
Journal of Computer and Knowledge Engineering, Vol. 8, No. 1, 2025. (1-10)

Ferdowsi

University of

Mashhad

Journal of Computer and Knowledge

Engineering

https://cke.um.ac.ir

Information and

Communication

Technology Association of

Iran

An Efficient Resource Allocation Algorithm for Task Offloading in the Internet of

Vehicles
Research Article

Ahmad Salehi1, Sadoon Azizi2

10.22067/cke.2024.89721.1129

Abstract The Internet of Vehicles (IoV) represents a

transformative paradigm in Intelligent Transportation

Systems (ITS), enabling real-time communication between

vehicles, infrastructure, and cloud platforms to improve

traffic management, safety, and efficiency. However, the

resource limitations in vehicles pose significant challenges

for delay-sensitive applications such as autonomous

driving and automated navigation. Vehicular Edge

Computing (VEC) offers a promising solution by

offloading tasks to edge servers near vehicles, reducing

transmission delays and enhancing computational

efficiency. In this paper, we address the complex task

offloading and resource allocation problem in VEC

environments. We model this challenge as an Integer

Linear Programming (ILP) problem, aiming to maximize

the system’s overall profit. To mitigate the computational

complexity of solving the ILP problem, we propose an

efficient heuristic algorithm. This approach considers

various task types, accounting for the diversity and

specific requirements of each. The algorithm optimizes

CPU resource allocation based on task generation rates,

average task sizes, and a calculated weight coefficient for

each task type. Simulation results demonstrate that the

proposed algorithm reduces memory costs and penalties

from rejected tasks, while improving overall system profit.

In particular, it outperforms existing algorithms by an

average of 18.26% in terms of profit, demonstrating its

effectiveness in practical VEC applications.

Key Words Internet of vehicle, vehicular edge computing,

task offloading, resource allocation, profit maximization.

1. INTRODUCTION
As modern automotive industries with sensing and

wireless communication technologies rapidly advance,

vehicles are becoming smarter, giving rise to the Internet

of Vehicles (IoVs) as a new paradigm in Intelligent

 Manuscript received 2024 September 17, Revised 2024 October 20, Accepted 2024 November 11.
1 M.Sc. Student, Department of Computer Engineering and IT, University of Kurdistan, Sanandaj, Iran.
2 Corresponding Author. Associate Professor, Department of Computer Engineering and IT, University of Kurdistan, Sanandaj, Iran.

Email: s.azizi@uok.ac.ir

Transportation Systems (ITS) [1]. The IoVs combines

vehicular ad hoc networks (VANETs) with the Internet of

Things (IoT) to improve transportation efficiency and

vehicle safety [2]. The rapid development of vehicular

networks has enabled numerous delay-sensitive

applications, including autonomous driving, automated

navigation, vehicular augmented reality, and intelligent

object recognition, each requiring substantial data

processing and computational resources. These

advancements are pushing current infrastructures to their

limits, as they demand stringent Quality of Service (QoS)

while processing large volumes of sensor data and

communicating with the network [3]. However, the limited

computational resources available within vehicles often

prevent them from meeting the low-latency QoS

requirements essential for these applications, creating a

bottleneck in the advancement of vehicular networks.

To address these challenges, mobile edge computing

(MEC) is considered a promising paradigm [4]. MEC

enhances service efficiency for vehicles and reduces

transmission delays between vehicles and cloud servers by

bringing cloud computing resources closer to the network

edge. Additionally, Vehicular Edge Computing (VEC)

offers an effective solution to this problem [5]. In VEC,

computational and storage resources of cloud servers are

deployed at the edge of the radio access network, such as

roadside units (RSUs), located near vehicles. This

proximity enables service with high QoS and provides a

cost-efficient, low-latency solution [6]. VEC offloads

vehicle tasks to edge servers located on or near RSUs or to

other vehicles with surplus computing resources.

Compared to traditional cloud-based systems, edge-based

solutions offer significantly lower communication latency

by reducing the distance over which tasks are transmitted

to computing resources, enhancing responsiveness for

latency-sensitive applications [7], [8]. Vehicle

https://cke.um.ac.ir/article_45923.html
https://cke.um.ac.ir/
https://doi.org/10.22067/cke.2024.89721.1129
https://orcid.org/0000-0002-5788-0438
https://creativecommons.org/licenses/by/4.0/

2 Ahmad Salehi - Sadoon Azizi

applications can greatly benefit from the advantages of

VEC, leading to a safer and more efficient transportation

system [9]. However, optimizing task offloading and

resource allocation in VEC remains a fundamental

challenge, as these systems must handle heterogeneous

user demands, each with unique resource requirements, all

while utilizing shared resources. Efficient resource

allocation strategies are needed to maximize QoS while

minimizing operational costs.

In this paper, we propose a mathematical model for the

task offloading and resource allocation problem in

heterogeneous VEC systems, formulated as an Integer

Linear Programming (ILP) problem. The objective is to

maximize the system's total profit while adhering to QoS

constraints. We introduce a heuristic weighted algorithm

that takes into account the number of tasks in the system

and their computational demands. Using this information,

the algorithm calculates a weight for each task type and

allocates available resources across the MEC servers

accordingly. Extensive experiments were conducted

across various scenarios to compare the performance of

our proposed algorithm against existing algorithms using

multiple performance metrics. The results demonstrate

that our algorithm significantly improves the system’s

total profit.

Our main contributions are summarized as follows:

 We present a mathematical framework for

addressing task offloading and resource

allocation in heterogeneous VEC systems,

formulated as an Integer Linear Programming

problem, with the goal of optimizing system-

wide profit while meeting QoS requirements.

 We propose an innovative heuristic weighted

algorithm that dynamically calculates task

weights based on both the number of tasks

present in the system and their specific

computational demands. This algorithm

effectively allocates available resources across

MEC servers, optimizing system performance by

balancing workload and enhancing resource

utilization.

 We perform comprehensive experiments across

different scenarios to evaluate the performance of

the proposed algorithm. These experiments

demonstrate that our algorithm consistently

outperforms existing approaches across multiple

performance metrics, leading to substantial

improvements in total system profit, resource

efficiency, and overall service quality.

The rest of this paper is organized as follows: In Section

2, we review the related works. Section 3 presents the

proposed system model and formulates the optimization

problem for task offloading and resource allocation. In

Section 4, we introduce our proposed method, a weighted

algorithm for task offloading and resource allocation.

Section 5 provides an evaluation of our algorithm and

simulation results. Finally, Section 6 concludes the paper

and discusses future work.

2. RELATED WORK

In recent years, MEC has gained significant attention for

its role in computation offloading, leading to the

development of various optimization strategies for

offloading [10]. Wang et al. [1] introduce a fuzzy logic-

based dynamic pricing strategy to optimize offloading

decisions and model vehicle interactions as a two-stage

Stackelberg game, considering social factors such as

reputation and task satisfaction. Wu et al. [11] model the

interactions between vehicles and MEC servers using a

Markov decision process and optimize decisions using the

twin delayed deep deterministic policy gradient (TD3)

algorithm. Load balancing is enhanced through edge

collaboration and a server selection algorithm based on

TOPSIS. Cheng et al. [10] propose the CO-MATCH

algorithm, which includes a dynamic programming-based

service caching (DPSC) algorithm and a Many-to-One

Matching Game (MOMG) algorithm. These components

encourage edge services and vehicles to cache tasks and

optimize task offloading.

Zhang et al. [12] propose enhancing VECNs with fiber-

wireless (FiWi) technology and introduce a software-

defined networking (SDN) based load-balancing task

offloading scheme. This approach aims to minimize

processing delays by efficiently managing computation

resources. Fan et al. [7] develop an algorithm using

Generalized Benders Decomposition (GBD) and

Reformulation Linearization (RL) methods for optimal

solutions, as well as a heuristic algorithm for sub-optimal

solutions with lower computational complexity. They aim

to minimize the total task processing delay by optimizing

task scheduling, channel allocation, and computing

resource distribution between vehicles and RSUs. Zhao et

al. [13] model the joint optimization problem of task

offloading and resource allocation as a Markov decision

process, taking into account communication, computing,

and system costs. They introduce a multi-agent deep

deterministic policy gradient (MADDPG) algorithm to

address convergence issues in dynamic environments and

incorporate federated learning to manage non-IID data and

ensure privacy protection.

Du et al. [14] propose a comprehensive IoV architecture

and formulate a joint optimization problem to minimize

the system function value. They employ a Simulated

Spring System Algorithm (SSSA), which decouples the

problem into two sub-problems: allocating computing

resources based on KKT conditions and optimizing the

task offloading strategy using the simulated spring system.

These sub-problems iteratively update each other until a

solution is achieved. Liu et al. [15] address the challenge

of efficient task execution in Vehicular Edge Computing

Networks (VECNs) by accounting for the variations in

channel and access times due to high vehicle mobility.

They propose a multi-path dynamic offloading scheme

(MPDOS), designed to minimize the maximum task

completion time for vehicles handling serial tasks.

MPDOS includes three key components: optimizing

communication links to boost processing capability,

employing a multi-knapsack algorithm for allocating tasks

to RSUs, and implementing a load-balancing scheme to

ensure even distribution of computing tasks.

Journal of Computer and Knowledge Engineering, Vol.8, No.1.2025. 3

Huang et al. [16] propose a multi-objective

optimization model for dynamic, heterogeneous VEC

networks, formulated as a multi-objective Markov

Decision Process (MOMDP). They introduce EMOTO, a

novel multi-objective reinforcement learning algorithm

designed to minimize task execution delay and vehicle

energy consumption while maximizing service provider

revenue. EMOTO integrates a preference priority

sampling module and a model-augmented environment

estimator to address the challenges of the highly dynamic

VEC environment, enhancing decision-making accuracy

and efficiency. Wan et al. [17] propose a framework where

idle vehicles (IVs) collaborate with busy vehicles (BVs) as

edge nodes to reduce task computation latency. They

model the matching and resource allocation between BVs

and IVs to minimize latency and consider energy

consumption, introducing a low-complexity solution for

one-to-one matching and an improved biogeography-

based optimization (IBBO) algorithm for one-to-many

matching. Mao et al. [18] address security challenges in

vehicular ad hoc networks (VANETs) by proposing a task

offloading mechanism for the IoV that relies on trusted

RSUs. They introduce a novel infrastructure trust

management model incorporating social factors to enhance

RSU security. This mechanism models vehicle task

offloading with a focus on RSU reliability, aiming to

ensure secure and efficient task processing even under

malicious attacks.

Azizi et al. [19] introduce a Mixed-Integer Nonlinear

Programming (MINLP) model for task offloading, aimed

at maximizing the number of tasks meeting their deadlines

while minimizing the overall energy consumption of

mobile devices. They propose DECO, a heuristic

algorithm designed to optimize the trade-off between task

deadlines and energy consumption in IoT devices. DECO

jointly considers the deadline requirements of tasks and the

energy consumed by devices. Additionally, it accounts for

task prioritization and the heterogeneous capabilities of

edge cloud servers (ECSs). Yeganeh et al. [20] model task

offloading and scheduling in MEC networks as an

optimization problem, aiming to minimize execution time

and energy consumption. They introduce a hybrid

algorithm, E-AEO-AOA, which combines Artificial

Ecosystem-based Optimization (AEO) and Arithmetic

Optimization Algorithm (AOA). The E-AEO-AOA

incorporates a modified Q-learning strategy for

hybridization and employs chaos theory to enhance local

search capabilities.

While numerous studies have explored resource

allocation and task offloading in both MEC and VEC, this

work introduces several novel contributions that

distinguish it from prior research. First, this study

considers a dynamic workload environment, reflecting

real-world conditions where task demands fluctuate over

time. This added variability increases the complexity of the

resource management problem, requiring adaptive

strategies to accommodate changing resource

requirements effectively. Second, we propose a low-

complexity, highly efficient algorithm specifically

designed to optimize resource allocation under these

fluctuating conditions, ensuring that the computational

load is distributed effectively across the available

resources. This approach minimizes computational

overhead while maintaining responsiveness, an essential

factor in edge computing environments. Third, our model

incorporates the distinct QoS requirements associated with

varying task types. By introducing a specialized objective

function, we ensure that resource allocation not only

maximizes system performance but also addresses the

diverse QoS needs of each task type, which is critical in

scenarios where task prioritization and latency sensitivity

differ. Through this multi-faceted approach, our work

provides a robust framework that balances system

performance, resource utilization, and QoS compliance,

advancing the state of resource management

methodologies in MEC and VEC contexts.

3. SYSTEM MODEL

In this section, we provide an overview of our system

model and architecture, followed by a detailed discussion

on the mathematically modeled problem formulation.

3.1. System Architecture

Fig. 1 illustrates the VEC system model, designed for a

two-lane straight road with equally spaced roadside units

positioned along the route. Each RSU provides wireless

communication coverage, denoted by L. All RSUs are

directly connected to a base station which houses a MEC

server. Each vehicle is capable of generating multiple

tasks, which are categorized into different types. Each task

type possesses unique attributes that distinguish it from

other task types. Task i generated by a vehicle is

characterized by three primary attributes, denoted as 𝑇𝑖 =

{𝑇𝑖
𝑡𝑦𝑝𝑒

, 𝑇𝑖
𝑠𝑖𝑧𝑒 , 𝑇𝑖

𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒}, where 𝑇𝑖
𝑡𝑦𝑝𝑒

 represents the

specific type of the task, 𝑇𝑖
𝑠𝑖𝑧𝑒 denotes the computational

effort required to complete the task, measured in millions

of instructions, and 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 indicates the maximum

allowable time before the task is rejected, measured in

milliseconds for precision.

Fig. 1. System architecture

All tasks generated by vehicles are offloaded to the

nearest RSU. Upon receiving these tasks, the RSU

forwards them to the base station, where the computing

process is initiated in the MEC server. Error! Reference

source not found. illustrates the architecture of the MEC

server, which includes three distinct First-In-First-Out

(FIFO) queues at the current time (t) for different task

types, with each queue linked to a corresponding instance

for computation. Each instance is characterized by three

4 Ahmad Salehi - Sadoon Azizi

main attributes, denoted as 𝐶𝐼𝑗 =

{𝐶𝐼𝑗
𝑠𝑡𝑎𝑡𝑒 , 𝐶𝐼𝑗

𝑐𝑜𝑟𝑒𝑠 , 𝐶𝐼𝑗
𝑚𝑒𝑚}, where 𝐶𝐼𝑗

𝑠𝑡𝑎𝑡𝑒 represents the

state of the instance (either on or off), 𝐶𝐼𝑗
𝑐𝑜𝑟𝑒𝑠 represents

the number of CPU cores assigned to the instance, and

𝐶𝐼𝑗
𝑚𝑒𝑚 indicates the memory usage of the instance,

measured in megabytes. Each MEC server contains a CPU

pool, comprising all the CPU cores available for allocation

among the active instances.

Each task type has its own QoS class and constraints to

ensure efficient handling and prioritization, enabling

flexible resource management by assigning income and

penalties based on task completion time to encourage

timely task processing and effective system resource

management. The details for each class are as follows:

• Task Type 1: This class has a single deadline

constraint. If the instance’s response time exceeds this

standard deadline, the task is rejected, and the system

incurs a penalty due to the unmet deadline.

• Task Type 2: The QoS class for Task Type 2 includes

two thresholds: the standard deadline and an extended

deadline, determined by a multiplier, denoted by θ, of the

original deadline. If the task is completed by the standard

deadline, full on-time income is earned. Completion after

the standard deadline but within the extended θ-adjusted

deadline yields reduced income, denoted by β. Exceeding

this extended deadline results in task rejection and a

penalty.

• Task Type 3: Task Type 3 has three deadline-based

QoS thresholds: the standard deadline and two extended

deadlines, denoted by Δ1 and Δ2. Completion within the

standard deadline yields full on-time income. If completed

after the standard deadline but before Δ1, a partial income,

denoted by Φ1, is awarded. Completion between Δ1 and

Δ2 yields a further reduced income, denoted by Φ2.

Exceeding Δ2 results in task rejection and a penalty.

3.2. Problem Formulation

In this section, we formulate the task offloading process

as an Integer Linear Programming optimization problem.

The objective is to maximize the total profit while

satisfying constraints such as task deadlines,

computational costs, and QoS.

 Table 1. Presents symbols and notations used in our

problem formulation. We model the number of tasks

generated for each type within a time slot using a Poisson

distribution, where each task type has a unique generation

rate, denoted by λm for task type m. Upon the task's entry

into the MEC server, the server calculates the response

time for the task. The response time for task i on container

j is expressed as:

𝑇𝑖,𝑗
𝑟𝑒𝑠 = 𝑄𝑗

𝑤𝑎𝑖𝑡 +
𝑇𝑖

𝑠𝑖𝑧𝑒

(𝐶𝐼𝑗
𝑐𝑜𝑟𝑒𝑠 ∗ 𝐶𝑃)

 (1)

where 𝐶𝑃 represents the CPU power of each core,

measured in million instructions per second (MIPS), and

is assumed to be homogeneous across the system. Since a

FIFO system has been implemented for each queue, 𝑄𝑗
𝑤𝑎𝑖𝑡

represents the waiting time for task execution in the queue

of container j and is expressed as:

𝑄𝑗
𝑤𝑎𝑖𝑡 =

∑ 𝑇𝑘
𝑠𝑖𝑧𝑒𝑁𝑗

𝑘=1

(𝐶𝐼𝑗
𝑐𝑜𝑟𝑒𝑠 ∗ 𝐶𝑃)

 (2)

where 𝑁𝑗 represents the total number of tasks waiting to be

executed in the queue of container j before task 𝑖.

Once the response time is calculated, the system

determines whether the server can execute task i before its

deadline, denoted as 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒. Based on the task type and

the QoS class, the system decides whether to reject the task

or add it to the instance's queue for execution. If the task is

accepted, the associated income is added to the total

income of the container, denoted by 𝐶𝐼𝑗
𝑖𝑛𝑐. Conversely, if

the task is rejected, the penalty incurred by the system is

added to the total penalty of the container, denoted by

𝐶𝐼𝑗
𝑝𝑒𝑛

. Therefore, the income for each task type can be

expressed as:

𝐶𝐼1
𝑖𝑛𝑐 = 𝑂𝑇1 × 𝑇𝑇1

𝑜𝑡𝑝
 (3)

and

𝐶𝐼2
𝑖𝑛𝑐 = (𝑂𝑇2 × 𝑇𝑇2

𝑜𝑡𝑝
) + (𝑇𝐻 × β) (4)

and

𝐶𝐼3
𝑖𝑛𝑐 = (𝑂𝑇3 × 𝑇𝑇3

𝑜𝑡𝑝
) + (𝐷1𝑇 × Φ1) + (𝐷2𝑇

× Φ2)
(5)

Fig2 MBC server model

Journal of Computer and Knowledge Engineering, Vol.8, No.1.2025. 5

TABLE 1

Key notations used in the problem formulation

Symbol Description Unit

λm Task generation rate for task type m -

𝑇𝑖
𝑠𝑖𝑧𝑒 Size of task i [MI]

𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 Deadline for task i [ms]

𝑂𝑇𝑚 Number of tasks executed before the original deadline for task type 𝑚 -

𝑇𝑇𝑚
𝑜𝑡𝑝

 Income earned for completing a task on time for task type m [$]

𝑇𝐻 Number of tasks executed within the time frame θ × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 but after the original deadline -

β Income earned for completing tasks within the time frame θ × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 [$]

𝐷1𝑇 Number of tasks completed between the original deadline and 𝛥1 × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 -

Φ1 Profit for completing a task during the time frame 𝛥1 × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 [$]

𝐷2𝑇 Number of tasks executed between 𝛥1 × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 and 𝛥2 × 𝑇𝑖

𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 -

Φ2 Profit for completing tasks within the time frame 𝛥2 × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 [$]

𝑅𝐽𝑇𝑚 Number of rejected tasks for task type m -

𝑇𝑇𝑚
𝑝𝑒𝑛

 Penalty amount for rejected tasks for task type m [$]

𝑇𝑇𝑚
𝑚𝑒𝑚 Memory usage for task type m [$]

𝑇𝑇𝑚
𝑚𝑐 Cost per 100 MB of memory for task type m [$]

𝐶𝐼𝑗
𝑐𝑜𝑟𝑒𝑠 Number of CPU cores allocated to container j -

𝐶𝑃 CPU power of each core [MIPS]

𝑄𝑗
𝑤𝑎𝑖𝑡 Waiting time for task execution in the queue of container [ms]

𝑁𝑗 Total number of tasks waiting to be executed in the queue of container j before task 𝑖 -

𝐶𝐼𝑗
𝑖𝑛𝑐 Total income earned by container j [$]

𝐶𝐼𝑗
𝑝𝑒𝑛

 Total penalty incurred by container j for rejected tasks [$]

𝑅𝑇𝑗
𝑖𝑑𝑙𝑒 Idle runtime for container j [ms]

𝑅𝑇𝑗
𝑎𝑐𝑡𝑖𝑣𝑒 Active runtime for container j [ms]

𝐶𝐼𝑗
𝑚𝑒𝑚 Memory usage of container j [MB]

𝐶𝐼𝑗
𝑡𝑜𝑡𝑎𝑙𝑚𝑒𝑚 Total memory usage for container j [MB]

𝐶𝐼𝑗
𝑚𝑒𝑚𝑐𝑜𝑠𝑡 Total memory cost for container j [$]

𝑃𝑅𝑂𝐹𝑗 Profit of container j [$]

𝑇𝑖,𝑗
𝑟𝑒𝑠 Response time for task i on container j [ms]

𝐼𝑁𝑡𝑜𝑡𝑎𝑙 Total income earned across all containers [$]

𝑃𝐸𝑁𝑡𝑜𝑡𝑎𝑙 Total penalty incurred across all containers [$]

𝑃𝑅𝑂𝐹𝑡𝑜𝑡𝑎𝑙 Total profit of the system [$]

where, for all task types, 𝑂𝑇𝑚 represents the number of

tasks executed before the original deadline, 𝑇𝑇𝑚
𝑜𝑡𝑝

 is the

amount of income earned for executing a task on time. For

task type 2, 𝑇𝐻 denotes the number of tasks executed

before θ × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 and after the original deadline, with β

being the income earned for executing tasks within this

timeframe. For task type 3, 𝐷1𝑇 represents the number of

tasks completed after the original deadline but before

𝛥1 × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒, with Φ1 indicating the profit for executing

a task during this period. Similarly, 𝐷2𝑇 is the number of

tasks executed after 𝛥1 × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 and before 𝛥2 ×

𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒, with Φ2 being the profit for completing tasks

within this timeframe. Therefore, the total income can be

expressed as:

𝐼𝑁𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐶𝐼𝑗
𝑖𝑛𝑐

3

𝑗=1

(6)

The penalty is determined by the number of rejected

tasks, with each task type incurring a different penalty

amount. Thus, the total penalty amount for each task type

can be expressed as:

𝐶𝐼𝑚
𝑝𝑒𝑛

= 𝑅𝐽𝑇𝑚 × 𝑇𝑇𝑚
𝑝𝑒𝑛

(7)

where 𝑅𝐽𝑇𝑚 represents the number of rejected tasks for task

type m, and 𝑇𝑇𝑚
𝑝𝑒𝑛

 is the penalty amount assigned to that

task type. The total penalty for all containers can be

expressed as:

𝑃𝐸𝑁𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐶𝐼𝑗
𝑝𝑒𝑛

3

𝑗=1

(8)

In this system, we consider two types of runtimes for

each container. The first is idle runtime, which occurs when

the container's state is 'On' but no tasks are being executed.

This is denoted by 𝑅𝑇𝑗
𝑖𝑑𝑙𝑒. The second type is active

runtime, which occurs when the container's state is 'On' and

a task is being executed. This is denoted by 𝑅𝑇𝑗
𝑎𝑐𝑡𝑖𝑣𝑒 . As

previously mentioned, each container has its own memory

usage, denoted by 𝐶𝐼𝑗
𝑚𝑒𝑚. Additionally, each task type has

its own memory usage, which can be expressed as 𝑇𝑇𝑚
𝑚𝑒𝑚

6 Ahmad Salehi - Sadoon Azizi

for task type m. Therefore, the total memory usage for

container j and task type m can be expressed as:

𝐶𝐼𝑗
𝑡𝑜𝑡𝑎𝑙𝑚𝑒𝑚 = (𝑅𝑇𝑗

𝑎𝑐𝑡𝑖𝑣𝑒 × 𝑇𝑇𝑚
𝑚𝑒𝑚) + (𝑅𝑇𝑗

𝑖𝑑𝑙𝑒

× 𝐶𝐼𝑗
𝑚𝑒𝑚)

(9)

and the total memory cost for container j and task type m

can be expressed as:

𝐶𝐼𝑗
𝑚𝑒𝑚𝑐𝑜𝑠𝑡 = 𝐶𝐼𝑗

𝑡𝑜𝑡𝑎𝑙𝑚𝑒𝑚 ×
𝑇𝑇𝑚

𝑚𝑐

100

(10)

where 𝑇𝑇𝑚
𝑚𝑐 represents the cost per 100 megabytes of

memory for task type m. For each container, our goal is to

maximize its profit, so the profit for container j can be

expressed as:

𝑃𝑅𝑂𝐹𝑗 = 𝐶𝐼𝑗
𝑖𝑛𝑐 − 𝐶𝐼𝑗

𝑝𝑒𝑛
− 𝐶𝐼𝑗

𝑚𝑒𝑚𝑐𝑜𝑠𝑡 (11)

and the total profit of the system can be expressed as:

𝑃𝑅𝑂𝐹𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑃𝑅𝑂𝐹𝑗

3

𝑗=1

(12)

To reiterate, our optimization objective is to maximize

the total profit of the system; therefore, the total profit

serves as our objective function. In the following section,

we propose a weighted algorithm to solve this optimization

problem. This algorithm is designed to allocate tasks to the

appropriate instances efficiently while considering multiple

factors such as task deadlines, resource availability, and

QoS.

4. PROPOSED ALGORITHM

In this section, we propose a heuristic weighted task

offloading and resource allocation algorithm. To design

this weighted algorithm, we make the following

assumptions:

Assumption 1: We assume that the task generation for each

task type follows a Poisson distribution, with a given

generation rate λ and an average task size, denoted as

𝑇𝑇𝑎𝑣𝑔𝑠𝑖𝑧𝑒 .

Assumption 2: We assume the size of each task follows a

normal distribution, with 𝑇𝑇𝑎𝑣𝑔𝑠𝑖𝑧𝑒 as the mean and a

standard deviation of σ.

Assumption 3: The number of epochs within a specific

timeframe is assumed to be known.

Assumption 4: All instances are assumed to remain in the

‘On’ state during each epoch and are allocated at least one

CPU core.

As mentioned previously, our system design is based on

time slots. The total number of time slots is divided into a

series of epochs, during which the task offloading and

resource allocation algorithm is executed. For each epoch,

the task generation rate varies across all three task types. At

the beginning of each epoch, our algorithm makes two key

decisions: first, it determines which containers will be in

the 'Off' state and which will remain ‘On’; second, it

decides the number of CPU cores to allocate from the CPU

pool to each container that is in the 'On' state. As stated in

our assumptions, we assume that all instances remain in the

‘On’ state, and the number of CPU cores allocated to each

instance is determined by the weight of the queue for each

task type. The weight calculation for each task type can be

expressed as:

𝑤𝑚
𝑒𝑝

= 𝜆𝑚
𝑒𝑝

× 𝑇𝑇𝑚
𝑎𝑣𝑔𝑠𝑖𝑧𝑒

 (13)

where 𝜆𝑚
𝑒𝑝

 represents the generation rate and 𝑇𝑇𝑚
𝑎𝑣𝑔𝑠𝑖𝑧𝑒

represents the average task size of task type m in epoch

number ep. The total weight of all task types can be

expressed as:

𝑤𝑡𝑜𝑡𝑎𝑙
𝑒𝑝

= ∑ 𝑤𝑗
𝑒𝑝

3

𝑗=1

(14)

We use the weight for each task type to calculate a

coefficient, which is then utilized to assign a specific

number of CPU cores to each task type’s instance in the

current epoch. The coefficient for task type m in epoch ep

can be expressed as:

𝑐𝑜𝑚
𝑒𝑝

=
𝑤𝑚

𝑒𝑝

𝑤𝑡𝑜𝑡𝑎𝑙
𝑒𝑝

(15)

The number of CPU cores assigned to the instance of task

type m, denoted by 𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠, can be specified as:

𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠 = ⌊𝑐𝑜𝑚

𝑒𝑝
× 𝐴𝐶⌋ (16)

where AC represents the total number of available CPU

cores in the CPU pool. After assigning the floor of the

calculated number of CPU cores based on the coefficient to

each instance, there may be some remaining extra cores that

need to be allocated. For each instance, a "luck percentage,"

denoted by 𝐶𝐼𝑚
𝑙𝑢𝑐𝑘 is assigned, with the sum of all luck

percentages totaling 100%. These extra cores are

distributed to instances based on their luck percentage. For

example, if 𝐶𝐼𝑚
𝑙𝑢𝑐𝑘 = 70, it means there is a 70% chance

that an extra core will be allocated to that instance. For each

extra core, a random number between 0 and 100 is

generated, and if the number falls within the range of 𝐶𝐼𝑚
𝑙𝑢𝑐𝑘

, the extra core is added to 𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠. The pseudocode of the

proposed weighted algorithm is presented in Algorithm 1.

As presented in the pseudocode, the algorithm iterates

through each epoch, with the maximum number of epochs

denoted as 𝑒𝑐, allowing it to adapt dynamically to changing

conditions. Lines 2 through 5 calculate the weight for each

task type, with line 5 computing the total weight across all

task types to provide an overview of the computational

demands during the current epoch. Line 6 then initiates an

iteration through each instance, with lines 7 and 8 ensuring

that each instance is allocated at least one CPU core to

maintain operational integrity. Using the total weight, lines

9 through 12 calculate a coefficient for each task type,

determining the proportion of resources allocated based on

their weighted importance. The algorithm then allocates the

floor of the calculated number of cores to each instance to

ensure feasibility. Lastly, lines 13 through 19 address the

distribution of any remaining cores, which are allocated

individually based on each instance's luck percentage if

extra cores remain after the initial allocation.
In analyzing the time complexity of the proposed

algorithm, the outer loop iterates 𝑒𝑐 times, resulting in a

time complexity of 𝑂(𝑒𝑐). The two inner loops in lines 2

through 4 and lines 6 through 12 each run a constant

Journal of Computer and Knowledge Engineering, Vol.8, No.1.2025. 7

number of times (specifically, three iterations), giving

them a time complexity of 𝑂(1). Therefore, these inner

loops do not impact the overall complexity. Lines 13

through 19 consist of a while loop that executes up to 𝐴𝐶

times, contributing a time complexity of 𝑂(𝐴𝐶).

Consequently, combining the contributions from the outer

loop and the while loop, the total complexity of the

proposed algorithm is 𝑂(𝑒𝑐 × 𝐴𝐶).

Algorithm 1 Proposed Resource Allocation Algorithm

Input: 𝐴𝐶, 𝜆𝑚
𝑒𝑝

, 𝑇𝑇𝑚
𝑎𝑣𝑔𝑠𝑖𝑧𝑒

, 𝑒𝑐

Output: 𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠

1: for ep=0;ep<ec;ep++ do
2: for m=0;m<3;m++ do
3: calculate weight for each task type m in

epoch ep:
 𝑤𝑚

𝑒𝑝
= 𝜆𝑚

𝑒𝑝
× 𝑇𝑇𝑚

𝑎𝑣𝑔𝑠𝑖𝑧𝑒

4: end for
5: calculate total weight for the current epoch:

𝑤𝑡𝑜𝑡𝑎𝑙
𝑒𝑝

= ∑ 𝑤𝑗
𝑒𝑝

3

𝑚=1

6: for m=0;m<3;m++ do

7: 𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠 = 𝐶𝐼𝑚

𝑐𝑜𝑟𝑒𝑠 + 1

8: 𝐴𝐶 = 𝐴𝐶 − 1

9: calculate coefficient for task type m in
epoch ep:

𝑐𝑜𝑚

𝑒𝑝
=

𝑤𝑚
𝑒𝑝

𝑤𝑡𝑜𝑡𝑎𝑙
𝑒𝑝

10: allocate the floor of calculated number of
cores to the instance of task type m:

 𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠 = ⌊𝑐𝑜𝑚

𝑒𝑝
× 𝐴𝐶⌋

11: 𝐴𝐶 = 𝐴𝐶 − 𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠

12: end for

13: while 𝐴𝐶 > 0 do

14: generate a random number from 0 to 100

15: if Random number is in range of 𝐶𝐼𝑚
𝑙𝑢𝑐𝑘

do
16: 𝐴𝐶 = 𝐴𝐶 − 1

17: 𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠 = 𝐶𝐼𝑚

𝑐𝑜𝑟𝑒𝑠 + 1

18: end if

19: end while

20: end for

21: return 𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠

5. EVALUATION

In this section, we evaluate the performance of our

proposed weighted algorithm by conducting a series of

simulation experiments under various scenarios and

comparing the corresponding numerical results.

5.1. Simulation Setup

Our experiment was conducted using Python 3.10.4 to

simulate a VEC environment with multiple users. The

simulation was performed on a computer with the

following specifications: an AMD Ryzen 7 5800X3D

processor, 32 GB of RAM, and an NVIDIA RTX 3080

GPU. The total number of time slots was set to 1000,

divided into four epochs. Each time slot had a duration of

1000 ms, with the time slot indices assigned to the epochs

being [0, 250, 500, 750]. TABLE 2 presents other simulation

parameters used in the experiments.

TABLE 2

Simulation parameters

Parameter Value

Number of CPU cores 15

CPU core power 2000 MIPS

Set of task types [1, 2, 3]

Task type deadlines [200, 800, 4000] (ms)

Task type rejection penalties [-0.2, -0.05, -0.02] ($)

Task type size means [200, 1000, 4000]

Task type size standard

deviations

[20, 100, 400]

On time income [0.5, 0.8, 1] ($)

β income for task type 2 0.5 $

Φ1 and Φ2 income for task type

3

[2, 4] ($)

Memory usage for task types [0.1, 0.2, 0.5] (MB/ms)

θ 1.5

Δ1, Δ2 [2, 4]

Cost of memory per 100 MB [0.002, 0.004, 0.008] ($)

Idle memory usage for

instances

[200, 500, 1000]

(MB/ms)

5.2. Experiment Scenarios

We compared our proposed weighted algorithm with other

algorithms across three distinct scenarios, each

characterized by unique task generation rates for every task

type within each epoch. This dynamic task generation rate

allowed us to assess the effectiveness of our algorithm and

its impact on the metrics considered in this experiment. The

task generation parameters for all three scenarios are

presented in TABLE 3. For each task type in each scenario,

a list is provided, where the index corresponds to the epoch

index, and the value represents the task generation rate for

that task type in the respective epoch.

TABLE 3

Scenarios parameters

 𝛌1 𝛌2 𝛌3

Scenario 1 [4, 16, 10, 2] [4, 6, 6, 0] [2, 3, 4, 1]

Scenario 2 [10, 2, 13, 0] [2, 1, 0, 4] [4, 1, 3, 2]

Scenario 3 [1, 8, 5, 12] [0, 4, 4, 6] [3, 3, 1, 4]

5.3. Compared Algorithms

We evaluated the performance of our proposed weighted

algorithm by comparing it with the following algorithms:

1) RAND-RAND: In this approach, the state of each

instance is assigned randomly (either On or Off), and the

8 Ahmad Salehi - Sadoon Azizi

number of cores allocated to each instance in the 'On' state

is also determined randomly.

2) WARM-EVEN [21]: This algorithm maintains all

instances in a warm state (On) and distributes the CPU

cores evenly among them.

3) WARM-RAND [22]: In this method, all instances are

kept in a warm state, and the allocation of CPU cores is

performed randomly.

5.4. Metrics

In this subsection, we present the metrics used to evaluate

the performance of our proposed algorithm. These metrics

offer a comprehensive assessment of the algorithm's

effectiveness in comparison to other algorithms. The

selected metrics are designed to capture various dimensions

of performance and include:

1) Memory Cost: This metric quantifies the total memory

cost, calculated based on memory consumption across all

instances in each scenario. It considers both active and idle

runtime, as outlined in Eq. (9) and Eq. (10).

2) Penalty: This metric assesses the total penalty incurred

by the system for each algorithm within each scenario. The

penalty is determined by the number of rejected tasks,

reflecting the algorithm's impact on task acceptance

3) Income: This metric measures the total net income

earned by the system in each scenario. It captures the

financial performance of the system based on task

execution and resource utilization.

4) Profit: This metric calculates the total profit by

accounting for both costs and income, as described in Eq.

(12). It provides an overarching measure of the algorithm’s

effectiveness in optimizing the system’s financial

outcomes.

These metrics collectively provide a comprehensive

view of the algorithm's performance, enabling a detailed

comparison with other algorithms.

5.5. Results

In this subsection, we analyze the different metrics in our

experiments and review the numeral results. As shown in
Fig. 2, the RAND-RAND algorithm exhibits lower

memory costs, primarily because instances can be

completely turned off during some epochs, thereby

reducing memory consumption. However, this approach

has several drawbacks, including a decrease in QoS due to

an increase in rejected tasks. This increase in rejected tasks

leads to higher penalties incurred by the system and

ultimately results in a reduction in total profit. Examining

the numerical results of the other three algorithms, where

all instances remain in the 'On' state, we observe that our

proposed algorithm reduces memory cost by an average of

2.54% across all three scenarios compared to the WARM-

EVEN algorithm. Additionally, WARM-EVEN

outperforms WARM-RAND by an average of 2.17%.

Fig. 2. Comparison of total memory cost

Fig. 3 illustrates the impact of penalties incurred by the

system as a result of the number of rejected tasks. Our

proposed algorithm demonstrates superior performance

compared to the other three algorithms, achieving an

average penalty reduction of 11.4% relative to the WARM-

EVEN algorithm, which outperforms the other two

algorithms in this metric. Notably, in scenario two, our

proposed algorithm achieves a remarkable 25.98%

reduction in penalties. This significant improvement is

attributed to the algorithm's sophisticated allocation

strategy, which intelligently assigns CPU cores to each

instance based on the load of each task type's queue. By

effectively managing resources and minimizing task

rejection, our algorithm reduces the associated penalties

and enhances overall system efficiency. This reduction in

penalties highlights the algorithm's ability to optimize

resource use and improve system performance, even when

task loads and demands fluctuate.

Fig. 3. Comparison of total penalty

Fig. 4 illustrates the impact of different algorithms on

system income, highlighting that our proposed weighted

Journal of Computer and Knowledge Engineering, Vol.8, No.1.2025. 9

algorithm consistently demonstrates superior optimization

performance. It can be observed that our proposed

algorithm outperforms the other three algorithms across all

three scenarios. On average, our proposed algorithm

achieves a 10.43% increase in income compared to the

WARM-EVEN algorithm, which consistently outperforms

the remaining two algorithms across all scenarios in this

metric. In particular, scenario 2 reveals an even more

pronounced advantage, with our algorithm exceeding the

income earned by WARM-EVEN by 18.79%. This

enhancement in performance is primarily due to the

proposed algorithm's more effective resource allocation

strategy. By optimizing the distribution of resources, the

algorithm enables a higher number of tasks to be executed.

Since each successfully executed task contributes to the

overall income of the system, this improved allocation

significantly boosts the system's total income. The results

represent the impact of our proposed algorithm in

maximizing system income through better management of

computational resources.

Fig. 4. Comparison of total income

Fig. 5 represents the total profit of the system which is

the main objective of this optimization problem. When

comparing the algorithms across all three scenarios, it is

evident that our algorithm outperforms the other three by a

significant margin. On average, the weighted algorithm

increases the system's total profit by 18.26% compared to

the WARM-EVEN algorithm, which has the best

performance among the remaining three. The most notable

improvement is observed in scenario 2, where the total

profit increases by 34.16%. This substantial gain is

attributable to the weighted algorithm's capacity to

minimize system penalties by maintaining instances in a

warm state, thereby reducing memory consumption and

overall costs. Moreover, the algorithm facilitates the

execution of a greater number of tasks through efficient

resource allocation, tailored to the load of each instance.

This enhanced resource management not only boosts the

total income but also contributes to a considerable increase

in the system's total profit. The synergy of effective

instance management and optimized resource allocation

results in a markedly improved overall system profit.

Fig. 5. Comparison of total profit

6. CONCLUSION AND FUTURE WORK

 In this paper, we reviewed the task offloading and

resource allocation problem in vehicular edge computing

and formulated the problem mathematically. We proposed

a weighted algorithm to optimize this problem, considering

QoS, cost, and profit. We compared our algorithm across

three different scenarios with other algorithms based on

metrics such as memory cost, penalties, income, and profit.

The results showed that our algorithm increased total profit

by an average of 18.26%, while also reducing total costs

and increasing system income. These experiments

demonstrate that our algorithm is well-suited for real-time

environments due to its low response time. This study did

not account for heterogeneous CPU cores, which could be

explored in future research. Additionally, energy

consumption should be addressed by implementing

strategies such as turning off unused instances, disabling

unnecessary cores, or leveraging technologies like

Dynamic Voltage and Frequency Scaling (DVFS) to reduce

energy usage. Furthermore, utilizing deep learning

methods to predict system workload may enhance resource

allocation and overall responsiveness. These aspects could

be incorporated into future work to further improve the

proposed solution.

REFERENCES

[1] S. Wang, D. He, M. Yang, and L. Duo. (2024, Oct.).

Cost-aware task offloading in vehicular edge

computing: A Stackelberg game approach. Vehicular

Communications. [Online]. 49(202001), p. 100807.

Available:

https://doi.org/10.1016/j.vehcom.2024.100807

[2] L. L. Wang, J. S. Gui, X. H. Deng, F. Zeng, and Z. F.

Kuang. (2020, Dec.). Routing Algorithm Based on

Vehicle Position Analysis for Internet of Vehicles.

IEEE Internet of Things Journal. [Online]. 7(12), pp.

11701–11712. Available:

 https://doi.org/10.1109/JIOT.2020.2999469

[3] M. K. Farimani, S. Karimian-Aliabadi, R. Entezari-

https://doi.org/10.1016/j.vehcom.2024.100807
https://doi.org/10.1016/j.vehcom.2024.100807
https://doi.org/10.1016/j.vehcom.2024.100807
https://doi.org/10.1016/j.vehcom.2024.100807
https://doi.org/10.1016/j.vehcom.2024.100807
https://doi.org/10.1016/j.vehcom.2024.100807
https://doi.org/10.1109/JIOT.2020.2999469
https://doi.org/10.1109/JIOT.2020.2999469
https://doi.org/10.1109/JIOT.2020.2999469
https://doi.org/10.1109/JIOT.2020.2999469
https://doi.org/10.1109/JIOT.2020.2999469
https://doi.org/10.1109/JIOT.2020.2999469
https://doi.org/10.1016/j.eswa.2024.123622

10 Ahmad Salehi - Sadoon Azizi

Maleki, B. Egger, and L. Sousa. (2024, Sep.). Deadline-

aware task offloading in vehicular networks using deep

reinforcement learning. Expert Systems with

Applications. [Online]. 249(PB), p. 123622. Available:

https://doi.org/10.1016/j.eswa.2024.123622

[4] P. Mach and Z. Becvar. (2017, Mar.). Mobile Edge

Computing: A Survey on Architecture and

Computation Offloading. IEEE communications

surveys & tutorials [Online]. 19(3), pp. 1628–1656.

Available:

https://doi.org/10.1109/COMST.2017.2682318

[5] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang.

(2021, Jun.). Vehicular Edge Computing and

Networking: A Survey. Mobile networks and

applications. [Online]. 26(3), pp. 1145–1168.

Available: https://doi.org/10.1007/s11036-020-01624-

1

[6] M. Khayyat, I. A. Elgendy, A. Muthanna, A. S.

Alshahrani, S. Alharbi, and A. Koucheryavy. (2020,

Jul.). Advanced Deep Learning-Based Computational

Offloading for Multilevel Vehicular Edge-Cloud

Computing Networks. IEEE Access. [Online]. 8, pp.

137052–137062. Available:

https://doi.org/10.1109/ACCESS.2020.3011705

[7] W. Fan et al. (2023, Jan.). Joint Task Offloading and

Resource Allocation for Vehicular Edge Computing

Based on V2I and V2V Modes. IEEE Transactions on

Intelligent Transportation Systems. [Online]. 24(4), pp.

4277–4292. Available:

https://doi.org/10.1109/TITS.2022.3230430

[8] R. Salimi, S. Azizi, and J. Abawajy. (2024, May.). A

greedy randomized adaptive search procedure for

scheduling IoT tasks in virtualized fog–cloud

computing. Transactions on Emerging

Telecommunications Technologies. [Online]. 35(5).

Available: https://doi.org/10.1002/ett.4980

[9] F. Gu, X. Yang, X. Li, and H. Deng. (2022, Jul.).

Computational Resources Allocation and Vehicular

Application Offloading in VEC Networks. Electronics.

[Online]. 11(14), pp. 1–16. Available:

https://doi.org/10.3390/electronics11142130

[10] C. Cheng, L. Zhai, X. Zhu, Y. Jia, and Y. Li. (2024,

Aug.). Dynamic task offloading and service caching

based on game theory in vehicular edge computing

networks. Computer Communications. [Online]. 224,

pp. 29–41. Available:

 https://doi.org/10.1016/j.comcom.2024.05.020

[11] Z. Wu, Z. Jia, X. Pang, and S. Zhao. (2024, Apr.).

Deep Reinforcement Learning-Based Task Offloading

and Load Balancing for Vehicular Edge Computing.

Electronics. [Online]. 13(8). Available:

 https://doi.org/10.3390/electronics13081511

[12] J. Zhang, H. Guo, J. Liu, and Y. Zhang. (2019, Dec.).

Task Offloading in Vehicular Edge Computing

Networks: A Load-Balancing Solution. IEEE

Transactions on Vehicular Technology. [Online]. 69(2),

pp. 2092–2104. Available:

https://doi.org/10.1109/TVT.2019.2959410

[13] X. Zhao, Y. Wu, T. Zhao, F. Wang, and M. Li. (2024,

Sep.). Federated deep reinforcement learning for task

offloading and resource allocation in mobile edge

computing-assisted vehicular networks. Journal of

Network and Computer Applications. [Online]. 229, p.

103941. Available:

 https://doi.org/10.1016/j.jnca.2024.103941

[14] Z. Du, Y. Ni, H. Tao, and M. Yin. (2024, Nov.). Joint

optimization of offloading strategy and resource

allocation for multi-user in dynamic vehicular edge

computing systems. Simulation Modelling Practice and

Theory. [Online]. 136, p. 103001. Available:

https://doi.org/10.1016/j.simpat.2024.103001

[15] X. Liu, J. Zheng, Y. Li, M. Zhang, R. Wang, and Y.

He. (2024, Oct.). Multi-path serial tasks offloading

strategy and dynamic scheduling optimization in

vehicular edge computing networks. Vehicular

Communications. [Online]. 49, p. 100827. Available:

https://doi.org/10.1016/j.vehcom.2024.100827

[16] Z. D. Huang, X. F. Wu, and S. Bin Dong. (2024, Sep.).

Multi-objective task offloading for highly dynamic

heterogeneous Vehicular Edge Computing: An efficient

reinforcement learning approach. Computer

Communications. [Online]. 225, pp. 27–43. Available:

https://doi.org/10.1016/j.comcom.2024.06.018

[17] N. Wan, Y. Luo, G. Zeng, and X. Zhou. (2022, Sep.).

Minimization of VANET execution time based on joint

task offloading and resource allocation. Peer-to-Peer

Networking and Applications. [Online]. 16(1), pp. 71–

86. Available: https://doi.org/10.1007/s12083-022-

01385-6

[18] M. Mao, T. Hu, and W. Zhao. (2023, Feb.). Reliable

task offloading mechanism based on trusted roadside

unit service for internet of vehicles. Ad Hoc Networks.

[Online]. 139, p. 103045. Available:

https://doi.org/10.1016/j.adhoc.2022.103045

[19] S. Azizi, M. Othman, and H. Khamfroush. (2022,

Jul.). DECO: A Deadline-Aware and Energy-Efficient

Algorithm for Task Offloading in Mobile Edge

Computing. IEEE Systems Journal. [Online]. 17(1), pp.

952–963. Available:

https://doi.org/10.1109/JSYST.2022.3185011

[20] S. Yeganeh, A. Babazadeh Sangar, and S. Azizi.

(2023, May.). A novel Q-learning-based hybrid

algorithm for the optimal offloading and scheduling in

mobile edge computing environments. Journal of

Network and Computer Applications. [Online]. 214, p.

103617. Available:

 https://doi.org/10.1016/j.jnca.2023.103617

[21] A. Fuerst and P. Sharma. (2021, Apr.). FaasCache:

Keeping serverless computing alive with greedy-dual

caching. Proceedings of the 26th ACM international

conference on architectural support for programming

languages and operating systems. [Online]. pp. 386–

400. Available:

 https://doi.org/10.1145/3445814.3446757

[22] H. Ko and S. Pack. (2022, Sep.). Function-Aware

Resource Management Framework for Serverless Edge

Computing. IEEE Internet of Things Journal. [Online].

10(2), pp. 1–10. Available:

 https://doi.org/10.1109/JIOT.2022.3205166

https://doi.org/10.1016/j.eswa.2024.123622
https://doi.org/10.1016/j.eswa.2024.123622
https://doi.org/10.1016/j.eswa.2024.123622
https://doi.org/10.1016/j.eswa.2024.123622
https://doi.org/10.1016/j.eswa.2024.123622
https://doi.org/10.1109/COMST.2017.2682318
https://doi.org/10.1109/COMST.2017.2682318
https://doi.org/10.1109/COMST.2017.2682318
https://doi.org/10.1109/COMST.2017.2682318
https://doi.org/10.1109/COMST.2017.2682318
https://doi.org/10.1109/COMST.2017.2682318
https://doi.org/10.1007/s11036-020-01624-1
https://doi.org/10.1007/s11036-020-01624-1
https://doi.org/10.1007/s11036-020-01624-1
https://doi.org/10.1007/s11036-020-01624-1
https://doi.org/10.1007/s11036-020-01624-1
https://doi.org/10.1007/s11036-020-01624-1
https://doi.org/10.1007/s11036-020-01624-1
https://doi.org/10.1109/ACCESS.2020.3011705
https://doi.org/10.1109/ACCESS.2020.3011705
https://doi.org/10.1109/ACCESS.2020.3011705
https://doi.org/10.1109/ACCESS.2020.3011705
https://doi.org/10.1109/ACCESS.2020.3011705
https://doi.org/10.1109/ACCESS.2020.3011705
https://doi.org/10.1109/ACCESS.2020.3011705
https://doi.org/10.1109/TITS.2022.3230430
https://doi.org/10.1109/TITS.2022.3230430
https://doi.org/10.1109/TITS.2022.3230430
https://doi.org/10.1109/TITS.2022.3230430
https://doi.org/10.1109/TITS.2022.3230430
https://doi.org/10.1109/TITS.2022.3230430
https://doi.org/10.1002/ett.4980
https://doi.org/10.1002/ett.4980
https://doi.org/10.1002/ett.4980
https://doi.org/10.1002/ett.4980
https://doi.org/10.1002/ett.4980
https://doi.org/10.1002/ett.4980
https://doi.org/10.1002/ett.4980
https://doi.org/10.3390/electronics11142130
https://doi.org/10.3390/electronics11142130
https://doi.org/10.3390/electronics11142130
https://doi.org/10.3390/electronics11142130
https://doi.org/10.3390/electronics11142130
https://doi.org/10.1016/j.comcom.2024.05.020
https://doi.org/10.1016/j.comcom.2024.05.020
https://doi.org/10.1016/j.comcom.2024.05.020
https://doi.org/10.1016/j.comcom.2024.05.020
https://doi.org/10.1016/j.comcom.2024.05.020
https://doi.org/10.1016/j.comcom.2024.05.020
https://doi.org/10.3390/electronics13081511
https://doi.org/10.3390/electronics13081511
https://doi.org/10.3390/electronics13081511
https://doi.org/10.3390/electronics13081511
https://doi.org/10.3390/electronics13081511
https://doi.org/10.1109/TVT.2019.2959410
https://doi.org/10.1109/TVT.2019.2959410
https://doi.org/10.1109/TVT.2019.2959410
https://doi.org/10.1109/TVT.2019.2959410
https://doi.org/10.1109/TVT.2019.2959410
https://doi.org/10.1109/TVT.2019.2959410
https://doi.org/10.1016/j.jnca.2024.103941
https://doi.org/10.1016/j.jnca.2024.103941
https://doi.org/10.1016/j.jnca.2024.103941
https://doi.org/10.1016/j.jnca.2024.103941
https://doi.org/10.1016/j.jnca.2024.103941
https://doi.org/10.1016/j.jnca.2024.103941
https://doi.org/10.1016/j.jnca.2024.103941
https://doi.org/10.1016/j.simpat.2024.103001
https://doi.org/10.1016/j.simpat.2024.103001
https://doi.org/10.1016/j.simpat.2024.103001
https://doi.org/10.1016/j.simpat.2024.103001
https://doi.org/10.1016/j.simpat.2024.103001
https://doi.org/10.1016/j.simpat.2024.103001
https://doi.org/10.1016/j.vehcom.2024.100827
https://doi.org/10.1016/j.vehcom.2024.100827
https://doi.org/10.1016/j.vehcom.2024.100827
https://doi.org/10.1016/j.vehcom.2024.100827
https://doi.org/10.1016/j.vehcom.2024.100827
https://doi.org/10.1016/j.vehcom.2024.100827
https://doi.org/10.1016/j.comcom.2024.06.018
https://doi.org/10.1016/j.comcom.2024.06.018
https://doi.org/10.1016/j.comcom.2024.06.018
https://doi.org/10.1016/j.comcom.2024.06.018
https://doi.org/10.1016/j.comcom.2024.06.018
https://doi.org/10.1016/j.comcom.2024.06.018
https://doi.org/10.1007/s12083-022-01385-6
https://doi.org/10.1007/s12083-022-01385-6
https://doi.org/10.1007/s12083-022-01385-6
https://doi.org/10.1007/s12083-022-01385-6
https://doi.org/10.1007/s12083-022-01385-6
https://doi.org/10.1007/s12083-022-01385-6
https://doi.org/10.1007/s12083-022-01385-6
https://doi.org/10.1016/j.adhoc.2022.103045
https://doi.org/10.1016/j.adhoc.2022.103045
https://doi.org/10.1016/j.adhoc.2022.103045
https://doi.org/10.1016/j.adhoc.2022.103045
https://doi.org/10.1016/j.adhoc.2022.103045
https://doi.org/10.1109/JSYST.2022.3185011
https://doi.org/10.1109/JSYST.2022.3185011
https://doi.org/10.1109/JSYST.2022.3185011
https://doi.org/10.1109/JSYST.2022.3185011
https://doi.org/10.1109/JSYST.2022.3185011
https://doi.org/10.1109/JSYST.2022.3185011
https://doi.org/10.1016/j.jnca.2023.103617
https://doi.org/10.1016/j.jnca.2023.103617
https://doi.org/10.1016/j.jnca.2023.103617
https://doi.org/10.1016/j.jnca.2023.103617
https://doi.org/10.1016/j.jnca.2023.103617
https://doi.org/10.1016/j.jnca.2023.103617
https://doi.org/10.1016/j.jnca.2023.103617
https://doi.org/10.1145/3445814.3446757
https://doi.org/10.1145/3445814.3446757
https://doi.org/10.1145/3445814.3446757
https://doi.org/10.1145/3445814.3446757
https://doi.org/10.1145/3445814.3446757
https://doi.org/10.1145/3445814.3446757
https://doi.org/10.1145/3445814.3446757
https://doi.org/10.1109/JIOT.2022.3205166
https://doi.org/10.1109/JIOT.2022.3205166
https://doi.org/10.1109/JIOT.2022.3205166
https://doi.org/10.1109/JIOT.2022.3205166
https://doi.org/10.1109/JIOT.2022.3205166

