[1] Kellerer, H. and V.A. Strusevich, Fully polynomial approximation schemes for a symmetric quadratic knapsack problem and its scheduling applications. Algorithmica, vol.57, no.4: pp.769-795, 2010.
[2] A. Hatamlou, E. Ghaniyarlou, Solving knapsack problems using heart algorithm, IJAISC, vol. 5, no. 4, pp.285-293. 2016.
[3] Tavares, J., F.B. Pereira, and E. Costa, Multidimensional knapsack problem: A fitness landscape analysis. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 38, no. 3: pp.604-616. 2008.
[4] Truong, T.K., K. Li, and Y. Xu, Chemical reaction optimization with greedy strategy for the 0–1 knapsack problem. Applied Soft Computing, vol.13, no.4, pp.1774-1780. 2013.
[5] Aho, I., Interactive Knapsacks: Theory and Applications. University of Tampere. 2002:
[6] Martello, S. and P. Toth, Knapsack problems: algorithms and computer implementations. John Wiley & Sons, Inc. 296. 1990:
[7] Kellerer, H., et al., Knapsack Problems. Springer, 2003.
[8] A Hatamlou, Solving Travelling Salesman Problem Using Heart Algorithm, International Journal of Applied Evolutionary Computation (IJAEC), vol. 8, no.4, 32-42. 2017.
[9] A Hatamlou, Numerical Optimization Using the Heart Algorithm, International Journal of Applied Evolutionary Computation (IJAEC), vol. 9, no.2, 33-37. 2018.
[10] M Ruhnavaz, A Hatamlou, Modeling Ghotour-Chai River’s Rainfall-Runoff process by Genetic Programming, Journal of Advances in Computer Research, vol.9, no. 1, 71-84, 2018.
[11] P Mohammadi, A Hatamlou, M Masdari, A comparative study on remote tracking of Parkinsons disease progression using data mining methods, arXiv preprint arXiv:1312.2140, 2013.
[12] A. Hatamlou, A hybrid bio-inspired algorithm and its application, Applied Intelligence, vol. 47, no. 4, pp. 1059-1067, 2017.
[13] A. Hatamlou, Solving travelling salesman problem using black hole algorithm, Soft Computing, vol.22, no. 24, pp. 8167-8175, 2018.
[14] B. Javidy, A. Hatamlou, S Mirjalili, Ions motion algorithm for solving optimization problems, Applied Soft Computing, 32, 72-79. 2015,
[15] A. Bouyer, A. Hatamlou, An efficient hybrid clustering method based on improved cuckoo optimization and modified particle swarm optimization algorithms, Applied Soft Computing, vol.67, pp. 172-182, 2018.
[16] A. Hatamlou, Heart: a novel optimization algorithm for cluster analysis. Prog. Artif. Intell. vol. 2, no. 2-3, pp.167-173, 2014.
[17] Zou, Dexuan, et al. "Solving 0–1 knapsack problem by a novel global harmony search algorithm." Applied Soft Computing 11.2, pp.1556-1564. (2011):
[18] Lin, Feng-Tse. "Solving the knapsack problem with imprecise weight coefficients using genetic algorithms." European Journal of Operational Research 185.1 133-145, (2008):
[19] Ji, Junzhong, et al. "An ant colony optimization algorithm for solving the multidimensional knapsack problems." Intelligent Agent Technology, 2007. IAT'07. IEEE/WIC/ACM International Conference on. IEEE, 2007.
[20] Sundar, Shyam, Alok Singh, and André Rossi. "An artificial bee colony algorithm for the 0–1 multidimensional knapsack problem." Contemporary Computing. Springer Berlin Heidelberg, pp. 141-151. 2010.
[21] Pulikanti, Srikanth, and Alok Singh. "An artificial bee colony algorithm for the quadratic knapsack problem." Neural Information Processing. Springer Berlin Heidelberg, 2009.
[22] Kong, Min, and Peng Tian. "Apply the particle swarm optimization to the multidimensional knapsack problem." Artificial Intelligence and Soft Computing–ICAISC 2006. Springer Berlin Heidelberg, pp.1140-1149. 2006.
[23] Gherboudj, Amira, Abdesslem Layeb, and Salim Chikhi. "Solving 0-1 knapsack problems by a discrete binary version of cuckoo search algorithm." International Journal of Bio-Inspired Computation 4.4, 229-236. (2012):
[24]. Hatamlou, Abdolreza. "Black hole: A new heuristic optimization approach for data clustering." Information Sciences 222, 175-184, (2013):
[25] Wang, L., et al., An improved adaptive binary harmony search algorithm. Information Sciences, 232: pp.58-87, 2013.
[26] K. Chen, L. Ma, Artificial glowworm swarm optimization algorithm for 0-1 knapsack problem, Appl. Res. Comput. vol.30, no. 4, pp. 996–998, (2013).
[27] J.Q. Liu, Y.C. He, Gu Qian Q. Solving knapsack problem based on discrete particle swarm optimization, Comput. Eng. Design, vol. 29, no. 13, pp.3189–3191, (2007).
[28] W.L. Xiang, M.Q. An, Y.Z. Li, et al., A novel discrete global-best harmony search algorithm for solving 0-1 knapsack problems, Discret. Dyn. Nat. Soc. (2014) 12, http://dx.doi.org/10.1155/2014/573731, Article ID 573731.
[29] Chen, H., Y. Zhu, and K. Hu, Discrete and continuous optimization based on multi-swarm coevolution. Natural Computing, vol. 9, no. 3. pp.659-682. 2010.
Send comment about this article