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Abstract. The temporal association rules mining has recently 

become an important technology in the field of the Customer 

Relationship Management (CRM), which can be useful for 

improving the customer enterprise relationship. Also, the 

dynamic nature of the CRM systems is made necessity of 

using efficient and rapid algorithms in order to extract valid 

patterns in this field. Hence, this paper proposes an efficient 

algorithm of incremental mining for temporal association 

rules in CRM entitled PLI-X. The four significant features 

that are considered for this algorithm are:(1) generating  valid 

temporal association rules after adding the new transactions 

to the database, (2) performing algorithm on the whole 

temporal database instead of a small section of it, (3) 

performing the temporal transactional databases of the non-

numeric, and (4) quickly generating the temporal association 

rules and reducing the run time by partitioning the candidate 

itemsets based on the previous partitions and scanning 

database when scan is necessary. Experimental result is the 

valid proof for the correctnessof this assertion. It seems that 

the PLI-X algorithm can be used as a strong tool in order to 

extract valid patterns and discover useful temporal 

association rules in the field of CRM. 

 

Keywords. Temporal Database, CRM,  Incremental Mining, 

Pre-large Itemsets. 

 

1. Introduction 

In the last decade, the advent of various high-level 

technologies has brought forth difficulty in reducing the price 

of most products. In addition, the growing trend of the 

universal economy causes more challenging contests in the 

market. In such challenging situations, the concentration of 

enterprises is on the customers. In any enterprise, all the 

customers have not the same value. Thus, it is impossible to 

assign the same resources to each customer due to limitations 

in resources. These features indicate the necessity of 

customer value analysis in the CRM [1]. Enhancement of 

customer-enterprise relationship, offering strategies for the 

development of new customers, and the maintenance of loyal 

customers are some of the duties of CRM [2]. Customer value 

analysis and capability improvement of customer 

preservation of an enterprise are the main goals of CRM. 

Consequently, the CRM is effective in decision-making about 
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which customers are more important, which group of 

customers should be intrinsically considered, and which 

services are required for each customer group [3].  

The data mining is responsible for knowledge discovery, 

rules , and hidden patterns from the stored data in the 

computer [4]. The extracted information could be used to 

predict the precise and correct behavior of the customers. 

Generally, data mining analyzes an extensive amount of 

unstructured data in order to discover the relationships for a 

better understanding of fundamental processes. The temporal 

data mining (TDM) does a similar analysis for an ordered data 

stream with temporal dependencies [5]. TDM is one step of 

the knowledge discovery process that extracts available 

structures such as temporal patterns or models from the data. 

In other words, algorithms that generate temporal patterns or 

create appropriate models are termed as temporal data mining 

algorithm [6]. In fact, the ultimate purpose of TDM is to 

discover hidden relationships between sequences and sub-

sequences of events [7, 8]. So far, various methods have been 

presented in the field of data analysis [9-12] and its mining 

[13-17]. But, the volume of the performed studies is few in 

terms of developing a temporal mining-based structure in 

CRM systems and this lack can pose a challenging problem 

in CRM systems. On the other side, most of the available 

methods are incapable of correcting the analysis of dynamic 

temporal data and there is no effective method that resolves 

all the required aspects of CRM systems. Consequently, the 

main purpose of this study is to suggest a method based on 

the incremental mining of temporal data. In fact, it seems that 

the proposed method can be capable for the correct analysis 

of dynamic temporal data and enhances CRM system 

performance. 

 The paper is structured as follows: this research starts 

with Section 2 that gives a brief review of the topic 

background. Then, it expresses incremental mining of 

temporal association rules by “pre-largeˮ  itemsets at a 

glance in Section 3. In Section 4, the proposed method is 

presented and thoroughly described. The experimental results 

are discussed in Section 5. Finally, conclusions of research 

work are remarked in Section 6 and future research is 

presented in this section. 

 

2. Review of the Related Literature 

Association Rules Mining (ARM) has two components of 
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finding frequent itemsets and generating association rules. 

The major part of the algorithms is considered to discover 

frequent itemsets, which is highly time consuming while 

generating association rules is straightforward [13].  

Besides, conventional algorithms of association rules 

mining shows that there are other enhanced algorithms that 

having incremental, multi-level rule, multi-dimensional rule, 

Temporal Association Rule Mining (TARM), and so on [18-

23].  

Temporal Data Mining (TDM) is a fairly modern branch 

which can be considered as the common interface of various 

fields, namely statistics, temporal pattern recognition, 

temporal databases, optimization, visualization, and high-

level and parallel computations. TDM is different from 

traditional modeling techniques of a data stream in the size 

and nature of data set and the method of data-series gathering. 

The reason for this difference can pose two important points: 

the first point, the incapability of traditional modeling 

techniques in handling large data sets, while the size of the 

data set is large in TDM [5]; the second point, difference in 

type of knowledge discovered by TDM and techniques of 

data-series analysis. In the other word, the main problem is 

pattern discovery form the sequential data in TDM [24]. 

TARM is recently taken into account as a method for 

dynamic data processing such as transactional databases in 

CRM systems. An interesting extension to association rules 

is to include a temporal dimension. Actually, different 

association rules is discovered if different time intervals are 

considered. The lifetime of an item (such as egg, coffee, tea ) 

is a time interval that originates from the occurrence of that 

item in the database and continues as long as its presence [22]. 

In other words, it is the time interval that an item is accessible 

for purchasing. 

So far, different techniques have been presented for TARM 

in various applied fields and science the review of which 

indicates the dynamic growth of this research scope and 

various approach in this field [1, 3, 4, 14, 16]. On the other 

hand, literature indicates that most of TARM algorithms are 

based on dividing the temporal transaction database into 

several partitions according to the time granularity imposed, 

and then mining temporal association rules by finding 

frequent temporal itemsets within these partitions [25].  

Also, most of the previous algorithms cannot effectively be 

applied in the temporal databases because of two important 

parameters i.e. confidence and support coefficients which 

should be modified based on the new mining model [26].  

In this section, more related recent articles are reviewed for 

the better comprehension which are coherently classified in 

Fig. 1.  

 

2.1 Candidate generation category 
In this category of algorithms such as the Apriori algorithm, 

the algorithm needs to scan the database repeatedly [16]. The 

general act of the search process performed is briefly stated 

level to level as it follows: 

I. Let k=1 

II. Generate frequent itemsets of length 1. 

III. Repeat until no new frequent itemsets are identified 

 Generate length (k+1) candidate itemsets from 

length k frequent itemsets. 

 Prune candidate itemsets containing subsets of 

length k that are infrequent.  
 Count the support of each candidate by scanning 

the database. 

 Eliminate candidates that are infrequent leaving 

only those that are frequent. 

Some of the algorithms of this category are covered in the 

following: 

 

Sornalakshmi et al. in [12] reported that Apriori algorithm 

generates a large amount of rules and does not guarantee the 

efficiency and value of the knowledge created. Hence, they 

have proposed an Enhanced Apriori Algorithm (EAA) based 

on the knowledge of a context ontology methodology for 

sequential minimal optimization in order to overcome the 

weakness of the standard Apriori algorithm. Authores have 

said that the EAA to generate frequent k-itemsetsfinds finds 

the frequent itemsets directly and eliminates the infrequent 

subsets based on the standard Apriori algorithm. 

 

Wang and Zheng is [16] proposed an improved Apriori 

algorithm of frequent itemset that gives the time constraints 

interval and uses the time interval algebra to filter and mine 

the data in the transaction data. The authors have said that our 

algorithm can be an effective method to reduce the 

transaction is given. For this purpose, their method reduces 

the number of candidate sets and improves the efficiency of 

the Apriori algorithm, but it also needs to scan the database 

repeatedly.  

 

Kadir et al. [28] believed that most of the used systems to 

extract the existing temporal relation among temporal data 

suffers from sparseness of the available dataset such as 

market basket datasets. They have used Apriori algortihm to 

extract temporal relations in such data, which include two 

main steps: (1) extracting features from the dataset and (2) 

vectorizing the features so that Apriori algorithm can be 

applied on the data. In the end, the Apriori algorithm is used 

to generate frequent itemsets. 

 

Maragatham and Lakshmi in [29] proposed an efficient 

algorithm, which mined temporal association rules based on 

Utility or value, namely UTARM. Authors have said that the 

UTARM algorithm combines both temporal (time periods) 

and utility for the mining of remarkable and helpful 

association rules. Actually, the different utility values are 

given for the items based on the time periods in the UTARM 

algorithm in a seprate table for each partition. This algorithm 

can be decomposed into seven steps: (1) generate all possible 

candidate 2-itemsets from partition P1 , (2) mining of FTU 2-

itemsets (P1), (3) generate candidate 2-itemsets from 

partition P2 and mining of FTU 2-itemsets (P1+P2 ), (4) 

mining of FTU 2-itemsets (P1+P 2+...+ Pn ), (5) generate all 

FTU 1-itemsets from FTU 2-itemsets, (6) mining of all FTU 

k-itemsets, and (7) generate association rules using FTU 

itemsets. 
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Hong et al. in [30] presented the TPPF algorithm (three-phase 

algorithm with predicting strategy considering the first 

occurring transactions of items). They have introduced a new 

concept of temporal association rule mining with a hierarchy 

of time granules to find hierarchical temporal association 

rules in temporal databases, and they also presented an 

effective approach to find such rules. In particular, an 

effective strategy is designed to predict the upper-bound of 

support values for itemsets. The strategy can be used to 

remove unpromising itemsets at an early stage in the process, 

and the proposed TPPF can effectively reduce the 

computational cost of scanning a temporal database. 

 .2 Without candidate generation category 

This category of algorithms such as the FP-growth tree 

algorithm applies a radically different approach to discover 

frequent itemsets. The algorithm does not subscribe to the 

generate-and-test paradigm of the Apriori. Literature shows 

that the general act of this category is considered to encode 

the data set using a compact data structure called an FP-tree 

and extracts frequent itemsets directly from this structure 

[31]. This category reduces infrequent items and is also much 

faster than Apriori algorithm. We have reviewed some of the 

algorithms of this category as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig 1. An overview of more related works for TARM 
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Rachburee et al. in [15] used apriori algorithm and FP-growth 

to discover association rules mining from maintenance 

transaction log of ATM maintenance. They have tried to 

focus on comparison of association rules between FP-growth 

and apriori algorithm. In the end, they have concluded that 

FP-growth has better execution time than apriori algorithm.  

 

Ilham et al. in [32] performed the market basket analysis to 

determine the layout and planning of goods availability by the 

FP-growth algorithm. Also, they have proved the successful 

application of the FP-growth algorithm in generating 

informative association rules and found out the consumer 

spending pattern. They have reported that experimental 

results show that the FP-growth algorithm can analyze 

quickly and efficiently informing consumer shopping pattern 

and can increase revenue. 

 

Hasan and Mishu in [33] believed that there exists a problem 

to define minimum support and to mine frequent itemsets on 

Apriori and FP-growth algorithm. If the threshold is set to 

low, too many frequent itemsets will be generated which may 

cause the Apriori and FP-growth algorithm to become 

inefficient or even loss of memory. Hence, authores have 

proposed an adaptive method based on Apriori and FP-

growth algorithm to avoid this problem by using Binomial 

Distribution (BD) to find appropriate minimum support 

adaptively. They have shown that their method performs 

better than existing benchmark. 

 

Hong et al. in [34] designed a tree structure from the frequent-

pattern tree, then, presented a mining algorithm based on it to 

extract high temporal fuzzy utility patterns from temporal 

transactional datasets. They have said that the proposed 

method requires two-phase processing to find all high 

temporal fuzzy utility itemsets and to provide better results 

than the Apriori-based mining algorithm. 

 

Sathyavani and Sharmila in [35] presented that the mining of 

UP-Tree (utility pattern) by FP-growth extracts high utility 

itemset and generates too many candidates. Hence, authors 

have proposed using the UP-Growth and UP-Growth+ to 

shorten the candidate itemsets. In UP-Growth, two tactics 

such as Discarding Local Unpromising items (DLU) and 

Decreasing Local Node (DLN) were used in FP-growth to 

effectively reduce the memory usage. Authors have reported 

that these algorithms can overcome the spatial and temporal 

locality problem and effectively reduce memory usage. 

 

2.3 Incremental category 

Temporal transactional databases are continuously updated 

and increased. Thus, the rules that have previously been 

generated need to be updated, removing those rules that are 

no longer relevant, and adding valid new rules [36]. Hence, 

incremental mining concept is presented to mine temporal 

association rules, which can help to solve this problem.  Some 

of the studied incremental algorithms  are briefly stated as it 

follows: 

 

Gharib et al. [37] proposed ITARM (incremental association 

rules mining) algorithm for updating temporal association 

rules in the transaction database. Authors have believed that 

the proposed ITARM algorithm reduces the time needed for 

generating new candidates by storing candidate 2-itemsets. In 

fact, they have presented a technique to update the previously 

generated candidates instead of re-generating them from 

scratch. Also, they have reported that the experiments results 

show a significant improvement over the traditional approach 

ofmining the whole updated database. 

 

Huang et al. [38] presented Twain algorithm that 

progressively calculates the number of the occurrence of two-

item candidates in each partition of the database. The Twain 

algorithm uses a progressive filtering method for the 

elimination of non-iterative two-item candidates. Authors 

have believed that the Twain algorithm generates the iterative 

two-item candidates after one scan of database and, then, 

directly creates the k-item candidates from the iterative two-

item candidates. Also, the second scan of database gives the 

number of occurrence of the last item-sets and generates the 

iterative temporal item-sets. 

 

Kumar and Paulraj in [39] presented a pattern mining 

algorithm based on incremental utility to identify the optimal 

patterns in a relational database. Authors have considered that 

frequent patterns are selected based on the minimum support 

and confidence where the next level pattern are generated 

based on the frequency of patterns in the selected set, which 

are measured iteratively. Also, they have reported that this 

algorithm improves to access the scalability and efficiency of 

transactional processing itemset to improve the knowledge 

enhances itemsets by identifying the process. 

 

Hui et al. [40] presented an efficient algorithm, namely 

Inc_TPMiner (Incremental Temporal Pattern Miner) to mine 

incremental of temporal patterns from interval-based data. 

Authors have believed that the proposed algortihm can be 

useful to balance the efficiency and reusability based on a 

proper expression, dynamic representation.They have 

reported that the experimental results on the tested databases 

indicate that Inc_TPMiner significantly outperforms re-

mining with static algorithms in execution time and possesses 

graceful scalability. 

 

Sun et al. in [41] proposed a incremental mining algorithm 

for frequent itemsets using a Full Compression Frequent 

Pattern Tree (FCFP-Tree), which is named FCFPIM. Authors 

have said that FP-tree and the FCFP-Tree structures maintain 

complete information of all the frequent and infrequent items 

in the original dataset. But the act of FCFPIM algorithm is 

differing as it does not allows to waste any scan and 

computational overhead for the previously processed original 

dataset when the new datasets are added and the support 

changes. They have reported that the experimental results 

show that the space-consuming is worthwhile to win the gain 

of execution efficiency, especially in the situation that the 

support threshold is low. 

 

2.4  Evolutionary Computation Category 

In the past few years, ARM techniques based on Evolutionary 

Computation (EC) have emerged as one of the most popular 
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research areas for addressing the high computation time of 

traditional ARM [21]. In the last years, application of the EC 

algorithms have appeared in TARM problems to address the 

limitations of traditional approaches such as high 

computation time in different applied domains. The EC 

algorithms are a state-of-the-art and efficient strategy for 

finding nearoptimal solutions. A key characteristic of these 

algorithms is that strict termination conditions can be set to 

limit computation time while a nearly optimal solution can be 

obtained [46].  

We tried to cover some works in which evolutionary 

computation is placed as it follows: 

 

Chamazi and Motameni in [11] proposed combination of 

fuzzy temporal mining concepts and EC algorithms to 

identify temporal frequent itemsets. In fact, authors have 

designed an efficient fuzzy temporal-evolutionary mining 

based on    the bees algorithm. This approach finds suitable 

membership functions for fuzzy temporal mining problems 

by the bees algorithm before searching for temporal frequent 

itemsets and fuzzy associations. The authors have reported 

the proposed approach provided for good performance with 

respect to the effectiveness of the obtained solution. 

 

Matthews et al. (2010)  [42] presented a new framework in 

which genetic algorithm is introduced as an impact factor for 

temporal association rules mining. Authors have asserted that 

their framework is an enhancement to existing temporal 

association rule mining methods as it employs a genetic 

algorithm to simultaneously search the rule space and 

temporal space.  

 

Maragatham and Lakshmi in [43] presented an effective 

method based on the Utility for temporal association rule 

mining. Authors have proposed that the Particle Swam 

Optimization algorithm is used to optimize the generated 

rules by filtering out the redundant rules and, thereby, 

reducing the problem space. They have considered 

calculation of the support and confidence from the input data, 

the rule generation, initialization , updation of the velocity, 

position of the rules, and evaluation of fitness function as 

main processes.  

 

Wen et al. in [44] proposed temporal association rules mining 

algorithm based on Genetic algorithm that is designed to 

extract temporal association rules in traffic environments. 

The rules are analysed by a classification mechanism so that 

a classifier can be built to predict the traffic congestion level. 

They have reported that experimental results demonstrate 

high and reasonable accuracy of output. 

 

Matthews and Gongora in [45] presented a novel method for 

mining association rules that are both quantitative and 

temporal using a multi-objective evolutionary algorithm. 

Authors have reported that their method successfully 

identifies numerous temporal association rules that occur 

more frequently in areas of a dataset with specific quantitative 

values represented with fuzzy sets. Also, they have said that 

the novelty of this method lies in exploring the composition 

of quantitative and temporal fuzzy association rules. 

As a result, it can be said that the common approach in 

many of the previous algorithms is to scan throughout the 

transactional database; whereas, this paper proposes a novel 

algorithm of incremental mining for temporal frequent 

itemset that prevents the complete scan of the database in 

each stage. For this purpose, the algorithm performs the scan 

act only when it is necessary. In many previous techniques, 

association rules mining has been performed on a part of the 

transactional database in a certain time. On the other hand, 

users of dynamic systems damand methods that discover 

customer's behavior patterns which provides the minimum 

time possible. In that case, current methods could not respond 

completely to the users’ needs due to the various scans of the 

database for discovering association rules. Also, reviewing 

the literature, it is concluded that the research effort is few in 

the field of temporal association rule mining in dynamic 

transactional systems. 

 

3. Incremental Mining of Temporal Association Rules by 

Pre-Large Items 
This section is organized to define and introduce basic 

concepts of the proposed algorithm into two parts: 

preliminary concepts and association rules maintenance. 

 

3.1 Preliminary Concepts 

This paper employs the concepts of temporal granularity for 

database partitioning. Temporal granularity is a partition of 

the timeline. In the context of databases, a temporal 

granularity can be used to specify the temporal qualification 

of a set of data, similar to its use in the temporal qualification 

of statements in natural languages. For example, in a 

relational database, the time stamp associated with an 

attribute value or a tuple may be interpreted as associating 

that data with one or more granules of a given temporal 

granularity (e.g., one or more days) [47, 48]. In a temporal 

database, each tuple has two attributes, start and end, which 

can indicate the time period during which the information 

recorded in the tuple is valid. A tuple might also have many 

other attributes. A transaction originl database, DB = {T1, T2, 

…, TC} is a set of transactions where each transaction Td (

1 d c   ) has a unique identifier, called Tid. Given a finite 

set of items I={i1, i2, ..,im}. Assume that n is the number of the 

database partitions based on a temporal partitioning 

parameter such as month, season, year, and etc. Also, db s,e 

denotes a partition of original database that is originated from 

partition ps and ends in partition Pe , such that 
,

,

s e
db phh s e

 


. Where 
,s e

db DB  and ph  

denotes the number of transactions in partition ph. An itemset 

X is a set of distinct k items {i1, i2, …, ik}, where 

,1i I j kj    , k is the size of itemset X [43]. The interval 

(s,e) represents maximal lifetime or Maximal Common 

exhibition Period (MCP). A maximal temporal itemset X s,e is 

defined as follows [28]: 

Definition 1: An itemset X s,e is called a maximal temporal 

itemset in a partial database db s,e if s is the latest starting 

partition number of all items belonging to X in database DB 
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and e is the partition number of the last partition in db s,e 

retrieved. 

A temporal itemset z s,e is called a temporal Sub-Itemset 

(SI) of a maximal temporal itemset X s,e if z X [28]. As an 

example, consider the maximal temporal itemstes BDE 2, 3 

that contains the sub-itemsets {DE 2,3, BE 2,3, BD 2,3, E 2,3, D 
2,3, B 2,3}. Let MCP (X) denote the MCP value of item X. The 

MCP value of an itemset X is the shortest MCP among the 

items in itemset X.  

The fraction of transaction T supporting an itemset X with 

respect to partial database db s,e is called the support of X s,e 

which is given by the following equation [25]: 

 

  
  
 

|
MCP x

T db x T
MCP x

supp x
MCP x

db

 

                         (1) 

The support of an itemset X is an indication of how 

frequently that X appears in database DB. The support value 

of X with respect to T is defined as the proportion of itemsets 

in a database containing X, denoted as supp (X) [43]. The 

support and confidence of a rule  
 
 
 

MCP XY
X Y are 

defined as follows [28, 43]:  

 

         MCP XY MCP XY
supp X Y supp X Y                    (2) 

 

    
    
    

MCP XY
supp X Y

MCP XY
conf X Y

MCP XY
supp X



 
                   (3) 

 

Definition 2: An association rule    MCP XY
X Y is 

called a general temporal association rule in the transaction 

set DB with [37]: 

( )
(( ) )

MCP XY
conf X Y c                                        (4) 

 
( )

(( ) )
MCP XY

SUPP X Y s                                     (5)  

 

( )( )
( )

MCP XY
db

MCP XY
X Y                               (6)  

 

In which transaction itemsets X and Y have relative 

support and confidence greater than the corresponding 

thresholds. Thus, we have the following definition to identify 

the frequent general temporal association rules. 

Definition 3: A general temporal association rule

   MCP XY
X Y is termed to be frequent if and only if: 

 
( )

(( ) ) min_
MCP XY

SUPP X Y SUPP                            (7) 

 
( )

(( ) ) min_
MCP XY

conf X Y conf                           (8) 

 

Actually, temporal association rule with particular MCP is 

known as frequent if and only if its support coefficient is not 

less than the upper support threshold and its confidence 

coefficient is not less than the minimal user-defined 

confidence coefficient [49]. 

Generally, the temporal association rules discovery can be 

resolved into three steps [22,  49]: 

1) Generate all frequent maximal temporal itemsets (TIs) with 

their support values. 

2) Generate the support values of all corresponding temporal 

subitemsets (SIs) of frequent TIs. 

3) Generate all temporal association rules that satisfy min 

confusing the frequent TIs and/or SIs. 

 

3.2 Association Rules Maintenance 

This section shows the method of association rules 

maintenance after updating temporal data in a CRM system. 

The proposed method uses pre-large item-sets concept that is 

not initially large but is expected to convert into a large set in 

the future. The pre-large item-sets work like a buffer aiming 

to reduce the number of direct item transfers from large to 

small item-sets and vice versa. Pre-large item-sets are defined 

using a lower support threshold and an upper support 

threshold to reduce the need for rescanning the original 

databases and to save the maintenance costs. Pre-large 

itemsets act like gaps that reduce the movements of itemsets 

directly from large to small and vice-versa [50]. The upper 

support threshold is the support coefficient that is applied in 

usual algorithms of association rules mining. An item locates 

in the large item-sets when its support coefficient is more than 

the upper support threshold. On the other side, the lower 

support threshold is a minimal support that isolates the small 

and pre-large item-sets. An item with smaller support than the 

lower support threshold is considered as a small item. The 

items with support between the lower and upper support 

thresholds locate in the pre-large item-sets. Adding a new 

transaction into the original database could result in nine 

different states [51] that are shown in Fig 2. 

 

 
 
Fig 2. The probable states after addition of a new transaction into 

the original database [51] 

 

Also, Table 1 summarizes the nine mentioned cases with 

their results. According to the average number of occurrences 

in cases 1, 5, 6, 8 and 9, these cases could not alter the final 

discovered rules. Cases 2, and 3 could change the existing 

association rules and remove the validity of some rules while 

cases 4 and 7 could add some new association rules to the old 

rules. If all locating items within the large and pre-large item-

sets and the count of their occurrence are preserved after the 

execution of each stage, then the cases 2, 3 , and 4 are simply 
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managed. In the maintenance stage, the new transactions are 

usually very small in comparison with the old transactions. In 

this situation, the items in case 7 could not be located in the 

large item-set in the updated database. 

For the proposed algorithm, all symbols used in the 

proposed algorithm are shown in Table 2. 

 

4. The Proposed Method 

In this section, we would like to present an efficient algorithm 

for incremental mining of temporal association rules on 

temporal customers database in a CRM system, which is 

called PLI-X. General schema of PLI-X algorithm is shown 

in Fig. 3. This algorithm is also applicable to situation that the 

new transactions are inserted in the database. The PLI-X 

algorithm uses the concept of pre-large itemsets and 

generates the dominant rules in a dynamic space on the basis 

of the Fast Update algorithm (FUP). This algorithm generates 

up-to-date and valid rules that are beneficial factors for 

enterprises in a short period. In fact, the main goal of the PLI-

X algorithm is keeping the repeated temporal patterns after 

updating temporal transactions of database. 

There is a significant difference among PLI-X algorithm 

and other previous works concerning  the incremental mining 

of temporal frequent itemsets in dynamic systems, which are 

clarified as follows: 

Reviewing the literature, it is concluded that most the 

previous resources in the field of incremental mining of 

temporal data in dynamic systems require a complete 

scanning of the whole updated database in the situation that 

new transactions are added to the original database [26, 28]. 

But, the scanning process performs in a the different way by 

PLI-X algorithm, which leads to a reduction in run-time 

because of scan number reduction. The proposed algorithm 

explores the whole database in particular conditions. For this 

propose, a safe threshold is presented to consider the newly 

added transactions. The appropriate definition of this 

threshold can lead to reducing scanning updated database. 

Thus, PLI-X algorithm performs the scan of the updated 

database due to the safe threshold after inserting several new 

transactions only when database scan is necessary. This 

schema not only preserves the previous frequent itemsets 

after updating the temporal database but also enhances the 

efficiency of incremental mining algorithm and saves the 

execution time of the proposed algorithm.  

 

 

 
 Table 1. Summary of the results of the mentioned cases 

 

Cases: Original – New Results 

Case 1: Large – Large Always large 

Case 2: Large - Pre-large Large or pre-large 
Case 3: Large - Small Large or pre-large or small 

Case 4: Pre-large - Large Pre-large or large 

Case 5: Pre-large - Pre-large Always pre-large 

Case 6: Pre-large - Small Pre-large or small 

Case 7: Small - Large Pre-large or small when the number of transactions is small 

Case 8: Small - Pre-large Small or Pre-large 

Case 9: Small - Small Always small 

 
Table 2: sympols description of the proposed algorithm 

 
Definition Symbol # Definition Symbol # 

temporal subitemsets  SIs 12 transaction originl database DB 1 

the added transactions to database without any changes Tdbi  

 

13 a transaction with id identifier Tid 2 

the part of incremental database  dbi 14 a finite set of items  I 3 

the sum of the added transactions and transactions in the 

last partition of the original database. 

Merged 

db 

15 start partition and end partition, 

respectivelly 

ps and 

pe 

4 

the time stamp of new transactions Ts (Tdbi) 16 a partition of DB that is originated from 

partition ps to partition Pe 

db s,e 5 

the time stamp of transactions in the last partition of the 

original database 

Ts (DBj) 17 the number of transactions in partition ph 
ph   

6 

the part of the original database which inlcudes 

transactions in the last partition 

DBj 18 itemset X  7 

transactions in the last partition of the original database TDBj 19 a maximal temporal itemset in a partial 

database db s,e 

X s,e  8 

safe threshold f 20 items number in the items sequence k 9 

transactions of the original database TDB 21 frequent maximal temporal itemsets TIs 10 

lower support threshold sl 22 upper support threshold su 11 
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We have briefly listed the paper innovations as follows: 

 generating of the valid temporal association rules 

after adding the new transactions to the database. 

  performing of algorithm on the whole temporal 

database instead of a small section of it 

 performing the temporal transactional databases of 

the non-numeric 

 generating the temporal association rules and 

reduction of the run time by partitioning the 

candidate itemsets based on the previous partitions 

and scanning database when the scan is necessary. 

  

4.1 Pre-processing Step 

The first step of the proposed method is pre-processing the 

flowchart of which is shown in Fig 4. In this step, customer's 

transactions are partitioned based on a time stamp like a 

month of the year that purchase has done on that month in the 

original database. As it is shown in Fig 4, the pre-processing 

step is based on a comparison between new transactions and 

the older transactions in the last partition of the original 

database. On this basis, two different situations could have 

occurred: i. Ts (Tdbi) is identical to time stamp of transactions 

in the last partition of the original database (Ts (DBj)). In this 

situation, the new transactions are merged to the transactions 

of the last partition of the original database and, then, are sent 

to PLI-X algorithm as an adjunct database. The number of the 

occurrence of common itemsets between the last partition of 

the original database and the newly added database should be 

subtracted from the extracted large and pre-large item sets. 

Since these items are converted into the items of the added 

database, their count should not be considered in the 

previously generated item sets. These items are investigated 

with the newly added transactions and are entered into the 

proposed algorithm. ii. The time stamp of new transactions is 

different from that of older transactions in the last partition of 

the original database. In this situation, the combination of 

transactions in the last section of the original database and 

new transactions is not required and the newly added 

transactions are entered into the algorithm as an adjunct 

database. 

 

4.2 The PLI-X Algorithm  

In the proposed algorithm, the temporal itemsets of 

maximized frequent generated after performing the nine steps 

is presented in flowchart (Fig 5). As is seen in Fig 5, research 

novelty is highlighted with a bold line that is in black color. 

Also, in the first step of the proposed method, f parameter is 

calculated due to the entered values. In the second step, 1 

value is assigned to it k variable that indicates items number 

in the items sequence and is produced in the current execution 

algorithm. All k-items candidates and occurrences number of 

them in the newly added transaction are produced in the third 

step. The creation process of the new candidates is expressed 

briefly as it follows:  

The large and pre-large items and their counts are stored from 

the last execution and are used for the preservation of 

association rules. The newly entered transactions are first 

scanned by the algorithm to generate the 1-itemset 

candidates. The outcome is then compared to the previously 

stored large and pre-large itemsets. 

If a 1-item candidate is available in the new transactions 

of large or pre-large 1-itemsets of the original database, the 

final count of their occurrence could be calculated by adding 

count of their occurrence in the current and previous 

execution. This is the consequence of preservation of all 

previous large and pre-large items with count of their 

occurrence. Calculation of new support parameter helps to 

decide whether a large or pre-large item remains in the same 

category after inserting a new transactions or not. The support 

parameter is the ratio of total number of target items to the 

total number of transactions. If a new 1-item candidate does 

not pertain to large or pre-large item sets of the original 

database, it definitely could not be a large item for the updated 

database. This is true in the condition that count of newly 

added transactions is less than a safe threshold limit (f ). 

Consequently, in order to find the new pre-large itemsets 

during incremental insertion of new transactions, the database 

is scanned only when the count of new transactions exceeds 

the safe threshold limit. Scan of the original database is 

carried out similar to the implemented method in FUP 

algorithm. The next step is to create the 2-item candidates for 

the newly added transactions while the same procedure is 

repeated to find all large 2-itemsets. This process is continued 

until the generation of all the large itemsets. The c variable 

stores the number of new transactions since the last scan of 

the main database. 

 

4.2.1 Optimization of Lower Support Threshold 
In contrast to the previous studies, the present research 

considers the lower support to constraint itemsets and 

minimizes the execution time. The lower threshold 

coefficient is a key parameter in determining the association 

rules. This parameter separates the small and pre-large 

itemsets based on the number of their occurrence in the 

database. In all the previous resources in this field, this 

coefficient was manually set by the user. But, in this research, 

the optimal and desirable value of the lower support threshold 

is obtained by using the optimization process to enhance the 

efficiency of association rules discovery algorithms. 
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Fig 3. General schema for the proposed PLI-X algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 4. The flowchart of pre-processing step in PLI-X 
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Fig 5. The generating temporal itemsets of the maximized frequent 

 

Table 3. Optimal values of the lower support threshold for various values of the upper support threshold 

 

V9 V8 V7 V6 V5 V4 V3 V2 V1 Values 

90 80 70 60 50 40 30 20 10 Upper-limit support threshold 

50 40 30 30 20 20 20 10 9 Lower-limit support threshold 

71 77 72 72 75 70 70 76.81 76.55 Run time (ms) 
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1) The test-based optimization 

In order to determine the optimal value of lower support 

threshold, ten tests are performed and the execution time of 

the proposed algorithm is extracted. These tests cover various 

values of upper support threshold. The experiments results 

are shown in Table 3. In each test, the lower support threshold 

varies between zero and the upper support threshold value. 

The moderate safety factor of 50% is considered in our tests. 

Accordingly, the proposed test-based formula for the optimal 

lower support threshold is stated as follows: 

   

  Sl=0.5 Su                                                                            (9) 

 

This table shows that the optimal execution time is 

obtained when the lower support threshold is approximately 

one-half of the upper support thresholds. Performance of the 

proposed algorithm is the best in such a situation for 

association rules discovery. 

 

2) Curve fitting-based optimization 

The curve fitting technique could be applied to the results of 

our tests to obtain an approximate relation between the lower-

limit and upper support threshold parameters. The curve 

fitting toolbox in MATLAB software is used for this purpose 

and the first, second, and third order polynomial models are 

employed as the fitting bases. In order to determine the 

unknown coefficients in these models, the error between 

actual tests (simulations) and models is minimized. The 

extracted first, second and third-order polynomial models are 

obtained as follows: 

0.4782 1.6S Sul                                                         (10) 

 

 
2

0.002424 0.2115 6.933S S Su ul                      (11) 

 

   
3 26

6.216 10 0.001399 0.2588 6.4S S S Su u ul


                    (12) 

 

3) Mathematical proof-based optimization 

The optimal value of lower support threshold is one-half of 

the upper support thresholds. To prove this theorem, a general 

formula for expressing the lower support threshold as a 

function of the upper support threshold could be defined as Sl 

= (m/n ) Su .Three conditions should be investigated for the 

ratio of m/n : 

i. m/n > 1 : Since the lower support threshold is always 

less than the upper support threshold, this situation is not 

meaningful and does not occur. 

ii. m/n = 1 : This means an equal value for both the lower 

and upper support thresholds which is not a practical situation 

as well. 

iii. m/n < 1 : This is the acceptable condition that 

considers the lower support threshold in the range of (0,Su) . 

Accordingly, the proof is continued based on the third 

situation. According to the theorem when the criterion 

( ) / (1 )t S S d Su l    is satisfied, an item that pertains to 

small items in the incremental database could not be a large 

or pre-large item in the updated database. A larger value of 

( ) / (1 )S S d Su l  increases the probability for satisfaction 

of this formula and consequently, the resulted small itemsets 

do not require an examination which enhances the algorithm 

performance as these items do not require any examination. 

Therefore, the following relations could be written
 

 

 

 

 

 (13) 

Again, the value of the lower support threshold is 

suggested to be one-half of the value of the upper support 

threshold. The proposed algorithm considers a safe threshold 

limit for the newly added transactions and reduces the number 

of scans to the minimum possible count. 

 

5. Results and Discussions 

This section is adjusted into four parts: the evaluation criteria, 

the test method, the implemented data set, and experimental 

results. Each part is expressed with more details in the 

following. 

 

5. 1 Evaluation Criteria 

The evaluation criteria of PLI-X are expressed as follows: 

a) Execution time: the execution time in the generation of 

temporal association rules is measured by this measure in 

[29, 30] and compared with that of the previously 

presented algorithms. The execution time should be 

evaluated in various conditions after setting the 

contributing parameters in the proposed algorithm. 

 

b) Upper support threshold: this measure is one of the 

quantities that is considered as the basis of execution time 

evaluation. For the temporal item x, this parameter is 

defined in [30, 50] and different values of upper support 

threshold are obtained as follows: 

( )
{ | }

( )
(( ) )

( )

MCP X
T db X T

MCP X
SUPP X Y

MCP X
db

 
         (14) 

 

c) Number of transactions in the original database: 

According to the significant role of transactions number 

in the execution time, it is important to evaluate the 

execution period for different amounts of transactions 

[30-32]. 

 

d) Number of inserted transactions in the incremental 

database: This is also an important contributor to the 

execution time and should be considered to assess the 

algorithm performance at different sizes [29, 50]. 
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5.2 Test Method 

The test goal of the proposed method, PLI-X, is evaluating 

the execution speed of the method based on the mentioned 

measures in the previous subsection. The test approach used 

in the present research is similar to the employed test methods 

in the literature [30, 37, 50]. In addition to the execution speed 

evaluation, the performed tests help to adjust the prerequisite 

and initial parameters of the proposed algorithm and its 

comparison with the previous ones. The size of the original 

database is considered the same in the all performed tests. 

Also, in each performed test, there is a difference between the 

sizes of added database in comparison to the size of the added 

database in the other test. All the tests of the present study are 

performed by a computer with a dual-core processor with 

2.53 GHz of clock frequency and 4 GB of RAM. 

 

5.3 Implemented Data sets 

Two data sets including artificial data and real data were used 

to evaluate the efficiency of the proposed algorithm in this 

research. In terms of the real data, the tests of the present 

study are performed on the real BMS-POS dataset which is 

available on the KDDCUP website. It is a well-known dataset 

for association rules discovery in the field of CRM and is used 

in the tests of some previous researches [37, 38]. The BMS-

POS dataset pertains to sale information of a large electrical 

equipment market during a few years. This market supplies 

different products and ; therefore, each group of products is 

considered an item. Each transaction in the database contains 

the purchases of a customer at a specific time. The purpose is 

to find the rules between different products dataset that are 

purchased by the customer. The characteristics of the BMS-

POS data set are presented in Table 4. In terms of the artificial 

data, we chose the classic data set, T10I4N4KD100K, which 

can conduct to validate the efficiency of the proposed 

algorithm, PLI-X algorithm [29, 30].  Synthetic data was 

generated by the public IBM data generator. The temporal 

database was generated by the model used in [13].The detail 

of the dataset is shown in Table 5. 

 

Table 4. Characteristics of BMS-POS data set 

 

Value Characteristics   

515597 Number of transaction 

1657 Number of the entire items 

164 Number of items in the largest transaction 

6.5 Average length of transactions  

 

Table 5. Characteristics of artificial data set 

 

Value Characteristics   

100000 Number of transaction 

4 
The average length of maximal 

potentially frequent itemsets 

4000 The total number of items 

10 
The average length of items per 

transaction 

5.4 Experimental Results 

In this section, the proposed method, PLI-X, is compared 

with some of the other methods in the field of association 

rules mining for the discovery of temporal association rules 

in the dynamic transactional databases. The efficiency 

comparison is conducted with the UTARM [29] and TPPF 

[30] methods as these methods are recent algorithms in the 

field of temporal association rules mining, which are 

performed on the transactional databases. Also, there is an act 

likeness between the proposed method and the act of those. 

Hence, given the purpose of the research, the mentioned 

resources can provide the possibility to compare PLI-X 

method and other the recently published resources from 

different aspects including execution time, minimum support, 

original database size, and incremental database size. The 

same adjustments and attributes are considered for the above-

mentioned methods and our proposed method in order to 

obtain meaningful results. This section is orgenized into three 

subsections, experiment on real data set, experiment on 

artificial data set, and analysis of computational complexity. 

 

5.4.1 Experiment on Real Data set 

In this subsection, the real data set for efficiency evaluation 

of the proposed algorithm in terms of execution time, 

minimum support, original database size, and incremental 

database size is used. 

 

A) Evaluating Execution Time Under Various Upper Support 

Thresholds 

In experiments, four tests have been performed for evaluating 

the execution time of the proposed method with that of the 

two recent algorithms, i.e. UTARM and TPPF methods under 

different values of upper support thresholds. There are 

differences between the four performed tests including the 

size of the original database, the size of the increased 

database, and the number of partitions in the tested database. 

Each test is executed ten times under different values of the 

upper support threshold in the range of 10-100 and the 10 

spacing. Also, the average value of safety factor is 50% which 

is considered as the value of safety factor in all the tests. 

Evaluation results of execution time are drawn for three 

methods in Fig 6. 

 

 

 

           

 

 

 

 

 

 

 

 

 

 

 
Fig 6. Evaluating Execution Time of Methods Under Various Upper 

Support Thresholds in the original database 
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As it is seen from Fig 6, the proposed method has a less 

execution time compared to UTARM and TPPF algorithms. 

It can be said that the main reason for this reduction is the 

number of scan processes in each of the implemented 

algorithms. In the other word, the proposed algorithm scans 

the database only when it is required, while the scan process 

of database and the number of those is different in the 

UTARM and TPPF algorithms for discovering the 

association rules. Indeed, lack of using the incremental 

problem and pre-large itemset in discovery of temporal 

association rules by UTARM and TPPF algorithms [29, 30] 

can be discussed as one major reason, which makes a 

difference between the scan counts of the database in the 

tested algorithms. The proposed method uses pre-large 

itemsets concept that is not initially large but is expected to 

convert into a large set in future. The pre-large itemsets work 

like a buffer with the purpose of reduceing the number of 

direct item transfers from large to small itemsets and vice 

versa. Also, the evaluation results of Fig 6 shows that the 

execution time reduces by increasing the upper support 

threshold in all methods. From Fig 6 it is inferred that if a 

large value and near to maximum value is selected for the 

upper support threshold, items count reduces for sending to 

the next step. Thus, the execution time decreases with the 

reduction in items count. Given that items count has a direct 

impact on the algorithms' efficiency of temporal association 

rule mining, the efficiency also increases. 

 

B) Evaluating Scalability 

In this section, scalability of PLI-X, UTARM and TPPF 

methods are investigated from two aspects: number of 

transactions in the original database and number of increased 

transaction in the incremental database. In the performed 

investigation, the execution time is obtained according to the 

two aspects: number of transactions in the original database 

and number of the increased transactions in the incremental 

database for PLI-X, UTARM, and TPPF methods. Then 

evaluation results are compared. 

 

i) Evaluating Scalability of Methods With the Number of 

Transactions in the Original Database  

In this part, an experiment is designed to investigate the 

scalability of the proposed method against different sizes of 

the original database in comparison to the UTARM and TPPF 

methods. For this purpose, PLI-X, UTARM, and TPPF 

methods are performed on the original database in order to 

discover temporal association rules, and the execution time is 

computed for different sizes of original database by changing 

the transactions’ number. Thus, the role of transactions’ 

number in the execution time of methods are computed and 

the evaluation results of the scalability in the mentioned 

situations are drawn in Fig 7. 

In the presented investigation, three tests have been 

performed in order to analyze the effect of original database 

size in the execution time of methods in which values of 

upper support threshold, lower support threshold, the size of 

added database, and the safety factor are considered the same. 

As it is inferred from Fig 7, the execution time of methods is 

increased linearly with the addition of transactions number in 

the original database. The addition of the execution time of 

methods after each of database resizing is clear and 

reasonable because the addition of transactions number in the 

original database leads to the addition of processes volume 

and increasing the execution time of methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 7. Evaluating Scalability of Methods With Changing the 

Number of Transactions in the Original Database 

 

Also, it is observed in Fig 7 that the lowest execution time 

is presented by the proposed method, PLI-X in the different 

sizes of the original database that is obvious due to reducing 

the scan number of original database by PLI-X. Then, the 

lowest execution time is obtained by TPPF method in the 

performed tests in comparison to the UTARM method. The 

TPPF method adopted a predicting strategy which can reduce 

the number of data scan by the upper-bound support in 

comparison to UTARM. Thus, the volume of the scan process 

is not the same in the TPPF and UTARM methods. In fact, 

the computational cost is reduced for scanning a temporal 

database. Because, TPPF method is applied the prediction 

strategy and removed unpromising item-sets in the scan 

process of database. 

 

ii) Evaluating Scalability of Methods With Number of 

Increased Transaction in the Incremental Database 

In this part, other experiment is designed to check the 

scalability of the proposed algorithm against different sizes 

of incremental database. For this purpose, the role of 

increased transactions number is evaluated in the time 

execution variations of PLI-X, TPPF, and UTARM methods. 

The evaluation results are depicted in Fig 8. 

In this case, three tests have been performed in order to 

analyze the effect of increased transactions number in the 

execution time of methods with the values of upper support 

threshold, lower supportthreshold, the size of original 

database, and safety factor considered the same. As it is 

observed in Fig 8, the execution time of PLI-X, TPPF, and 

UTARM methods increased linearly along with the addition 

of new transactions in the incremental database. 

Besides, based on the execution time obtained by the 

proposed method, PLI-X is the lowest run time over TPPF 

and UTARM methods in the performed tests, the results of 

which can demonstrate again the claim of the superior 

performance of the proposed method in comparison to the 
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other two investigated methods. Actually, evaluation results 

obviously indicate that the execution time of the PLI-X for 

the obtained temporal association rules discovery is better 

than TPPF and UTARM methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 8. Evaluating Scalability of Methods With Changing the 

Number of Increased Transactions in the Incremental Database 

 

It is obvious with regard to the number reduction of 

scanning processes and different classification of candidate 

items from the added database by the proposed method. In 

other words, PLI-X method does not scan the original 

database for each iteration of algorithm. In fact, a safe 

threshold is considered by PLI-X method for new increased 

transactions, which leads to the scan reduction of updated 

database. On this basis, the algorithm does not scan the 

updated database after inserting each new transaction to 

original database. Therefore, the proposed method prevents a 

complete scan of the database in each stage by doing the scan 

only when it is necessary due to the considered safe threshold. 

whereas, the common approach in many previous published 

resources like TPPF and UTARM methods is to scan 

throughout the transactional database in the situation that new 

transactions are added to the original database. For example, 

as it is seen in Figure 8, the maximum execution time is 

obtained by UTARM method. In this method, the original 

database is partitioned, then, each partition is defined as a 

utility table for items with different values. In situation that 

new transactiones are added to the original database, cost of 

execution time increases due to the addition of scan processes 

volume, which is reasonable. Actually, computations volume 

is high in UTARM method because of the additionality 

processes which performed in order to scan the utility tables. 

Also, Fig 8 are shown that the size of the incremental 

database is always smaller in comparison to the original 

database size. In the other hand, the inserted transactions' 

number or the variation of transactions number has less effect 

on the execution time of methods; the slope of the resulted 

curves is less when the number of the inserted transactions 

changes in incremental database compared to the variation of 

transactions number in the original database. There are key 

and important points in the above evaluation results which is 

scalability of the proposed method. From the analysis of Figs 

7 and 8, it can be concluded that the proposed method is 

scalable in comparison to other used methods in the 

performed tests. Hence, given to the scalability of the 

proposed method, the execution time of PLI-X is the lowest 

execution time for temporal association rules discovery when 

there are resizing in the original and incremental databases. 

Since in the real-world problems, there are dynamic 

databases, the scalability of the proposed method can play the 

key role in temporal association rules in a CRM system for 

presenting reasonable results in the lowest time. 

 

C) Evaluating SpeedUp 

In this section, the speedup ratio is investigated in the 

methods of PLI-X, TPPF, and UTARM for various values of 

upper support thresholds; the evaluation results are given in 

Fig 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 9. The comparing PLI-X, TPPF and UTARM Methods in Terms 

of Speedup ratio 

 

The results of Fig 9 explain the speedup ratio by the 

proposed method with regards to TPPF and UTARM 

methods. As it is drawn in Fig 9, the speedup ratio of the PLI-

X method has reduced with the gradual increase of the upper 

support threshold from 10 to 50. Thus, it can be concluded 

that the speedup ratio has direct relevance to the execution 

time of the proposed method. Also, the results of Fig 9 

observed a reversed trend in the interval 60-100 of the upper 

support threshold; because there is more reduction of 

execution time by PLI-X method in comparison to other 

tested methods. Actually, the proposed method, PLI-X, starts 

with 1-item candidates for generating the candidate sets, 

while the other methods start with the generation of 2-item 

candidates. For example, all possible 2-item candidates have 

generated from partition P1 in the UTARM method. Then, 

for each candidate, two itemsets, the frequency, and the utility 

values for the partition P1 are calculated by scanning the 

database and the utility table through which the mentioned 

processes have performed for each partition of the database. 

Also, the liltering operation is started in an earlier time 

according to the largeness of the upper support threshold by 

the proposed method. Many of candidate items are eliminated 

and, consequently, the method performance is enhanced. 

From results achieved in the Fig 9 by TPPF method it can be 

concluded that there is more reduction of execution time by 

TPPF method in comparison to UTARM method. It is 

obvious since there is differenc between computational 

complexity of TPPF and UTARM methods due to using an 

effective strategy for predicting upper-bound of support 

values for itemsets by TPPF method. The mentioned strategy 

leads to the reduction of run time in comparison to UTARM 

method. Therefore, it can be said that the proposed method 
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has higher speed up ratio than other compared methods. In 

the other word, the proposed method obtains to a speed up 

ratio up to 1.3 faster than the TPPF method and 1.6 faster than 

the UTARM method, respectively. 

 

5.4.2 Experiment on Artificial Data set 
In this subsection, we use an artificial data set for the 

effectiveness and usefulness evaluation of the proposed 

algorithm in terms of the execution time, minimum support, 

original database size, and incremental database size. 

 

A) Evaluating Execution Time Under Various Upper Support 

Thresholds 

For experimentation, PLI-X, UTARM, and TPPF methods 

are applied on the specified artificial dataset, 

T10I4N4KD100K to compute the execution time of methods 

under various upper support thresholds. Then, three 

mentioned methods are compared in terms of execution time 

by changing the various upper support thresholds. In the 

performed testes, the average value of safe threshold is 

considered 50%. Also, each test is executed ten times under 

different values of the upper support threshold in the range of 

10-100 and the 10 spacing. The relationship between the 

execution time of the methods and upper support at different 

densities are shown in Fig 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 10. Evaluating Execution Time of Methods Under Various 

Upper Support Threshold in the original database (artificial data set) 

 

 

As is inferred from comparing the evaluation results in 

Fig 10, the lower execution time is provided by all the tested 

methods in the higher the maximum support. Also, the 

proposed method has a less execution time in comparison to 

UTARM and TPPF methods, which is reasonable. In fact, the 

main reason for this reduction is the number of scan processes 

in each of the implemented algorithms. It can be concluded 

that act of the proposed method on the artificial data is similar 

to act of that on the real data. In the other word, execution 

time is saved when PLI-X performed on the both data sets in 

comparison to other tested methods. 

 

B) Evaluating Scalability 

In this section, two different experiments are designed to 

evaluate the scalability of PLI-X, UTARM, and TPPF 

methods when they performed on the artificial data against 

the changing number of transactions in the original database 

and the changing number of increased transaction in the the 

incremental database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 11. Evaluating Scalability of Methods With Changing the 

Number of Transactions in the Original Database (artificial data set) 

 

i) Evaluating Scalability of Methods With Changing the 

Number of Transactions in the Original Database 

In this part, for the purpose of scalability evaluation, PLI-X, 

UTARM, and TPPF methods are executed on the artificial 

data; temporal association rules are discovered under various 

sizes of the original database by changing transactions 

number, the execution time is computed for different sizes in 

original database. Then, the comparative analysis of 

execution time of methods is depicted in Fig 11. 

It notes that values of upper support threshold, lower 

support threshold, the size of the added database, and the safe 

threshold are considered same in the performed experiment. 

Also, three tests are performed to analyze methods of 

scalability under the original database resizing. 

Two main obtained results are concluded from Fig 11. 

The first, the execution time of methods is increased after 

each of original database resizing, which is logical as the 

growth of transactions number in the original database leads 

to the increase of the process volume. Second, the execution 

time of the proposed method decreases when the amount of 

the original database grows larger in comparison to other 

methods in this experiment. In fact, the efficiency of PLI-X 

method is comparatively better than UTARM and TPPF in 

terms of scalability. As the number of transactions in the 

original database keeps increasing, the execution time of PLI-

X method showed significant improvement in comparison to 

other tested methods. 

 

ii) Evaluating Scalability of Methods With Changing the 

Number of Increased Transactions in the Incremental 

Database 

This part has carried out PLI-X, UTARM, and TPPF methods 

on the artificial data to evaluate their scalability with regard 

to the execution time of methods under various sizes of 

incremental database. Then, effectively analyzing the 

scalability of methods. Values of upper support threshold, 

lower support threshold, the size of original database, and 

safe threshold are considered same in the designed 

experiment. Also, three tests are performed to analyze 
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methods of scalability under incremental database resizing. 

Evaluation results are drown in Fig 12. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 12. Evaluating Scalability of Methods With Changing the 

Number of Increased Transactions in the Incremental Database 

(artificial data set) 

 

In this experiment, as it is seen in Fig 12, the execution 

time of PLI-X, TPPF, and UTARM methods are also 

increased linearly along with adding new transactions in the 

incremental database. It can be concluded from Fig 12 that 

the scalability of the PLI-X method is better than TPPF and 

UTARM methods for the test case of varying number of new 

transactions in the incremental database. In the other words, 

the computational time required for PLI-X method is 

comparatively lesser than for other tested methods when the 

methods applied on the artificial data. It is logical due to the 

number reduction of scanning processes and different 

classification of candidate items from the added database by 

the proposed method. 

Actually, these results demonstrate that the proposed 

method can incrementally generate frequent itemsets 

efficiently in the situations where there are not real data. 

Analyzing the results provided in Figs 11 and 12, it can 

be seen how the proposed algorithm performs well in almost 

all of the experiments on the artificial data. 

 

C) Evaluating SpeedUp 

In this experiment, PLI-X, TPPF, and UTARM methods are 

compared in terms of speedup ratio. The comparisons are 

dipected in Fig 13. 

As it is seen in Fig 13, the execution time is reduced by 

PLI-X method in comparison to TPPF, and UTARM 

methods, which is reasonable as there is a difference in the 

performed strategy by PLI-X method for the temporal 

association rules discovery. Hence, a key achievement of this 

experiment can be a better speedup ratio of PLI-X method 

than that of TPPF and UTARM methods. Similarly, the 

results obtained on the synthetic dataset show that there is a 

reversed trend in the interval 60-100 of the upper support 

threshold. Also, speedup ratio of the proposed method has 

reduced with the gradual increase of the upper support 

threshold from 10 to 50 . In fact, it can be inferred that the 

speedup ratio has a direct relevance to the execution time of 

the proposed method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 13. The Comparing of PLI-X, TPPF and UTARM Methods in 

Terms of Speedup ratio (artificial data set) 

 

In the end, as a result, it can be said that the proposed 

method of PLI-X provides acceptable results to discover 

temporal association rules when PLI-X method applied to the 

real and artificial datasets. 

 

5.4.3 Analysis of Computational Complexity 
There is a common strategy in the temporal rules discovery 

algorithms that decompose the problem into two main 

subtasks: frequent itemset generation and rules generation. 

The computational requirements for frequent itemset 

generation are generally more expensive than those of rules 

generation [13]. Also, the space complexity of algorithms 

(memory consuming) is generally more inexpensive than the 

time complexity of algorithms due to the development and 

growth of data storage devices. In fact, the space complexity 

is the number of tape cells used by the computation the 

analysis of which  is out of scope of this study. The time 

complexity of execution is the number of steps until the 

machine halts. Typically, it is tried to bound the time 

complexity as a function of the size n of the input, defined as 

the number of cells occupied by the input, excluding the 

infinite number of blanks that surround it [49]. The 

computational complexity of the association rules mining 

algorithms can be affected by some of the following factors: 

 Support Threshold: Lowering the support threshold 

often results in more itemsets being declared as 

frequent. This has an adverse effect on the 

computational complexity of the algorithms because 

more candidate itemsets must be generated and 

counted. 

 Number of items (Dimensionality): As the number of 

items increases, more space will be needed to store 

the support counts of items. If the number of 

frequent items also grows with the dimensionality of 

the data, the computation and I/O costs will increase 

because of the larger number of candidate itemsets 

generated by the algorithm. 

 Number of Transactions: Run time algorithm 

increases with a larger number of transactions 

because of repeated passes over the data set [50]. 

The effect of the mentioned factors is empirically 

investigated on the time complexity (consumed 
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time) of the proposed algorithm by experiments 

performed in the two previous subsections. 

As it is reported in the two previous subsections, empirical 

results demonstrated that the proposed algorithm reduces run 

time in comparison to the other temporal association rule 

mining algorithms for both data sets. In this subsection, a 

theoretical analysis is presented for the time complexity of 

the proposed algorithm. The big-O notation represents a 

theoretical analysis upon which we can compare two or more 

algorithms. 

FournierViger et al. [40] mentioned that there are two 

general ways to reduce the computational complexity of 

frequent itemset generation such as reducing the number of 

candidate itemsets and reducing the number of comparisons. 

First, some of the candidate itemsets are eliminated without 

counting their support values. Second, instead of matching 

each candidate itemset against every transaction, the number 

of comparisons can be reduced by using more advanced data 

structures, either to store the candidate itemsets or to 

compress the data set. In this paper, rapid generation of 

temporal association rules is one of the main features of the 

proposed algorithm. In fact, using the proposed algorithm, 

PLI-X algorithm causes partitioning of candidate itemsets on 

the basis of previous partitions and scanning of the database 

only when it is necessary; it prevents a complete scan of 

database in each stage by doing the scan only when it is 

necessary. Actually, the main goal of the proposed method is 

keeping repeated temporal patterns after updating temporal 

transactions of the database. Thus, the used methodology 

improves efficiency, reduces the number of database scans, 

and also saves time complexity. The computational 

complexity analysis of the proposed method is described in 

detail as follows: 

a) Calculate the value of 

( )

1

e
S S pu l hm sf

Su

 



: In In the 

first step of the proposed algorithm, f parameter is obtained 

as a safe threshold. Using this safe threshold can cause count 

reduction of database scans. Thus, the updated database will 

be scanned due to the f value and after inserting multiple new 

transactions. The computing f parameter is performed in a 

constant time. Hence, the total time complexity for 

calculating the f parameter can be given as, O(c). 

 

b) Find all condidate k-itemsets ck and their count: k variable 

shows item counts in the items’ sequence,where there are two 

states for k variable. If k=1, then, condidate 1-itemsets was 

found. In this situation, for each transaction, the support count 

for every item present in the transaction needs to be updated. 

Assuming that there are n number of transactions and average 

w items per transaction in the database, condidate 1-itemsets 

can be found with their count require O(nw) time. Besides, 

we find condidate k-itemsets using self-joining due to the 

condidate (k-1)-itemsets which is stored in the previously 

execution. Each merging operation requires at most k-2 

equality comparisons. In the best-case scenario, every 

merging step produces a viable candidate k-itemset. In the 

worst-case scenario, the algorithm must merge every pair of 

condidate (k - 1)-itemsets found in the previous iteration. 

Because the maximum depth of the tree is k, the cost for 

populating the hash tree with candidate itemsets is 

( )
2

w
O k ckk




.  

 

c) Partition all condidate k-itemsets and calculate a new 

count for their: 

This step contain two stages, whichi is performed for each 

condidate k-itemsets ck  found in the previously step. In the 

first stage, condidate k-itemsets are divided into three sets. To 

this end, a comparison was performed between each of k-

items sequence of condidate itemsets and pre-large, large 

itemsets in the original database. Then, condidate itemsets are 

placed in the small, large, and pre-large stes. In the next stage, 

the conditions below were investigated for each k-items 

sequence (I) being placed in the small itemsets. 

( ) .
eU

S I S pu m
m s

 


                                                   (15) 

 

If condition=True then I moves in to large itemsets, else I 

move in to pre-large item-sets. After partitioning k-itemsets 

condidate, the count of there is updated. Since we carry out a 

comparison between each of k-items sequence of condidate 

itemsets and pre-large, large itemsets in the original database, 

thus, it can be said that the time required is based on the 

number of condidate k-itemsets, which is O(m). 

 

d) Rescan original DB: The common opinion in many of the 

previous algorithms in terms of temporal association rule 

discovery is to scan throughout the transactional database 

after increasing each of new transactions in each execution 

algorithm, while the proposed algorithm PLI-X prevents 

complete scan of the database in each stage by doing the scan 

only when it is necessary according to the safe threshold. 

There are two conditions that if one of each comes true, an 

algorithm does not scan the whole original database after 

increasing new transactions. Two conditions are defined as 

follows: 

 

(1) Is R set= ?  

R set contains items that are not placed in the pre-large and 

large itemsets in the previous run but may increase the 

occurrence count of those after increasing new transactions. 

Thus, these items place in a large or pre-large itemsets after 

re-counting. 

(2)c t f     

Where f parameter is a safe threshold, c is transaction count 

which is newly inserted in the current run, and t is transaction 

count in the last scan of the original database. In fact, the 

proposed algorithm do scan the whole original database only 

when it is necessary due to the safe thresholde after inserting 

multiple new transaction, for example the increase of x new 

transactions. 

In the worst-case scenario, no of the mentioned conditions 

are correct. In this condition, the algorithm does scan the 

whole original database after inserting each of the new 

transactions. If we assume that, there are m number of 

transactions and average n items per transaction in the 

database, i number of increased transactions, the time 

required to database scan is bounded by complexity O(mni). 
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In the best-case scenario, the mentioned conditions are true. 

In such condition, algorithm does scan the original database 

due to the f parameter for each x new transactions which 

increased into the database. Hence, the time required is 

( ),
i i

O mn i
x x

. 

 

6. Conclusion and Future Research 

There are three important challenges in the field of Customer 

Relationship Management systems (CRM) including 1) an 

extremely high rate of customer data generation; 2) the 

requirement of extraction of useful/frequent rules and 

patterns for enhancement of the enterprise profitability; 3) 

updating commercial applications of a dynamic information 

system according to the customer needs. Also, improving 

association rules mining especially temporal association rule 

mining is an important yet often difficult task facing systems 

of CRM in many areas. So far, various methods have been 

proposed by researchers in the field of the temporal 

association rules mining in the CRM systems that are 

executable on the partitions of the database an identical 

timestamps. The available methods need numerous scanning 

of the database for the discovery of patterns and, 

consequently, they are not successful in the satisfaction of 

this requirement. Most of the previous developed methods in 

this field are applicable in the databases with numerical 

values and attributes. There are a few methods that could 

encounter with the challenges in temporal mining of 

association rules. In the present research, a novel incremental 

mining algorithm, PLI-X is proposed for the discovery of 

temporal association rules that is more efficient in 

comparison to the previous methods in terms of the execution 

time. In order to extract temporal association rules in dynamic 

systems, the present study implements incremental mining of 

the database. This is carried out using more than one support 

threshold for item grouping and different methods for 

partitioning of itemsets. Incremental mining of temporal 

databases  has capability of generation of the valid rules in 

incremental databases. On the other side, implementation of 

more than one support threshold in the partitioning process 

on itemsets reduces the execution time of algorithm because 

many of items are eliminated in the initial stages of algorithm 

execution and are not examined anymore. The proposed PLI-

X method examines the new items after the generation of 

candidate itemsets to identify whether it is related to large, 

pre-large or small itemsets and not requiring the scanning of 

the database for each algorithm execution. In order to obtain 

an optimal relation between the lower and upper support 

threshold parameters, the curve fitting technique is applied to 

the results of PLI-X algorithm and the unknown coefficients 

are determined after the minimization of the error between 

actual tests and models. The implementation of the proposed 

algorithm with the optimal support thresholds has generated 

all maximized frequent items in a more efficient procedure. 

It is obvious that the consequence of the increase in run 

speed can be an accurate reduction in generating an outcome 

as there is a drawback in the proposed method. Also, in the 

previous methods and the proposed method, the size of 

increased databases is considered the same the lack of which 

can also be discussed as a weakness of the proposed method. 

Hence, some of the future research are listed as it follows: 

(i) Improving the accuracy of the proposed method by 

keeping the current run time of the method. 

(ii) Extending the proposed method for performing in 

situations that the size of an increase database is variable. 

(iii) Presenting the practical software with the graphical 

interface of user-friendly by using the proposed method.  
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