The details of the assumed instances will be 

described in the evaluation section of the paper. 

 

B.  Application Model 

Typically a task γβ is considered for processing in IoT, where 

β= (i,j)  is a pair consisted of i= {1,2,3,4,5}  that denotes one 

of the five categories of the application. Moreover, j= 

{1,2,3,…,n} represents the number of times that task γ has 

been executed. On the other hand, σi denotes the instance 

considered for task processing. Therefore, the desired task 

will be processed on a σi instance at cost pi for a period of T. 

With these notations, the total execution cost to process a 

task can be calculated as Equation (1): 

 

Execution-cost (γβ) =∑ (
𝑛

𝑗=1
(𝑇(𝜎𝑖) × 𝑝𝑖)) 

(1) 

It should be noted that for each execution, the 1-hour time 

slot of the leased instance might not be used completely. In 

this case, if the submitted task uses an available instance, 

there will be no execution cost. The most important 

challenge in using spot instances is the possibility of resource 

invocation during the task execution. With this interpretation 

in mind, it is possible to use multiple instances (spot and on-

demand) at different prices, and therefore price modeling is 

described as follows: 

Total-cost (γβ) =∑ (
𝑚

𝑗=1
∑ (𝑇(𝜎𝑖) × 𝑝𝑖.𝑡)𝑛

𝑖=1  )             (2) 

In this equation, 𝜎𝑖={σi,1,σi,2, σi,3,…,σi,n} denotes the set of 

processing resources which the γβ task will be executed on 

that resource. Moreover, due to the price fluctuation of spot 

instances, 𝑝𝑟.𝑡  denotes the price of the spot instance σ at 

moment t. 

This study also aims to increase the number of tasks  

completed successfully before the deadline. These tasks can 

be modeled through the following equation: 

 

Success (𝛾𝛽,𝑗  ) = 
µ𝛽,𝑗

 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝛾𝛽,𝑗)
 

                                  (3) 

In this equation, µ𝛽,𝑗 indicates the turnaround time of task 

γβ in the j-th execution. On the other hand, the output of this 

equation will have two states: either greater than one (>1) or 

lower than or equal to one (<=1). If the value of the 

expression is lower than or equal to one, it means that task 

γβ is executed without failure, and the processing result is 

returned to the user before the deadline. However, if the 

result is greater than one, it denotes that the execution of the 

task has failed, and the scheduled task has not been 

completed before the defined deadline. For example, 

consider an IoT task with a defined deadline of 5 min. If the 

turnaround time of the task is 4 minutes and 35 seconds, the 

output of Eq.3 will be less than one. This denotes the 

successful execution of the aforementioned tasks. However, 

if the turnaround time of the task exceeds the deadline, the 

outcome of Eq.3 will be greater than one, which indicates 

that the execution of this task has violated the defined 

deadline. Of course, this relationship considers a single 

execution (j-th) of the task; therefore, it is possible to extend 

the relationship by examining the average failure or the 

failure of a task over several executions. 

 

C.  Proposed Scheduling Algorithm 

Regarding spot instances for the execution of the IoT tasks, 

in some cases, it will lead up to a 70-90% reduction in the 

execution fees [21]. However, to utilize spot instances in the 

scheduling process, some special considerations must be 

examined. One of the basic features of spot instances is that 

there will be no guarantee whatsoever on the start and the 

termination time of the processing instances. In other words, 

based on the supply and demand for spot instance capacity 

and the availability of the instances in different geographical 

zones, your instance may be terminated unexpectedly during 

the execution. 

Before considering the spot instance for the execution of 

each IoT task, one crucial matter must be carefully 

examined. It must be monitored that in the case of an 

unexpected termination of a spot instance during the 

execution of the task, the user-defined deadline will not be 

violated. Thus, executing a task with a tight deadline on a 

spot instance increases the risk of task failure. According to 

the Amazon EC2’s spot instance specifications, there will 

also be a 2-min. warning before the termination of the 

instance in case the service provider decides to terminate the 

instance before the end of the 1-hour time slot [35]. 

Consequently, in the proposed algorithm it is assumed that 

this period will be sufficient to launch a new on-demand 

instance in case of revocation of the spot instance. 

Additionally, one of the other specifications of the spot 

instances is that if the instance is terminated before the 1-

hour slot ends, users will not be charged for the last time slot. 

To overcome the limited bandwidth of the Internet and to 

minimize the overhead of data transmission to the processing 

resources, researchers have suggested using the fog 

computing (or edge computing) concept for IoT processing 
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[33], [34]. However, we assume cloud instances in 

geographical regions that are closer to the IoT objects. With 

this in mind, this policy in the scheduling procedure reduces 

the latency of the data transmissions between the devices and 

the cloud. 

 Algorithm 1 represents the pseudo-code of the proposed 

scheduling algorithm. 

Algorithm1. The scheduling algorithm 

1. Set timer and add γ to the pending tasks queue;  
2. Category(γ) =Task classification and queuing; /*(DI, HDI, CI, HCI, 

and DCI ) */ 

3. if (Running_Number(γ) == 1)  
Create γ’s task table; 

Schedule_OnDemand(γ);    

          
  else  

Machine_Learning (γ’s Task Table, ID γ) /*Predict the 

IoT task's execution time */ 

   Repeat 

Schedule(γ); 

Random_Wait(5);    /* Wait for a random time of 
maximum 5 mins if not scheduled */ 

Until (γ is scheduled); 

end if 

 

The scheduling steps of the proposed algorithm are in the 

following: 

Step 1) The pending tasks are classified according to the 

IoT context; therefore, a timer is set up to save the entry time 

of the task. This timer contains the task ID and time stamp, 

which is used in the scheduling algorithm as µ.  

Step 2) After fulfilling the classification of tasks in step 1, 

they are inserted into their respective queues. Here, we 

assume that there are five different working categories. The 

reason for considering this policy is not to miss a task due to 

a busy processor. Moreover, the five queues for the assumed 

IoT tasks minimizes the dependency of the tasks on each 

other in different categories. Given that a single queue for all 

the submitted tasks may lead to the following scenario, the 

processing resource considered for the execution of the task 

in front of the queue may be busy, while other processing 

resources are idle. In this case, an IoT task from a different 

context increases the turnaround time of the tasks from other 

contexts; therefore, tasks with different requirements from 

different IoT contexts are scheduled independently, and 

multiple queues in the scheduling process increases the 

utilization of the processing resources as such. Moreover, 

scheduling tasks regarding this policy increases the average 

number of successful tasks. This study concentrates on task 

scheduling in the IoT environment, and inherently IoT 

applications are real-time. Thus, they must be executed 

before any time is wasted, and time constraints are 

compromised. Consequently, each task is ready to be 

executed after entering the system.  

Step 3) Since each pending task enters the related queue, 

it is sent to the machine learning step to predict the required 

execution time. The reason for doing so is that tasks do not 

wait for the machine learning step when it comes to 

execution.  If a task is submitted to the system for the first 

time, it will be executed on an on-demand instance. The 

reason for considering this strategy is to minimize the 

possibility of the failure of tasks without any execution 

history. One important thing to keep in mind is that as the 

number of executed tasks in each category increases, the 

accuracy of the machine learning method increases as well. 

The proposed scheduling algorithm uses the actual execution 

time after the execution is fulfilled as training data for the 

neural network. At the same time, the instance type, 

geographical region, and the current time are sent to the 

LSTM neural network to predict the price of the instance as 

the user’s bid. In one study [18], the LSTM network is used 

for the price prediction of the spot instances, which has been 

trained with the 3-month price history of Amazon EC2. 

Step 4) Algorithm 2 represents the pseudo-code of the 

scheduling procedure for each IoT task. In this step, based 

on the estimated execution time of the tasks and the defined 

deadline, the mapping of the tasks to the processing 

resources is determined using the method described below:  

1. If the value of (deadline – wait time), which is 

considered as slack time, is greater than or equal to 

(predicted execution time x 2) the predicted execution time, 

the task is considered safe to be executed on a spot instance. 

The reason we have considered this equation is that if the 

task execution fails due to spot instance eviction, there will 

be enough time to reschedule the failed task. The worst case 

occurs when the resource is evicted exactly at the end of the 

task execution and before the results are saved. Therefore, 

there will be enough time to reschedule the tasks either on a 

new spot instance or an on-demand resource. It should be 

mentioned that if the required spot instance is available, then 

the mapping of the task is fulfilled on the available spot 

instance. However, this is only possible if the resource is 

available until the intended task is executed. Otherwise, the 

algorithm bids for a new spot instance or sends a request for 

an on-demand instance. 

2. If the slack time is less than (predicted execution time x 

2) but larger than or equal to the predicted execution time, 

then the priority of the task is considered to define the type 

of the resource for execution. If the defined priority of the 

task is high, then the task is scheduled on an on-demand 

instance to avoid the failure of high priority tasks due to the 

possibility of resource eviction in spot instances. However, 

if the priority of the task is low, then the scheduling 

algorithm considers the task to be scheduled on a spot 

instance. If the required spot instance is available and 

scheduling the task on the spot instance is possible 

considering the deadline, then the task is mapped to be 

executed. However, if the required spot instance is not 

available or scheduling the task is not possible according to 

scheduling constraints, the algorithm aims to schedule the 

desired task on a new spot instance. 

3. If the computed slack time is lower than the predicted 

execution time of the task, then this task is scheduled on a 

critical instance. Accordingly, this policy decreases the 

possibility of failure in tasks at risk of deadline violation. 

    The primary objective of the proposed scheduling 

algorithm is to schedule tasks on spot instances to reduce 

costs. Moreover, the proposed scheduling algorithm aims to 

avoid the failure of a task, which in turn increases the 

successfully executed tasks of the system. 
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Algorithm2. The scheduling procedure for each task 

if  (Slack_Time(γ) >=Predicted_ExeTime(γ)x2)   
Schedule_Available(γ);       /*Try to schedule using the 

available instances*/ 

Price_LSTM(category(γ));   /*Use the LSTM neural network to 
offer a bid for a new spot instance*/ 

  

else if  (Slack_Time(γ) >Predicted_ExeTime(γ))  
        if (Task_Priority==HIGH)   

                    Schedule-Available(γ);       /* Try to schedule using the 

available  instances */ 
                    Schedule_OnDemand(γ );   /* Launch an on-demand 

instance if not scheduled on available instances */ 

 

       else 

             Price_LSTM(category(γ));     /*Try to schedule low priority 

tasks on spot instances */ 

      endif 

else 

               Schedule_Critical(γ);     /*Schedule tasks with risk of deadline 
violation on a critical instance */ 

Endif 

 

D. Task Migration 

As we utilize spot instances in this study, it is likely that it 

will be retrieved during the processing of a task. Therefore, 

it is necessary to present an approach that minimizes the 

number of failed tasks, and simultaneously does not increase 

the processing overhead and costs of the system. Thus, after 

receiving the 2-minute warning for resource eviction, the 

waiting time of the task is deducted from the defined 

deadline. According to the computed value (deadline – wait 

time), two different policies are considered:  

1) If the calculated value is larger than the predicted 

execution time, then the scheduling algorithm reschedules 

the task all over again. 

2) If this value is smaller than or equal to the remaining 

execution time, it denotes that the waiting time of the task 

within the system is too high. However, if we schedule the 

task on an on-demand from the beginning, the defined 

deadline for the tasks will be violated. Accordingly, the task 

is migrated to a critical instance to resume processing. 

However, due to the high cost of a critical instance compared 

to other instances, the scheduling algorithm aims to 

maximize the utilization of the rented critical instance. 

Therefore, while using the critical instance, other tasks may 

be scheduled on the critical instance so that the leased period 

is fully utilized. 

In this study, a machine learning approach is considered 

to predict the price of spot instances; therefore, the LSTM 

neural network-based method [9] is used to predict spot 

instance prices. 

 

4.  Performance Evaluation  

In this section, the empirical results and the performance 

evaluation of the proposed scheduling algorithm are 

presented. 

A.  Experimental Setup 

To evaluate the proposed scheduling algorithm, modeling 

and simulation are conducted using the CloudSim toolkit 

[36]. The CloudSim toolkit is an open-source cloud 

simulator developed by the CLOUDS laboratory at the 

University of Melbourne. This simulator provides classes for 

defining data centers, virtual machines, applications, users, 

processing resources, and policies for managing different 

components of a scheduling system. These components can 

be put together by users to evaluate new strategies for 

deploying cloud computing platforms (policies, scheduling 

algorithms, load balancing, mapping policies, and so on). 

1) Spot Price History Dataset 

Most service providers present a price history for spot 

instances that have been gathered and also made them 

available on the web as datasets [37]. Amazon EC2 offers a 

90-day price history on spot instances that can be used for 

analysis [38]. However, this price history is also provided by 

third parties which in some cases are beyond 90 days [39]. 

The spot price history presents the price of a particular 

instance in a specific geographical region over a specified 

period that can be modified by the user (i.e., last day, last 

week, last 90 days, etc.). We have considered the dataset 

provided by Amazon EC2 to train the LSTM neural network 

in order to predict prices within the scheduling algorithm. 

The scheduling algorithm uses the predicted price as the 

user’s bid to request a spot instance. Table 1 presents the 

instances that have been considered in the scheduling 

process.  
 

 

Table 1. The assumed instances in the scheduling algorithm 

 
Instance RAM(GB) vCPU ECU On –demand price 

r5.xlarge 32 4 19 $0.436 

r5.2xlarge 64 8 37 $0.872 

c5.2xlarge 16 8 39 $0.708 

c5.4xlarge 32 16 73 $1.416 

m4.2xlarge 32 8 26 $0.768 

c5.9xlarge 72 36 139 $3.186 

 

To schedule the IoT tasks, the r5.xlarge and r5.2xlarge are 

assumed for the data-intensive and the high data-intensive 

categories. Also, the c5.2xlarge and c5.4xlarge are assumed 

for the execution of compute-intensive and high compute-

intensive tasks. Moreover, the m4.2xlarge instance is 

considered for the compute-data intensive category. Finally, 

the c5.9xlarge is assumed as a critical instance for the 

scheduling procedure. 

2) IoT Tasks Dataset 

Due to the execution of the IoT tasks on cloud instances 

in the proposed system, we need specific configurations 

according to the task requirements. Every IoT application 

has its requirements that must be considered in the 

scheduling process. Therefore, we considered using the IoT 

tasks dataset provided online [40] for the evaluation 

procedure. This dataset offers IoT tasks from various 

domains such as agriculture, healthcare, and smart city. 

However, we added task priority and task category to the 

tasks in this dataset. 

 

B. Evaluation 

The performance of the proposed scheduling method has 

been evaluated based on the following criteria:  

1. Execution cost  

2. Number of successful tasks  

3. Task turnaround time  



Journal of Computer and Knowledge Engineering, Vol.3, No.1.2020. 7 

 

We will compare the proposed method with the modified 

particle swarm optimization (MPSO) and also with the 

modified throttled methods proposed in another study [15]. 

Although the proposed methods in this research consider the 

bag of tasks (BoT) application, the IoT tasks assumed in this 

paper are similar to BoT, because there are no data 

communications between them. Moreover, we will also 

study these criteria using migration-enabled and migration-

disabled modes. 

 

1) Execution Cost 

To show the cost savings, the cost of task execution in each 

category is compared with the method that only considers the 

scheduling of the tasks on on-demand instances. As can be 

seen, the migration-enabled method leads to a more 

significant reduction in execution costs. The reason for the 

reduced cost is the policy that prevents the re-execution of 

failed tasks due to spot instance interruption. In the 

migration-enabled mode, two different scenarios can be 

imagined for a task being processed in the event of spot 

instance eviction depicted in the task migration section. 

The main goal of the scenarios mentioned above is to 

ensure that tasks with high priority are executed before the 

deadline constraint. In these circumstances, some essential 

issues must be identified and considered. First, the assumed 

critical instance in this study is the highest cost compared to 

all the other assumed instances. These instances are used to 

minimize task failures and are utilized for specific high 

priority tasks with limited deadlines. Secondly, eliminating 

a task wastes the cost of processing a task. That is, the cost 

required to process a task on on-demand instances will be 

wasted. Third, scheduling and executing a task from the 

beginning will increase the turnaround time and create 

surplus execution costs. For this reason, in the conditions 

outlined in the proposed method, the migration of a task will 

be preferred to reduce execution costs.  

In general, the proposed method performs its utmost to 

execute tasks on spot instances. It is worth noting that 

although the initial classification is performed at the moment 

of task mapping, the resources of the other categories are also 

examined. The goal is to increase resource utilization and 

reduce total execution costs. Figure 2 compares the 

execution costs of the proposed method with reference to on-

demand and spot instances in the defined task categories. 

 

The results shown in the diagram below are the average of 

5 runs, and the number of tasks in each run is between 9000 

and 10000 tasks. The IoT applications involve mainly 

healthcare and agriculture. For instance, considering the 

data-intensive category, the proposed method without 

migration leads to a 23% reduction in execution costs 

compared to scheduling with on-demand instances. 

However, the proposed method with migration leads to a 

37% cost saving in this category. The reason that the 

proposed method with migration yields higher cost savings 

is that incomplete tasks due to spot instance eviction are not 

executed from the beginning. Therefore, the number of 

required on-demand instances and leased periods are 

reduced. This leads to more cost savings compared to the 

approach without migration. In the compute-intensive 

category, the proposed method earns 13% and 29% savings 

compared to the on-demand scheduling. 

 

 
 

Figure 2. The execution costs of on-demand and spot instances 

 

 

 

 
 

 

0

2

4

6

8

10

12

14

16

18

E
x
ec

u
ti

o
n
 c

o
st

 (
U

S
 $

)

On-demand

Proposed method without migration

Proposed method with migration



8  Arash Deldari et. al.: A Multi-objective Dynamic Scheduling… 
 

2) Number of Successful Tasks 

One of the main goals of the proposed scheduling algorithm 

is to maximize the number of tasks executed before the 

deadline constraint. Accordingly, some important issues 

require attention: 

1) In the modified particle swarm optimization method 

[15], the processes are sent as task stacks consisting of at 

least ten tasks for the load balancer. However, sending tasks 

in stacks can significantly increase resource utilization and 

prevent resources from being wasted and idle. Furthermore, 

since this approach may lead to an increase in waiting time 

for the tasks, it is not appropriate for the IoT tasks with tight 

deadlines.  

2) Migration is done when the processor and memory 

efficiency is lower than a specified threshold [15]. The 

modified throttled method also does not include a plan for 

migrating tasks. However, resource retrieval is possible 

when using spot instances, and a mechanism must be 

considered for these conditions. With the dynamic migration 

method, the successful execution of the tasks can be 

increased significantly.  

3) Another point is that the two methods mentioned above 

[15] do not differentiate between the submitted tasks and 

their requirements. The structure of the input tasks described 

in these two methods differs. That is, the tasks in the 

modified particle swarm optimization method are sent in 

batch, while the other method considers the serial 

transmission of the tasks to load balancers and the 

requirements of the tasks are ignored as well. However, if we 

consider these methods in environments with different 

processing requirements such as IoT, the resource utilization 

will be reduced, and some processes will not be processed 

before the deadline constraint. With this in mind, the number 

of successfully executed tasks can be seen in Fig. 3.  
The total number of IoT tasks submitted to the system in 

this experiment is assumed as 1000, and as denoted in Figure 

3, the proposed method without migration achieves a 2% and 

3% increase in the number of successful tasks compared to 

MPSO and modified throttled methods. Moreover, the 

proposed method with migration receives a 3% and a 4.1% 

increase compared to the aforementioned methods. As 

mentioned in the previous section, the proposed method with 

migration does not reschedule the tasks in the case of spot 

instance eviction. Therefore, the number of tasks that violate 

the defined deadline decreases with regard to the migration 

policy. The experimental results denote that the proposed 

method with migration achieves a 98.1% success rate in 

scheduling tasks before the defined deadline. 

 

3) Task Turnaround Time 

Given that the tasks are processed batch in the modified 

particle swarm optimization method [15], we considered this 

approach. In the modified throttled method [15], the tasks are 

executed as soon as the tasks enter the load balancer and the 

resources are idle, which leads to a reduced task turnaround 

time. In the modified particle swarm optimization method, 

the amount of time required to categorize tasks is relatively 

high. Accordingly, due to the nature of the IoT environment 

in which tasks are submitted at random times, it will result in 

increased task turnaround time. Generally, since the 

proposed method processes the tasks as soon as they enter 

the system, the turnaround time of the proposed method is 

less than the MPSO method [15]. However, in some cases a 

short time is required for the machine learning algorithm to 

offer a bid and for the spot instance to become available. This 

then slightly increases the task turnaround time of the 

proposed method. It must be mentioned that this reduces the 

execution fees, which makes it acceptable. Normally 

predicting the execution time of tasks can increase the 

turnaround time; however, in the proposed method the task 

table is sent to the machine learning algorithm as soon as the 

task enters the related queue so as not to waste time on CPU 

allocation. Figure 4 shows the turnaround time of tasks 

within the system.  

The number of assumed tasks is 1000, while the results 

denoted in Fig. 4 are the average of 5 runs. Although the 

modified throttled method leads to a lower turnaround time 

compared to the proposed method without migration, the 

proposed method achieves a less turnaround time compared 

to MPSO. As was predicted, the turnaround time decreases 

with regard to the migration approach in the scheduling 

procedure. 

 
 

Figure 3. The number of executed tasks before the deadline 
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Figure 4. The average task turnaround time 

 

 

5.  Conclusion and Future Work 

In this paper, a dynamic scheduling algorithm is proposed 

that increases the reliability of executing the IoT tasks with 

deadline constraints on unreliable cloud instances such as 

Amazon EC2 spot instances. In the proposed scheduling 

method, we pursue two goals. The first goal is to reduce the 

execution costs, and the second goal is to increase the 

number of successful tasks executed before the deadline. As 

the main purpose of this study is not price prediction, the 

proposed methods in the literature have been considered for 

the price prediction step. The empirical results denote that 

98.1% of input tasks to the presented scheduling system are 

processed before the deadline. On the other hand, one of the 

economic challenges of the IoT environment, namely lower 

execution costs, improves significantly in this system. The 

proposed method shows further improvements than the most 

recent methods in this context in terms of the number of 

successful tasks, turnaround time, and execution costs. In 

other words, despite the reduction in execution costs, this 

method leads to the lower turnaround time for the scheduled 

IoT tasks.  

    As for future directions, the initial pre-processing of the 

IoT tasks can be considered in edge computing resources and 

then be scheduled on cloud computing resources for further 

processing. Moreover, considering the Amazon EC2 spot 

blocks and reserved instances in the scheduling procedure 

can be considered as a future direction. Price forecasting can 

also be introduced as an avenue for future work using 

intelligent methods, offering price bids according to the task 

priority to decrease the possibility of out of bid failures for 

sensitive tasks. 
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