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Abstract:  This paper proposes new algorithms to improve 

Reinforcement Learning (RL) and Deep Q-Network (DQN) 

methods for path planning considering uncertainty in the 

perception of environment. The study aimed to formulate 

and solve the path planning optimization problem by 

optimizing the path, avoiding obstacles, and minimizing the 

related uncertainty. In this regard, a reward function is 

constructed based on the weighted features of the 

environment images. In this study, Deep Learning (DL) is 

used for two purposes. First, for perceiving a real 

environment to find the state transition matrix of the mobile 

robot path planning problem, and second, for extracting the 

features of state directly from an image of the environment 

to select the appropriate actions. To solve the path planning 

problem, it is formed in the context of an RL problem, and a 

Convolutional Neural Network (CNN) is used to 

approximate Q-values as a linear parameterized function. 

Implementing this approach improves the Q-learning, 

SARSA, and DQN algorithms as the new versions, called 

POQL, POSARSA, and PODQN. The learning process 

results show that using newly improved algorithms increases 

path planning performance by more than 20%, 21%, and 5% 

compared to the Q-learning, SARSA, and DQN, 

respectively. 

 

Keywords: Reinforcement Learning, Deep Learning, Q-

learning, Path Planning, Deep Q-Network (DQN). 

 

1. Introduction 

The main goal of path planning is to find the optimal path 

between the initial and final states in the shortest possible 

time[1]. This task becomes challenging when the 

environment has obstacles, risky areas, and uncertainties. 

Reinforcement Learning is a useful and applicable tool for 

learning path planning, considering the safety aspects of 

robot path, obstacle avoidance, and path optimality. 

Environment perception is an essential issue in path 

planning. The traditional learning methods use handcrafted 

features of the environment to recognize states-space 

specifications, while in the real world, the features should be 

used directly as the learning process input. Mnih et al. 

introduced the first Deep Q-network (DQN) algorithm to 

learn ATARI games directly from the perception of pixels 

[2-4]. Van Hasselt et al. [5] proposed Double DQN as a 

modified version of deep Q-Network. Since the introduction 

of deep learning, many researches have been conducted on 

deep learning in path planning [6-10]. Panov et al. [11] used 

deep learning to improve robot path planning. Pfeiffer et al. 
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[12] presented a case study of a learning-based approach for 

target-driven and mapless path planning using the neural 

network, which is trained by a combination of expert 

demonstrations, imitation learning (IL), and reinforcement 

learning (RL). Xin et al.[7] used deep reinforcement learning 

in mobile robot path planning using the original visual 

perception with the original RGB image (image pixels) as 

the input without any handcrafted features and feature 

matching. Zhou et al. [13] implemented a Deep Q-Network 

(DQN) for path planning of mobile robots using the original 

RGB of an image representing the environmental structure. 

Lv et al. [14] proposed an improved learning policy DQN in 

a dense network framework. Concerning uncertainty-aware 

reinforcement learning, Kahn et al. [15] presented an 

algorithm for learning navigation and avoiding obstacles of 

a mobile robot in an unknown environment by providing an 

uncertainty-based cost function to estimate the probability of 

collision. Da Silva et al. [16] provided an action-advising 

framework where the agent requests for advising when its 

epistemic uncertainty is high in a certain state.  

Using the so-called DQN concept provided by Mnih et 

al. [3] makes the state perception in images, as well as bulk 

data, learning, controlling, and making processes, actions, 

and decisions possible in a complex environment. Moreover, 

in association with RL, deep learning can approximate Q-

values as a parameterized function. Using this idea increases 

the accuracy of Q-values by minimizing a loss function 

based on the gradient descent approach in the framework of 

neural networks containing a big hidden layer. Although 

reinforcement learning methods [17] such as QL and 

SARSA, which recently combined with DL-Q-learning 

called DQN [3], are reliable and stable methods for path 

planning, they should be improved when used for special 

needs such as path planning tasks. In the traditional approach 

of these methods, a reward function is considered as a 

positive integer value for reaching a goal state and is negative 

for others. Now, the new method proposes a new reward 

based on the path length, uncertainty, and constraints for 

every state-action pair. Thus, an optimality criterion is 

defined to determine how much a path is optimized and used 

in the path planning problem. By solving this problem in 

Markov Decision Process (MDP) framework, its solution is 

found using the learning process.  

In this research, the contribution of authors is to solve the 

uncertain path planning optimization problem by translating 

it into a learning problem based on a mathematical approach, 

which is more complete than the works presented recently 

for similar purposes [14], [18- 20], and also presenting the 
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new methods called POQL, POSARSA, and PODQN to 

improve the learning process of the path planning methods 

considering the uncertainty in the DL results of the 

environment perception. In addition to those mentioned 

above, this article can also can be used as detailed guidance 

for implementing feature-based rewards and deep learning 

methods in path planning with visual input data [21], taking 

into account the practical study in a real and uncertain 

environment instead of the grid world approach. 

The remainder of this paper is organized as follows. Section 

2 discusses the related works, section 3 describes the 

problem statement and solution by presenting the proposed 

methods, algorithms, and formulations. Experimental studies 

are provided in section 4. Section 5 presents the simulation 

and results and section 6 discusses the challenges of the 

implementation of the proposed methods, and finally, the 

conclusion overview of the paper is presented in section 7. 

 

2. Review of Related Works 
This paper uses the reinforcement learning methods of Q-

learning, and SARSA to implement the algorithm presented 

by [17], and the Q-network (DQN) algorithm developed by 

[3]. In these methods, state-action pairs' reward is received 

immediately after doing the action in the current states. The 

new method proposes re-evaluating the learning reward after 

predefined steps and building a path, including the state-

action pairs of the previous steps. To describe the problem 

mathematically, the Lagrangian function provided by [22] is 

developed based on the new aspects of the problem 

introduced in this research to convert the path planning 

problem into a learning problem with the value function 

approach. To perceive the environment, the state transition 

matrix is approximated using image features by 

implementing the formulation presented by [23] to 

approximate a reward function as R(st,at)=wTϕ(st,at) that is 

shaped by the weighting vector 𝑤 and the basis function 𝜙 

constructed as a matrix containing the logical elements 

representing the constraints positivity. 

  

3. Statement of the Problem and Solution 

Assume that t∈[0 T], x∈X and u∈U denote time, state, and 

control variables of the dynamic system ẋ=f(x(t), u(t)), 

respectively. Where T is terminal time, X, and U are the sets 

of feasible states and control inputs. Suppose that the 

variable x is measured as x̂, and the measurement uncertainty 

is calculated as the mean-variance of several measurements 

of x as σ2(x). Also, it is assumed that we have some 

constraints. Now the path planning problem's goal is to find 

a trajectory P={x1, x2, …,xn}, x1=x0 , xn=xT optimally, 

including minimizing an objective function, length, and 

uncertainty of the path. This optimization problem can be 

formulated as: 

Part A of equation (1) minimizes the objective function 

over the states and control variables. For example, it can be 

considered as l(x(t),u(t)) = (x − xg)
T
p(x − xg) + u

Tqu. 

where, xg is the robot goal position. Where q and p are the 

weighting matrices on state and control variables, 

respectively. Parts B and C minimize the functions dP(x) and 

ψ
P
(x) which are the summation of the length and uncertainty 

of the states of the path P, respectively. Part D is the system 

dynamics and g
i
(x(t)) and hi(x(t)) in part E are the 

constraint inequalities and equalities, respectively. Part F 

also represents the values of initial and terminal states.  

 

min
x,u
J(xt,ut)=∑γt−kl(xt,ut)

t=k

                                                           A 

 minx dP(x)=∑‖xi+1-xi‖

i

,  xi∈P,  i=1,..,np-1                              B 

min
x
ψP(x)=∑σ2

i

(xi),  xi∈P,  i=1,..,np                                         C

s. t.      ẋ=f(x(t), u(t))  ,  x∈X,  u∈U                                                   D

            gj(x(t))≤0,  hi(x(t)) = 0,  j=1,2,…,m                                  E

            x(0)=x0,  x(T)=xT                                                                     F

 

(1) 
 

The optimization problem (1) suffers from uncertainty, 

non-convexity, and non-linearity. Therefore, solving this 

problem is impossible or difficult using conventional and 

analytical methods. Thus, this paper reformulates this 

problem in the Markov Decision Process (MDP) context to 

solve it. To solve the path planning problem (1), it is assumed 

that the environment and the system work in a Markov 

Decision Process framework. In an MDP, the dynamic of the 

continuous system ẋ=f(x(t), u(t)) or the related discrete 

form xt+1=f(xt,ut) is stated as 

ρ
π
(s')=∑ ρ

π
(s)π(s, a)T(s, a,s')s, a , where ρ

π
(s) and 

ρ
π
(s') are the state probability distribution under the policy 

π for the current and next states, respectively. By defining 

the reward function as r(s, a) ≈ −l(xt,ut) in the MDP 

framework, the optimization problem (1) is formed as  

 
s. t.             

max
π
V(s)=∑ρπ(s)π(s, a)𝒓(𝒔, 𝒂)

s, a

                                                 

minx dP=∑‖x(s')-x(s)‖

s∈SP

,  s∈SP                                              

min
x
ψP=∑ σ2

s∈SP

(x(s)),  s∈SP                                                      

ρπ(s
')=∑ρπ(s)π(s, a)T(s, a,s

')

s, a

                                                

1=∑ρπ(s)π(s, a)

s, a

                                                                         

π(s, a)≥0                                                                                            
st0=s0,  stf=sT                                                                                   

                                                                   

 

 (2) 

SP={s0,s2,…,sT} is the set of states building the Path from 

the initial state to the terminal state. For simplicity, let 

Π(s, a)=ρ
π
(s)π(s, a) and ξ

P
=dP+ψ

P
. By developing the 

method proposed by [22], the Lagrangian function of the 

above problem is formed as 
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L=∑𝚷(𝐬, 𝐚)𝒓(𝒔, 𝒂)

s, a

-λξP-γ∑Vπ(s')

s'

(ρπ(s
')-

∑Π(s, a)T(s, a,s')

s, a

) -r0 (∑Π(s, a)

s, a

-1) 

 (3) 

 

Where γVπ(s') and r0 are Lagrange multipliers, γ is the 

discount factor. The equation  (3) can be rewritten as  

L=∑Π(s, a) (r(s, a)+γ∑Vπ(s')T(s, a,s')

s'

-

s, a

r0) -γ∑Vπ(s')

s'

ρπ(s
')+r0-λξP 

(4) 

 
On the other hand,  

∑Vπ(s')

s'

ρπ(s
')=∑Vπ(s')

s'

ρπ(s
')∑π(s',a')

a'⏟      
1

= 

∑Vπ(s')

s',a'

ρπ(s
')π(s',a')=∑Vπ(s')

s',a'

Π(s',a') 

(5) 

 

Then the function L is formed as  

L=∑Π(s, a) (r(s, a)-

s, a

r0+γ∑Vπ(s')T(s, a,s')

s'

) -γ∑Vπ(s')

s',𝒂′

Π(s',a')+r0-λξP 

(6) 

 

 Let  Vπ(s0)=0, using the property 

∑ Vπ(s)s, a Π(s, a)=∑ Vπ(s')s',a' Π(s',a'), the function L 

results in 

L=∑Π(s, a) (r(s, a)-

s, a

r0+γ∑Vπ(s')T(s, a,s')

s'

) -γ∑Vπ(s)

s, a

Π(s, a)+r0-λξP 

 (7) 

 

The so-called Karush-Kuhn-Tucker (KKT) optimality 

conditions are implemented by differentiating w.r.t Π(s, a) 

as 
∂L

∂Π
=r(s, a)-r0+γ∑Vπ(s')T(s, a, s')

s'

-Vπ(s)=0 

(8) 

 

Therefore, the optimal value function is obtained as 

V*(s)= max
a*
[r(s, a)-r0+γ∑ V*(s’)T(s, a,s')s' ]. Letting 

R(s, a)=r(s, a)-r0 and then the value function Vπ(s) results 

in Vπ(s)=∑ π(s, a)a (R(s, a)+γ∑ Vπ(s')T(s, a,s')s' ). 

Equivalently, the state-action value function is defined as 

Q(s, a)=R(s, a)+γ∑ Vπ(s')T(s, a, s')s' , where the transition 

probability function T(s, a, s’) should be identified. If the 

transition matrix is unknown, it can be obtained through 

environment perception. For example, in a path planning 

map image, a transition matrix shows how to move to the 

next state from the current state. One of our contributions in 

this paper is providing the transition matrix by extracting 

features of images using deep learning methods, including 

convolution neural networks (CNN). According to this 

approach, the transition matrix T is stated as 

T(s, a,s')=WT∅(s, a, s'), where ∅ is called the state transition 

feature vector, and W is the corresponding weighting vector. 

Also, we need to obtain r0. By substituting Vπ(s)=r(s, a)-

r0+γ∑ Vπ(s')T(s, a, s')s' , the term L is obtained as 

 

L=∑Π(s, a) (r(s, a)-

s, a

r0+γ∑Vπ(s')T(s, a,s')

s'

) -γ∑Vπ(s)

s, a

Π(s, a)+r0-λξ
P
 

 L=∑ Π(s, a)Vπ(s)s, a -γ∑ Vπ(s)s, a Π(s, a)+r0-λξ
P
=r0-λξ

P
.  

 

Then, to minimize L, we need to consider 

r0=λξ
P
=λ(dP+ψ

P
). Then, the new reward function is reached 

as 

rnew(s, a)=r(s, a)-λ(dP+ψP) 
 (9) 

 
According to the above mathematical primary results, the 

new method is proposed to learn path planning based on the 

newly defined path optimality. This method is stated as the 

following algorithms: 

 

Algorithm 1. Path Optimal Q-Learning (POQL) 

Initialization: set m=number of states, n=number of 

actions, Q=randn (m, n), set s
s
=Starting state, 𝐬𝐠 =goal 

state, MaxIt=Maximum number of Iterations 

For it=1 to MaxIt 

Initialize s= s
0
 

While s≠s
g
 

Select actions a in the state s using policy generated by Q 

using ϵ-greedy approach 

Take the action a, get reward r, and go to state s’ 

Update Q-value as 

Q(s, a)=Q(s, a)+α (r(s, a)+γ maxaQ(s
’, a)-Q(s, a)) 

Store s as the path  SP and update s←s' 

End while 

End while 

For i=1 to np , where np is the length of the path P with 

the state set SP={s0,s𝟏,…,snp} 

Update the rule 

Q(si,ai)=Q(si,ai)+α(r(si,ai)-λ(dP+ψP)+γ  maxaQ(si+1, a)-Q(si,ai))  

Where action aI is connecting si∈S
P to si+1∈S

P. 

End For 

End For 
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Algorithm 2. Path Optimal SARSA(POSARSA) 

Initialization: set m=number of states, n=number of 

actions, Q=randn (m, n), set s
s
=Starting state, s

g
=goal 

state, MaxIt=Maximum number of Iterations 

For it=1 to MaxIt 

Initialize s= s
0
 

Select actions a in the state s using policy generated by Q 

using ϵ-greedy approach 

While s≠s
g
 

Take the action a, get reward r, and go to state s’ 

Select actions a' in the state s' using policy generated by 

Q using the ϵ-greedy approach 

Update Q-value as    

Q(s, a)=Q(s, a)+α (r(s, a)+γ Q(s', a)-Q(s, a)) 

Store s as the path SP and update  s←s' 

End while 

For i=1 to np , where np is the length of the path P with 

the state set SP={s0,s1,…,snp} 

Update the rule 

Q(si,ai)=Q(si,ai)+α(r(si,ai)-λ(dP+ψP)+γ Q(si+1,ai+1)-Q(si,ai))  

Action ai and ai+1 connect si∈S
P to si+1∈S

Pand si+1∈S
P 

to si+2∈S
P, respectively. 

End For  

End For 

 

Algorithm 1 and Algorithm 2 present the path planning 

instruction using modified versions of Q-learning and 

SARSA methods [17], respectively, and Algorithm 3 is the 

modified version of the DQN method [3]. The proposed path 

planning methods presented in the above algorithms include 

two levels: the first level improves the path 𝑆𝑃 by evaluating 

Q-values, and the second level improves the Q-values by 

evaluatingpath SP. 

 

4. Experimental Studies  
To study the theoretical method mentioned above, it should 

be justified and validated through practical experiments. 

Therefore, we examine our solution in a real environment 

shown in Figure 1, including a feasible path state, goal states, 

and Gbstacle states sets. This is a picture of the environment 

selected for the path planning task. In this environment, an 

agent can start from every feasible state to go to the Goal 

states (Plate Objects) by avoiding the collision states 

(Obstacle Objects). 

 

Algorithm 3. Path Optimal DQN (PODQN) 

Initialization: set m=number of states, n=number of 

actions, Q=randn (m, n), set s
s
=Starting state, s

g
=goal 

state, set replay memory D to capacity N, set Q with the 

initial weights θ, set MaxIt=maximum number of 

Iterations 

For it=1 to MaxIt 
Initialize s= s

0
 

Calculate feature ϕ(s) 
While s≠s

g
 

Select actions a in the state s using policy generated by Q 

using ϵ-greedy approach 

Take the action a, get reward r, and go to state s’ 

Calculate feature ϕ'=ϕ(s') 

Store transition (ϕ(s),a,ϕ(s')) in D 

Sample random (ϕj,aj,ϕj
') from D 

Set the target value as 

yj={
rj(s, a)                if       s

'≠s
g
  

rj(s, a)+γ maxaQ̂(ϕj, aj
'; θ)        otherwise

  

Update the weights θ by minimizing loss function 

L=
1

2
(yj-Q(ϕj,ai;θ))

2

 using a gradient descent approach.  

Store s as the path SP and Update Q=Q̂,  s←s' 
End while 

For i=1 to np , where np is the length of the path P with 

the state set SP={s0,s1,…,snp} 

Set the target value as 

yi={
r(si,ai)-λ(dP+ψP)    if       si+1≠sg  

r(si,ai)-λ(dP+ψP)+γ maxaQ̂(ϕ(si), a;θ)        otherwise
  

Update the weights θ by minimizing loss function 

L=
1

2
(yi-Q(ϕ(si), a;θ))

2
. Where action ai is connecting 

si∈S
P to si+1∈S

P 

Update Q=Q̂ 

End For 

End For 

 
 

Figure 1.  An experimental environment for testing the new method(Path Optimal RL(PORL) and Path Optimal DQN(PODQN)) 

 



Journal of Computer and Knowledge Engineering, Vol. 3, No. 1, 2020.(25-37)  29 

DOI: 10.22067/cke.2020.39287 

 
 To learn the path planning task, the following procedures 

are proposed: 

 

4.1. Convert real environment to a grid world 
In most cases, a real environment must be converted to the 

discrete-time domain because the dynamic system or the 

problem's solution is presented in a discretized form. For this 

purpose, the environment is mapped to a two- or three-

dimensional grid network (x-y or x-y-z cartesian space). If 

the problem's variables are fixed, or their changes are 

negligible in the third coordinate (that is, z), it is better to 

consider the environment as a two-dimensional space. In this 

research, the picture of environment is analyzed in a 2-d grid 

world space with n×m nodes. Where 𝑛 and 𝑚 are the length 

and width of the picture, respectively. In this framework, the 

states represent the agent positions. Moreover, the actions 

are the velocity and angular velocity of the robot and can be 

stated as the movement of the agent form the current state 

(cell i and j) to the next state (cell i
'
 and j

'
) (with 

∆i, ∆j=±1, ±√2) in a unique grid world. Then, the actions can 

be described as moving to the right, left, up, and down. So, 

for the dynamic environment, the sets of states and actions 

are presented as S={s1,s2…,sm×n} and 

A={right, right-top, top, left-top, left, left-down, down, right-down} 
where, sk is the agent state. Figure 2 shows the grid world 

environment and an example of the action set. 

  

 
 

Figure 2. Path planning environment, including feasible, goal, and 

collision states. The arrows show the actions set 1. R: right, 2. TR: 

top-right, 3. T: top, 4. TL: top-left, 5. L: left, 6. DL: down-left, 7. 

D: down, 8. DR: down-right. 

 
As Figure 2 shows, an agent can go to the next state from 

the current state by taking appropriate action. In this study, 

the next states are neighbors of the current state with one 

neighborhood radius unit. In Q-learning, SARSA, and DQN 

methods, the next action is selected by evaluating a 

probability distribution of the actions set connecting the 

current state to the next states. After selecting the action, a 

reward is also assigned to the corresponding state-action 

pair, and a discounted Q-value accumulates this reward. This 

Q-value used to build the probability distribution mentioned 

above must be predicted and updated for the new step-time. 

A learning process is satisfactory when the cumulative 

discounted value, called target value from now on, 

approaches to the predicted Q-value of the current state-

action pair. In other words, the error between the target and 

the predicted values of Q must be decreased step by step. The 

average accumulated rewards obtained in the learning time 

must also converge to the two values in every time step. 

 

4.2. Identification of state transition matrix 
A state transition matrix, often used in the Markov decision 

process, is a stochastic or probability matrix representing the 

transition between two states (describing how to go to the next 

state from the current state). For example, the corresponding 

transition matrix of the system xk+1 = f(xk,uk) is stated as 

T(s, a, s')=p(st, at|st+1=s'). In the visual scheme, as shown in the 

red box in Figure 2, it can be obtained for the state 𝑠56 by 

taking actions from the arranged set (R, TR, T, TL, L, DL, 

D, DR) as T(s56,:,:)= [
1

5

1

5
0

1

5
0

1

5
0

1

5
] where the 

denominator of 5 represents the number of feasible states 

that do not contain collisions. A pure probability matrix can 

also represent it as T(s56,:,:)=[ξ1
ξ

2
… ξ

8] where ξ is 

the probability measure of the state feasibility. To find the 

transition matrix, one can employ the handcrafted feature 

extraction and states' classification (into three classes: 

feasible, goal, and obstacle sets or the number of all objects 

in the image) using deep learning methods. 

 

 
 

Figure 3. The environment, including feasible states, obstacle 

states, and goal states, are identified. 

 
When the environment is identified, as shown in Figure 3, 

the transition matrix can be built. Knowing the transition 

matrix, a reward matrix is designed by assigning +5, -5, and 

-1 to the actions leading to the goal, obstacle, and feasible 

states from the feasible states. 

 

4.3. Calculating uncertainty 
As mentioned in the previous section, to perceive the 

environment, objects in the environment are classified using 

the Deep Learning and Convolutional Neural Network 

(CNN) concept, and the probability that an object is placed 

in a class is calculated using a vector of SoftMax values. 

Here, uncertainty means inaccuracy in identifying objects in 

the environment using classification theory. For example, if 

the probability of a pixel belonging to the obstalce class is 

obtained equalt to 0.95, then the uncertainty will be 0.05. 

That is, we will have 0.05% uncertainty in identifying the 

class related to this pixel by deep learning.  Figure 5 shows 

the uncertainty measures for all the environment states 

related to Figure 3. 
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4.4. Path Planning using RL  
After identifying the transition matrix and assigning rewards 

to every state-action pair, path planning learning starts based 

on the related algorithms of RL; Q-learning, and SARSA, 

which are referred to by [17]. Figure 5 shows the schematic 

of the interconnection between the reinforcement learning 

methods (QL and SARSA), system, and the value function.  
 

4.5. Path Planning using DQN 
To implement path planning in a DQN framework, the Q-

values must be predicted using image pixels as a 

Convolutional Neural Network input. In this context, the 

images of the current state and the next states (the neighbors 

of current states) are used as the input of the convolution 

layers to provide a feature vector as the additional neural 

network input. The proposed CNN is shown in the 

following:  
 

Suppose selecting any action from the actions set a=a1,…,a8 

in the current state 𝑠𝑡 leads to the corresponding next states 

s'={s1
' , s2

' , …, s8
' }, a feature vector can be defined as the 

feature of image pixels outlined in the states 𝑠. As shown in  

Figure 6, the image pixels of the states of the environment 

are the input of the convolution layer, and its output is a 

feature vector for every state. To better understand, Figure 7 

presents an example of a feature vector arrangement for the 

current state s56 and next states s’={s57, s47, s46, s45, s55, s65, 

s66,s67}. Since every action from the current state leads to a 

different state, an action can be predicted by knowing the 

current and next states. For this purpose, the Q-value is 

approximated by the linear combination of features of the 

current and next states as  

Q(s, a)=W1 F(s)+W2F(s')+b=[W1 

W2] [
F(s)

F(s')
]+b=Wϕ(s, a)+b. Where, ϕ(s, a)= [

F(s)

F(s')
] is 

called feature vector of state-action pair (s, a). After 

providing the feature vectors, the DQN algorithm is 

implemented by referring to [3]. The schematic of the 

interconnection between the DQN, system, and environment 

is shown in Figure 8. 

.

  
Figure 4. Interconnection between the reinforcement learning(QL), system, and value function 

 

 
 

Figure 5. Uncertainty measures for all the states of the environment 
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Figure 6. The proposed Convolutional Neural Network (CNN) 

 

 
 

Figure 7. Feature vector arrangement for current state s and next states s’  

 

 
 

Figure 8. The reinforcement learning (RL), system, value function, and  

deep learning (DL) in the proposed method 

  

5. Simulation and results  
In the first phase, the mentioned learning methods (Q-

learning, SARSA, and DQN) were implemented on the path 

planning task in the environment simulated in MATLAB. 

The program is run in 10000 Episodes(iterations) and 200 

maximum step (MaxStep) with a learning rate of α=0.5 for 

Q-learning and SARSA, and η=
η0

1+
Episode

MaxEpisodes

,  η
0
=0.02 for 

DQN, a discount factor of γ=0.9, and ε =0.3 for the ɛ -greedy 

approach. In the second phase, the new proposed method is 

implemented in the mentioned learning method. The 

Convolutional Neural Network (CNN), described in section 

4.5, is used with 7 layers including 3 Convolution-Batch 

Normalization-Relu layers arranged with each other, 1 fully 

connected layer for creating the feature vector as Conv1-

BN1-Relu1--Conv2-BN2-Relu2--Conv3-BN3-Relu3--fc4, 

and 2 fully connected and 2 Relu layers for building the 

neural network as fc5-Relu5--fc6-Relu6--fc7. Figure 9 

shows the averages of rewards, steps, time steps, and errors 

obtained from implementing the old and newly proposed 

methods. Excluding the average of time steps, the 

performance of new method has improved in terms of other 

factors. By implementing the newly proposed method, the 

number of steps per episode, and the learning error have 

decreased, and the average reward has increased. These are 

the advantages of the new methods, but the run time of 

learning in the new methods is longer than the old methods, 

which is a disadvantage of our new methods. 
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Figure 9. Comparison of learning methods on Averages of Rewards, Steps, Steps time, and Error.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Left: the everage of rewards, target, and predicted Q-values for the new methods (i.e., POQL, POSARSA, PODQN) and the 

old methods (i.e., QL, SARSA, DQN). Right: Averages of Path length, angles and optimal rates for both new and old methods. 
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Figure 11. Compairison the proposed method with new method for path plaing by starting from several scenarios  

  

 

In Figure 10, the image on the left shows that the average 

rewards, target, and predicted Q values converge in 

descending order, resulting in a steadily decreasing learning 

error. The new methods (POQL, POSARSA, PODQN) have 

received fewer negative rewards rather than the old methods 

(QL, SARSA, DQN). In other words, the negative zone is 

narrower than for the new methods compared to old 

methods. Moreover, in the right image, the averages of path 

length and the averages of the sum of path angles for the new 

methods are less than that of the old methods.  

Figure 11 shows the test results of four initial states (start 

points) s128,s331,s242,s644, and the predefined goal states 

(plate shape remarked by green color). As shown in all tests, 

the path length obtained by the new methods (POQL, 

POSARSA, and PODQN) is shorter or equal to that of the 

old methods (QL, SARSA, and DQN). It means that the path 

optimality of the new method is more than the old methods.  

 Figure 12 shows the average of the sum of uncertainty 

measures for all the states of every path in the iterations. The 

results indicate that the uncertainty is gradually decreasing 

by increasing the iterations for all methods. Besides, the 

newly proposed method minimizes the path uncertainty 

much better than the old methods. 
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Figure 12. The average of the sum of uncertainties for every path obtained  in the iterations 

 

6. Discussion  
While implementing RL and DQN and the new method, one 

may encounter some challenges, including data availability, 

dimensionality, visual perception by feature extraction, 

learning stability, and butterfly effects. Regarding data 

availability, learning problems need massive datasets for 

training. Fortunately, the required data can be provided for 

the path planning problem. One can obtain this data from the 

real environment and events in our daily life, from the 

personal houses to roads and highways, and by taking 

pictures and videos. Dimensionality is the most critical 

challenge because, as mentioned above, learning problems 

are valid by using massive datasets. However, to solve this 

problem, one needs to use a well-equipped computer with 

high CPU and GPU performance. Although we need to run 

the program for a few hours or days in many cases of deep 

learning, in this study, we apply some assumptions and 

provisions to reduce dimensionality. For example, by 

selecting images just from states required for evaluation in a 

specific state, the computations are decreased. Moreover, 

using toolboxes may increase the run time. So, one can code 

the required algorithm by himself to remove the irrelevant 

scripts and functions. 

Visual perception and feature extraction are other issues 

in deep learning. Selecting appropriate features plays a 

crucial role in the perception of the environment. In the this 

study, we needed to approximate Q-values using image 

features. Finding the proper features requires examining the 

inputs by changing CNN, layers, parameters, and 

hyperparameters. Moreover, overfitting data is hazardous 

when the number of parameters dramatically exceeds the 

number of independent observations. One can use 

regularization, normalization, and limitation on learning 

weights and required parameters to avoid such problems. 

Finally, the learning process is strongly sensitive to the 

butterfly effects as small variations in the input data might 

lead to extremely different results and thus learning 

instability. For example, selecting image features and also 

the learning rate is essential for deep learning. As a piece of 

good news, learning results are achieved by averaging the 

outputs in a long time or significant steps, and it can reduce 

the effect of small local disturbances in the whole process. 

However, for stochastic gradient descent algorithms such as 

DQN, the inputs and parameters must be selected reliably. In 

this way, it might be needed to monitor outputs changes after 

selecting or changing the inputs to find the best parameters 

by trial and error if necessary.  

 

7. Conclusion and future works 
In this paper, a new method was proposed to improve the 

learning algorithms, including Q-learning, SARSA, and 

DQN, for path planning tasks to minimize the path length 

and uncertainty. The results illustrate that the new method 

can improve path planning optimality at least 21%, 21.5 %, 

and 5-8% for POQL, POSARSA, and PODQN compared to 

QL, SARSA, and DQN, respectively. Moreover, the 

challenges of applying the new method were discussed. In 

future studies, this method can be applied to other 

benchmarks in reinforcement learning and deep learning 

methods and problems such as highway and traffic issues. 
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