
Journal of Computer and Knowledge Engineering, Vol.4, No.2. 2021. (11-16) 11

DOI: 10.22067/cke.2021.63250.0

Application of Black Hole Algorithm for Solving Knapsack

Problems*
Short Paper

Abdolreza Hatamlou1

 Abstract: This study investigates the application of the

Black Hole algorithm (BH) for solving 0–1 knapsack

problems. Knapsack problem is a classic and famous

problem for testing and analyzing the behavior of

optimization and meta-heuristic algorithms. There is no

single algorithm which is suitable for all types of the

knapsack problem. So it is an open research area to solve

knapsack problem using novel optimization algorithms

efficiently. BH algorithm is one of the most recent nature-

inspired algorithms that is inspired by the black hole

phenomenon. Like other population-based algorithms, the

black hole algorithm starts with an initial population of

candidate solutions to an optimization problem and an

objective function that is calculated for them. At each

iteration of the Black hole algorithm, the best candidate is

selected to be the black hole, and others called stars. If a star

gets too close to the black hole, it will be swallowed by the

black hole and is gone forever. Computational experiments

with a set of large-scale instances show that the BH

algorithm can be an efficient alternative for solving 0–1

knapsack problems. The results show that the algorithm can

find high quality solutions in less time compared to similar

meta-heuristic approaches. Based on the obtained results it is

clear that BH algorithm is a stable algorithm as the standard

deviation of finding solutions in different runs is smaller than

other test algorithms.

Keywords: Knapsack Problems, Black Hole Algorithm,

Optimization.

1. Introduction

The knapsack problem is one of the classical NP-hard

problems and it has been thoroughly studied in the last few

decades. It has many applications in different fields, such as

project selection and investment decision-making,

marketing, chemistry, information technology, portfolio

optimization, optimal search strategies, production planning,

logistics, and statistical sampling. The knapsack problem is

a set of items that each has a specific weight and value. The

goal is to select a number of items, so that the weight

of selected objects is smaller or equal to the specified

capacity for knapsack and the maximum value. In the general

case, the most precious object is chosen to put in our

knapsack. The problem often arises in resource allocation

where there are financial constraints, and is studied in fields

such as combinatory, computer science, complexity theory,

* Manuscript received, March, 31, 2020; accepted, July, 4, 2021.
1 Associate Professor, Department of Computer Science, Khoy Branch, Islamic Azad University, Khoy, Iran.

Email: hatamlou@iaukhoy.ac.ir.

cryptography and applied mathematics. A variety of

knapsack problems occur, depending on the distribution of

items and knapsacks [1-7].

The 0-1 knapsack problem is one of the most common

types, in which there are N item. And the 𝑖th object weights

𝑤𝑖 and values 𝑣𝑖 and the knapsack has the capacity 𝑊. Each

item may be chosen at most once. 𝑥𝑖 is equal to 1, when an

item is selected and otherwise it is equal to 0.

Mathematically, the problem can be formulated as follows:

Max ∑ 𝑣𝑖
𝑛
𝑖=1 𝑥𝑖 , s.t. ∑ 𝑤𝑖

𝑛
𝑖=1 𝑥𝑖 ≤ 𝑊 , 𝑥𝑖 ∈ {0,1} (𝑖 =

1, … , 𝑁)

 (1)

Moreover, there are other kinds of knapsack problems

that occur by changing the number of some problem

parameter such as the number of items, number of objectives,

or even the number of knapsacks: Multidimensional

Knapsack Problems, Multiple Knapsack Problems, The

Multiple-Choice Knapsack Problem, The Quadratic

Knapsack Problem, Bounded Knapsack Problem,

Unbounded Knapsack Problem, Nonlinear Knapsack

Problems and etc. In this study, the model of 0-1 knapsack

problem is used.

Recently meta-heuristic approaches have been studied and

applied in different areas and applications. It has been shown

that they have good performance in solving complicated

problems with large search space [8-16]. Most of them in

recent years have been used to solve knapsack problems:

[17] proposes a novel global harmony search algorithm

(NGHS) to solve 0–1 knapsack problems. [18] investigates

solving the knapsack problem with imprecise weight

coefficients using genetic algorithms. [19] proposes a novel

ACO algorithm for the multidimensional knapsack problems

(MKP). [20] presents an artificial bee colony (ABC)

algorithm for the 0-1 Multidimensional Knapsack Problem

(MKP_01) and [21] proposes a new hybrid approach

combining artificial bee colony algorithm with a greedy

heuristic and a local search for the quadratic knapsack

problem. Particle swarm optimization algorithm was

proposed to solve the Multidimensional Knapsack Problem

(MKP) by [22] and in order to deal with binary optimization

problems, discrete binary cuckoo search (BCS) algorithm

was used by [23]. Many of these techniques could solve

knapsack problems successfully.

The rest of paper is organized as follows: Section 2 presents

an explanation of the black hole algorithm. Section 3

discusses the simulation results using thirteen datasets.

Section 4 ends the paper with conclusions.

http://en.wikipedia.org/wiki/Resource_allocation
http://en.wikipedia.org/wiki/Combinatorics
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Applied_mathematics
http://link.springer.com/chapter/10.1007/978-3-540-24777-7_9
http://link.springer.com/chapter/10.1007/978-3-540-24777-7_9
http://link.springer.com/chapter/10.1007/978-3-540-24777-7_10
http://link.springer.com/chapter/10.1007/978-3-540-24777-7_11
http://link.springer.com/chapter/10.1007/978-3-540-24777-7_11
http://link.springer.com/chapter/10.1007/978-3-540-24777-7_12
http://link.springer.com/chapter/10.1007/978-3-540-24777-7_12

12 Abdolreza Hatamlou: Application of Black Hole Algorithm…

 1. Black hole algorithm

The BH algorithm is a population-based method that has

some common features with other population-based methods

[24]. As with other population-based algorithms, a

population of candidate solutions to a given problem is

generated and distributed randomly in the search space. The

population-based algorithms evolve the created population

towards the optimal solution via certain mechanisms. For

example, in GAs, the evolving is done by mutation and

crossover operations. In PSO, this is done by moving the

candidate solutions around in the search space using the best

found locations, which are updated as better locations are

found by the candidates. In the proposed BH algorithm the

evolving of the population is done by moving all the

candidates towards the best candidate in each iteration,

namely, the black hole, and replacing those candidates that

enter within the range of the black hole by newly generated

candidates in the search space. In the BH algorithm the best

candidate among all the candidates at each iteration is

selected as a black hole and all other candidates form the

normal stars. The creation of the black hole is not random. It

is one of the real candidates of the population. Then, all the

candidates are moved towards the black hole based on their

current location and a random number. The details of the BH

algorithms are as follows:

Like other population-based algorithms, in the black hole

algorithm (BH) a randomly generated population of

candidate solutions – the stars – are placed in the search

space of some problem or function. After initialization, the

fitness values of the population are evaluated and the best

candidate in the population that has the best fitness value is

selected to be the black hole and the rest form the normal

stars. The black hole has the ability to absorb the stars that

surround it.

After initializing the black hole and stars, the black hole

starts absorbing the stars around it and all the stars start

moving towards the black hole. The absorption of stars by

the black hole is formulated as follows:

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑟𝑎𝑛𝑑 × (𝑥𝐵𝐻−, 𝑥𝑖(𝑡)) 𝑖 = 1,2, … , 𝑁

(2)

where 𝑥𝑖(𝑡) and 𝑥𝑖(𝑡 + 1) are the locations of the ith star

at iterations 𝑡 and +1 , respectively. 𝑥𝐵𝐻 is the location of

the black hole in the search space. 𝑟𝑎𝑛𝑑 is a random number

in the interval [0, 1]. 𝑁 is the number of stars (candidate

solutions).

While moving towards the black hole, a star may reach a

location with lower cost than the black hole. In such a case,

the black hole moves to the location of that star and vice

versa. Then the BH algorithm will continue with the black

hole in the new location and then stars start moving towards

this new location.

In addition, there is the probability of crossing the event

horizon during moving stars towards the black hole. Every

star (candidate solution) that crosses the event horizon of the

black hole will be sucked by the black hole. Every time a

candidate (star) dies – it is sucked in by the black hole –

another candidate solution (star) is born and distributed

randomly in the search space and starts a new search. This is

done to keep the number of candidate solutions constant. The

next iteration takes place after all the stars have been moved.

The radius of the event horizon in the black hole algorithm

is calculated using the following equation:

𝑅 =
𝑓𝐵𝐻

∑ 𝑓𝑖
𝑁
𝑖=1

 (3)

where 𝑓𝐵𝐻 is the fitness value of the black hole and 𝑓𝑖 is

the fitness value of the ith star. 𝑁 is the number of stars

(candidate solutions). When the distance between a

candidate solution and the black hole (best candidate) is less

than R, that candidate is collapsed and a new candidate is

created and distributed randomly in the search space.

Based on the above description the pseudo code of the BH

algorithm is summarized as follows:

 Initialize a population of stars with random

locations in the search space.

 Loop

 For each star, evaluate the objective function.

 Select the best star that has the best fitness value

as the black hole.

 Change the location of each star according to

equation 3.

 If a star reaches a location with lower cost than

the black hole, exchange their locations.

 If a star crosses the event horizon of the black hole,

replace it with a new star in a random location in

the search space.

 If a termination criterion (a maximum number of

iterations or a sufficiently good fitness) is met, exit

the loop.

 End loop

2. Experimental results

Seventeen samples with different numbers of items are used

to evaluate and compare the performance of the proposed

approach. The 10 data set extracted of [25] and F11, F12, and

F13 are generated randomly. Moreover, the large scale

problem F14 [26], F15 [27], F16 [27], and F17 [28] include

50, 50, 80, and 100 items, respectively. The corresponding

maximum capacities of the knapsacks are 1000, 959, 1173,

and 6718, respectively. All of computations were performed

in MATLAB programming language environment. Table 1

summarizes the main features of F1-F13 problems such as

profit v, weight w and capacity.

Black hole was compared with PSO, ACO and GA

algorithms in order for better consideration. The population

size for all algorithms was set at 60. The max generation of

each run is 100. For GA, mutation rate was set to be 0.02.

For PSO, the learning rate parameters were set to the values

c1= c2=2 and the inertia weight w=1 [29]. The results

obtained by four algorithms are presented in Table 2. Second

column contains the best, worst, mean (average), standard

deviation (std.dev) of solutions in 30 runs. Also, the run time

for each algorithm in all datasets represented in this column.

Columns third to sixth show the algorithms.

Journal of Computer and Knowledge Engineering, Vol.4, No.2. 2021. 13

Table 1. The dimension and parameters of 13 test problems

 instance Dimension parameters (v, w, W)

 F1 4 v=(9,11,13,15) , w=(6,5,9,7) , W=20

 F2 4 v=(6,10,12,13) , w=(2,4,6,7) , W=11

 F3 5 v=(33,24,36,37,12) , w=(15,20,17,8,31) , W=80

 F4 7 v=(70,20,39,37,7,5,10) , w=(31,10,20,19,4,3,6) , W=50

 F5 10 v=(55,10,47,5,4,50,8,61,85,87) , w=(95,4,60,32,23,72,80,62,65,46) , W=269

 F6 10 v=(20,18,17,15,15,10,5,3,1,1) , w=(30,25,20,18,17,11,5,2,1,1) , W=60

 F7 15 v=(0.125126, 19.330424,58.500931, 35.029145, 82.284005,17.410810,
 71.050142, 30.399487,9.140294, 14.731285, 98.852504,11.908322,
 0.891140, 53.166295,60.176397)
 w=(56.358531, 80.874050, 47.987304,89.596240, 74.660482, 85.894345,
 51.353496, 1.498459, 36.445204,16.589862, 44.569231, 0.466933,
 37.788018, 57.118442, 60.716575) , W=375

 F8 20 v=(44, 46, 90, 72, 91, 40, 75,35, 8, 54, 78, 40, 77, 15, 61, 17, 75, 29,75, 63) ,
 w=(92, 4, 43, 83, 84, 68, 92, 82, 6, 44,32, 18, 56, 83, 25, 96, 70, 48, 14, 58) ,
 W=878

 F9 20 v=(91, 72, 90, 46, 55, 8, 35, 75,61, 15, 77, 40, 63, 75, 29, 75, 17, 78, 40,44)
 w=(84, 83, 43, 4, 44, 6, 82, 92, 25, 83,56, 18, 58, 14, 48, 70, 96, 32, 68, 92)
 W=879

 F10 23 v=(981, 980, 979, 978, 977,976, 487, 974, 970, 485, 485, 970, 970,484, 484,
 976, 974, 482, 962, 961, 959,958, 857)
 w=(983, 982, 981, 980, 979, 978, 488,976, 972, 486, 486, 972, 972, 485,
 485,969, 966, 483, 964, 963, 961, 958, 959) , W=10000

 F11 6 v=(8,9,11,4,3,12) , w=(39,20,20,25,38,32) , W=110

 F12 12 v=(416,376,370,357,401,426,429,366,391,428,356,358)
 w=(31,21,26,26,26,33,37,27,27,36,34,31) , W=300

 F13 30 v=(54,52,51,64,51,45,42,68,62,56,66,46,68,50,38,51,58,55,59,65,49,39,43,44,
 49,55,59,38,51,58)
 w=(153,237,253,252,168,257,170,224,254,224,161,257,216,263,188,198,
 194,220,163,230,225,174,232,229,265,227,271,273,254,174) , W=5300

Table 2. Experimental results

Dataset Criteria BH PSO ACO GA

F1

F2

F3

F4

F5

F6

Best
Worst
Mean
STD
Time

Best
Worst
Mean
STD
Time

Best
Worst
Mean
STD
Time

Best
Worst
Mean
STD
Time

Best
Worst
Mean
STD
Time

Best
Worst
Mean
STD

35
35
35
0
1.1009

23
23
23
0
1.0446

130
130
130
0
1.0275

107
107
107
0
1.0222

295
295
295
0
0.9857

52
52
52
0

35
35
35
0
1.3906

23
23
23
0
1.3868

130
130
130
0
1.3503

107
102
106.3000
1.2077
1.3516

295
287
293.9000
2.3245
1.3143

52
50
51.8667
0.4342

35
35
35
0
1.4089

23
23
23
0
1.3886

130
130
130
0
1.5505

107
107
107
0
1.8457

295
295
295
0
2.2787

52
52
52
0

35
35
35
0
1.8434

23
23
23
0
1.7874

130
130
130
0
2.5025

107
105
106.1333
1.0080
2.5817

295
294
294.9333
0.2537
1.7468

52
52
52
0

14 Abdolreza Hatamlou: Application of Black Hole Algorithm…

F7

F8

F9

F10

F11

F12

F13

F14

F15

F16

F17

Time

Best
Worst
Mean
STD
Time

Best
Worst
Mean
STD
Time

Best
Worst
Mean
STD
Time

Best
Worst
Mean
STD
Time

Best
Worst
Mean
STD
Time

Best
Worst
Mean
STD
Time

Best
Worst
Mean
STD
Time

Best
Worst
Mean
STD
Time

Best
Worst
Mean
STD
Time

Best
Worst
Mean
STD
Time

Best
Worst
Mean
STD
Time

1.0097

481.0694
481.0694
481.0694
4.33361e-014
1.0385

1024
1018
1023.4000
1.8308
1.0626

1025
1019
1024.40000
1.8308
1.5968

9767
9761
9.7651e+003
1.9286
1.0289

36
36
36
0
1.5245

3961
3961
3961
0
1.7820

1358
1328
1336.8667
5.0154
1.1688

3103
3103
3103
0
2.1754

4882
4882
4882
0
2.4153

5181
5178
5179.4752
1.2794
2.6048

26559
26547
26549.9176
3.0748
2.6041

1.3903

481.0694
418.1158
470.1937
19.4325
1.3553

1024
957
1008.9667
18.8249
1.3998

1025
947
1010.0333
17.1233
1.8957

9767
9741
9.7587e+003
6.4869
1.3691

36
36
36
0
2.0522

3961
3927
3957.5333
7.1474
1.8426

1358
1273
1322.3189
17.2174
1.4057

3098
2912
3058.2349
30.2586
2.4237

4860
4538
4728.7534
45.6315
2.8127

5143
4849
5026.3612
36.4218
3.0014

26507
24830
26124.7319
315.1241
2.9243

2.3495

481.0694
481.0694
481.0694
4.3361e-014
2.9845

1024
1018
1023.4000
1.8308
3.6573

1025
1017
1023.9333
2.4486
3.6441

9767
9746
9.7547e+003
4.9560
4.0206

36
36
36
0
1.7160

3961
3961
3961
0
2.5173

1246
1080
1140.8333
43.2021
5.0208

3103
3039
3081.4730
25.7512
7.4287

4882
4773
4820.8561
69.7428
8.0716

5183
5052
5123.7187
45.2791
8.7495

26547
25919
26361.2854
120.7138
8.7410

2.8956

481.0694
475.4784
480.8830
1.0208
2.4318

1024
984
1017.5667
9.8740
1.8483

1025
967
1019.8000
11.6867
1.9119

9765
9735
9.7565e+003
5.9581
1.8590

36
36
36
0
3.5485

3961
3952
3960.3333
1.6884
3.0406

1357
1277
1327.5503
15.2189
4.7708

3071
2886
3011.42
34.2675
6.2041

4843
4475
4693.3284
71.2532
6.8527

5138
4700
4951.3524
84.2687
6.9913

26325
25010
25719.4234
284.6253
6.9017

Journal of Computer and Knowledge Engineering, Vol.4, No.2. 2021. 15

As seen from the given results in Table 2, the BH

algorithm outperforms other test algorithms in all datasets. It

provides better solutions with small standard deviation. It

means that the BH algorithm is stable and reliable compared

to other algorithms. Moreover, BH algorithm is the fastest

algorithm among all test algorithms.

Moreover, we have used the Friedman’s test to show the

differences between the algorithms. The results obtained by

the Friedman’s test in Table 3 indicate that the BH algorithm

is ranked first and there are significant differences in the

results of the algorithms. From the results of the Holm’s

method in Table 5, it could be concluded that the control

algorithm (BH) performs better than other algorithms, with

a significant level of 0.05.

Table 3. Average ranking of algorithms based

on the mean values

Algorithm BH PSO ACO GA

Ranking 1.5588 3.1764 2.2058 3.0588

Table 4. Results of Friedman’s and Iman-Davenport’s tests based

on the mean values

Method
Statistical

value
p-value Hypothesis

Friedman

Iman–Davenport

17.77058

8.55655

0.00049

0.00011

Rejected

Rejected

Table 5. Results of the Holm’s method based on the mean values

(BH is the control algorithm)

i
Algorith

m
z p-value α/i Hypothesis

3

2

1

PSO

GA

ACO

3.6531

6

3.3874

7

1.4612

6

0.00025

0.00070

0.14394

0.0166

6

0.025

0.05

Rejected

Rejected

Not

Rejecte

d

3. Conclusion

In this study, the Black Hole algorithm was applied to solve

knapsack problems. The experimental results using several

benchmark datasets demonstrated strong convergence and

stability for 0–1 knapsack problems by the Black Hole

algorithm. The low run time and simplicity are the main

advantages of Black Hole algorithm. Moreover, black hole

continues searching without entrapment in local optimum

and can find the global optimum with a high degree of

confidence. In general, according to comparison between the

results of the test algorithms, Black Hole obtained better

solutions with less execution time.

References

[1] Kellerer, H. and V.A. Strusevich, Fully polynomial

approximation schemes for a symmetric quadratic

knapsack problem and its scheduling applications.

Algorithmica, vol.57, no.4: pp.769-795, 2010.

[2] A. Hatamlou, E. Ghaniyarlou, Solving knapsack

problems using heart algorithm, IJAISC, vol. 5, no. 4,

pp.285-293. 2016.

[3] Tavares, J., F.B. Pereira, and E. Costa, Multidimensional

knapsack problem: A fitness landscape analysis.

Systems, Man, and Cybernetics, Part B: Cybernetics,

IEEE Transactions on, vol. 38, no. 3: pp.604-616. 2008.

[4] Truong, T.K., K. Li, and Y. Xu, Chemical reaction

optimization with greedy strategy for the 0–1 knapsack

problem. Applied Soft Computing, vol.13, no.4,

pp.1774-1780. 2013.

[5] Aho, I., Interactive Knapsacks: Theory and Applications.

University of Tampere. 2002:

[6] Martello, S. and P. Toth, Knapsack problems: algorithms

and computer implementations. John Wiley \\&

Sons, Inc. 296. 1990:

[7] Kellerer, H., et al., Knapsack Problems. Springer, 2003.

[8] A Hatamlou, Solving Travelling Salesman Problem

Using Heart Algorithm, International Journal of Applied

Evolutionary Computation (IJAEC), vol. 8, no.4, 32-42.

2017.

[9] A Hatamlou, Numerical Optimization Using the Heart

Algorithm, International Journal of Applied

Evolutionary Computation (IJAEC), vol. 9, no.2, 33-37.

2018.

[10] M Ruhnavaz, A Hatamlou, Modeling Ghotour-Chai

River’s Rainfall-Runoff process by Genetic

Programming, Journal of Advances in Computer

Research, vol.9, no. 1, 71-84, 2018.

[11] P Mohammadi, A Hatamlou, M Masdari, A comparative

study on remote tracking of Parkinsons disease

progression using data mining methods, arXiv preprint

arXiv:1312.2140, 2013.

[12] A. Hatamlou, A hybrid bio-inspired algorithm and its

application, Applied Intelligence, vol. 47, no. 4, pp.

1059-1067, 2017.

[13] A. Hatamlou, Solving travelling salesman problem

using black hole algorithm, Soft Computing, vol.22, no.

24, pp. 8167-8175, 2018.

[14] B. Javidy, A. Hatamlou, S Mirjalili, Ions motion

algorithm for solving optimization problems, Applied

Soft Computing, 32, 72-79. 2015,

[15] A. Bouyer, A. Hatamlou, An efficient hybrid clustering

method based on improved cuckoo optimization and

modified particle swarm optimization algorithms,

Applied Soft Computing, vol.67, pp. 172-182, 2018.

[16] A. Hatamlou, Heart: a novel optimization algorithm for

cluster analysis. Prog. Artif. Intell. vol. 2, no. 2-3,

pp.167-173, 2014.

[17] Zou, Dexuan, et al. "Solving 0–1 knapsack problem by

a novel global harmony search algorithm." Applied Soft

Computing 11.2, pp.1556-1564. (2011):

[18] Lin, Feng-Tse. "Solving the knapsack problem with

imprecise weight coefficients using genetic algorithms."

European Journal of Operational Research 185.1 133-

145, (2008):

[19] Ji, Junzhong, et al. "An ant colony optimization

algorithm for solving the multidimensional knapsack

problems." Intelligent Agent Technology, 2007. IAT'07.

IEEE/WIC/ACM International Conference on. IEEE,

2007.

[20] Sundar, Shyam, Alok Singh, and André Rossi. "An

artificial bee colony algorithm for the 0–1

multidimensional knapsack problem." Contemporary

16 Abdolreza Hatamlou: Application of Black Hole Algorithm…

Computing. Springer Berlin Heidelberg, pp. 141-151.

2010.

[21] Pulikanti, Srikanth, and Alok Singh. "An artificial bee

colony algorithm for the quadratic knapsack problem."

Neural Information Processing. Springer Berlin

Heidelberg, 2009.

[22] Kong, Min, and Peng Tian. "Apply the particle swarm

optimization to the multidimensional knapsack

problem." Artificial Intelligence and Soft Computing–

ICAISC 2006. Springer Berlin Heidelberg, pp.1140-

1149. 2006.

[23] Gherboudj, Amira, Abdesslem Layeb, and Salim

Chikhi. "Solving 0-1 knapsack problems by a discrete

binary version of cuckoo search algorithm."

International Journal of Bio-Inspired Computation 4.4,

229-236. (2012):

 [24]. Hatamlou, Abdolreza. "Black hole: A new heuristic

optimization approach for data clustering." Information

Sciences 222, 175-184, (2013):

 [25] Wang, L., et al., An improved adaptive binary harmony

search algorithm. Information Sciences, 232: pp.58-87,

2013.

[26] K. Chen, L. Ma, Artificial glowworm swarm

optimization algorithm for 0-1 knapsack problem, Appl.

Res. Comput. vol.30, no. 4, pp. 996–998, (2013).

[27] J.Q. Liu, Y.C. He, Gu Qian Q. Solving knapsack

problem based on discrete particle swarm optimization,

Comput. Eng. Design, vol. 29, no. 13, pp.3189–3191,

(2007).

[28] W.L. Xiang, M.Q. An, Y.Z. Li, et al., A novel discrete

global-best harmony search algorithm for solving 0-1

knapsack problems, Discret. Dyn. Nat. Soc. (2014) 12,

http://dx.doi.org/10.1155/2014/573731, Article ID

573731.

[29] Chen, H., Y. Zhu, and K. Hu, Discrete and continuous

optimization based on multi-swarm coevolution. Natural

Computing, vol. 9, no. 3. pp.659-682. 2010.

