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 Abstract: This study investigates the application of the 

Black Hole algorithm (BH) for solving 0–1 knapsack 

problems. Knapsack problem is a classic and famous 

problem for testing and analyzing the behavior of 

optimization and meta-heuristic algorithms. There is no 

single algorithm which is suitable for all types of the 

knapsack problem. So it is an open research area to solve 

knapsack problem using novel optimization algorithms 

efficiently. BH algorithm is one of the most recent nature-

inspired algorithms that is inspired by the black hole 

phenomenon. Like other population-based algorithms, the 

black hole algorithm starts with an initial population of 

candidate solutions to an optimization problem and an 

objective function that is calculated for them. At each 

iteration of the Black hole algorithm, the best candidate is 

selected to be the black hole, and others called stars. If a star 

gets too close to the black hole, it will be swallowed by the 

black hole and is gone forever. Computational experiments 

with a set of large-scale instances show that the BH 

algorithm can be an efficient alternative for solving 0–1 

knapsack problems. The results show that the algorithm can 

find high quality solutions in less time compared to similar 

meta-heuristic approaches. Based on the obtained results it is 

clear that BH algorithm is a stable algorithm as the standard 

deviation of finding solutions in different runs is smaller than 

other test algorithms.   

 

Keywords: Knapsack Problems, Black Hole Algorithm, 

Optimization. 

 

1. Introduction 

The knapsack problem is one of the classical NP-hard 

problems and it has been thoroughly studied in the last few 

decades. It has many applications in different fields, such as 

project selection and investment decision-making, 

marketing, chemistry, information technology, portfolio 

optimization, optimal search strategies, production planning, 

logistics, and statistical sampling. The knapsack problem is 

a set of items that each has a specific weight and value. The 

goal is to select a number of items, so that the weight 

of selected objects is smaller or equal to the specified 

capacity for knapsack and the maximum value. In the general 

case, the most precious object is chosen to put in our 

knapsack. The problem often arises in resource allocation 

where there are financial constraints, and is studied in fields 

such as combinatory, computer science, complexity theory, 
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cryptography and applied mathematics. A variety of 

knapsack problems occur, depending on the distribution of 

items and knapsacks [1-7]. 

The 0-1 knapsack problem is one of the most common 

types, in which there are N item. And the 𝑖th object weights 

𝑤𝑖  and values 𝑣𝑖 and the knapsack has the capacity 𝑊. Each 

item may be chosen at most once. 𝑥𝑖  is equal to 1, when an 

item is selected and otherwise it is equal to 0. 

Mathematically, the problem can be formulated as follows: 

 

Max ∑ 𝑣𝑖
𝑛
𝑖=1 𝑥𝑖  ,  s.t. ∑ 𝑤𝑖

𝑛
𝑖=1 𝑥𝑖 ≤ 𝑊 , 𝑥𝑖 ∈ {0,1} (𝑖 =

1, … , 𝑁) 

 (1) 

 

Moreover, there are other kinds of knapsack problems 

that occur by changing the number of some problem 

parameter such as the number of items, number of objectives, 

or even the number of knapsacks: Multidimensional 

Knapsack Problems, Multiple Knapsack Problems, The 

Multiple-Choice Knapsack Problem, The Quadratic 

Knapsack Problem, Bounded Knapsack Problem, 

Unbounded Knapsack Problem, Nonlinear Knapsack 

Problems and etc. In this study, the model of 0-1 knapsack 

problem is used. 

Recently meta-heuristic approaches have been studied and 

applied in different areas and applications. It has been shown 

that they have good performance in solving complicated 

problems with large search space [8-16]. Most of them in 

recent years have been used to solve knapsack problems: 

[17] proposes a novel global harmony search algorithm 

(NGHS) to solve 0–1 knapsack problems. [18] investigates 

solving the knapsack problem with imprecise weight 

coefficients using genetic algorithms. [19] proposes a novel 

ACO algorithm for the multidimensional knapsack problems 

(MKP). [20] presents an artificial bee colony (ABC) 

algorithm for the 0-1 Multidimensional Knapsack Problem 

(MKP_01) and [21] proposes a new hybrid approach 

combining artificial bee colony algorithm with a greedy 

heuristic and a local search for the quadratic knapsack 

problem. Particle swarm optimization algorithm was 

proposed to solve the Multidimensional Knapsack Problem 

(MKP) by [22] and in order to deal with binary optimization 

problems, discrete binary cuckoo search (BCS) algorithm 

was used by [23]. Many of these techniques could solve 

knapsack problems successfully. 

The rest of paper is organized as follows: Section 2 presents 

an explanation of the black hole algorithm. Section 3 

discusses the simulation results using thirteen datasets. 

Section 4 ends the paper with conclusions.  

http://en.wikipedia.org/wiki/Resource_allocation
http://en.wikipedia.org/wiki/Combinatorics
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Applied_mathematics
http://link.springer.com/chapter/10.1007/978-3-540-24777-7_9
http://link.springer.com/chapter/10.1007/978-3-540-24777-7_9
http://link.springer.com/chapter/10.1007/978-3-540-24777-7_10
http://link.springer.com/chapter/10.1007/978-3-540-24777-7_11
http://link.springer.com/chapter/10.1007/978-3-540-24777-7_11
http://link.springer.com/chapter/10.1007/978-3-540-24777-7_12
http://link.springer.com/chapter/10.1007/978-3-540-24777-7_12


12  Abdolreza Hatamlou: Application of Black Hole Algorithm…  

 1. Black hole algorithm 

The BH algorithm is a population-based method that has 

some common features with other population-based methods 

[24]. As with other population-based algorithms, a 

population of candidate solutions to a given problem is 

generated and distributed randomly in the search space. The 

population-based algorithms evolve the created population 

towards the optimal solution via certain mechanisms. For 

example, in GAs, the evolving is done by mutation and 

crossover operations. In PSO, this is done by moving the 

candidate solutions around in the search space using the best 

found locations, which are updated as better locations are 

found by the candidates. In the proposed BH algorithm the 

evolving of the population is done by moving all the 

candidates towards the best candidate in each iteration, 

namely, the black hole, and replacing those candidates that 

enter within the range of the black hole by newly generated 

candidates in the search space. In the BH algorithm the best 

candidate among all the candidates at each iteration is 

selected as a black hole and all other candidates form the 

normal stars. The creation of the black hole is not random. It 

is one of the real candidates of the population. Then, all the 

candidates are moved towards the black hole based on their 

current location and a random number. The details of the BH 

algorithms are as follows: 

Like other population-based algorithms, in the black hole 

algorithm (BH) a randomly generated population of 

candidate solutions – the stars – are placed in the search 

space of some problem or function. After initialization, the 

fitness values of the population are evaluated and the best 

candidate in the population that has the best fitness value is 

selected to be the black hole and the rest form the normal 

stars. The black hole has the ability to absorb the stars that 

surround it. 

After initializing the black hole and stars, the black hole 

starts absorbing the stars around it and all the stars start 

moving towards the black hole. The absorption of stars by 

the black hole is formulated as follows: 

 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑟𝑎𝑛𝑑 × (𝑥𝐵𝐻−, 𝑥𝑖(𝑡))  𝑖 = 1,2, … , 𝑁   

(2) 

 

where 𝑥𝑖(𝑡) and 𝑥𝑖(𝑡 + 1) are the locations of the ith star 

at iterations 𝑡 and +1 , respectively. 𝑥𝐵𝐻  is the location of 

the black hole in the search space. 𝑟𝑎𝑛𝑑 is a random number 

in the interval [0, 1]. 𝑁 is the number of stars (candidate 

solutions). 

While moving towards the black hole, a star may reach a 

location with lower cost than the black hole. In such a case, 

the black hole moves to the location of that star and vice 

versa. Then the BH algorithm will continue with the black 

hole in the new location and then stars start moving towards 

this new location. 

In addition, there is the probability of crossing the event 

horizon during moving stars towards the black hole. Every 

star (candidate solution) that crosses the event horizon of the 

black hole will be sucked by the black hole. Every time a 

candidate (star) dies – it is sucked in by the black hole – 

another candidate solution (star) is born and distributed 

randomly in the search space and starts a new search. This is 

done to keep the number of candidate solutions constant. The 

next iteration takes place after all the stars have been moved. 

The radius of the event horizon in the black hole algorithm 

is calculated using the following equation: 

 

𝑅 =
𝑓𝐵𝐻

∑ 𝑓𝑖
𝑁
𝑖=1

                                                                              (3) 

 

where 𝑓𝐵𝐻 is the fitness value of the black hole and 𝑓𝑖 is 

the fitness value of the ith star. 𝑁 is the number of stars 

(candidate solutions). When the distance between a 

candidate solution and the black hole (best candidate) is less 

than R, that candidate is collapsed and a new candidate is 

created and distributed randomly in the search space. 

Based on the above description the pseudo code of the BH 

algorithm is summarized as follows: 

 Initialize a population of stars with random 

locations in the search space. 

 Loop 

 For each star, evaluate the objective function. 

 Select the best star that has the best fitness value 

as the black hole. 

 Change the location of each star according to 

equation 3. 

 If a star reaches a location with lower cost than 

the black hole, exchange  their locations. 

 If a star crosses the event horizon of the black hole, 

replace it with a new star  in a random location in 

the search space. 

 If a termination criterion (a maximum number of 

iterations or a sufficiently good fitness) is met, exit 

the loop. 

 End loop 

 

2. Experimental results 

Seventeen samples with different numbers of items are used 

to evaluate and compare the performance of the proposed 

approach. The 10 data set extracted of [25] and F11, F12, and 

F13 are generated randomly. Moreover, the large scale 

problem F14 [26], F15 [27], F16 [27], and F17 [28] include 

50, 50, 80, and 100 items, respectively. The corresponding 

maximum capacities of the knapsacks are 1000, 959, 1173, 

and 6718, respectively. All of computations were performed 

in MATLAB programming language environment. Table 1 

summarizes the main features of F1-F13 problems such as 

profit v, weight w and capacity.  

Black hole was compared with PSO, ACO and GA 

algorithms in order for better consideration. The population 

size for all algorithms was set at 60. The max generation of 

each run is 100. For GA, mutation rate was set to be 0.02. 

For PSO, the learning rate parameters were set to the values 

c1= c2=2 and the inertia weight w=1 [29]. The results 

obtained by four algorithms are presented in Table 2. Second 

column contains the best, worst, mean (average), standard 

deviation (std.dev) of solutions in 30 runs. Also, the run time 

for each algorithm in all datasets represented in this column. 

Columns third to sixth show the algorithms. 
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Table 1. The dimension and parameters of 13 test problems 

 

       instance         Dimension                    parameters (v, w, W) 

        F1                    4                            v=(9,11,13,15) , w=(6,5,9,7) , W=20 

        F2                    4                            v=(6,10,12,13) , w=(2,4,6,7) , W=11 

        F3                    5                            v=(33,24,36,37,12) , w=(15,20,17,8,31) , W=80 

        F4                    7                            v=(70,20,39,37,7,5,10) , w=(31,10,20,19,4,3,6) , W=50 

        F5                    10                          v=(55,10,47,5,4,50,8,61,85,87) , w=(95,4,60,32,23,72,80,62,65,46) , W=269 

        F6                    10                          v=(20,18,17,15,15,10,5,3,1,1) , w=(30,25,20,18,17,11,5,2,1,1) , W=60 

        F7                    15                          v=(0.125126, 19.330424,58.500931, 35.029145, 82.284005,17.410810,  
                                                                    71.050142, 30.399487,9.140294, 14.731285, 98.852504,11.908322, 
                                                                    0.891140, 53.166295,60.176397) 
                                                              w=(56.358531, 80.874050, 47.987304,89.596240, 74.660482, 85.894345, 
                                                                    51.353496, 1.498459, 36.445204,16.589862, 44.569231, 0.466933, 
                                                                    37.788018, 57.118442, 60.716575) , W=375 

        F8                    20                          v=(44, 46, 90, 72, 91, 40, 75,35, 8, 54, 78, 40, 77, 15, 61, 17, 75, 29,75, 63) , 
                                                              w=(92, 4, 43, 83, 84, 68, 92, 82, 6, 44,32, 18, 56, 83, 25, 96, 70, 48, 14, 58) , 
                                                              W=878 

        F9                   20                           v=(91, 72, 90, 46, 55, 8, 35, 75,61, 15, 77, 40, 63, 75, 29, 75, 17, 78, 40,44)  
                                                              w=(84, 83, 43, 4, 44, 6, 82, 92, 25, 83,56, 18, 58, 14, 48, 70, 96, 32, 68, 92)  
                                                              W=879 

        F10                 23                           v=(981, 980, 979, 978, 977,976, 487, 974, 970, 485, 485, 970, 970,484, 484, 
                                                                     976, 974, 482, 962, 961, 959,958, 857)   
                                                              w=(983, 982, 981, 980, 979, 978, 488,976, 972, 486, 486, 972, 972, 485,   
                                                                     485,969, 966, 483, 964, 963, 961, 958, 959) , W=10000 

        F11                  6                            v=(8,9,11,4,3,12) , w=(39,20,20,25,38,32) , W=110 

        F12                  12                          v=(416,376,370,357,401,426,429,366,391,428,356,358)   
                                                              w=(31,21,26,26,26,33,37,27,27,36,34,31) , W=300 

        F13                  30                         v=(54,52,51,64,51,45,42,68,62,56,66,46,68,50,38,51,58,55,59,65,49,39,43,44, 
                                                                   49,55,59,38,51,58)   
                                                              w=(153,237,253,252,168,257,170,224,254,224,161,257,216,263,188,198, 
                                                                    194,220,163,230,225,174,232,229,265,227,271,273,254,174) , W=5300 

 

Table 2. Experimental results 
 

Dataset Criteria      BH PSO ACO GA 

 
F1 
 
 
 
 
 
F2 
 
 
 
 
 
F3 
 
 
 
 
 
F4 
 
 
 
 
 
F5 
 
 
 
 
 
F6 
 
 
 

 
Best 
Worst 
Mean 
STD 
Time 
 
Best 
Worst 
Mean 
STD 
Time 
 
Best 
Worst 
Mean 
STD 
Time 
 
Best 
Worst 
Mean 
STD 
Time 
 
Best 
Worst 
Mean 
STD 
Time 
 
Best 
Worst 
Mean 
STD 

 
35 
35 
35 
0 
1.1009 
 
23 
23 
23 
0 
1.0446 
 
130 
130 
130 
0 
1.0275 
 
107 
107 
107 
0 
1.0222 
 
295 
295 
295 
0 
0.9857 
 
52 
52 
52 
0 

 
35 
35 
35 
0 
1.3906 
 
23 
23 
23 
0 
1.3868 
 
130 
130 
130 
0 
1.3503 
 
107 
102 
106.3000 
1.2077 
1.3516 
 
295 
287 
293.9000 
2.3245 
1.3143 
 
52 
50 
51.8667 
0.4342 

 
35 
35 
35 
0 
1.4089 
 
23 
23 
23 
0 
1.3886 
 
130 
130 
130 
0 
1.5505 
 
107 
107 
107 
0 
1.8457 
 
295 
295 
295 
0 
2.2787 
 
52 
52 
52 
0 

 
35 
35 
35 
0 
1.8434 
 
23 
23 
23 
0 
1.7874 
 
130 
130 
130 
0 
2.5025 
 
107 
105 
106.1333 
1.0080 
2.5817 
 
295 
294 
294.9333 
0.2537 
1.7468 
 
52 
52 
52 
0 
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F7 
 
 
 
 
 
F8 
 
 
 
 
 
F9 
 
 
 
 
 
F10 
 
 
 
 
 
F11 
 
 
 
 
 
F12 
 
 
 
 
 
F13 
 
 
 
 
 
F14 
 
 
 
 
 
F15 
 
 
 
 
 
F16 
 
 
 
 
 
F17 
 

Time 
 
Best 
Worst 
Mean 
STD 
Time 
 
Best 
Worst 
Mean 
STD 
Time 
 
Best 
Worst 
Mean 
STD 
Time 
 
Best 
Worst 
Mean 
STD 
Time 
 
Best 
Worst 
Mean 
STD 
Time 
 
Best 
Worst 
Mean 
STD 
Time 
 
Best 
Worst 
Mean 
STD 
Time 
 
Best 
Worst 
Mean 
STD 
Time 
 
Best 
Worst 
Mean 
STD 
Time 
 
Best 
Worst 
Mean 
STD 
Time 
 
Best 
Worst 
Mean 
STD 
Time 
 

1.0097 
 
481.0694 
481.0694 
481.0694 
4.33361e-014 
1.0385 
 
1024 
1018 
1023.4000 
1.8308 
1.0626 
 
1025 
1019 
1024.40000 
1.8308 
1.5968 
 
9767 
9761 
9.7651e+003 
1.9286 
1.0289 
 
36 
36 
36 
0 
1.5245 
 
3961 
3961 
3961 
0 
1.7820 
 
1358 
1328 
1336.8667 
5.0154 
1.1688 
 
3103  
3103  
3103 
0 
2.1754 
 
4882  
4882  
4882 
0 
2.4153 
 
5181  
5178  
5179.4752 
1.2794 
2.6048 
 
26559  
26547 
26549.9176 
3.0748 
2.6041 
 

1.3903 
 
481.0694 
418.1158 
470.1937 
19.4325 
1.3553 
 
1024 
957 
1008.9667 
18.8249 
1.3998 
 
1025 
947 
1010.0333 
17.1233 
1.8957 
 
9767 
9741 
9.7587e+003 
6.4869 
1.3691 
 
36 
36 
36 
0 
2.0522 
 
3961 
3927 
3957.5333 
7.1474 
1.8426 
 
1358 
1273 
1322.3189 
17.2174 
1.4057 
 
3098  
2912  
3058.2349 
30.2586 
2.4237 
 
4860  
4538  
4728.7534 
45.6315 
2.8127 
 
5143  
4849  
5026.3612 
36.4218 
3.0014 
 
26507  
24830 
26124.7319 
315.1241 
2.9243 

2.3495 
 
481.0694 
481.0694 
481.0694 
4.3361e-014 
2.9845 
 
1024 
1018 
1023.4000 
1.8308 
3.6573 
 
1025 
1017 
1023.9333 
2.4486 
3.6441 
 
9767 
9746 
9.7547e+003 
4.9560 
4.0206 
 
36 
36 
36 
0 
1.7160 
 
3961 
3961 
3961 
0 
2.5173 
 
1246 
1080 
1140.8333 
43.2021 
5.0208 
 
3103  
3039  
3081.4730 
25.7512 
7.4287 
 
4882  
4773  
4820.8561 
69.7428 
8.0716 
 
5183  
5052  
5123.7187 
45.2791 
8.7495 
 
26547  
25919 
26361.2854 
120.7138 
8.7410 

2.8956 
 
481.0694 
475.4784 
480.8830 
1.0208 
2.4318 
 
1024 
984 
1017.5667 
9.8740 
1.8483 
 
1025 
967 
1019.8000 
11.6867 
1.9119 
 
9765 
9735 
9.7565e+003 
5.9581 
1.8590 
 
36 
36 
36 
0 
3.5485 
 
3961 
3952 
3960.3333 
1.6884 
3.0406 
 
1357 
1277 
1327.5503 
15.2189 
4.7708 
 
3071  
2886  
3011.42 
34.2675 
6.2041 
 
4843  
4475  
4693.3284 
71.2532 
6.8527 
 
5138  
4700  
4951.3524 
84.2687 
6.9913 
 
26325 
25010 
25719.4234 
284.6253 
6.9017 
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As seen from the given results in Table 2, the BH 

algorithm outperforms other test algorithms in all datasets. It 

provides better solutions with small standard deviation. It 

means that the BH algorithm is stable and reliable compared 

to other algorithms. Moreover, BH algorithm is the fastest 

algorithm among all test algorithms. 

Moreover, we have used the Friedman’s test to show the 

differences between the algorithms. The results obtained by 

the Friedman’s test in Table 3 indicate that the BH algorithm 

is ranked first and there are significant differences in the 

results of the algorithms. From the results of the Holm’s 

method in Table 5, it could be concluded that the control 

algorithm (BH) performs better than other algorithms, with 

a significant level of 0.05. 

 
Table 3. Average ranking of algorithms based  

on the mean values 

 

Algorithm BH PSO ACO GA 

Ranking 1.5588 3.1764 2.2058 3.0588 

 

Table 4. Results of Friedman’s and Iman-Davenport’s tests based 

on the mean values 

Method 
Statistical 

value 
p-value Hypothesis 

Friedman 

Iman–Davenport 

17.77058 

8.55655 

0.00049 

0.00011 

Rejected 

Rejected 

 

Table 5. Results of the Holm’s method based on the mean values 

(BH is the control algorithm) 

 

i 
Algorith

m 
z p-value α/i Hypothesis 

3 

2 

1 

PSO 

GA 

ACO 

3.6531

6 

3.3874

7 

1.4612

6 

0.00025 

0.00070 

0.14394 

0.0166

6 

0.025 

0.05 

Rejected 

Rejected 

Not 

Rejecte

d 

 
3. Conclusion 

In this study, the Black Hole algorithm was applied to solve 

knapsack problems. The experimental results using several 

benchmark datasets demonstrated strong convergence and 

stability for 0–1 knapsack problems by the Black Hole 

algorithm. The low run time and simplicity are the main 

advantages of Black Hole algorithm. Moreover, black hole 

continues searching without entrapment in local optimum 

and can find the global optimum with a high degree of 

confidence. In general, according to comparison between the 

results of the test algorithms, Black Hole obtained better 

solutions with less execution time. 
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