
Journal of Computer and Knowledge Engineering, Vol. 2, No.2, 2019.

DOI: 10.22067/cke.v2i2.81586

PLI-X: Temporal Association Rules Mining in Customer

Relationship Management Systems
Research Article

Mohammad Reza Keyvanpour1 Soheila Mehrmolaei2 Atekeh Etaati3

Abstract. The temporal association rules mining has recently

become an important technology in the field of the Customer

Relationship Management (CRM), which can be useful for

improving the customer enterprise relationship. Also, the

dynamic nature of the CRM systems is made necessity of

using efficient and rapid algorithms in order to extract valid

patterns in this field. Hence, this paper proposes an efficient

algorithm of incremental mining for temporal association

rules in CRM entitled PLI-X. The four significant features

that are considered for this algorithm are:(1) generating valid

temporal association rules after adding the new transactions

to the database, (2) performing algorithm on the whole

temporal database instead of a small section of it, (3)

performing the temporal transactional databases of the non-

numeric, and (4) quickly generating the temporal association

rules and reducing the run time by partitioning the candidate

itemsets based on the previous partitions and scanning

database when scan is necessary. Experimental result is the

valid proof for the correctnessof this assertion. It seems that

the PLI-X algorithm can be used as a strong tool in order to

extract valid patterns and discover useful temporal

association rules in the field of CRM.

Keywords. Temporal Database, CRM, Incremental Mining,

Pre-large Itemsets.

1. Introduction

In the last decade, the advent of various high-level

technologies has brought forth difficulty in reducing the price

of most products. In addition, the growing trend of the

universal economy causes more challenging contests in the

market. In such challenging situations, the concentration of

enterprises is on the customers. In any enterprise, all the

customers have not the same value. Thus, it is impossible to

assign the same resources to each customer due to limitations

in resources. These features indicate the necessity of

customer value analysis in the CRM [1]. Enhancement of

customer-enterprise relationship, offering strategies for the

development of new customers, and the maintenance of loyal

customers are some of the duties of CRM [2]. Customer value

analysis and capability improvement of customer

preservation of an enterprise are the main goals of CRM.

Consequently, the CRM is effective in decision-making about

Manuscript received June,27, 2019; accepted February, 11, 2020.

1
 M. R. Keyvanpour, Associate Professor, Dep. Of Computer Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran.

Email:keyvanpour@alzahra.ac.ir
2 S. Mehrmolaei, MSc, Data Mining Lab, Dep. Of Computer Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran.

 Email: s.mehrmolaei@gmail.com.

3 A. Etaati, MSc, Dep. Of Computer Engineering, Islamic Azad University, Qazvin Branch, Qazvin, Iran.

Email: a.etaati@qiau.ac.ir

which customers are more important, which group of

customers should be intrinsically considered, and which

services are required for each customer group [3].

The data mining is responsible for knowledge discovery,

rules , and hidden patterns from the stored data in the

computer [4]. The extracted information could be used to

predict the precise and correct behavior of the customers.

Generally, data mining analyzes an extensive amount of

unstructured data in order to discover the relationships for a

better understanding of fundamental processes. The temporal

data mining (TDM) does a similar analysis for an ordered data

stream with temporal dependencies [5]. TDM is one step of

the knowledge discovery process that extracts available

structures such as temporal patterns or models from the data.

In other words, algorithms that generate temporal patterns or

create appropriate models are termed as temporal data mining

algorithm [6]. In fact, the ultimate purpose of TDM is to

discover hidden relationships between sequences and sub-

sequences of events [7, 8]. So far, various methods have been

presented in the field of data analysis [9-12] and its mining

[13-17]. But, the volume of the performed studies is few in

terms of developing a temporal mining-based structure in

CRM systems and this lack can pose a challenging problem

in CRM systems. On the other side, most of the available

methods are incapable of correcting the analysis of dynamic

temporal data and there is no effective method that resolves

all the required aspects of CRM systems. Consequently, the

main purpose of this study is to suggest a method based on

the incremental mining of temporal data. In fact, it seems that

the proposed method can be capable for the correct analysis

of dynamic temporal data and enhances CRM system

performance.

 The paper is structured as follows: this research starts

with Section 2 that gives a brief review of the topic

background. Then, it expresses incremental mining of

temporal association rules by “pre-largeˮ itemsets at a

glance in Section 3. In Section 4, the proposed method is

presented and thoroughly described. The experimental results

are discussed in Section 5. Finally, conclusions of research

work are remarked in Section 6 and future research is

presented in this section.

2. Review of the Related Literature

Association Rules Mining (ARM) has two components of

mailto:keyvanpour@alzahra.ac.ir
mailto:s.mehrmolaei@gmail.com
mailto:a.etaati@qiau.ac.ir

30 M. R. Keyvanpour et. al: PLI-X: Temporal Association Rules Mining in…

finding frequent itemsets and generating association rules.

The major part of the algorithms is considered to discover

frequent itemsets, which is highly time consuming while

generating association rules is straightforward [13].

Besides, conventional algorithms of association rules

mining shows that there are other enhanced algorithms that

having incremental, multi-level rule, multi-dimensional rule,

Temporal Association Rule Mining (TARM), and so on [18-

23].

Temporal Data Mining (TDM) is a fairly modern branch

which can be considered as the common interface of various

fields, namely statistics, temporal pattern recognition,

temporal databases, optimization, visualization, and high-

level and parallel computations. TDM is different from

traditional modeling techniques of a data stream in the size

and nature of data set and the method of data-series gathering.

The reason for this difference can pose two important points:

the first point, the incapability of traditional modeling

techniques in handling large data sets, while the size of the

data set is large in TDM [5]; the second point, difference in

type of knowledge discovered by TDM and techniques of

data-series analysis. In the other word, the main problem is

pattern discovery form the sequential data in TDM [24].

TARM is recently taken into account as a method for

dynamic data processing such as transactional databases in

CRM systems. An interesting extension to association rules

is to include a temporal dimension. Actually, different

association rules is discovered if different time intervals are

considered. The lifetime of an item (such as egg, coffee, tea)

is a time interval that originates from the occurrence of that

item in the database and continues as long as its presence [22].

In other words, it is the time interval that an item is accessible

for purchasing.

So far, different techniques have been presented for TARM

in various applied fields and science the review of which

indicates the dynamic growth of this research scope and

various approach in this field [1, 3, 4, 14, 16]. On the other

hand, literature indicates that most of TARM algorithms are

based on dividing the temporal transaction database into

several partitions according to the time granularity imposed,

and then mining temporal association rules by finding

frequent temporal itemsets within these partitions [25].

Also, most of the previous algorithms cannot effectively be

applied in the temporal databases because of two important

parameters i.e. confidence and support coefficients which

should be modified based on the new mining model [26].

In this section, more related recent articles are reviewed for

the better comprehension which are coherently classified in

Fig. 1.

2.1 Candidate generation category
In this category of algorithms such as the Apriori algorithm,

the algorithm needs to scan the database repeatedly [16]. The

general act of the search process performed is briefly stated

level to level as it follows:

I. Let k=1

II. Generate frequent itemsets of length 1.

III. Repeat until no new frequent itemsets are identified

 Generate length (k+1) candidate itemsets from

length k frequent itemsets.

 Prune candidate itemsets containing subsets of

length k that are infrequent.
 Count the support of each candidate by scanning

the database.

 Eliminate candidates that are infrequent leaving

only those that are frequent.

Some of the algorithms of this category are covered in the

following:

Sornalakshmi et al. in [12] reported that Apriori algorithm

generates a large amount of rules and does not guarantee the

efficiency and value of the knowledge created. Hence, they

have proposed an Enhanced Apriori Algorithm (EAA) based

on the knowledge of a context ontology methodology for

sequential minimal optimization in order to overcome the

weakness of the standard Apriori algorithm. Authores have

said that the EAA to generate frequent k-itemsetsfinds finds

the frequent itemsets directly and eliminates the infrequent

subsets based on the standard Apriori algorithm.

Wang and Zheng is [16] proposed an improved Apriori

algorithm of frequent itemset that gives the time constraints

interval and uses the time interval algebra to filter and mine

the data in the transaction data. The authors have said that our

algorithm can be an effective method to reduce the

transaction is given. For this purpose, their method reduces

the number of candidate sets and improves the efficiency of

the Apriori algorithm, but it also needs to scan the database

repeatedly.

Kadir et al. [28] believed that most of the used systems to

extract the existing temporal relation among temporal data

suffers from sparseness of the available dataset such as

market basket datasets. They have used Apriori algortihm to

extract temporal relations in such data, which include two

main steps: (1) extracting features from the dataset and (2)

vectorizing the features so that Apriori algorithm can be

applied on the data. In the end, the Apriori algorithm is used

to generate frequent itemsets.

Maragatham and Lakshmi in [29] proposed an efficient

algorithm, which mined temporal association rules based on

Utility or value, namely UTARM. Authors have said that the

UTARM algorithm combines both temporal (time periods)

and utility for the mining of remarkable and helpful

association rules. Actually, the different utility values are

given for the items based on the time periods in the UTARM

algorithm in a seprate table for each partition. This algorithm

can be decomposed into seven steps: (1) generate all possible

candidate 2-itemsets from partition P1 , (2) mining of FTU 2-

itemsets (P1), (3) generate candidate 2-itemsets from

partition P2 and mining of FTU 2-itemsets (P1+P2), (4)

mining of FTU 2-itemsets (P1+P 2+...+ Pn), (5) generate all

FTU 1-itemsets from FTU 2-itemsets, (6) mining of all FTU

k-itemsets, and (7) generate association rules using FTU

itemsets.

Journal of Computer and Knowledge Engineering, Vol. 2, No.2, 2019. 31

Hong et al. in [30] presented the TPPF algorithm (three-phase

algorithm with predicting strategy considering the first

occurring transactions of items). They have introduced a new

concept of temporal association rule mining with a hierarchy

of time granules to find hierarchical temporal association

rules in temporal databases, and they also presented an

effective approach to find such rules. In particular, an

effective strategy is designed to predict the upper-bound of

support values for itemsets. The strategy can be used to

remove unpromising itemsets at an early stage in the process,

and the proposed TPPF can effectively reduce the

computational cost of scanning a temporal database.

 .2 Without candidate generation category

This category of algorithms such as the FP-growth tree

algorithm applies a radically different approach to discover

frequent itemsets. The algorithm does not subscribe to the

generate-and-test paradigm of the Apriori. Literature shows

that the general act of this category is considered to encode

the data set using a compact data structure called an FP-tree

and extracts frequent itemsets directly from this structure

[31]. This category reduces infrequent items and is also much

faster than Apriori algorithm. We have reviewed some of the

algorithms of this category as follows:

Fig 1. An overview of more related works for TARM

32 M. R. Keyvanpour et. al: PLI-X: Temporal Association Rules Mining in…

Rachburee et al. in [15] used apriori algorithm and FP-growth

to discover association rules mining from maintenance

transaction log of ATM maintenance. They have tried to

focus on comparison of association rules between FP-growth

and apriori algorithm. In the end, they have concluded that

FP-growth has better execution time than apriori algorithm.

Ilham et al. in [32] performed the market basket analysis to

determine the layout and planning of goods availability by the

FP-growth algorithm. Also, they have proved the successful

application of the FP-growth algorithm in generating

informative association rules and found out the consumer

spending pattern. They have reported that experimental

results show that the FP-growth algorithm can analyze

quickly and efficiently informing consumer shopping pattern

and can increase revenue.

Hasan and Mishu in [33] believed that there exists a problem

to define minimum support and to mine frequent itemsets on

Apriori and FP-growth algorithm. If the threshold is set to

low, too many frequent itemsets will be generated which may

cause the Apriori and FP-growth algorithm to become

inefficient or even loss of memory. Hence, authores have

proposed an adaptive method based on Apriori and FP-

growth algorithm to avoid this problem by using Binomial

Distribution (BD) to find appropriate minimum support

adaptively. They have shown that their method performs

better than existing benchmark.

Hong et al. in [34] designed a tree structure from the frequent-

pattern tree, then, presented a mining algorithm based on it to

extract high temporal fuzzy utility patterns from temporal

transactional datasets. They have said that the proposed

method requires two-phase processing to find all high

temporal fuzzy utility itemsets and to provide better results

than the Apriori-based mining algorithm.

Sathyavani and Sharmila in [35] presented that the mining of

UP-Tree (utility pattern) by FP-growth extracts high utility

itemset and generates too many candidates. Hence, authors

have proposed using the UP-Growth and UP-Growth+ to

shorten the candidate itemsets. In UP-Growth, two tactics

such as Discarding Local Unpromising items (DLU) and

Decreasing Local Node (DLN) were used in FP-growth to

effectively reduce the memory usage. Authors have reported

that these algorithms can overcome the spatial and temporal

locality problem and effectively reduce memory usage.

2.3 Incremental category

Temporal transactional databases are continuously updated

and increased. Thus, the rules that have previously been

generated need to be updated, removing those rules that are

no longer relevant, and adding valid new rules [36]. Hence,

incremental mining concept is presented to mine temporal

association rules, which can help to solve this problem. Some

of the studied incremental algorithms are briefly stated as it

follows:

Gharib et al. [37] proposed ITARM (incremental association

rules mining) algorithm for updating temporal association

rules in the transaction database. Authors have believed that

the proposed ITARM algorithm reduces the time needed for

generating new candidates by storing candidate 2-itemsets. In

fact, they have presented a technique to update the previously

generated candidates instead of re-generating them from

scratch. Also, they have reported that the experiments results

show a significant improvement over the traditional approach

ofmining the whole updated database.

Huang et al. [38] presented Twain algorithm that

progressively calculates the number of the occurrence of two-

item candidates in each partition of the database. The Twain

algorithm uses a progressive filtering method for the

elimination of non-iterative two-item candidates. Authors

have believed that the Twain algorithm generates the iterative

two-item candidates after one scan of database and, then,

directly creates the k-item candidates from the iterative two-

item candidates. Also, the second scan of database gives the

number of occurrence of the last item-sets and generates the

iterative temporal item-sets.

Kumar and Paulraj in [39] presented a pattern mining

algorithm based on incremental utility to identify the optimal

patterns in a relational database. Authors have considered that

frequent patterns are selected based on the minimum support

and confidence where the next level pattern are generated

based on the frequency of patterns in the selected set, which

are measured iteratively. Also, they have reported that this

algorithm improves to access the scalability and efficiency of

transactional processing itemset to improve the knowledge

enhances itemsets by identifying the process.

Hui et al. [40] presented an efficient algorithm, namely

Inc_TPMiner (Incremental Temporal Pattern Miner) to mine

incremental of temporal patterns from interval-based data.

Authors have believed that the proposed algortihm can be

useful to balance the efficiency and reusability based on a

proper expression, dynamic representation.They have

reported that the experimental results on the tested databases

indicate that Inc_TPMiner significantly outperforms re-

mining with static algorithms in execution time and possesses

graceful scalability.

Sun et al. in [41] proposed a incremental mining algorithm

for frequent itemsets using a Full Compression Frequent

Pattern Tree (FCFP-Tree), which is named FCFPIM. Authors

have said that FP-tree and the FCFP-Tree structures maintain

complete information of all the frequent and infrequent items

in the original dataset. But the act of FCFPIM algorithm is

differing as it does not allows to waste any scan and

computational overhead for the previously processed original

dataset when the new datasets are added and the support

changes. They have reported that the experimental results

show that the space-consuming is worthwhile to win the gain

of execution efficiency, especially in the situation that the

support threshold is low.

2.4 Evolutionary Computation Category

In the past few years, ARM techniques based on Evolutionary

Computation (EC) have emerged as one of the most popular

Journal of Computer and Knowledge Engineering, Vol. 2, No.2, 2019. 33

research areas for addressing the high computation time of

traditional ARM [21]. In the last years, application of the EC

algorithms have appeared in TARM problems to address the

limitations of traditional approaches such as high

computation time in different applied domains. The EC

algorithms are a state-of-the-art and efficient strategy for

finding nearoptimal solutions. A key characteristic of these

algorithms is that strict termination conditions can be set to

limit computation time while a nearly optimal solution can be

obtained [46].

We tried to cover some works in which evolutionary

computation is placed as it follows:

Chamazi and Motameni in [11] proposed combination of

fuzzy temporal mining concepts and EC algorithms to

identify temporal frequent itemsets. In fact, authors have

designed an efficient fuzzy temporal-evolutionary mining

based on the bees algorithm. This approach finds suitable

membership functions for fuzzy temporal mining problems

by the bees algorithm before searching for temporal frequent

itemsets and fuzzy associations. The authors have reported

the proposed approach provided for good performance with

respect to the effectiveness of the obtained solution.

Matthews et al. (2010) [42] presented a new framework in

which genetic algorithm is introduced as an impact factor for

temporal association rules mining. Authors have asserted that

their framework is an enhancement to existing temporal

association rule mining methods as it employs a genetic

algorithm to simultaneously search the rule space and

temporal space.

Maragatham and Lakshmi in [43] presented an effective

method based on the Utility for temporal association rule

mining. Authors have proposed that the Particle Swam

Optimization algorithm is used to optimize the generated

rules by filtering out the redundant rules and, thereby,

reducing the problem space. They have considered

calculation of the support and confidence from the input data,

the rule generation, initialization , updation of the velocity,

position of the rules, and evaluation of fitness function as

main processes.

Wen et al. in [44] proposed temporal association rules mining

algorithm based on Genetic algorithm that is designed to

extract temporal association rules in traffic environments.

The rules are analysed by a classification mechanism so that

a classifier can be built to predict the traffic congestion level.

They have reported that experimental results demonstrate

high and reasonable accuracy of output.

Matthews and Gongora in [45] presented a novel method for

mining association rules that are both quantitative and

temporal using a multi-objective evolutionary algorithm.

Authors have reported that their method successfully

identifies numerous temporal association rules that occur

more frequently in areas of a dataset with specific quantitative

values represented with fuzzy sets. Also, they have said that

the novelty of this method lies in exploring the composition

of quantitative and temporal fuzzy association rules.

As a result, it can be said that the common approach in

many of the previous algorithms is to scan throughout the

transactional database; whereas, this paper proposes a novel

algorithm of incremental mining for temporal frequent

itemset that prevents the complete scan of the database in

each stage. For this purpose, the algorithm performs the scan

act only when it is necessary. In many previous techniques,

association rules mining has been performed on a part of the

transactional database in a certain time. On the other hand,

users of dynamic systems damand methods that discover

customer's behavior patterns which provides the minimum

time possible. In that case, current methods could not respond

completely to the users’ needs due to the various scans of the

database for discovering association rules. Also, reviewing

the literature, it is concluded that the research effort is few in

the field of temporal association rule mining in dynamic

transactional systems.

3. Incremental Mining of Temporal Association Rules by

Pre-Large Items
This section is organized to define and introduce basic

concepts of the proposed algorithm into two parts:

preliminary concepts and association rules maintenance.

3.1 Preliminary Concepts

This paper employs the concepts of temporal granularity for

database partitioning. Temporal granularity is a partition of

the timeline. In the context of databases, a temporal

granularity can be used to specify the temporal qualification

of a set of data, similar to its use in the temporal qualification

of statements in natural languages. For example, in a

relational database, the time stamp associated with an

attribute value or a tuple may be interpreted as associating

that data with one or more granules of a given temporal

granularity (e.g., one or more days) [47, 48]. In a temporal

database, each tuple has two attributes, start and end, which

can indicate the time period during which the information

recorded in the tuple is valid. A tuple might also have many

other attributes. A transaction originl database, DB = {T1, T2,

…, TC} is a set of transactions where each transaction Td (

1 d c ) has a unique identifier, called Tid. Given a finite

set of items I={i1, i2, ..,im}. Assume that n is the number of the

database partitions based on a temporal partitioning

parameter such as month, season, year, and etc. Also, db s,e

denotes a partition of original database that is originated from

partition ps and ends in partition Pe , such that
,

,

s e
db phh s e

 


. Where
,s e

db DB and ph

denotes the number of transactions in partition ph. An itemset

X is a set of distinct k items {i1, i2, …, ik}, where

,1i I j kj    , k is the size of itemset X [43]. The interval

(s,e) represents maximal lifetime or Maximal Common

exhibition Period (MCP). A maximal temporal itemset X s,e is

defined as follows [28]:

Definition 1: An itemset X s,e is called a maximal temporal

itemset in a partial database db s,e if s is the latest starting

partition number of all items belonging to X in database DB

34 M. R. Keyvanpour et. al: PLI-X: Temporal Association Rules Mining in…

and e is the partition number of the last partition in db s,e

retrieved.

A temporal itemset z s,e is called a temporal Sub-Itemset

(SI) of a maximal temporal itemset X s,e if z X [28]. As an

example, consider the maximal temporal itemstes BDE 2, 3

that contains the sub-itemsets {DE 2,3, BE 2,3, BD 2,3, E 2,3, D
2,3, B 2,3}. Let MCP (X) denote the MCP value of item X. The

MCP value of an itemset X is the shortest MCP among the

items in itemset X.

The fraction of transaction T supporting an itemset X with

respect to partial database db s,e is called the support of X s,e

which is given by the following equation [25]:

  
  
 

|
MCP x

T db x T
MCP x

supp x
MCP x

db

 

 (1)

The support of an itemset X is an indication of how

frequently that X appears in database DB. The support value

of X with respect to T is defined as the proportion of itemsets

in a database containing X, denoted as supp (X) [43]. The

support and confidence of a rule  
 
 
 

MCP XY
X Y are

defined as follows [28, 43]:

         MCP XY MCP XY
supp X Y supp X Y   (2)

    
    
    

MCP XY
supp X Y

MCP XY
conf X Y

MCP XY
supp X



 
 (3)

Definition 2: An association rule    MCP XY
X Y is

called a general temporal association rule in the transaction

set DB with [37]:

()
(())

MCP XY
conf X Y c  (4)

()

(())
MCP XY

SUPP X Y s  (5)

()()
()

MCP XY
db

MCP XY
X Y  (6)

In which transaction itemsets X and Y have relative

support and confidence greater than the corresponding

thresholds. Thus, we have the following definition to identify

the frequent general temporal association rules.

Definition 3: A general temporal association rule

   MCP XY
X Y is termed to be frequent if and only if:

()

(()) min_
MCP XY

SUPP X Y SUPP  (7)

()

(()) min_
MCP XY

conf X Y conf  (8)

Actually, temporal association rule with particular MCP is

known as frequent if and only if its support coefficient is not

less than the upper support threshold and its confidence

coefficient is not less than the minimal user-defined

confidence coefficient [49].

Generally, the temporal association rules discovery can be

resolved into three steps [22, 49]:

1) Generate all frequent maximal temporal itemsets (TIs) with

their support values.

2) Generate the support values of all corresponding temporal

subitemsets (SIs) of frequent TIs.

3) Generate all temporal association rules that satisfy min

confusing the frequent TIs and/or SIs.

3.2 Association Rules Maintenance

This section shows the method of association rules

maintenance after updating temporal data in a CRM system.

The proposed method uses pre-large item-sets concept that is

not initially large but is expected to convert into a large set in

the future. The pre-large item-sets work like a buffer aiming

to reduce the number of direct item transfers from large to

small item-sets and vice versa. Pre-large item-sets are defined

using a lower support threshold and an upper support

threshold to reduce the need for rescanning the original

databases and to save the maintenance costs. Pre-large

itemsets act like gaps that reduce the movements of itemsets

directly from large to small and vice-versa [50]. The upper

support threshold is the support coefficient that is applied in

usual algorithms of association rules mining. An item locates

in the large item-sets when its support coefficient is more than

the upper support threshold. On the other side, the lower

support threshold is a minimal support that isolates the small

and pre-large item-sets. An item with smaller support than the

lower support threshold is considered as a small item. The

items with support between the lower and upper support

thresholds locate in the pre-large item-sets. Adding a new

transaction into the original database could result in nine

different states [51] that are shown in Fig 2.

Fig 2. The probable states after addition of a new transaction into

the original database [51]

Also, Table 1 summarizes the nine mentioned cases with

their results. According to the average number of occurrences

in cases 1, 5, 6, 8 and 9, these cases could not alter the final

discovered rules. Cases 2, and 3 could change the existing

association rules and remove the validity of some rules while

cases 4 and 7 could add some new association rules to the old

rules. If all locating items within the large and pre-large item-

sets and the count of their occurrence are preserved after the

execution of each stage, then the cases 2, 3 , and 4 are simply

Large
itemsets

Large
itemsets

Pre-large
itemsets

Original
database

New
transactions

Small
itemsets

Small
itemsets

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

Case 7 Case 8 Case 9

Pre-large
itemsets

Large
itemsets

Large
itemsets

Pre-large
itemsets

Original
database

New
transactions

Small
itemsets

Small
itemsets

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

Case 7 Case 8 Case 9

Pre-large
itemsets

Journal of Computer and Knowledge Engineering, Vol. 2, No.2, 2019. 35

managed. In the maintenance stage, the new transactions are

usually very small in comparison with the old transactions. In

this situation, the items in case 7 could not be located in the

large item-set in the updated database.

For the proposed algorithm, all symbols used in the

proposed algorithm are shown in Table 2.

4. The Proposed Method

In this section, we would like to present an efficient algorithm

for incremental mining of temporal association rules on

temporal customers database in a CRM system, which is

called PLI-X. General schema of PLI-X algorithm is shown

in Fig. 3. This algorithm is also applicable to situation that the

new transactions are inserted in the database. The PLI-X

algorithm uses the concept of pre-large itemsets and

generates the dominant rules in a dynamic space on the basis

of the Fast Update algorithm (FUP). This algorithm generates

up-to-date and valid rules that are beneficial factors for

enterprises in a short period. In fact, the main goal of the PLI-

X algorithm is keeping the repeated temporal patterns after

updating temporal transactions of database.

There is a significant difference among PLI-X algorithm

and other previous works concerning the incremental mining

of temporal frequent itemsets in dynamic systems, which are

clarified as follows:

Reviewing the literature, it is concluded that most the

previous resources in the field of incremental mining of

temporal data in dynamic systems require a complete

scanning of the whole updated database in the situation that

new transactions are added to the original database [26, 28].

But, the scanning process performs in a the different way by

PLI-X algorithm, which leads to a reduction in run-time

because of scan number reduction. The proposed algorithm

explores the whole database in particular conditions. For this

propose, a safe threshold is presented to consider the newly

added transactions. The appropriate definition of this

threshold can lead to reducing scanning updated database.

Thus, PLI-X algorithm performs the scan of the updated

database due to the safe threshold after inserting several new

transactions only when database scan is necessary. This

schema not only preserves the previous frequent itemsets

after updating the temporal database but also enhances the

efficiency of incremental mining algorithm and saves the

execution time of the proposed algorithm.

 Table 1. Summary of the results of the mentioned cases

Cases: Original – New Results

Case 1: Large – Large Always large

Case 2: Large - Pre-large Large or pre-large
Case 3: Large - Small Large or pre-large or small

Case 4: Pre-large - Large Pre-large or large

Case 5: Pre-large - Pre-large Always pre-large

Case 6: Pre-large - Small Pre-large or small

Case 7: Small - Large Pre-large or small when the number of transactions is small

Case 8: Small - Pre-large Small or Pre-large

Case 9: Small - Small Always small

Table 2: sympols description of the proposed algorithm

Definition Symbol # Definition Symbol #

temporal subitemsets SIs 12 transaction originl database DB 1

the added transactions to database without any changes Tdbi

13 a transaction with id identifier Tid 2

the part of incremental database dbi 14 a finite set of items I 3

the sum of the added transactions and transactions in the

last partition of the original database.

Merged

db

15 start partition and end partition,

respectivelly

ps and

pe

4

the time stamp of new transactions Ts (Tdbi) 16 a partition of DB that is originated from

partition ps to partition Pe

db s,e 5

the time stamp of transactions in the last partition of the

original database

Ts (DBj) 17 the number of transactions in partition ph
ph

6

the part of the original database which inlcudes

transactions in the last partition

DBj 18 itemset X 7

transactions in the last partition of the original database TDBj 19 a maximal temporal itemset in a partial

database db s,e

X s,e 8

safe threshold f 20 items number in the items sequence k 9

transactions of the original database TDB 21 frequent maximal temporal itemsets TIs 10

lower support threshold sl 22 upper support threshold su 11

36 M. R. Keyvanpour et. al: PLI-X: Temporal Association Rules Mining in…

We have briefly listed the paper innovations as follows:

 generating of the valid temporal association rules

after adding the new transactions to the database.

 performing of algorithm on the whole temporal

database instead of a small section of it

 performing the temporal transactional databases of

the non-numeric

 generating the temporal association rules and

reduction of the run time by partitioning the

candidate itemsets based on the previous partitions

and scanning database when the scan is necessary.



4.1 Pre-processing Step

The first step of the proposed method is pre-processing the

flowchart of which is shown in Fig 4. In this step, customer's

transactions are partitioned based on a time stamp like a

month of the year that purchase has done on that month in the

original database. As it is shown in Fig 4, the pre-processing

step is based on a comparison between new transactions and

the older transactions in the last partition of the original

database. On this basis, two different situations could have

occurred: i. Ts (Tdbi) is identical to time stamp of transactions

in the last partition of the original database (Ts (DBj)). In this

situation, the new transactions are merged to the transactions

of the last partition of the original database and, then, are sent

to PLI-X algorithm as an adjunct database. The number of the

occurrence of common itemsets between the last partition of

the original database and the newly added database should be

subtracted from the extracted large and pre-large item sets.

Since these items are converted into the items of the added

database, their count should not be considered in the

previously generated item sets. These items are investigated

with the newly added transactions and are entered into the

proposed algorithm. ii. The time stamp of new transactions is

different from that of older transactions in the last partition of

the original database. In this situation, the combination of

transactions in the last section of the original database and

new transactions is not required and the newly added

transactions are entered into the algorithm as an adjunct

database.

4.2 The PLI-X Algorithm

In the proposed algorithm, the temporal itemsets of

maximized frequent generated after performing the nine steps

is presented in flowchart (Fig 5). As is seen in Fig 5, research

novelty is highlighted with a bold line that is in black color.

Also, in the first step of the proposed method, f parameter is

calculated due to the entered values. In the second step, 1

value is assigned to it k variable that indicates items number

in the items sequence and is produced in the current execution

algorithm. All k-items candidates and occurrences number of

them in the newly added transaction are produced in the third

step. The creation process of the new candidates is expressed

briefly as it follows:

The large and pre-large items and their counts are stored from

the last execution and are used for the preservation of

association rules. The newly entered transactions are first

scanned by the algorithm to generate the 1-itemset

candidates. The outcome is then compared to the previously

stored large and pre-large itemsets.

If a 1-item candidate is available in the new transactions

of large or pre-large 1-itemsets of the original database, the

final count of their occurrence could be calculated by adding

count of their occurrence in the current and previous

execution. This is the consequence of preservation of all

previous large and pre-large items with count of their

occurrence. Calculation of new support parameter helps to

decide whether a large or pre-large item remains in the same

category after inserting a new transactions or not. The support

parameter is the ratio of total number of target items to the

total number of transactions. If a new 1-item candidate does

not pertain to large or pre-large item sets of the original

database, it definitely could not be a large item for the updated

database. This is true in the condition that count of newly

added transactions is less than a safe threshold limit (f).

Consequently, in order to find the new pre-large itemsets

during incremental insertion of new transactions, the database

is scanned only when the count of new transactions exceeds

the safe threshold limit. Scan of the original database is

carried out similar to the implemented method in FUP

algorithm. The next step is to create the 2-item candidates for

the newly added transactions while the same procedure is

repeated to find all large 2-itemsets. This process is continued

until the generation of all the large itemsets. The c variable

stores the number of new transactions since the last scan of

the main database.

4.2.1 Optimization of Lower Support Threshold
In contrast to the previous studies, the present research

considers the lower support to constraint itemsets and

minimizes the execution time. The lower threshold

coefficient is a key parameter in determining the association

rules. This parameter separates the small and pre-large

itemsets based on the number of their occurrence in the

database. In all the previous resources in this field, this

coefficient was manually set by the user. But, in this research,

the optimal and desirable value of the lower support threshold

is obtained by using the optimization process to enhance the

efficiency of association rules discovery algorithms.

Journal of Computer and Knowledge Engineering, Vol. 2, No.2, 2019. 37

Fig 3. General schema for the proposed PLI-X algorithm

Fig 4. The flowchart of pre-processing step in PLI-X

38 M. R. Keyvanpour et. al: PLI-X: Temporal Association Rules Mining in…

Fig 5. The generating temporal itemsets of the maximized frequent

Table 3. Optimal values of the lower support threshold for various values of the upper support threshold

V9 V8 V7 V6 V5 V4 V3 V2 V1 Values

90 80 70 60 50 40 30 20 10 Upper-limit support threshold

50 40 30 30 20 20 20 10 9 Lower-limit support threshold

71 77 72 72 75 70 70 76.81 76.55 Run time (ms)

Journal of Computer and Knowledge Engineering, Vol. 2, No.2, 2019. 39

   0,1 2 max 0,1 2

1
1, 2

2

S S S Su ul l

S S m nul

   

   

1) The test-based optimization

In order to determine the optimal value of lower support

threshold, ten tests are performed and the execution time of

the proposed algorithm is extracted. These tests cover various

values of upper support threshold. The experiments results

are shown in Table 3. In each test, the lower support threshold

varies between zero and the upper support threshold value.

The moderate safety factor of 50% is considered in our tests.

Accordingly, the proposed test-based formula for the optimal

lower support threshold is stated as follows:

 Sl=0.5 Su (9)

This table shows that the optimal execution time is

obtained when the lower support threshold is approximately

one-half of the upper support thresholds. Performance of the

proposed algorithm is the best in such a situation for

association rules discovery.

2) Curve fitting-based optimization

The curve fitting technique could be applied to the results of

our tests to obtain an approximate relation between the lower-

limit and upper support threshold parameters. The curve

fitting toolbox in MATLAB software is used for this purpose

and the first, second, and third order polynomial models are

employed as the fitting bases. In order to determine the

unknown coefficients in these models, the error between

actual tests (simulations) and models is minimized. The

extracted first, second and third-order polynomial models are

obtained as follows:

0.4782 1.6S Sul   (10)

 
2

0.002424 0.2115 6.933S S Su ul    (11)

   
3 26

6.216 10 0.001399 0.2588 6.4S S S Su u ul


     (12)

3) Mathematical proof-based optimization

The optimal value of lower support threshold is one-half of

the upper support thresholds. To prove this theorem, a general

formula for expressing the lower support threshold as a

function of the upper support threshold could be defined as Sl

= (m/n) Su .Three conditions should be investigated for the

ratio of m/n :

i. m/n > 1 : Since the lower support threshold is always

less than the upper support threshold, this situation is not

meaningful and does not occur.

ii. m/n = 1 : This means an equal value for both the lower

and upper support thresholds which is not a practical situation

as well.

iii. m/n < 1 : This is the acceptable condition that

considers the lower support threshold in the range of (0,Su) .

Accordingly, the proof is continued based on the third

situation. According to the theorem when the criterion

() / (1)t S S d Su l   is satisfied, an item that pertains to

small items in the incremental database could not be a large

or pre-large item in the updated database. A larger value of

() / (1)S S d Su l  increases the probability for satisfaction

of this formula and consequently, the resulted small itemsets

do not require an examination which enhances the algorithm

performance as these items do not require any examination.

Therefore, the following relations could be written

 (13)

Again, the value of the lower support threshold is

suggested to be one-half of the value of the upper support

threshold. The proposed algorithm considers a safe threshold

limit for the newly added transactions and reduces the number

of scans to the minimum possible count.

5. Results and Discussions

This section is adjusted into four parts: the evaluation criteria,

the test method, the implemented data set, and experimental

results. Each part is expressed with more details in the

following.

5. 1 Evaluation Criteria

The evaluation criteria of PLI-X are expressed as follows:

a) Execution time: the execution time in the generation of

temporal association rules is measured by this measure in

[29, 30] and compared with that of the previously

presented algorithms. The execution time should be

evaluated in various conditions after setting the

contributing parameters in the proposed algorithm.

b) Upper support threshold: this measure is one of the

quantities that is considered as the basis of execution time

evaluation. For the temporal item x, this parameter is

defined in [30, 50] and different values of upper support

threshold are obtained as follows:

()
{ | }

()
(())

()

MCP X
T db X T

MCP X
SUPP X Y

MCP X
db

 
  (14)

c) Number of transactions in the original database:

According to the significant role of transactions number

in the execution time, it is important to evaluate the

execution period for different amounts of transactions

[30-32].

d) Number of inserted transactions in the incremental

database: This is also an important contributor to the

execution time and should be considered to assess the

algorithm performance at different sizes [29, 50].

40 M. R. Keyvanpour et. al: PLI-X: Temporal Association Rules Mining in…

5.2 Test Method

The test goal of the proposed method, PLI-X, is evaluating

the execution speed of the method based on the mentioned

measures in the previous subsection. The test approach used

in the present research is similar to the employed test methods

in the literature [30, 37, 50]. In addition to the execution speed

evaluation, the performed tests help to adjust the prerequisite

and initial parameters of the proposed algorithm and its

comparison with the previous ones. The size of the original

database is considered the same in the all performed tests.

Also, in each performed test, there is a difference between the

sizes of added database in comparison to the size of the added

database in the other test. All the tests of the present study are

performed by a computer with a dual-core processor with

2.53 GHz of clock frequency and 4 GB of RAM.

5.3 Implemented Data sets

Two data sets including artificial data and real data were used

to evaluate the efficiency of the proposed algorithm in this

research. In terms of the real data, the tests of the present

study are performed on the real BMS-POS dataset which is

available on the KDDCUP website. It is a well-known dataset

for association rules discovery in the field of CRM and is used

in the tests of some previous researches [37, 38]. The BMS-

POS dataset pertains to sale information of a large electrical

equipment market during a few years. This market supplies

different products and ; therefore, each group of products is

considered an item. Each transaction in the database contains

the purchases of a customer at a specific time. The purpose is

to find the rules between different products dataset that are

purchased by the customer. The characteristics of the BMS-

POS data set are presented in Table 4. In terms of the artificial

data, we chose the classic data set, T10I4N4KD100K, which

can conduct to validate the efficiency of the proposed

algorithm, PLI-X algorithm [29, 30]. Synthetic data was

generated by the public IBM data generator. The temporal

database was generated by the model used in [13].The detail

of the dataset is shown in Table 5.

Table 4. Characteristics of BMS-POS data set

Value Characteristics

515597 Number of transaction

1657 Number of the entire items

164 Number of items in the largest transaction

6.5 Average length of transactions

Table 5. Characteristics of artificial data set

Value Characteristics

100000 Number of transaction

4
The average length of maximal

potentially frequent itemsets

4000 The total number of items

10
The average length of items per

transaction

5.4 Experimental Results

In this section, the proposed method, PLI-X, is compared

with some of the other methods in the field of association

rules mining for the discovery of temporal association rules

in the dynamic transactional databases. The efficiency

comparison is conducted with the UTARM [29] and TPPF

[30] methods as these methods are recent algorithms in the

field of temporal association rules mining, which are

performed on the transactional databases. Also, there is an act

likeness between the proposed method and the act of those.

Hence, given the purpose of the research, the mentioned

resources can provide the possibility to compare PLI-X

method and other the recently published resources from

different aspects including execution time, minimum support,

original database size, and incremental database size. The

same adjustments and attributes are considered for the above-

mentioned methods and our proposed method in order to

obtain meaningful results. This section is orgenized into three

subsections, experiment on real data set, experiment on

artificial data set, and analysis of computational complexity.

5.4.1 Experiment on Real Data set

In this subsection, the real data set for efficiency evaluation

of the proposed algorithm in terms of execution time,

minimum support, original database size, and incremental

database size is used.

A) Evaluating Execution Time Under Various Upper Support

Thresholds

In experiments, four tests have been performed for evaluating

the execution time of the proposed method with that of the

two recent algorithms, i.e. UTARM and TPPF methods under

different values of upper support thresholds. There are

differences between the four performed tests including the

size of the original database, the size of the increased

database, and the number of partitions in the tested database.

Each test is executed ten times under different values of the

upper support threshold in the range of 10-100 and the 10

spacing. Also, the average value of safety factor is 50% which

is considered as the value of safety factor in all the tests.

Evaluation results of execution time are drawn for three

methods in Fig 6.

Fig 6. Evaluating Execution Time of Methods Under Various Upper

Support Thresholds in the original database

Journal of Computer and Knowledge Engineering, Vol. 2, No.2, 2019. 41

As it is seen from Fig 6, the proposed method has a less

execution time compared to UTARM and TPPF algorithms.

It can be said that the main reason for this reduction is the

number of scan processes in each of the implemented

algorithms. In the other word, the proposed algorithm scans

the database only when it is required, while the scan process

of database and the number of those is different in the

UTARM and TPPF algorithms for discovering the

association rules. Indeed, lack of using the incremental

problem and pre-large itemset in discovery of temporal

association rules by UTARM and TPPF algorithms [29, 30]

can be discussed as one major reason, which makes a

difference between the scan counts of the database in the

tested algorithms. The proposed method uses pre-large

itemsets concept that is not initially large but is expected to

convert into a large set in future. The pre-large itemsets work

like a buffer with the purpose of reduceing the number of

direct item transfers from large to small itemsets and vice

versa. Also, the evaluation results of Fig 6 shows that the

execution time reduces by increasing the upper support

threshold in all methods. From Fig 6 it is inferred that if a

large value and near to maximum value is selected for the

upper support threshold, items count reduces for sending to

the next step. Thus, the execution time decreases with the

reduction in items count. Given that items count has a direct

impact on the algorithms' efficiency of temporal association

rule mining, the efficiency also increases.

B) Evaluating Scalability

In this section, scalability of PLI-X, UTARM and TPPF

methods are investigated from two aspects: number of

transactions in the original database and number of increased

transaction in the incremental database. In the performed

investigation, the execution time is obtained according to the

two aspects: number of transactions in the original database

and number of the increased transactions in the incremental

database for PLI-X, UTARM, and TPPF methods. Then

evaluation results are compared.

i) Evaluating Scalability of Methods With the Number of

Transactions in the Original Database

In this part, an experiment is designed to investigate the

scalability of the proposed method against different sizes of

the original database in comparison to the UTARM and TPPF

methods. For this purpose, PLI-X, UTARM, and TPPF

methods are performed on the original database in order to

discover temporal association rules, and the execution time is

computed for different sizes of original database by changing

the transactions’ number. Thus, the role of transactions’

number in the execution time of methods are computed and

the evaluation results of the scalability in the mentioned

situations are drawn in Fig 7.

In the presented investigation, three tests have been

performed in order to analyze the effect of original database

size in the execution time of methods in which values of

upper support threshold, lower support threshold, the size of

added database, and the safety factor are considered the same.

As it is inferred from Fig 7, the execution time of methods is

increased linearly with the addition of transactions number in

the original database. The addition of the execution time of

methods after each of database resizing is clear and

reasonable because the addition of transactions number in the

original database leads to the addition of processes volume

and increasing the execution time of methods.

Fig 7. Evaluating Scalability of Methods With Changing the

Number of Transactions in the Original Database

Also, it is observed in Fig 7 that the lowest execution time

is presented by the proposed method, PLI-X in the different

sizes of the original database that is obvious due to reducing

the scan number of original database by PLI-X. Then, the

lowest execution time is obtained by TPPF method in the

performed tests in comparison to the UTARM method. The

TPPF method adopted a predicting strategy which can reduce

the number of data scan by the upper-bound support in

comparison to UTARM. Thus, the volume of the scan process

is not the same in the TPPF and UTARM methods. In fact,

the computational cost is reduced for scanning a temporal

database. Because, TPPF method is applied the prediction

strategy and removed unpromising item-sets in the scan

process of database.

ii) Evaluating Scalability of Methods With Number of

Increased Transaction in the Incremental Database

In this part, other experiment is designed to check the

scalability of the proposed algorithm against different sizes

of incremental database. For this purpose, the role of

increased transactions number is evaluated in the time

execution variations of PLI-X, TPPF, and UTARM methods.

The evaluation results are depicted in Fig 8.

In this case, three tests have been performed in order to

analyze the effect of increased transactions number in the

execution time of methods with the values of upper support

threshold, lower supportthreshold, the size of original

database, and safety factor considered the same. As it is

observed in Fig 8, the execution time of PLI-X, TPPF, and

UTARM methods increased linearly along with the addition

of new transactions in the incremental database.

Besides, based on the execution time obtained by the

proposed method, PLI-X is the lowest run time over TPPF

and UTARM methods in the performed tests, the results of

which can demonstrate again the claim of the superior

performance of the proposed method in comparison to the

42 M. R. Keyvanpour et. al: PLI-X: Temporal Association Rules Mining in…

other two investigated methods. Actually, evaluation results

obviously indicate that the execution time of the PLI-X for

the obtained temporal association rules discovery is better

than TPPF and UTARM methods.

Fig 8. Evaluating Scalability of Methods With Changing the

Number of Increased Transactions in the Incremental Database

It is obvious with regard to the number reduction of

scanning processes and different classification of candidate

items from the added database by the proposed method. In

other words, PLI-X method does not scan the original

database for each iteration of algorithm. In fact, a safe

threshold is considered by PLI-X method for new increased

transactions, which leads to the scan reduction of updated

database. On this basis, the algorithm does not scan the

updated database after inserting each new transaction to

original database. Therefore, the proposed method prevents a

complete scan of the database in each stage by doing the scan

only when it is necessary due to the considered safe threshold.

whereas, the common approach in many previous published

resources like TPPF and UTARM methods is to scan

throughout the transactional database in the situation that new

transactions are added to the original database. For example,

as it is seen in Figure 8, the maximum execution time is

obtained by UTARM method. In this method, the original

database is partitioned, then, each partition is defined as a

utility table for items with different values. In situation that

new transactiones are added to the original database, cost of

execution time increases due to the addition of scan processes

volume, which is reasonable. Actually, computations volume

is high in UTARM method because of the additionality

processes which performed in order to scan the utility tables.

Also, Fig 8 are shown that the size of the incremental

database is always smaller in comparison to the original

database size. In the other hand, the inserted transactions'

number or the variation of transactions number has less effect

on the execution time of methods; the slope of the resulted

curves is less when the number of the inserted transactions

changes in incremental database compared to the variation of

transactions number in the original database. There are key

and important points in the above evaluation results which is

scalability of the proposed method. From the analysis of Figs

7 and 8, it can be concluded that the proposed method is

scalable in comparison to other used methods in the

performed tests. Hence, given to the scalability of the

proposed method, the execution time of PLI-X is the lowest

execution time for temporal association rules discovery when

there are resizing in the original and incremental databases.

Since in the real-world problems, there are dynamic

databases, the scalability of the proposed method can play the

key role in temporal association rules in a CRM system for

presenting reasonable results in the lowest time.

C) Evaluating SpeedUp

In this section, the speedup ratio is investigated in the

methods of PLI-X, TPPF, and UTARM for various values of

upper support thresholds; the evaluation results are given in

Fig 9.

Fig 9. The comparing PLI-X, TPPF and UTARM Methods in Terms

of Speedup ratio

The results of Fig 9 explain the speedup ratio by the

proposed method with regards to TPPF and UTARM

methods. As it is drawn in Fig 9, the speedup ratio of the PLI-

X method has reduced with the gradual increase of the upper

support threshold from 10 to 50. Thus, it can be concluded

that the speedup ratio has direct relevance to the execution

time of the proposed method. Also, the results of Fig 9

observed a reversed trend in the interval 60-100 of the upper

support threshold; because there is more reduction of

execution time by PLI-X method in comparison to other

tested methods. Actually, the proposed method, PLI-X, starts

with 1-item candidates for generating the candidate sets,

while the other methods start with the generation of 2-item

candidates. For example, all possible 2-item candidates have

generated from partition P1 in the UTARM method. Then,

for each candidate, two itemsets, the frequency, and the utility

values for the partition P1 are calculated by scanning the

database and the utility table through which the mentioned

processes have performed for each partition of the database.

Also, the liltering operation is started in an earlier time

according to the largeness of the upper support threshold by

the proposed method. Many of candidate items are eliminated

and, consequently, the method performance is enhanced.

From results achieved in the Fig 9 by TPPF method it can be

concluded that there is more reduction of execution time by

TPPF method in comparison to UTARM method. It is

obvious since there is differenc between computational

complexity of TPPF and UTARM methods due to using an

effective strategy for predicting upper-bound of support

values for itemsets by TPPF method. The mentioned strategy

leads to the reduction of run time in comparison to UTARM

method. Therefore, it can be said that the proposed method

Journal of Computer and Knowledge Engineering, Vol. 2, No.2, 2019. 43

has higher speed up ratio than other compared methods. In

the other word, the proposed method obtains to a speed up

ratio up to 1.3 faster than the TPPF method and 1.6 faster than

the UTARM method, respectively.

5.4.2 Experiment on Artificial Data set
In this subsection, we use an artificial data set for the

effectiveness and usefulness evaluation of the proposed

algorithm in terms of the execution time, minimum support,

original database size, and incremental database size.

A) Evaluating Execution Time Under Various Upper Support

Thresholds

For experimentation, PLI-X, UTARM, and TPPF methods

are applied on the specified artificial dataset,

T10I4N4KD100K to compute the execution time of methods

under various upper support thresholds. Then, three

mentioned methods are compared in terms of execution time

by changing the various upper support thresholds. In the

performed testes, the average value of safe threshold is

considered 50%. Also, each test is executed ten times under

different values of the upper support threshold in the range of

10-100 and the 10 spacing. The relationship between the

execution time of the methods and upper support at different

densities are shown in Fig 10.

Fig 10. Evaluating Execution Time of Methods Under Various

Upper Support Threshold in the original database (artificial data set)

As is inferred from comparing the evaluation results in

Fig 10, the lower execution time is provided by all the tested

methods in the higher the maximum support. Also, the

proposed method has a less execution time in comparison to

UTARM and TPPF methods, which is reasonable. In fact, the

main reason for this reduction is the number of scan processes

in each of the implemented algorithms. It can be concluded

that act of the proposed method on the artificial data is similar

to act of that on the real data. In the other word, execution

time is saved when PLI-X performed on the both data sets in

comparison to other tested methods.

B) Evaluating Scalability

In this section, two different experiments are designed to

evaluate the scalability of PLI-X, UTARM, and TPPF

methods when they performed on the artificial data against

the changing number of transactions in the original database

and the changing number of increased transaction in the the

incremental database.

Fig 11. Evaluating Scalability of Methods With Changing the

Number of Transactions in the Original Database (artificial data set)

i) Evaluating Scalability of Methods With Changing the

Number of Transactions in the Original Database

In this part, for the purpose of scalability evaluation, PLI-X,

UTARM, and TPPF methods are executed on the artificial

data; temporal association rules are discovered under various

sizes of the original database by changing transactions

number, the execution time is computed for different sizes in

original database. Then, the comparative analysis of

execution time of methods is depicted in Fig 11.

It notes that values of upper support threshold, lower

support threshold, the size of the added database, and the safe

threshold are considered same in the performed experiment.

Also, three tests are performed to analyze methods of

scalability under the original database resizing.

Two main obtained results are concluded from Fig 11.

The first, the execution time of methods is increased after

each of original database resizing, which is logical as the

growth of transactions number in the original database leads

to the increase of the process volume. Second, the execution

time of the proposed method decreases when the amount of

the original database grows larger in comparison to other

methods in this experiment. In fact, the efficiency of PLI-X

method is comparatively better than UTARM and TPPF in

terms of scalability. As the number of transactions in the

original database keeps increasing, the execution time of PLI-

X method showed significant improvement in comparison to

other tested methods.

ii) Evaluating Scalability of Methods With Changing the

Number of Increased Transactions in the Incremental

Database

This part has carried out PLI-X, UTARM, and TPPF methods

on the artificial data to evaluate their scalability with regard

to the execution time of methods under various sizes of

incremental database. Then, effectively analyzing the

scalability of methods. Values of upper support threshold,

lower support threshold, the size of original database, and

safe threshold are considered same in the designed

experiment. Also, three tests are performed to analyze

44 M. R. Keyvanpour et. al: PLI-X: Temporal Association Rules Mining in…

methods of scalability under incremental database resizing.

Evaluation results are drown in Fig 12.

Fig 12. Evaluating Scalability of Methods With Changing the

Number of Increased Transactions in the Incremental Database

(artificial data set)

In this experiment, as it is seen in Fig 12, the execution

time of PLI-X, TPPF, and UTARM methods are also

increased linearly along with adding new transactions in the

incremental database. It can be concluded from Fig 12 that

the scalability of the PLI-X method is better than TPPF and

UTARM methods for the test case of varying number of new

transactions in the incremental database. In the other words,

the computational time required for PLI-X method is

comparatively lesser than for other tested methods when the

methods applied on the artificial data. It is logical due to the

number reduction of scanning processes and different

classification of candidate items from the added database by

the proposed method.

Actually, these results demonstrate that the proposed

method can incrementally generate frequent itemsets

efficiently in the situations where there are not real data.

Analyzing the results provided in Figs 11 and 12, it can

be seen how the proposed algorithm performs well in almost

all of the experiments on the artificial data.

C) Evaluating SpeedUp

In this experiment, PLI-X, TPPF, and UTARM methods are

compared in terms of speedup ratio. The comparisons are

dipected in Fig 13.

As it is seen in Fig 13, the execution time is reduced by

PLI-X method in comparison to TPPF, and UTARM

methods, which is reasonable as there is a difference in the

performed strategy by PLI-X method for the temporal

association rules discovery. Hence, a key achievement of this

experiment can be a better speedup ratio of PLI-X method

than that of TPPF and UTARM methods. Similarly, the

results obtained on the synthetic dataset show that there is a

reversed trend in the interval 60-100 of the upper support

threshold. Also, speedup ratio of the proposed method has

reduced with the gradual increase of the upper support

threshold from 10 to 50 . In fact, it can be inferred that the

speedup ratio has a direct relevance to the execution time of

the proposed method.

Fig 13. The Comparing of PLI-X, TPPF and UTARM Methods in

Terms of Speedup ratio (artificial data set)

In the end, as a result, it can be said that the proposed

method of PLI-X provides acceptable results to discover

temporal association rules when PLI-X method applied to the

real and artificial datasets.

5.4.3 Analysis of Computational Complexity
There is a common strategy in the temporal rules discovery

algorithms that decompose the problem into two main

subtasks: frequent itemset generation and rules generation.

The computational requirements for frequent itemset

generation are generally more expensive than those of rules

generation [13]. Also, the space complexity of algorithms

(memory consuming) is generally more inexpensive than the

time complexity of algorithms due to the development and

growth of data storage devices. In fact, the space complexity

is the number of tape cells used by the computation the

analysis of which is out of scope of this study. The time

complexity of execution is the number of steps until the

machine halts. Typically, it is tried to bound the time

complexity as a function of the size n of the input, defined as

the number of cells occupied by the input, excluding the

infinite number of blanks that surround it [49]. The

computational complexity of the association rules mining

algorithms can be affected by some of the following factors:

 Support Threshold: Lowering the support threshold

often results in more itemsets being declared as

frequent. This has an adverse effect on the

computational complexity of the algorithms because

more candidate itemsets must be generated and

counted.

 Number of items (Dimensionality): As the number of

items increases, more space will be needed to store

the support counts of items. If the number of

frequent items also grows with the dimensionality of

the data, the computation and I/O costs will increase

because of the larger number of candidate itemsets

generated by the algorithm.

 Number of Transactions: Run time algorithm

increases with a larger number of transactions

because of repeated passes over the data set [50].

The effect of the mentioned factors is empirically

investigated on the time complexity (consumed

Journal of Computer and Knowledge Engineering, Vol. 2, No.2, 2019. 45

time) of the proposed algorithm by experiments

performed in the two previous subsections.

As it is reported in the two previous subsections, empirical

results demonstrated that the proposed algorithm reduces run

time in comparison to the other temporal association rule

mining algorithms for both data sets. In this subsection, a

theoretical analysis is presented for the time complexity of

the proposed algorithm. The big-O notation represents a

theoretical analysis upon which we can compare two or more

algorithms.

FournierViger et al. [40] mentioned that there are two

general ways to reduce the computational complexity of

frequent itemset generation such as reducing the number of

candidate itemsets and reducing the number of comparisons.

First, some of the candidate itemsets are eliminated without

counting their support values. Second, instead of matching

each candidate itemset against every transaction, the number

of comparisons can be reduced by using more advanced data

structures, either to store the candidate itemsets or to

compress the data set. In this paper, rapid generation of

temporal association rules is one of the main features of the

proposed algorithm. In fact, using the proposed algorithm,

PLI-X algorithm causes partitioning of candidate itemsets on

the basis of previous partitions and scanning of the database

only when it is necessary; it prevents a complete scan of

database in each stage by doing the scan only when it is

necessary. Actually, the main goal of the proposed method is

keeping repeated temporal patterns after updating temporal

transactions of the database. Thus, the used methodology

improves efficiency, reduces the number of database scans,

and also saves time complexity. The computational

complexity analysis of the proposed method is described in

detail as follows:

a) Calculate the value of

()

1

e
S S pu l hm sf

Su

 



: In In the

first step of the proposed algorithm, f parameter is obtained

as a safe threshold. Using this safe threshold can cause count

reduction of database scans. Thus, the updated database will

be scanned due to the f value and after inserting multiple new

transactions. The computing f parameter is performed in a

constant time. Hence, the total time complexity for

calculating the f parameter can be given as, O(c).

b) Find all condidate k-itemsets ck and their count: k variable

shows item counts in the items’ sequence,where there are two

states for k variable. If k=1, then, condidate 1-itemsets was

found. In this situation, for each transaction, the support count

for every item present in the transaction needs to be updated.

Assuming that there are n number of transactions and average

w items per transaction in the database, condidate 1-itemsets

can be found with their count require O(nw) time. Besides,

we find condidate k-itemsets using self-joining due to the

condidate (k-1)-itemsets which is stored in the previously

execution. Each merging operation requires at most k-2

equality comparisons. In the best-case scenario, every

merging step produces a viable candidate k-itemset. In the

worst-case scenario, the algorithm must merge every pair of

condidate (k - 1)-itemsets found in the previous iteration.

Because the maximum depth of the tree is k, the cost for

populating the hash tree with candidate itemsets is

()
2

w
O k ckk




.

c) Partition all condidate k-itemsets and calculate a new

count for their:

This step contain two stages, whichi is performed for each

condidate k-itemsets ck found in the previously step. In the

first stage, condidate k-itemsets are divided into three sets. To

this end, a comparison was performed between each of k-

items sequence of condidate itemsets and pre-large, large

itemsets in the original database. Then, condidate itemsets are

placed in the small, large, and pre-large stes. In the next stage,

the conditions below were investigated for each k-items

sequence (I) being placed in the small itemsets.

() .
eU

S I S pu m
m s

 


 (15)

If condition=True then I moves in to large itemsets, else I

move in to pre-large item-sets. After partitioning k-itemsets

condidate, the count of there is updated. Since we carry out a

comparison between each of k-items sequence of condidate

itemsets and pre-large, large itemsets in the original database,

thus, it can be said that the time required is based on the

number of condidate k-itemsets, which is O(m).

d) Rescan original DB: The common opinion in many of the

previous algorithms in terms of temporal association rule

discovery is to scan throughout the transactional database

after increasing each of new transactions in each execution

algorithm, while the proposed algorithm PLI-X prevents

complete scan of the database in each stage by doing the scan

only when it is necessary according to the safe threshold.

There are two conditions that if one of each comes true, an

algorithm does not scan the whole original database after

increasing new transactions. Two conditions are defined as

follows:

(1) Is R set= ?

R set contains items that are not placed in the pre-large and

large itemsets in the previous run but may increase the

occurrence count of those after increasing new transactions.

Thus, these items place in a large or pre-large itemsets after

re-counting.

(2)c t f 

Where f parameter is a safe threshold, c is transaction count

which is newly inserted in the current run, and t is transaction

count in the last scan of the original database. In fact, the

proposed algorithm do scan the whole original database only

when it is necessary due to the safe thresholde after inserting

multiple new transaction, for example the increase of x new

transactions.

In the worst-case scenario, no of the mentioned conditions

are correct. In this condition, the algorithm does scan the

whole original database after inserting each of the new

transactions. If we assume that, there are m number of

transactions and average n items per transaction in the

database, i number of increased transactions, the time

required to database scan is bounded by complexity O(mni).

46 M. R. Keyvanpour et. al: PLI-X: Temporal Association Rules Mining in…

In the best-case scenario, the mentioned conditions are true.

In such condition, algorithm does scan the original database

due to the f parameter for each x new transactions which

increased into the database. Hence, the time required is

(),
i i

O mn i
x x

.

6. Conclusion and Future Research

There are three important challenges in the field of Customer

Relationship Management systems (CRM) including 1) an

extremely high rate of customer data generation; 2) the

requirement of extraction of useful/frequent rules and

patterns for enhancement of the enterprise profitability; 3)

updating commercial applications of a dynamic information

system according to the customer needs. Also, improving

association rules mining especially temporal association rule

mining is an important yet often difficult task facing systems

of CRM in many areas. So far, various methods have been

proposed by researchers in the field of the temporal

association rules mining in the CRM systems that are

executable on the partitions of the database an identical

timestamps. The available methods need numerous scanning

of the database for the discovery of patterns and,

consequently, they are not successful in the satisfaction of

this requirement. Most of the previous developed methods in

this field are applicable in the databases with numerical

values and attributes. There are a few methods that could

encounter with the challenges in temporal mining of

association rules. In the present research, a novel incremental

mining algorithm, PLI-X is proposed for the discovery of

temporal association rules that is more efficient in

comparison to the previous methods in terms of the execution

time. In order to extract temporal association rules in dynamic

systems, the present study implements incremental mining of

the database. This is carried out using more than one support

threshold for item grouping and different methods for

partitioning of itemsets. Incremental mining of temporal

databases has capability of generation of the valid rules in

incremental databases. On the other side, implementation of

more than one support threshold in the partitioning process

on itemsets reduces the execution time of algorithm because

many of items are eliminated in the initial stages of algorithm

execution and are not examined anymore. The proposed PLI-

X method examines the new items after the generation of

candidate itemsets to identify whether it is related to large,

pre-large or small itemsets and not requiring the scanning of

the database for each algorithm execution. In order to obtain

an optimal relation between the lower and upper support

threshold parameters, the curve fitting technique is applied to

the results of PLI-X algorithm and the unknown coefficients

are determined after the minimization of the error between

actual tests and models. The implementation of the proposed

algorithm with the optimal support thresholds has generated

all maximized frequent items in a more efficient procedure.

It is obvious that the consequence of the increase in run

speed can be an accurate reduction in generating an outcome

as there is a drawback in the proposed method. Also, in the

previous methods and the proposed method, the size of

increased databases is considered the same the lack of which

can also be discussed as a weakness of the proposed method.

Hence, some of the future research are listed as it follows:

(i) Improving the accuracy of the proposed method by

keeping the current run time of the method.

(ii) Extending the proposed method for performing in

situations that the size of an increase database is variable.

(iii) Presenting the practical software with the graphical

interface of user-friendly by using the proposed method.

References

[1] Fares, A., Gama, J. and Campos, P.: Process mining for

analyzing customer relationship management systems:

A case study. In Learning from Data Streams in

Evolving Environments, Part of the Studies in Big Data

book series, Springer, Cham, pp. 209-221 (2019)

[2] Srivastava, S.K., Chandra, B. and Srivastava, P.: The

impact of knowledge management and data mining on

CRM in the service industry. In Nanoelectronics,

Circuits and Communication Systems, Springer,

Singapore, pp. 37-52 (2019)

[3] Rahman, N.: A taxonomy of data mining problems. In

Cognitive Analytics: Concepts, Methodologies, Tools,

and Applications, IGI Global, pp. 512-528 (2020)

[4] Tembhurne, D.S., Adhikari, J. and Babu, R.: A Review

study on Application of Data Mining Techniques in

CRM of Pharmaceutical Industry. International

Journal of Scientific Research in Science and

Technology, Vol. 6, No. 2, pp. 1-7 (2019)

[5] Keyvanpour, M. R., Etaati, A.: Analytical Classification

and Evaluation of Various Approaches in Temporal

Data Mining. Advanced Information Technology in

Education. In: Springer, pp. 303-311 (2012)

[6] Grossmann, W., Rinderle-Ma, S.: Data Mining for

Temporal Data. In: Fundamentals of Business

Intelligence. Data-Centric Systems and Applications.

Springer, Berlin, Heidelberg, pp. 207-244 (2015)

[7] Radhakrishna, V., Kumar, P. V., Janaki, V.: A survey on

temporal databases and data mining. In Proceeding of

the The International, Conference on Engineering and

MIS. ACM, New York, NY, USA, pp. 52-58 (2015)

[8] Mehrmolaei, S. and Keyvanpour, M.R.: An enhanced

hybrid model for event prediction in healthcare time

series. International Journal of Knowledge-based and

Intelligent Engineering Systems, Vol. 23, No. 3,

pp.131-147 (2019)

[9] Emtiyaz, S., Keyvanpour, M. R.: Customers behavior

modeling by semi-supervised learning in customer

relationship management. arXiv preprint

arXiv:1201.1670 (2012)

[10] Tripathi, T. and Yadav, D.: Performance Evaluation of

Methods for Mining Frequent Itemsets on Temporal

Data. In International Conference on Computer

Networks and Inventive Communication

Technologies, . Springer, Cham, pp. 910-917 (2019)

[11] Chamazi, M.A. and Motameni, H.: Finding suitable

membership functions for fuzzy temporal mining

problems using fuzzy temporal bees method. Soft

Computing, Vol. 23, No. 10, pp.3501-3518 (2019)

[12] Sornalakshmi, M., Balamurali, S., Venkatesulu, M.,

Navaneetha Krishnan, M., Ramasamy, L.K., Kadry, S.,

https://link.springer.com/bookseries/11970

Journal of Computer and Knowledge Engineering, Vol. 2, No.2, 2019. 47

Manogaran, G., Hsu, C.H. and Muthu, B.A.: Hybrid

method for mining rules based on enhanced Apriori

algorithm with sequential minimal optimization in

healthcare industry. Neural Computing and

Applications, pp. 1-14 (2020)

[13] Ghorbani, M., Abessi, M.: A New Methodology for

Mining Frequent Itemsets on Temporal Data. IEEE

Transactions on Engineering Management, Vol. 64,

No. 4, pp. 566-573 (2017)

[14] Kiran, R. U., Reddy, P.P.C., Zettsu, K., Toyoda, M.,

Kitsuregawa, M. and Reddy, P.K.: Efficient Discovery

of Weighted Frequent Neighborhood Itemsets in Very

Large Spatiotemporal Databases. IEEE Access, Vol. 8,

pp. 27584-27596 (2020)

[15] Rachburee, N., et al.: Failure Part Mining Using an

Association Rules Mining by FP-Growth and Apriori.

Algorithms: Case of ATM Maintenance in Thailand.

IT Convergence and Security. In: Springer, pp. 19-26

(2018)

[16] Wang, C. and Zheng, X.: Application of improved time

series Apriori algorithm by frequent itemsets in

association rule data mining based on temporal

constraint. Evolutionary Intelligence, Vol. 13, No. 1,

pp. 39-49 (2020)

[17] Hareendran, S. A., Chandra, S. V.: Association Rule

Mining in Healthcare Analytics. In International

Conference on Data Mining and Big Data, In: Springer,

pp. 31-39 (2017)

[18] Wang, L., et al.: Mining temporal association rules with

frequent itemsets tree. Applied Soft Computing, Vol.

62, pp. 817-829 (2018)

[19] Ait-Mlouk, A., Gharnati, F. and Agouti, T.: An improved

approach for association rule mining using a multi-

criteria decision support system: a case study in road

safety. European Transport Research Review, Vol. 9,

No. 40, pp. 1–13, (2017)

[20] Logeswaran, K., Suresh, P., Savitha, S. and KR, P.K.:

Optimization of Evolutionary Algorithm Using

Machine Learning Techniques for Pattern Mining in

Transactional Database. In Handbook of Research on

Applications and Implementations of Machine

Learning Techniques, IGI Global, pp. 173-200 (2020)

[21] Telikani, A., Gandomi, A.H. and Shahbahrami, A.: A

survey of evolutionary computation for association

rule mining. Information Sciences, Vol. 524, pp. 318-

352 (2020)

[22] Song, Y-G., et al.: Parallel Incremental Frequent Item set

Mining for Large Data. Journal of Computer Science

and Technology, Vol. 32, No. 2, pp. 368-385 (2017)

[23] Li, H., et al.: A Heuristic Rule Based Approximate

Frequent Item set Mining Algorithm. Procedia

Computer Science, Vol. 91, pp. 324-333 (2016)

[24]Agarwal, R.: Decision-Making with Temporal

Association Rule Mining and Clustering in Supply

Chains. In Optimization and Inventory Management,

Springer, Singapore, pp. 459-470 (2020)

[25] Mai, T., Vo, B., Nguyen, L. T.: A lattice-based approach

for mining high utility association rules. Information

Sciences, Vol. 399, pp. 81-97 (2017)

[26] Lee, C-H., et al.: Progressive partition miner: an efficient

algorithm for mining general temporal association

rules. IEEE Transactions on Knowledge and Data

Engineering, Vol. 15, No. 4,pp. 1004-1017 (2003)

[27] Xiong, L., Liu, X., Guo, D. and Hu, Z.: Access patterns

mining from massive spatio-temporal data in a smart

city. Cluster Computing, Vol. 22, No. 3, pp. 6031-6041

(2019)

[28] Kadir, M., Sobhan, S. and Islam, M.Z.: Temporal

relation extraction using Apriori algorithm. In

proceeding of the 5th International Conference on

Informatics, Electronics and Vision, IEEE Xplore,

DOI: 10.1109/ICIEV.2016.7760133, pp. 915-920,

(2016)

[29] Maragatham, G., Lakshmi, M.: UTARM: an efficient

algorithm for mining of utility-oriented temporal

association rules. International Journal of Knowledge

Engineering and Data Mining, Vol. 3, No. 2, pp. 208-

237 (2015)

[30] Hong, T. P., et al. Discovery of temporal association

rules with hierarchical granular framework. Applied

Computing and Informatics, Vol. 12, No. 2, pp. 134-

141 (2016)

[31] Tan, T. F., et al.: Temporal Association Rule Mining. In:

He X. et al. (eds) Intelligence Science and Big Data

Engineering. Big Data and Machine Learning

Techniques. IScIDE Lecture Notes in Computer

Science, vol 9243. Springer, Cham, DOI: 10.1007/978-

3-319-23862-3_24 , pp. 247-257 (2015)

[32] Ilham, A., et al.: Market Basket Analysis Using Apriori

and FP-Growth for Analysis Consumer Expenditure

Patterns at Berkah Mart in Pekanbaru Riau. In Journal

of Physics: Conference Series, IOP Publishing, Vol.

1114, No. 1, DOI:10.1088/1742-6596/1114/1/012131,

pp. 1-10, (2018)

[33] Hasan, M.M. and Mishu, S.Z.: An Adaptive Method for

Mining Frequent Itemsets Based on Apriori And FP

Growth Algorithm. In IEEE xplore International

Conference on Computer, Communication, Chemical,

Material and Electronic Engineering (IC4ME2), pp. 1-

4 (2018)

[34] Hong, T.-P. , Yu Lin, Ch., Huang , W. M., Li , S. , M.,

Wang, S. L. , Lin, J. C. W.: Mining Temporal Fuzzy

Utility Itemsets by Tree Structure, In proceeding of

IEEE International Conference on Big Data (Big Data),

Los Angeles, CA, USA, USA, DOI:

10.1109/BigData47090.2019.9006317, pp. 1-5 (2019)

[35] Sathyavani, D. and Sharmila, D.: An improved memory

adaptive up-growth to mine high utility itemsets from

large transaction databases. Journal of Ambient

Intelligence and Humanized Computing, pp. 1-10

(2020)

[36] Wang, W., et al.:TAR: Temporal association rules on

evolving numerical attributes. In Proceedings of IEEE

17th International Conference on Data Engineering,

pp. 283-292 (2001)

[37] Gharib, T. F., et al.: An efficient algorithm for

incremental mining of temporal association rules. Data

and Knowledge Engineering, Vol. 69, No. 8, pp. 800-

815 (2010)

https://ieeexplore.ieee.org/author/37265747900
https://ieeexplore.ieee.org/author/37088198610
https://ieeexplore.ieee.org/author/37086278270
https://ieeexplore.ieee.org/author/37088198763
https://ieeexplore.ieee.org/author/37336732300
https://ieeexplore.ieee.org/xpl/conhome/8986695/proceeding
https://doi.org/10.1109/BigData47090.2019.9006317

48 M. R. Keyvanpour et. al: PLI-X: Temporal Association Rules Mining in…

[38] Huang, J-W., et al.: Twain: Two-end association miner

with precise frequent exhibition periods. ACM

Transactions on Knowledge Discovery from Data

(TKDD), Vol. 1, No. 2, DOI:

10.1145/1267066.1267069 pp. 8-25 (2007)

[39] Kumar, B.P. and Paulraj, D.: Frequent mining analysis

using pattern mining utility incremental algorithm

based on relational query process. Journal of Ambient

Intelligence and Humanized Computing, pp. 1-11

(2020)

[40] Hui, L., Chen, Y.C., Weng, J.T.Y. and Lee, S.Y.:

Incremental mining of temporal patterns in interval-

based database. Knowledge and Information Systems,

Vol. 46, No.2, pp. 423-448 (2016)

[41] Sun, J., Xun, Y., Zhang, J. and Li, J.: Incremental

Frequent Itemsets Mining With FCFP Tree. IEEE

Access, Vol. 7, pp. 136511-136524 (2019)

[42] Matthews, S.G., Gongora, M.A., Hopgood, A.A.:

Evolving temporal association rules with genetic

algorithms, in: International Conference on Innovative

Techniques and Applications of Artificial Intelligence,

pp. 107-120 (2010)

[43] Maragatham, G., Lakshmi, M.: A weighted particle

swarm optimization technique for optimizing

association rules, in: International Conference on

Computing and Communication Systems, pp. 655-664

(2011)

[44] Wen, F., Zhang, G., Sun, L., Wang, X., Xu, X.: A hybrid

temporal association rules mining method for traffic

congestion prediction, Computers & Industrial

Engineering, Vol. 130,

DOI:10.1016/j.cie.2019.03.020, pp. 779-787 (2019)

[45] Matthews, S.G. , Gongora, M.A., Hopgood, A.A.:

Evolving temporal fuzzy association rules from

quantitative data with a multi-objective evolutionary

algorithm, in: International Conference on Hybrid

Artificial Intelligence Systems, pp. 198-205 (2011)

[46] Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S.,

Coello, C.A.C.: A survey of multiobjective

evolutionary algorithms for data mining: Part I, IEEE

Transactions on Evolutionary Computation, Vol. 18,

No. 1, pp. 4-19 (2014)

[47] Ahmed, C. F., et al.: Interactive mining of high utility

patterns over data streams. Expert Systems with

Applications, Vol. 39, No. 15, pp. 11979-11991 (2012)

[48] Bettini, C., Wang, X. S., and Jajodia, S.: Temporal

Granularity. In: LIU L., ÖZSU M.T. (eds)

Encyclopedia of Database Systems. DOI:

10.1007/978-0-387-39940-9_397 (2009)

[49] Kusumakumari, V., et al.: Frequent pattern mining on

stream data using Hadoop Can Tree-GTree. Procedia

Computer Science, Vol. 115, pp. 266-273 (2017)

[50] Lin CW, et al.: Mining High Utility Itemsets Based on

the Pre-large Concept. In: Chang RS., Jain L., Peng SL.

(eds) Advances in Intelligent Systems and

Applications, Smart Innovation, Systems and

Technologies, Vol. 20. Springer, Berlin, Heidelberg,

pp. 243-250 (2013)

[51] Junheng-Huang,W-W.: Efficient algorithm for mining

temporal association rule. The International Journal of

Computer Science and Network Security (IJCSNS),

Vol. 7, No. 4, pp. 268-271 (2007)

[52] Nguyen, L. T. T., Nguyen, N. T.: Incremental Mining

Class Association Rules Using Diffsets. In: Le Thi H.,

Nguyen N., Do T. (eds) Advanced Computational

Methods for Knowledge Engineering. Advances in

Intelligent Systems and Computing, Springer, Cham,

Vol. 358, pp. 197-208 (2015)

https://doi.org/10.1145/1267066.1267069
https://doi.org/10.1145/1267066.1267069
https://doi.org/10.1016/j.cie.2019.03.020

