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Abstract. Previous studies show that the incorporation of 

spatial features in the classification process of hyperspectral 

images (HSI) improves classification accuracy. Although 

different spatial-spectral methods are proposed in the 

literature for the classification of the HSI, they almost have 

a slow, complex, and parameter-dependent structure. This 

paper proposes, a simple, fast and efficient two-stage 

spatial-spectral method for the classification of the HSI 

based on extended morphological profiles (EMP) and the 

guided filter. The proposed method consists of four major 

stages. In the first stage, principal component analysis 

(PCA) is used to smooth the HSI to extract the low-

dimensional informative features. In the second stage, EMP 

is produced from the first three PCs. Stacked feature 

vectors, consisting of PCs and EMP, are classified via 

support vector machines (SVM) in the third step. Finally, a 

post-processing stage based on a guided filter is applied to 

classified maps to further improve the classification 

accuracy and to refine the noisy classified pixels. 

Experimental results on two famous hyperspectral images 

named Indian Pines and Pavia University in a very small 

training sample size situation show that the proposed 

method can reach the high level of accuracies which are 

superior to some recent state-of-the-art methods.  
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1. Introduction  

Hyperspectral images (HSI) contain rich spectral 

information that can be used in various fields of earth science 

studies such as identifying the different material, geology, 

forest, and investigating the changes of earth surface land-

covers. Due to the high dimensionality of the HSI (large 

numbers of spectral bands) and the limited size of the 

training samples, supervised classification of the HSI is 

challenging and commonly leads to curse of dimensionality 

[1]. Besides, inter-class spectral variability and intra-class 

spectral similarity may deteriorate the classification 

accuracy.  

Based on the literature, different methods are proposed 

to address the curse of dimensionality in the classification of 

the HSI. Generally, they are grounded in three major groups: 

 Dimensionality reduction (DR) techniques: Different 

feature extraction and feature selection methods are 

proposed in the literature to efficiently reduce the 
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dimension of the HSI. Principal component analysis 

(PCA) [2], independent component analysis (ICA) [2], 

kernel principal component analysis (KPCA) [3], 

Fisher's linear discriminant analysis (FLDA) [4], locality 

adaptive discriminant analysis (LADA) [5], ensemble 

discriminative local metric learning (EDLML) [6], 

minimum noise fraction (MNF) [2], and mutual 

information band selection [7] are among the most 

important classical approaches. Developing the new 

efficient DR methods are still a hot topic, and in recent 

years different novel methods such as SuperPCA [8], 

band grouping SuperPCA [9], and kernel SuperPCA [10] 

are proposed for HSI feature extraction. 

 Advanced classifiers: Different advanced classifiers that 

are less sensitive to the size of training samples such as 

support vector machines (SVM) [11], extreme learning 

machines (ELM) [12], sparse representation classifier 

(SRC) [13], collaborate representation classifier (CRC) 

[13], and random multi-graphs (RMG) [14] are used in 

the literature for classification of the HSI. 

 Generating the virtual training samples: Numerous data 

augmentation, and virtual training samples generation 

methods such as Generative adversarial network (GAN) 

[15], and Gaussian mixture model (GMM) [16] are 

proposed in the literature for efficient classification of 

the HSI. 

 To address the second issue about the inter-class spectral 

variability and intra-class spectral similarity, numerous 

studies have proved the efficiency of incorporating 

textural and spatial features in traditional spectral based 

classification [11]. The main idea of using the spatial 

features in the classification of the HSI is supported by 

this concept that the near pixels are usually grounded in 

the same class. 

 Morphological profiles (MP) are one of the most 

promising spatial features for the classification of the HSI. 

Morphological opening and closing that are based on 

elementary dilation and erosion operators are used to extract 

bright/dark features [17]. Morphological profiles are 

produced by geodesic opening and closing operators [18]. 

The extended morphological profiles (EMP) are the 

adoption of the MP to multi-band images [17]. In this 

method, because of the high dimensionality of the HSI, MP 

is produced from the first few PCs. A method based on MP 

and multi-kernel SVM is proposed in [19]. Their final results 

show that classifying morphological and spectral feature 

with multi-kernel SVM reached to higher accuracies. The 
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accuracy of the EMP-based classification is greatly 

influenced by the types of the structuring element (SE). In 

[20], multiple classifier systems based on EMP are proposed 

in which EMPs with multi-shapes SEs are used to better 

detect the structures in the image. The EMPs created from 

SEs of different shapes are independently classified, and the 

final classification map is produced by decision fusion. 

In addition to using spatial features such as EMP in the pre-

processing stage, spatial information can be used in the post-

processing phase to improve the classification accuracy of 

the HSI. The guided filter (GF) is an edge-preserving filter 

which is faster than other edge-preserving filters such as 

anisotropic diffusion or bilateral filter and has good behavior 

near the edges and does not cause a false edge [21]. In recent 

years, this filter is used in some studies in the field of 

hyperspectral image processing. A novel method is 

introduced in [22] that combines PCs, GF and the random 

forest classifier. In this method, after dimensionality 

reduction by PCA, the edge-preserving GF is used to smooth 

the HSI and to extract the spatial features. In [23] GF is used 

in the post-processing stage of hyperspectral image 

classification to smooth the results of SVM classification. In 

[24], an ensemble classification technique based on the 

weighted ensemble of hierarchical GF and matrix of spectral 

angle distance are proposed for classification of the HSI. A 

good comparative study was carried out in [25] for 

investigating the impact of different filtering methods in pre 

and post-processing stages on the accuracy of the HSI 

classification.     

Although the EMP and guided filter are used individually 

in the mentioned studies, there is still some issue that should 

be addressed. 1) Although the previous methods based on 

EMP [17,18] and GF [23] individually are fast and efficient, 

they may not reach a high level of accuracy, especially when 

the limited training samples are available. 2) Some of the 

previous proposed spatial-spectral methods are complex 

such as [26] or have the time-consuming performance such 

as deep models [27, 28]. To address previously mentioned 

issues, this paper proposes a simple, fast and accurate two-

stage HSI spatial-spectral classification method (named 

EMP-GF). The main contributions of the EMP-GF are as 

follows: 

1) For the first time in literature, in this study, EMP-GF 

integrates the PCA feature extraction, SVM classifier 

without the cross-validation, extended morphological 

profiles (EMP), and a post-processing stage based on the 

guided filter.  

2) EMP-GF has great performance even when the very 

limited training samples are available. Also, EMP-GF is 

superior over some recent state-of-the-art methods. 

We validate the proposed method in the classification of 

two challenging hyperspectral images from agricultural and 

urban areas. 

   Section 2 proposes the methodology of the EMP-GF. 

Section 3 presents the data set and the experimental results. 

At last, conclusions are summarized in Section 4. 

 

2. Methodology 

Based on Fig. 1 that shows the block diagram of proposed 

EMP-GF, this method consists of six major steps as follows: 

1) In the first step, to eliminate the noise and to improve the 

performance of PCA, HSI is smoothed with the simple 

mean filter. In this method, a sliding window with the 

size 3×3 is considered around each pixel in each band of 

the HSI and the mean of the gray level values of the 

image in this window is considered as the final value of 

each pixel in each band. 

2) In the second step, to overcome the course of 

dimensionality, PCA is used for feature extraction of the 

HSI.  

3)  In the third step, to address the issue of inter-class spectral 

variability and intra-class spectral similarity, spatial 

features based on EMP are produced from the first three 

principal components analysis (PCs). Later, EMP 

stacked to the spectral feature vectors that consist of PCs 

and form the spatial-spectral feature vectors. 

4) Resultant spatial-spectral feature vectors are classified 

with SVM without using the cross-validation due to its 

huge processing time. A normalization technique and 

polynomial kernel based on [29] are used for fast and 

efficient training of SVM. 

 5) To further the classification accuracy, as the post-

processing stage, the guided filter is applied based on 

gray and color guidance images on initial probability 

maps that are obtained from SVM. 

6) In the last step, the label of each pixel is determined based 

on the maximum probability rule [23]. 

Detailed information about EMP and GF are given in the 

next sub-sections. 

 

 
Fig. 1. Block diagram of EMP-GF 

 

a. Morphological profiles 

 Morphological opening and closing operators are based on 

elementary erosion and dilation operators as follows [30]: 

 

Opening:     𝐴 ∘ 𝐵 = (𝐴 ⊖ 𝐵) ⊕ 𝐵                                 (1) 
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Closing       𝐴 ∙ 𝐵 = (𝐴 ⊕ 𝐵) ⊖ 𝐵                                  (2) 

 

In which A is the image, B is the structuring element 

(SE), ⊖ represents the erosion operator, and ⊕ is the 

dilation operator. Due to the modification of structures after 

applying the opening and closing transformations, [31,32] 

used morphological opening and closing by reconstruction 

for spatial feature extraction of the HSI. Opening 𝛾𝑅 and 

closing 𝜑𝑅  by reconstruction of image A are defined as: 

 

𝛾𝑅
𝑖 = 𝑅𝐴

𝛿(𝜀𝑖(𝐴))                                                               (3) 

 

  𝜑𝑅
𝑖 = 𝑅𝐴

𝜀(𝛿𝑖(𝐴))                                                            (4) 

 

Here, 𝜀𝑖 and 𝛿𝑖 are the erosion and dilation with the SE 

with the size i, and 𝑅𝐴
𝛿 and 𝑅𝐴

𝜀 are morphological dilation 

and erosion by reconstructions, respectively. Opening and 

closing by reconstructions are the connected operators 

which remove the structures that cannot contain the SE and 

totally preserve other structures. Commonly, different 

ranges of SE sizes are used for extracting the objects with 

different sizes. The morphological profile feature vector of 

each pixel in coordination of (i, j) which consists of the 

gray-level value of pixel (Q) and its values of opening and 

the closing by reconstruction with the different size of SE is 

defined as the following: 

 

𝑀𝑃 = {𝛾𝑅
𝑖

(𝑖,𝑗)
, … , 𝑄(𝑖,𝑗), … , 𝜑𝑅

𝑖
(𝑖,𝑗)

}                                  (5) 

 

In (1), 𝜑𝑅
𝑖  is closing by reconstruction and 𝛾𝑅

𝑖  is opening 

by reconstruction with SE of size i. Extended 

morphological profiles (EMP) can be defined by extending 

the concept of MP to multiband images. Based on the PCA 

transform of the original hyperspectral image, EMP is 

defined by (6): 

 

𝐸𝑀𝑃 = {𝑀𝑃𝑃𝐶1, … , 𝑀𝑃𝑃𝐶𝑚}                                          (6) 

 

Where m is the number of desired PCs. In this study, EMP 

vector for each pixel stacked with PCA spectral features and 

formed the spatial-spectral vector. 

 

b. Guided filter 

Specifically, the classified image of SVM can be shown as 

the n number of binary classified maps, in which n is the 

number of classes. These binary maps commonly contain 

noisy classified pixels which degrade the classification 

accuracy. The post-processing stage based on the guided 

filter can eliminate these noisy classified pixels and 

therefore improve the classification accuracy.  

In guided image filtering, 𝑞𝑖 (smoothed probability map 

of SVM classifier for each class), is a linear transform of 

guidance image I (first PC or first three PCs) in a window 

𝜔𝑘 centered at the pixel k  [21]: 

 

 𝑞𝑖 = 𝑎𝑘𝐼𝑖 + 𝑏𝑘   , 𝑓𝑜𝑟 𝑖 ∈ 𝜔𝑘                                          (7) 

Where 𝑎𝑘and 𝑏𝑘 are some linear coefficients which are 

constant in 𝜔𝑘. difference between q and filter input p (initial 

binary probability map of SVM for each class) is minimized: 

𝐸(𝑎𝑘, 𝑏𝑘) = ∑ ((𝑎𝑘𝐼𝑖+𝑏𝑘 − 𝑝𝑖)
2 + 𝜖𝑖∈𝜔𝑘

𝑎𝑘
2)               (8) 

 

Where 𝜖 is a regularization parameter. By solving the (8) 

these coefficients can be determined by (9) and (10): 

 

  𝑎𝑘 =

1

|𝜔|
∑ (𝐼𝑖 𝑝𝑖−𝜇𝑘�̅�𝑘𝑖∈𝜔𝑘

)

𝜎𝑘
2+𝜖

                                                    (9) 

 

   𝑏𝑘 = �̅�𝑘 − 𝑎𝑘𝜇𝑘                                                              (10) 

 

Where 𝜇𝑘 and 𝜎2 are mean and variance of I in 𝜔𝑘 , |𝜔| is 

the number of pixels in 𝜔𝑘 , and �̅�𝑘 is the mean of p in 𝜔𝑘. 
Guidance image can be gray or color images. After obtaining 

the smoothed classified maps of each class, the final label of 

each pixel is determined based on maximum probability rule 

as: 

 𝐶 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑛 𝑃𝑖,𝑛                                                         (11) 

 

In which C is the final label of pixel i and 𝑃𝑖,𝑛 is the 

probability map of pixel i in the class n. 

 

3. Experimental Results 

A. Data sets 

Two real hyperspectral images are used in this study for 

studying the effectiveness of proposed EMP-GF. First one, 

Indian pines hyperspectral image, gathered by AVIRIS 

sensor from an agricultural area in Indiana of USA. It has 

220 spectral bands that after discarding the noisy bands, 200 

noise-free bands are used in the experiments. The 

distribution of 16 classes in this scene is shown in the 

ground truth map (GTM) of Fig. 2.a. The second data set, 

Pavia university hyperspectral image, was collected by 

ROSIS 3 sensor in 2003.  This image has 115 spectral bands 

ranging from 0.43 to 0.86 μm. Dimensions of this image are 

610×340 pixels and spatial resolution is 1.3m. Nine classes 

of urban land-cover are shown on its (GTM) of Fig. 2.b. 

 

 
a  

b 

Fig. 2. Ground truth maps of a) Indian pines  b) Pavia 

university 

 

B. Experiments setup 

EMPs are generated with disk shape SE with sizes of 3,5,7,9 

and 11 from the first three PCs for both data sets. The 

dimensionality of HSIs is reduced via PCA and for Indian 

Pines first 69 features and for Pavia university first 15 

features which contain 99% of information are considered as 
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final spectral features. The spatial-spectral feature vector is 

generated based on stacking the EMP and PCs. Resultant 

spatial-spectral vectors are classified via SVM classification. 

LIBSVM package is used for implementing the SVM 

classifier [33]. A polynomial kernel with degree 3 is used in 

SVM and features are mapped into [-255 to 255] [29]. 

Performance of classifier is evaluated based on four 

accuracy indices, overall accuracy(OA), kappa coefficient 

(kappa),  average accuracy (AA) and average validity(AV) 

(for more information refer to [11]). Training samples are 

randomly chosen from approximately 5% labeled samples 

of GTM for Indian Pines and 1% of labeled samples of GMT 

for Pavia University and remaining labeled samples of 

GMTs are used as test samples. The first PC of the 

hyperspectral image is considered as gray guidance and the 

first three PCs are considered as color guidance images. 

Parameters of the guided filter (ϵ and window size) in all 

experiments are determined optimally by trial and error. 

 

C. Ablation study and experimental results 

This sub-section investigates the efficiency of each part of 

the proposed EPF-GF. Based on TABLE I and TABLE II, 6 

different cases are considered as follows: 

  PCA: In this case, classification is carried out with the 

only spectral PCs features. 

  PCA+GFg: In this case, classification is carried out 

with the only spectral PCs features and a post-

processing stage is done with guided filter and gray 

guidance image. 

  PCA+GFc: In this case, classification is carried out 

with the only spectral PCs features and a post-

processing stage is done with guided filter and color 

guidance image. 

  PCA+EMP: In this case, classification is carried out 

with the stacked spatial-spectral (PCA+EMP) features. 

  PCA+EMP+GFg: In this case, classification is carried 

out with the stacked spatial-spectral (PCA+EMP) 

features and a post-processing stage is done with guided 

filter and gray guidance image. 

  PCA+EMP+GFc: In this case, classification is carried 

out with the stacked spatial-spectral (PCA+EMP) 

features and a post-processing stage is done with guided 

filter and color guidance image. 

With attention to Fig. 3 and Fig. 4, it can be understood 

that many noisy classified pixels exist in PCA spectral-based 

classified maps. In column 3 (PCA+GFg) and 4 (PCA+GFc) 

of TABLE 1 and TABLE 2, gray and color guided filters are 

applied on probability maps of spectral-based classification, 

respectively. Based on rows 2 and 3 of Fig. 3 and Fig. 4, 

although the density of noisy classified pixels is hugely 

reduced, there are still some noisy labels in some regions. 

By using the spatial-spectral features (PCA+EMP, column 5 

of TABLE I and TABLE II), the initially classified map is in 

some cases smoother than the case of PCA+GFc. By 

applying the gray and color guided filter on the probability 

maps of PCA+EMP the classification accuracies are even to 

the highest levels and the most homogeneous classified map 

is produced in case of PCA+EMP+GFc. Based on the 

experiments, generally, the color guided filter is superior in 

comparison to gray guided filter due to the better 

preservation of edges in the color guidance image [21].  

     
Table. 1. Classification Results for Indian Pines 

 

A
ccu

racy
 

P
C

A
 

P
C

A
+

G
F

g
 

P
C

A
+

G
F

c 

P
C

A
+

E
M

P
 

P
C

A
+

 

E
M

P
+

G
F

g
 

P
C

A
+

 

E
M

P
+

G
F

c 

OA 82.94 93.37 91.92 88.99 96.28 96.82 

Kappa 0.8 0.92 0.91 0.87 0.96 0.96 

AA 85.45 95.17 90.04 88.49 95.41 97.23 

AV 84.49 95.57 94.09 88.41 97.94 97.74 

 
Table. 2. Classification Results for Pavia University 
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OA 93.99 97.31 95.75 
98.8

3 
99.06 99.43 

Kappa 0.92 0.96 0.94 0.98 0.986 0.99 

AA 93.10 96.53 95.28 
98.5

6 
98.74 99.3 

AV 93.30 96.67 94.03 
98.5

3 
99.34 99.44 

 

The final result of TABLE I and TABLE II in case of 

PCA+EMP+GFc demonstrated that proposed method with 

only 102 and 45 features for Indian Pines and Pavia 

University (with compression ratio about 2) reaches to the 

very high level of accuracy even when very few training 

samples (approximately 1%) are available. The fast and 

simple structure along with promising results of the 

proposed method increases the applicability of the proposed 

framework in different case studies of the HSI classification. 

 

  

PCA PCA+EMP 

  

PCA+GFg PCA+GFc 
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PCA+EMP+GFg PCA+EMP+GFc 

Fig. 3. Classified maps of Indian Pines 

 

  

PCA PCA+EMP 

  
PCA+GFg PCA+GFc 

  
PCA+EMP+GFg PCA+EMP+GFc 

 

Fig. 4. Classified maps of Pavia University 

 

D. Comparison to recent methods 

To evaluate the effectiveness of the proposed method, the 

classification accuracies of the proposed method have been 

compared with three state-of-the-art methods for the 

classification of hyperspectral images. Methods and their 

setups are as below: 

  RPNET [27]: In this method, a deep model is simulated 

based on the PCA transform for extracting spatial-spectral 

features. Final extracted features are classified with SVM. 

Parameters of this method are tuned based on the original 

paper. 

 JSaCR [26]: In the joint spatial-aware collaborative 

classification model (JSACR), both spatial and spectral 

features are used to induce the distance-weighted 

regularization terms. Also in this method, spatial 

information is added to representation objective function 

with a spatial regularization. 

 R-HybridSN [28]: This method combines the 3D-2D-

convolutional neural network (CNN), deep residual 

learning, and depth-separable convolutions for classification 

of hyperspectral images. The results of this method are 

presented based on the original paper. 

 

Table. 3. Comparison with State-of-the-art Methods 

 

 Indian Pines Pavia 

University 

Proposed method 96.82 99.43 

RPNet (2018) 95.46 96.2 

JSaCR (2017) 94.07 97.2 

R-HybridSN 

(2019) 

96.46 96.59 

 

The obtained results of TABLE III proved the superiority of 

the proposed method over the RPNet, JSaCR, and R-

HybridSN methods. It is worth noting that in addition to 

better classification accuracies, the proposed method has a 

very simpler framework than the other three competing 

methods.   

 

4. Conclusion 

A new spatial-spectral method is proposed in this paper for 

the classification of the HSI based on extended 

morphological profiles (EMP) and guided image filters. 

Based on this method, after the initial features extraction 

technique based on PCA, EMP is generated and stacked with 

spectral PCs. The resultant spatial-spectral feature vectors 

are classified by the SVM classifier. Guided filter with gray 

and color guidance images is applied on the probability map 

of each class and the final label of each pixel is determined 

based on maximum probability. Based on the final results, it 

is concluded that the proposed method based on the color 

guidance image has a simple structure and can reach a very 

high level of accuracy even when very few training samples 

are available. Combination of the multi-shape extended 

morphological profiles with a guided filter is suggested for 

future study. 
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