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B-sheet Topology Prediction Using Probability-based
Integer Programming

Mahdie Eghdami*, Toktam Dehghani, Mahmoud Naghibzadeh

Abstract. B-sheet topology prediction is a major unresolved
problem in modern computational biology. It is a
challenging intermediate step toward the protein tertiary
structure prediction. Different methods have been provided
to deal with the problem of determining the p-sheet
topology. Here, ab-initio probability-based methods called
"BetaProbel" and "BetaProbe2" are utilized to specify the
B-sheet topology. In these methods, the stability and the
frequency of B-strand pairwise interaction and B-sheet
conformation are spotted. To predict more frequent
interactions between [-strand pairs, besides pairwise
alignment probability, the probability of occurring B-strand
pairwise interaction is considered to compute the score of
the interactions. Furthermore, to determine the [-strand
pairwise alignment probability more accurately, a dynamic
programming approach is utilized. In addition, the integer
programming optimization 1is combined with the
probabilities of B-strand pairwise interactions to determine
the B-sheet topology. Moreover, the p-sheet conformation
probability is considered to give better chances to more
observed conformations for selection. Experimental results
show that BetaProbel and BetaProbe2 significantly
outperform the most recent integer programming-based
method with respect to B-sheet topology prediction.

Keywords:  B-sheet  topology  prediction;  integer
programming; dynamic programming; pairwise alignment;

1.Introduction

Proteins perform critical functions within the living
organisms. Biologists believe that the functionality of
proteins is determined by their tertiary structures.
Therefore, it is important to specify the protein structure.
Further, the conventional empirical methods to determine
the structure of protein, namely, X-ray crystallography and
Nuclear Magnetic Resonance (NMR) spectroscopy are very
costly, time-consuming, and sometimes impossible. In
addition, now, from the 30 million proteins with known
primary structures in the protein databases [1], only the
tertiary structures of 30 thousand of them have been
determined by experimental methods [2]. Therefore, there
is a huge gap between the number of known primary
structures and the number of determined tertiary structures.
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Hence, insufficiency of empirical methods leads to utilizing
computational methods in protein structure prediction
problem.

One of the most frequent elements in the protein
structure is [-sheet which consists of separate sections
known as [-strands. B-strands are typically six to eight
amino acids long [3] that interact with amino acids of other
B-strands and make paired [-strands (partners). The
interaction between two [-strands can occur in two
different forms (parallel or anti-parallel) depending on their
orientation given by the position of the B-strands’ N- and C-
termini [4]. Each amino acid in a f-strand can make at most
two hydrogen bonds with other ones in the paired stand.
The interactions between the amino acid residues of the
paired B-strands are known as a -contact map.

B-sheets can be open or closed. Open B-sheets have two
edge strands and they are the most common types of -
sheets. Fig. 1 shows an example of an open fB-sheet type,
where four B-strands interact. On the other hand, in the
closed ones a circle is formed by a hydrogen bond between
the first strand and the last one.

Fig. 1. Open B-sheet of a protein with PDB (Protein Data Bank) id
INZOD. f-strands that form the B-sheet are numbered in
sequential order.

B-sheet topology prediction is regarded as one of the
most important unresolved problems toward the tertiary
structure prediction of proteins [5]. Correct prediction of -
sheet topology remains challenging because of hydrogen
bond formations between linearly distant B-sheet residues
[4]. Furthermore, the global covariations and constraints
characteristic of B-sheet structures have not been well
exploited [4].The p-sheet topology prediction provides
valuable information for predicting protein three-
dimensional structure [6], [7], designing new proteins and
new drugs [8], [9] and determining folding pathways [10],

[11].
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The main goal of predicting B-sheet topology from the
protein’s amino acids is to determine the organization of f3-
strands in the B-sheets. This includes identifying B-strand
members of each [B-sheet and describing B-sheets by
specifying paired B-strands and their interaction types.
Further, B-contact maps are determined in -sheet structure
prediction. Different methods have been proposed to
address the problem of predicting B-sheet topology which
will be described in the next section.

In this article, we present BetaProbel [12] and
BetaProbe?2, ab-initio probability based methods for B-sheet
topology prediction. The main advantage of the proposed
methods as compared to the previous researches is that we
make use of the fact that more frequent and more stable
conformations should have greater chances of being
selected. For this purpose, the score of an interaction
between each two B-strands is computed considering both
pairwise alignment probability and pairwise interaction
probability. Moreover, in order to make more accurate
alignments, the f-strand optimum pairwise alignment is
found wusing a dynamic programming approach.
Furthermore, combining integer optimization with the f-
strand pairwise interaction probability improves the
accuracy of the predicted interactions. In addition, using B-
sheet conformation probability in the last step of
BetaProbel leads to predicting more frequent and more
stable conformations.

In the rest of this paper, first, related studies are reviewed
in Section 2. Then, the details of the proposed methods will
be described in Section 3. Finally, the performances of the
proposed methods are compared with the most recent
integer programming-based B-sheet prediction method in
Section 4.

2. Related Work

Most B-sheet topology prediction methods utilize contact
maps and strands alignment. Any improvement in the
accuracy of these fields leads to a higher accuracy in
determining the architecture of -sheets. In this section first
the related works in these fields are introduced. Then, some
B-sheet prediction methods are explained.

Specifying the protein contact map is the first step in
determining its final structure. Mainly, a contact map is
expressed by a two-dimensional matrix. For two amino
acids 1; and rj, if the value of the i-th row and the j-th
column (O<contact Map (i, j) <1) is closer to one then they
are more likely to interact with each other in the final
structure. In other words, the likelihood of their relationship
in the final structure of proteins is higher. NNcon [13],
DNcon [14], SVMcon [15] and Distill [16] can be
mentioned as contact map prediction methods. CMAPpro
[17], PSICOV[18] and PhyCMAP [19] are the most recent
methods which include contact map prediction.

So far, methods with high accuracy and acceptable
execution time have been suggested for the sequence
alignment problem. Further, pairwise sequence alignment is
the most common technique used in P-sheet prediction
methods. The most usual approach to determine the best
alignment between two strands is dynamic programming.

Many efforts have been made to address the problem of
predicting B-sheet topology. These works can be divided
into two major categories: homology-based methods and
ab-initio methods. The homology-based methods such as
SMURF [20], SMURFLite [21], and MRFy [22] use
homological information of proteins for recognizing their
topologies. On the other hand, ab-initio methods only
consider amino acids’ pairing potentials and statistical
information. In this article, we concentrate on the ab-initio
B-sheet topology prediction methods. They utilize different
approaches such as statistical potentials[23], information
theory[24], Bayesian models and exploration of entire
search space[25], linear programming [5], [26], [27],
hidden Markov models [28], and graph matching
algorithms [4]. These approaches can be divided into two
major categories[29]: in one category, all possible [-
topologies are enumerated, and a score for each complete f3-
topology is computed. Then, the B-topology with the
highest score is selected as the best one [7], [25]. In the
other category, in order to predict the B-sheet topology of a
protein, pseudo-energy is assigned to each pair of -strands.
Then the problem of determining the best B-topology is
reduced to maximizing the strand-to-strand contact
potentials of the protein [5], [4], [26], [27], [28], [30].

BetaPro [4] was the first method to take into
consideration the global nature of $-sheet topologies. In this
method, three stages are used to predict B-topologies. Jones
[31] takes advantage of linear programming to predict the
secondary structure of the protein and p-sheet topologies. In
[27], BetaPro was combined with linear programming to
predict B-sheet topologies. Also, Rajgaria et al. [30]
presented a method to determine the tertiary structure of
proteins. In this method, strand pairing scores and contact
maps are computed using linear programming. BetaZa[25]
is a Bayesian approach which was introduced for proteins
up to six P-strands. The conformational features were
modeled in a probabilistic framework. The model is a
combination of prior knowledge about p-strand
arrangements with pairing potentials between the strands
amino acid. Also, to select the optimum [-sheet
architecture, using some heuristics, the search space was
reduced. A dynamic programming was used to determine
the B-strands optimum pairwise alignment. In the proposed
dynamic programing, any number of gaps were allowed. As
a result of exploration approach of the entire search space,
BetaZa has a high time complexity. BeST [5] and BCov
[26] predict the [-sheet topology wusing integer
programming. BCov determines the B-sheet topology in
three steps: first, it computes the residue contact propensity
using PSICOVJ18]; then, it computes the score of each
possible B-strand pairing. Finally, an integer programming
optimization is used to determine the P-sheet topology by
finding the best solution according to the constraints and
the pairing scores. In BCov two B-strands are paired only
according to their alignment scores and the stability of
conformations are not considered. Ruczinski et al. [7]
showed that the arrangement of B-strands into B-sheets is
not random. Based on the observations, there is a distinct
pattern for P-strands arrangements. Some of the
arrangements are unstable. Thus, they are never seen in
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nature. On the other hand, some particular orientations are
more favorable than others. In addition, models for
computing the probability of open B-topologies for proteins
were derived. The discriminative power of these models is
reduced significantly because the number of possible B-
strand organizations increase exponentially and there is not
sufficient training data to reliably represent such
conformations. Therefore, these models are limited to
proteins that contain at most ten B-strands. In this research,
we try to improve BCov by considering the stability and
frequency of B-strand pairing and -sheet conformation.

3. Proposed Method

In this article, two efforts are made to resolve the problem
of predicting [(-sheet topology: BetaProbel and
BetaProbe2.These efforts can predict both -sheet topology
and B-contact map. As previously mentioned, in BCov[26]
two P-strands are paired based on only their alignment
score; but, Ruczinski et al. [7] showed that the organization
of B-strands into PB-sheets is not random and there is a
distinct pattern. Therefore, to improve BCov, we attempt to
give greater chances to more stable and more frequent
conformations during the selection. In this section, first, a
general description of each attempt is presented. Then, the
steps of the proposed methods are described in detail.

3-1. First Effort: BetaProbel

BetaProbel consists of three major steps: (i) in order to
achieve more accurate alignments, a dynamic programming
approach is used to compute the p-strand pairwise
alignment probability. In addition, pairwise interaction
probability of each pair of B-strands is computed according
to [32]. Then, both pairwise alignment probability and
pairwise interaction probability are utilized to compute the
score of each interaction (ii) to determine the maximum
total strand-to-strand contact potentials of the protein an
integer programming optimization is used. In this step, to
enforce more stable and more observed paired B-strands to
be selected, pairwise interaction scores obtained in the
previous step are utilized (iii) the best B-sheet topology is
achieved according to paired strands determined in the
previous step. To predict more stable conformations, [3-
sheet topology probabilities are considered. The pseudo
code of BetaProbel is illustrated in Pseudo codel.

Computing p-strand Pairwise Interaction Score: Many
methods have been proposed to find the best alignment
between sequences [33], [34]. Here we concentrate on an
alignment method which is especially proposed for pB-
strands. In BetaProbel the alignment probability of each
two B-strands is computed based on the proposed method in
BetaZa[25]. In this method, the Needleman-Wunsch
algorithm [33][34] is used to compute the optimum
alignment between each pair of f-strands in the parallel and
anti-parallel directions. Then, the probability of the
optimum alignment is computed by dividing the score of
the best alignment by the sum of all possible alignments. To
improve the accuracy of the alignments, the amino acid
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pairing potentials are used which are computed especially
based on the B-amino acids.

Pseudocode 1: Probability-based algorithm for B-sheet topology
prediction (BetaProbel)

< Input: protein’s strands
% Qutput: an open B-sheet conformation with the highest
probability

0,

o

% Step 1: Determining B-strand Pairwise Interaction Score

Jor each pair of strands s; and s; do

compute their parallel and anti-parallel pairwise
alignment probabilities

compute their parallel and anti-parallel pairwise
interaction probabilities

scores=alignment probability X interaction
probability

o

% Step 2: Predicting the Closed p-Sheet Topology
Solve the integer programming problem

o

»  Step 3: Determining the Best Open [5-Sheet Topology
Jfor each closed S-topology do

for each interaction between two f-strands do
Omit the interaction temporarily

Compute the probability of the new open f-
sheet

Select the open [p-sheet with

conformation probability.

the highest

To store the pairwise alignment probability, a matrix
called "PAP (Pairwise Alignment Probability)" with n rows
and 2n columns is defined. In this matrix, n is the number
of B-strands in the protein. Matrix PAP is defined as
follows:

Sp,,mllel(s[,s/-) if i<n and j<n and j#i
PAP(i,j)= S,,,,,,-,p,,m,k,(s,-,sf) if i<n, n+1<<2%n and j#n+i 1
0 if j=i or j=n+i

In Equation (1), Sparaniel (85,5;) represents the probability of
optimum alignment between strands s;, i=1,2,...,n, and s;,
j=1,2,...,n, where their interaction type is parallel. Also,
Santi-paraliel  (8;,8j) Tepresents the probability of optimum
alignment between strands s;, i=1,2,...,n, and s;, j=1,2,...,n,
where their interaction type is anti-parallel. The definition
shows that the matrix PAP is divided into two sections with
an equal number of columns. The left section is used to
store the parallel alignment probabilities and the right
section is used to store the anti-parallel ones. The Score
matrix for the protein in Fig. 1 is shown in Fig. 2-(a). It is
important to note that the alignment probability depends on
the spatial ordering of strands [25]. Therefore, the score of
the optimum alignment between non-bridge strands can be
different. This is expressed in (2) and (3):

Snarallel (Si:si):’tSpamllel(Si:sx) (2)
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Santipumllel (Si)sl):'tSantiDarallel(Sfysl) (3)

According to [32], some B-strand pairs are more stable
and they are more frequently observed in nature, as
compared to others. Based on this observation, matrix "PIP
(Pairwise Interaction Probability)" is defined to store the
pairwise interaction probabilities of B-strands. The models
derived by [32] were used to compute these probabilities.
Matrix PIP contains n rows and 2Xn columns as defined in

4):
Ppam”d(si,sj) if i<n and j<n and j#i
PIP(i,j)= {Pam,m,.a/,d(si,sj) ifi<n, n+1<G<2xn and j#i+n )
0 if j=i or j=i+n
In (4), Pparaniei(8i,S;) represents the probability of strands s;
and s; to make a parallel interaction in the final structure
based on the protein characteristics such as the helical
status and the number of residues between each two beta
strands. Similarly, Pantiparaiei(si-Sj) is the probability of
strands s; and s; to make an antiparallel interaction. The
spatial ordering of strands has no effect on the B-strand
pairwise interaction probability. This is expressed in (5) and

(6):
Pparallel(si:s_/) = Pparallel(‘sjisi) (5)
Pamiparallel(si:sﬂ = Panripamllel(S/BSi) (6)

In Fig. 2-(b), the matrix PIP is computed for the protein
INZOD. Then the scores of interactions between each pair
of B-strands are determined. In the computation of each
score, both pairwise interaction probability and pairwise
alignment probability is considered. To store the scores of
the interactions, a bi-dimensional nx2n matrix called
"Score" is introduced, where n is the number of B-strands in
the protein. The matrix definition is declared in (7).

Score(i,j)=PAP(ij) xPIP(ij) 1<i<n , I<j<2xn @)

In the matrix Score definition, the first n columns
represent the scores of parallel interactions. Similarly, the
last n columns show anti-parallel ones. It is important to
note that the score of an interaction between two strands
depends on their spatial ordering. The Score matrix is
illustrated in Fig.2-(c) for the protein INZOD.

Prediction of the Closed f-Sheet Topology: Unlike BCov,
in the integer optimization problem the pairwise interaction
probabilities are considered in order to predict more stable
paired B-strands. In addition, the integer programming
model of BetaProbel is defined differently from the
BCov's. As a result, the closed B-sheet topology is obtained
by solving the integer problem in (8).

n 2xn
maximize: Z Z Score(i,j) X(ij)
i=1 j=1
subject to:  cl: X(i,j)E{0,1}V I1<i<n, 1j<2%n

c2: XGj)+XGi)+XEj+n)+X (G i+n)ef0,1}
v I<i<n, 1<j<2xn ®)
c3: X1 X(ij) €01} v1<i<n
cd: T (XU ) +X(j+n)) €0,1} VIsi<n
e5: BT X)) + Ty (XG.)+X(Gi+n) €(1,2}
V1<i<n
c6: X (1,i)=X(@,i+n)=0 V I<i<n
()

PAP=
0 0 0.138 0.019 0 1 0.047 0.007
0 0 0.023 0 1 0 0.019 0.089
0.15 0.025 0 0.238 0.05 0.015 0 0
0.027 0 0.437 0 0.015 0.055 0 0
1ent score
(b)
0 0.01 027 0.27 0 0.99 0.73 0.73
PIP=0'01 0 0.01 0.27 0.99 0 0.99 0.73
0.27 0.01 0 0.27 0.73 0.99 0 0.73
0.27 027 027 0 0.73 0.73 0.73 0
(©
Score=
0 0 0.138 0.019 0 1 0.047 0.007
0 0 0.023 0 1 0 0.019 0.089
0.15 0.025 0 0.238 0.05 0.015 0 0
0.027 0 0.437 0 0.015 0.055 0 0
ction score

Fig 2. (a) The matrix PAP for a protein with PDB ID INZ0D
computed by the dynamic programming algorithm [25]. (b) The
matrix PIP for protein INZOD computed by using the pairwise
interaction probabilities in [32]. (c¢) The matrix Score for protein
INZOD computed by considering both pairwise alignment
probability and pairwise interaction probability in this paper.

X is a nX2n binary matrix (constraint c1) in which non-
zero entries show an interaction between two related
strands. c¢2 constraint shows whether the interaction
between two strands is parallel or antiparallel. ¢3 and c4
constraints ensure that all strands have at most one strand
partner on either side. Furthermore, each strand can pair
with at least one and at most two other B-strands (constraint
cS).

In Fig. 3, the matrix X and the predicted closed B-sheet
topology for protein INZOD are shown.

(a)
0 0 0 0 0 1 0 0
X = 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1
(®)

Fig. 3. (a) The matrix X obtained by solving the integer program.
(b) The predicted closed B-sheet topology for the protein in Fig. 1.
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Determining the Best Open p-Sheet Topology: In the
previous step, paired B-strands and their interaction types
are determined by the integer program solution. The
predicted interactions make closed B-sheets, in other words,
each strand has two partners. To extend the proposed
method for the open B-sheets, the B-sheet topology
probabilities determined by [32] are used. In this step, the
probability of each possible open sheet is computed. Then
the most probable one is selected as the best [B-sheet
topology. To enumerate all possible open f-sheets, one of
the interactions of the closed one is omitted at a time. The
process of determining the best open B-sheet topology is
illustrated in Fig.4. In addition, Fig. 5 shows all possible
open B-sheets for the closed one in the Fig. 3-(b).

get the closed sheet
conformations

l
k=1

1
scorePest=()
i=1
omit the i*" interaction
score™" = the configuration probability of
the new open sheet

scorenew > scorebest

Yes

Yes score®st=gcore""
topology™*'=new sheet topology

Yes

<number of strands in the sheet—

report topologyPest

k++

k<number of closed sheets

Fig. 4. The process of determining the most probable open -sheet
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3-2. Second Effort: BetaProbe2

BetaProbe2 consists of two major steps: (i) similar to
BetaProbel, the score of each interaction is computed by
considering both pairwise alignment probability and
pairwise interaction probability. To obtain more accurate
alignments, a dynamic programming approach is used to
compute the alignment probability of each pair of B-strands
(i) to unravel the problem of determining the B-sheet
topology, an integer programming optimization is
introduced. Unlike BetaProbel, the integer problem is
defined to maximize the product of the interaction scores.
In this step, both pairwise interaction probabilities and
pairwise alignment probabilities are utilized to give a
greater chance to more stable and more observed paired B-
strands for selection. Unlike BetaProbel, the [-sheet
topology achieved by the integer program solution is not
closed. The pseudo code of BetaProbe? is illustrated in
Pseudocode 2.

Closed B-sheet topology Open B-sheet topology

Fig. 5. All possible open B-sheets from a closed one. The gray cell
shows the best open B-sheet topology for protein 1INZ0D.
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Pseudocode 2: Probability-based algorithm for B-sheet topology
prediction (BetaProbe2)

s Input: protein’s strands
% Output: an open [-sheet conformation with the highest
probability

s Step 1: determining B-strand pairwise Interaction Score

Jor each pair of strands s; and s; do

compute their parallel and anti-parallel
pairwise alignment probabilities

compute their parallel and antiparallel
pairwise interaction probabilities

scores=alignment probability xinteraction
probability
s Step 2: Prediction of the B-Sheet Topology
for each pair of strands s; and s; do

new

scores" " =log(scores)

Solve the integer programming problem

Computing f-strand Pairwise Interaction Score: Similar
to BetaProbel, first the elements of matrices PIP and PAP
are computed as in BetaProbel. Then, the score of
interaction between each pair of -strands is determined.

Determining the f-sheet Topology: The problem of
specifying the best B-sheet topology is reduced to an integer
optimization. By assuming that the event of existing an
interaction between two strands is independent of other [3-
strand interactions, the probability of the occurrence of
several interactions is computed by the product of their
probabilities. Therefore, an integer optimization is used to
maximize the product of B-strand pairwise interaction
scores, because each pairwise interaction score shows the
probability of occurrence of an interaction between two
strands according to the pairwise alignment probability and
the pairwise interaction probability. Since pairwise
interaction scores have positive values and the logarithm
function is ascending, it is possible to maximize the sum of
the logarithms of the pairwise interaction scores instead of
maximizing their product. Then, the problem of
determining the B-sheet topology becomes an integer linear
problem represented in (9). Note that the constraints of the
problem are the same as (8). In Fig. 6, the matrix X and the
final B-sheet topology for protein INZ0D are presented.

n 2xn
maximize: Z Z log(Score(i,j)) X(i,j)
i=1 j=1
subject to:  cl: X(1,j)E{0,1}V I<i<n, 1<j<2xn

c2: XGj+ X0 i)+ X0 j+n)+X(,i+n)E{0,1}
vV I<i<n, 1<j<2xn ©
c3: ¥ X(i,j) €(0,1} VIsi<n
cd: T (X ) +X(j+n)) €£0.1} VIj<n
c5: Y27 X (i) + Xy (XG0 +XG,i+n) €(1,23
Vi<i<n
c6: X (,i)=X(,i+n)=0 V I<i<n

(@

[=N =Nl
[=NeN o)
[ == =]
[=NeN i)
[=NeNolo)
o0 O
[=N =Nl
(=Nl

rallel

(b)

£

assssssssssEEEEm
S sssssssssssEms

Fig 6. (a) matrix X represent the result of solving integer
programming problem. (b) the final predicted f3-sheet topology

4. Results

In this section, first, the evaluation metrics and the data set
are described. Then, the results of evaluating BetaProbel
and BetaProbe? are presented.

Evaluation metrics: To evaluate the performance of the
proposed methods, well-known metrics in (10), (11) and
(12) are used. These metrics have been used to evaluate
state-of-the-art methods [5], [26], [25]:

.. 1P
Precision= PP x100 (10)
_ P
Recall= ——— <100 (1)
Fl-score= 2xPrecision xRecall (12)

Precision+Recall

Note that TP, FP, and FN represent true positives, false
positives, and false negatives values, respectively.

Dataset: We used the BetaSheet916 set for the evaluation.
This dataset is extracted from the PDB by [4]. It includes
916 proteins. To perform cross-validation, it is split into 10-
folds randomly and evenly. DSSP program [35] is used for
assigning the secondary structure. In this article B-residues
includes: (1) the extended B-strands (shown by E in the
DSSP) and (2) the isolated B-bridges (shown B in the DSSP
output).

Cross validation: At each step in a cross-validation, one
fold is considered as the test data and the remaining ones
are the training set. Models are trained based on the training
set. Predictions are determined in the test set. This process
is repeated for all proteins in the original set. The accuracy
measures are computed after the predictions are
accomplished.

We carried out three simulations. In the first simulation,
a 10-fold cross-validation experiment was performed on the
BetaSheet916 for proteins with less than or equal to four B-
strands and less than three partners. Similarly, in the second
simulation, the proposed method was evaluated on proteins
with less than or equal to five B-strands with less than three
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partners. The third simulation was performed on proteins
with less than or equal to six B-strands with less than three
partners.

BetaProbel and BetaProbe2 were compared with the
state-of-the-art method, BCov, which is also based on
integer programming. For this purpose, in the first step of
BCov, the residue pairing probabilities calculated in
BetaPro were used. Then the methods were evaluated on
the same data set.

In Table 1, the performance of BetaProbel at the strand
level is compared with the performance of BCov. The
recall, precision, and F1-score measures are shown in this
table.

Wilcoxon test for related samples has been utilized to
determine whether there is a significant difference in the
precision, recall, and Fl-score of the two methods. To
perform the test, the data set was broken into ten
subsidiaries as declared in the Dataset section. After that,
the results of BetaProbel and BCov were evaluated for
these subsets. The test showed that with an average error of
5%, there is a significant difference between the recall of
the two methods at the pairing direction level for proteins
with up to six and up to five strands. This means that the
recall improvement of BetaProbel compared with that of
BCov is significantly meaningful. From Table 1, it can be
concluded that besides wusing [-sheet conformation
probabilities, considering pairwise interaction probabilities
in the computation of [-strands interaction score and
combining it with the integer programming greatly
improves the accuracy of pairing directions. In Chart 1,
Chart 2, and Chart 3 the recall, precision, and F1-score of
BetaProbel at pairing direction level is illustrated and
compared to BCov's.

Table 1. The performance of BetaProbel at strand level on
proteins with 6 or fewer -strands on BetaSheet916.

Evaluation level Method Recall | Precision | Fl-score
BCov<6* 79 84 82
BetaProbel <6 73 69 71
BCov<5"® 81 86 83
strand pairing
BetaProbel <5 76 73 74
BCov<4° 82 85 83
BetaProbel<4 75 72 74
BCov<6 64 68 66
BetaProbel <6 70 67 68
BCov<s5 64 69 66
Pairing direction
BetaProbel <5 73 70 72
BCov<4 72 75 73
BetaProbel <4 74 70 72

a)The evaluation is done on proteins with up to 6 -strands
b) The evaluation is done on proteins with up to 5 -strands
¢) The evaluation is done on proteins with up to 4 B-strands
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In Table 2, the performance of BetaProbe2 is compared
to BCov at strand level. For the three subsets of proteins,
the precision and the Fl-score measures of the proposed
method at pairing direction level is better than BCov.
Further, the precision of BetaProbe? is better than BCov at
strand pairing level. Wilcoxon test for related samples
showed that with an average error of 5%, there is a
significant difference between the precision of BCov and
BetaProbe2 at the pairing direction level for all subsets of
proteins. It can be concluded that the precision
improvement of BetaProbe? is significantly meaningful as
compared with BCov's.
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The reason for the improvement of proposed methods as
compared with BCov is that adding pairwise interaction
probabilities to the integer programming in the second step,
enforces B-strand interactions which are more frequent in
the nature to be selected with higher probabilities. In
addition, to improve the pairwise alignments between -
strands, a dynamic programming approach is utilized in
which gaps are allowed. Furthermore, using the amino acid
pairing potentials provided by the BetaZa in the first step
has improved the accuracy.

Table 2. The performance of BetaProbe? at strand level on
proteins with 6 or fewer B-strands on Beta Sheet 916.

Evaluation level Method Recall | Precision | Fl-score
BCov<6 79 84 82
BetaProbe2<6 65 85 73
BCov<5 81 86 83
strand pairing
BetaProbe2<5 68 87 76
BCov<4 82 85 83
BetaProbe2<4 71 90 79
BCov<6 64 68 66
BetaProbe2<6 63 83 72
BCov<5 64 69 66
Pairing direction
BetaProbe2<5 67 87 75
BCov<4 72 75 73
BetaProbe2<4 71 89 79

In Table3 and Table4 the results of BetaProbe2 are
compared to BetaZa at the residue level and strand level,
respectively. The same alignment technique is used in both
methods. BetaZa searches the entire search space to find the
best B-sheet topology. Although the execution time of
BetaProbe? is less than BetaZa, the precision of
BetaProbe? is better at pairing direction level. In addition,
the precision of BetaProbe2 at strand pairing level and
contact map level is comparable with BetaZa's. Comparing
the recall, precision, and F1-score measures of BetaProbe2
at pairing direction level with the other method, the results
are represented in Chart4, Chart 5, and Chart 6,
respectively.

In Table5 and Table6 the performance of BetaProbel
and BetaProbe2 are represented at the residue level and
strand level, respectively. As mentioned before, in
BetaProbel, the sum of the interaction scores is maximized
in the integer programming step while in BetaProbe2 the
product of the interaction scores is maximized. It leads to
predicting fewer interactions between [-strands in
BetaProbe2 because the scores of the interactions are in the
range of zero and one. Subsequently, the predicted pairwise
interactions are the most frequent ones. Therefore the
precision of predicted interactions increases while the recall
decreases.

Table 3. The performance of BetaProbe?2 at strand level on
proteins with 6 or fewer B-strands on Beta Sheet 916

Evaluation level Method Recall | Precision | Fl-score
BetaZa<6 78 80 79
BetaProbe2<6 58 80 67
BetaZa<5 80 80 80
Contact map
BetaProbe2<5 60 79 68
BetaZa <4 82 82 82
BetaProbe2<4 61 80 69

Table 4. The performance of BetaProbe? at strand level on
proteins with 6 or fewer B-strands on Beta Sheet 916.

Evaluation level Method Recall | Precision | Fl-score
BetaZa<6 83 84 84
BetaProbe2<6 65 85 73
BetaZa<5 87 88 87
strand pairing
BetaProbe2<5 68 87 76
BetaZa <4 91 91 91
BetaProbe2<4 71 90 79
BetaZa <6 80 81 81
BetaProbe2<6 63 33 72
BetaZa <5 84 85 84
Pairing direction
BetaProbe2<5 67 87 75
BetaZa <4 88 88 88
BetaProbe2<4 71 89 79
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5. Conclusion and Future Work

The issue of determining the topology of B-sheets is
considered as a challenging problem. In this paper,
BetaProbel and BetaProbe2, two probability-based
methods for the B-sheet topology prediction, are introduced.
In these methods, first, the optimum pairwise alignment
probabilities of B-strands are determined using the dynamic
programming approach while any number of gaps are
allowed. Then, the probability of the occurrence of an
interaction is computed. After that, the score of on
interaction is computed utilizing both pairwise alignment
probability and pairwise interaction probability. Finally, we
reduced the problem of finding the B-sheet topology to an
integer optimization. 10-fold cross-validation experiments
are performed to evaluate the proposed methods. The
results show that these methods outperform the most recent
integer programming-based method[26]. The major
novelties in this research can be summarized as follow:

1. Considering both pairwise alignment probability and
pairwise interaction probability to compute the score of
an interaction between two B-strands;

2. Combining the probability of occurrence of an
interaction with the integer programming;

3. Considering B-sheet conformation probability in the
nature to predict more frequent -topologies;

4. Considering the spatial ordering of B-strands in B-sheets
in the integer programming;

5. The ability of the proposed methods to predict the B-
sheet structure for proteins with multiple B-sheets;

6. The ability of the proposed methods to predict the p-
sheet topology for proteins with closed B-sheets.
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The performance of predictions can be improved even
further. By combining residue pairing propensities with
PSICOV [18] ones, the methods can become more accurate.
Our methods can predict proteins with six or fewer B-
strands with less than three partners. This can be extended
to predict proteins with a higher number of B-strands and
higher order partners by extending probabilities and adding
new constraints to the integer programming step.

Table 5. The performance of BetaProbel and BetaProbe? at
residue level on proteins with 6 or fewer -strands on Beta

Sheet 916.
Evaluation level Method Recall | Precision | Fl-score
BetaProbel <6 63 66 64
BetaProbe2<6 58 80 67
BetaProbel <5 64 66 65
Contact map
BetaProbe2<5 60 79 68
BetaProbel <4 64 67 65
BetaProbe2<4 61 80 69

Table 6. The performance of BetaProbel and BetaProbe 2 at
strand level on proteins with 6 or fewer f-strands on Beta

Sheet 916.
Evaluation level Method Recall | Precision | Fl-score
BetaProbel <6 73 69 71
BetaProbe2<6 65 85 73
BetaProbel <5 76 73 74
strand pairing
BetaProbe2<5 68 87 76
BetaProbel <4 75 72 74
BetaProbe2<4 71 90 79
BetaProbel <6 70 67 68
BetaProbe2<6 63 83 72
BetaProbel <5 73 70 72
Pairing direction
BetaProbe2<5 67 87 75
BetaProbel <4 74 70 72
BetaProbe2<4 71 89 79
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