
Journal of Computer and Knowledge Engineering, Vol. 7, No. 2, 2024. (27-42)

Ferdowsi

University of

Mashhad

Journal of Computer and Knowledge

Engineering

https://cke.um.ac.ir

Information and

Communication

Technology Association of

Iran

Evaluating Developers’ Expertise in Serverless Functions by Mining Activities

from Multiple Platforms *
Research Article

Aref Talebzadeh Bardsiri1, Abbas Rasoolzadegan2

DOI: 10.22067/cke.2024.84447.1103

Abstract In the domain of software development, the

evaluation of developer expertise has gained prominence,

particularly with the rise of serverless functions. These

functions, which simplify the development process by

delegating infrastructure management to cloud providers,

are becoming more common. As developers may utilize

functions created by their peers, understanding the

expertise of the original developer is crucial since it can

serve as an indicator of the functions' quality. While there

are existing methods for expertise evaluation, certain gaps

remain, especially concerning serverless functions. To

address this, our research aims to enhance the assessment

of developer expertise in this area by extracting activity-

based features from both GitHub and Stack Overflow.

After processing the extracted data, we applied various

machine learning algorithms. Our findings suggest a

potential improvement in evaluating developer expertise

when incorporating features from Stack Overflow

compared to using only GitHub data. The extent of this

improvement was observed to differ among programming

languages, with variations in accuracy improvement

percentages ranging from 2% to 19%. This study

contributes to the ongoing discourse on developer

expertise evaluation, highlighting the potential benefits of

drawing from multiple data sources.

Keywords: Developer Expertise Evaluation, Data

Analysis, Machine Learning Algorithms, Serverless

Functions, Software Development.

1. Introduction

In the domain of software development, the ability to

accurately evaluate developer expertise has become

paramount [1-5]. This emphasis on expertise evaluation is

not just a theoretical concern but has practical

implications, especially in the evolving landscape of

* Manuscript received: 2023 September 15, Revised, 2024 February 14, Accepted, 2024 March 18.
1 Graduate Student, Department of Computer Engineering, Ferdowsi University of Mashhad, Iran.
2 Corresponding author. Associate Professor, Department of Computer Engineering, Ferdowsi University of Mashhad,

Iran. Email: rasoolzadegan@um.ac.ir
3 While NodeJs technically serves as a runtime environment facilitating the execution of JavaScript code on the server side, it is often

colloquially referred to as a programming language due to its prevalent standalone usage in discourse. In this paper, we refer to it as

one of our target languages

serverless functions. Serverless functions, often referred to

as Function as a Service (FaaS) [6], simplify the

development process by offloading infrastructure

management to cloud providers. Recent data suggests that

over 40% of companies have integrated serverless

functions into their workflows, drawn by their scalability,

cost-effectiveness, and the convenience of reduced

infrastructure management [7][8].

With the increasing adoption of serverless functions,

there's a growing need to understand the expertise behind

the functions being developed. Developers frequently

integrate functions developed by others into their projects.

In such contexts, assessing the expertise of the original

developer is crucial to ensure the reliability and efficiency

of the integrated functions. Evaluating developer expertise

in serverless functions is particularly important as it can

significantly impact the quality and performance of the

applications that use these functions.

Furthermore, as serverless functions are often developed

using "Target Languages" like Java, Python, NodeJs3,

Ruby, Go, and C#—selected for their compatibility with

serverless architectures and their widespread use [9] it

becomes imperative to evaluate expertise specifically

within these languages to ensure the quality and efficiency

of serverless applications.

The accurate assessment of developer expertise in the

broader software development field has been the focus of

numerous investigations [1-4], [10–14] . While many

works have been conducted in this area, several challenges

persist. For instance, some studies have found that simple

metrics, such as counting commits, might not be a reliable

indicator of expertise within specific libraries or

frameworks. Others have introduced tools that leverage

Natural Language Processing (NLP) to pinpoint expertise,

but these often rely solely on data from a single platform

like GitHub. There's also a recognized need to merge data

https://cke.um.ac.ir/article_45050.html
https://cke.um.ac.ir/
https://cke.um.ac.ir/article_45050.html
https://cke.um.ac.ir/article_45050.html
https://cke.um.ac.ir/article_45050.html
https://orcid.org/0000-0001-8668-5650

28 Aref Talebzadeh Bardsiri, et. al.: Evaluating Developers’ Expertise…

from multiple platforms, such as GitHub and Stack

Overflow, but many existing approaches primarily focus

on user profiles and specific APIs.

Building on these valuable insights from prior research,

our study endeavors to bridge the identified gaps.

Specifically, we aim to offer a fresh perspective on

developer expertise by tapping into both GitHub and Stack

Overflow, thereby opening a broader window of feature

collecting, especially in the context of serverless functions.

We've observed that while some research has adeptly

employed machine learning classifiers, a predominant

reliance on a single data platform suggests an opportunity

for enhancement. Our work underscores the significance

of adopting a multi-platform approach, which we believe

can pave the way for a more holistic understanding of

developer expertise.

Evaluating developer expertise, especially within

serverless functions, requires a systematic approach.

Following this notion, our research utilized the official

GitHub REST API4 for data extraction. We initially

identified 408 GitHub repositories related to serverless

functions. From these, we selected the top 150 to ensure

representation across different target languages. On

GitHub, we extracted 13 activity-related features,

providing insights into a contributor's activities and

expertise. Our interpretation of these features was

informed by Montandon's work [11].

Turning to Stack Overflow, we sought to link

contributors to their Stack Overflow profiles using the

official StackAPI5. This allowed us to extract 9 additional

features related to their activity on this platform. After data

collection, we invited contributors to self-assess their

expertise on a 0 to 5 scale. Of the 2539 emails we sent, 237

were answered, leading to a response rate of about 9.3%.

This feedback aided in initially labeling our dataset.

After data extraction, we engaged in preprocessing to

manage data-related challenges. For analysis, we

employed machine learning algorithms like SVM [15],

[16], Random Forest [17], Gradient Boosting [18], and

Logistic Regression [19]. Initial results showed a

preference for SVM and Random Forest in several

datasets. When compared to other research, our findings

suggested potential benefits from using data from both

Stack Overflow and GitHub. The efficacy varied by target

language: NodeJs exhibited an accuracy increase of

approximately 19%, while C# showed an increase of about

2%, resulting in an average improvement of around 10.7%.

Having outlined our proposed method, we sought to

address these two specific research questions:

RQ1. Which machine learning algorithms are most

effective in evaluating developer expertise in serverless

functions based on the extracted features? The answers

4 https://docs.github.com/en/rest?apiVersion=2022-11-28
5 https://stackapi.readthedocs.io/en/latest
6 In this study, term 'contributors' refers to developers active in serverless functions.

to this question, based on our comparative analyses of

different algorithms, are discussed in the 'Evaluation'

section.

RQ2. What features or metrics are most indicative of a

developer's expertise in serverless functions? The

insights related to this question, derived from our feature

importance analysis, can be found in the 'Evaluation'

section, specifically in the third part of that section.

In our research, we've made several contributions to

evaluating developer expertise in serverless functions.

Notably, we've adopted a dual-platform data extraction

approach, gathering activity-based features of

contributors6 from both GitHub and Stack Overflow. This

approach aims to provide a more detailed perspective on a

developer's engagement by leveraging data from two

major platforms. From this extraction, we've compiled six

language-specific datasets, representing developer

activities in serverless functions for the respective target

languages. Importantly, by making these datasets publicly

available, we aim to foster collaborative research and

encourage further exploration in this domain. This detailed

approach allows for a nuanced evaluation based on the

specific programming language. Additionally, we've

conducted a feature importance analysis using SHAP

values to understand the relative importance of each

extracted feature. This step helps in discerning which

activities might be more indicative of a developer's

expertise in serverless functions.

Our proposed method caters not only to serverless

functions but also have versatility for broader software

development contexts. This adaptability accentuates the

potential of our techniques in navigating the multifaceted

challenges of contemporary software development.

Furthermore, our research underscores the imperative of a

holistic, multi-platform approach in developer expertise

evaluation, with implications for refining recruitment

strategies in the industry and fostering a platform

proficiency within academic frameworks.

The remainder of this paper is structured as follows:

The next section delves into the Background, providing a

foundational understanding of the domain and

contextualizing our work within existing literature.

Following this, we present our Proposed Method, detailing

the approach and techniques we employed. The Evaluation

section then discusses our findings, shedding light on the

efficacy and implications of our method. We subsequently

address potential Threats to Validity, ensuring a

transparent and critical discussion of our study's

limitations. The paper concludes with a Conclusion

section, summarizing our key contributions, and then

looks ahead to Future Directions, suggesting potential

avenues for further research and exploration in this

Journal of Computer and Knowledge Engineering, Vol.7, No.2. 2024. 29

domain.

2. Background
The rapid evolution of software development has led to the

emergence of various platforms where developers

collaborate, share knowledge, and showcase their

expertise. Platforms like GitHub and Stack Overflow have

become central to this ecosystem, providing a wealth of

data that can be mined to understand developer expertise

and behavior. Several studies have delved into this realm,

each offering unique insights and methodologies [5].

Vasilescu et al. embarked on a comprehensive

exploration of the intricate relationship between Stack

Overflow and GitHub activities, Their exploration

spanned three distinct levels: macro, intermediate, and

micro. Their macro-level analysis aimed to discern the

differences between GitHub contributors based on their

Stack Overflow involvement, probing whether activity on

one platform could serve as a proxy for the other. The

intermediate level delved into the distribution of

developers' time between GitHub commits and their Q&A

activity on Stack Overflow. At the micro level, the

temporal coordination between GitHub commits and Stack

Overflow Q&A activities was scrutinized. This

multifaceted analysis underscores the intertwined nature of

developer activities across these platforms, emphasizing

the potential influence of participation on one platform

over the other [12].

In a similar vein, Song et al. sought to profile developer

expertise by harnessing data from both Stack Overflow

and GitHub. The research underscored the challenges of

profiling expertise based solely on a single platform, given

the sparsity of expertise matrices for both Stack Overflow

and GitHub. By integrating data from both platforms, the

study illuminated the multifaceted nature of developer

expertise, underscoring the potential benefits of a cross-

community approach. Such a collaboration-aware method

can potentially mitigate challenges like unanswered

questions on Stack Overflow and delayed responses to pull

requests on GitHub [2].

The realm of developer expertise assessment witnessed

a novel approach with the introduction of "CVExplorer," a

tool designed to identify potential developer candidates by

meticulously analyzing their contributions to open-source

projects on GitHub. By mining skills from GitHub

contributions, the tool offers recruiters a more accurate

representation of a developer's skills, emphasizing the

importance of real-world contributions in assessing

developer expertise. This approach, which transcends the

traditional reliance on self-authored CVs, underscores the

evolving paradigms in developer assessment and

recruitment [14].

Building on this Constantinou and Kapitsaki delved

deep into the nuances of developer expertise and their roles

in software technologies. Their research introduced the

concept of "core expertise," signifying the primary domain

or technology group where a developer is most prolific. By

employing various metrics and data from platforms like

Stack Overflow and GitHub, the study provided a granular

analysis of how developers transition between roles and

how their expertise can be categorized. Such insights are

pivotal in understanding the evolutionary trajectory of

developers and the multifarious roles they assume over

time [3].

Tian et al. introduced a novel approach aimed at

constructing a cross-platform expert recommendation

system by synergizing datasets from GitHub and Stack

Overflow. This system, designed to spotlight top expert

developers, or "geek talents," underscores the value of

expert recommendation systems in the open-source

community and for companies at large. By leveraging

various attributes of user profiles, platform-specific APIs,

and multiple account matching strategies, the system can

adeptly identify top experts in specific technology fields.

Such a method offers a fresh perspective on

recommending top expert developers, emphasizing the

increasing importance of these platforms in the software

development community [4]. Santos et al. ventured into

the domain of mining software repositories with the

primary objective of identifying library experts. By

analyzing the source code of collaborative projects on

GitHub, the study introduced a method that ranks

developers based on five dimensions of skills. Preliminary

results from this research underscored the method's

capability of identifying relevant users of specific libraries,

emphasizing the importance of GitHub as a platform to

showcase developers' knowledge and skills. Such a

structured approach offers a comprehensive evaluation of

a developer's proficiency, highlighting the potential

benefits for recruitment and human resource allocation

[13].

Oliveira et al. embarked on a comprehensive empirical

study to identify library experts by analyzing source code.

By evaluating the strategy with popular Java libraries and

conducting an online survey with developers, the study

provided insights into the challenges and methodologies of

identifying library experts based on code analysis. The

findings underscored that traditional metrics like "Lines of

Code" or "Number of Commits" might not be sufficient

indicators of a developer's expertise with specific libraries.

Such insights are pivotal in understanding the nuances of

developer expertise in specific libraries and the potential

limitations of certain metrics in the identification process

[10].

Lastly, Montandon's research focused on identifying

experts in popular JavaScript libraries by mining GitHub

data. By integrating repository mining with developer

surveys, Montandon provided a robust method for

pinpointing expertise in specific software libraries and

frameworks. While this approach emphasized the

importance of combining multiple data sources for

accurate assessments, our research Recognizing the

potential limitations in Montandon's approach, we

advocate for a broader spectrum of features, underscoring

the significance of a more detailed and comprehensive

feature set. This expanded perspective is particularly

crucial in the realm of serverless functions, where the

landscape is rapidly evolving and the nuances of developer

expertise are multifaceted [11]. In light of the existing

studies, our research aims to enhance the understanding of

developer expertise by amalgamating data from both

GitHub and Stack Overflow. While we draw inspiration

from the works mentioned, our unique contribution lies in

30 Aref Talebzadeh Bardsiri, et. al.: Evaluating Developers’ Expertise…

showcasing the importance of adding more detailed

features, offering a richer and more holistic understanding

of developer expertise.

3. Proposed Method

We employed a structured research method to assess

contributors’ expertise in a balanced manner, drawing

from their activities on GitHub and Stack Overflow. The

method was divided into three main phases: Data

Collection, Data Analysis, and Model Training.

Phase 1. Data Collection

In this phase, we aimed to gather data from GitHub and

Stack Overflow to understand contributors' activities.

Using the REST APIs of both platforms, we followed a

structured process that began with the selection of

repositories and culminated in the formation of language-

specific datasets. This method was designed to ensure that

our data was up-to-date and relevant to our research

objectives. The steps outlined in Figure 1 provide a

detailed breakdown of our data collection approach.

Step 1. GitHub Profile Collection for Contributors

We initially amassed a collection of 408 repositories

pertinent to serverless functions. To optimize the scope of

our study and ensure manageability, these repositories

were filtered based on their number of stars. This criterion

narrowed down our dataset to 150 repositories, striking a

balance between comprehensiveness and feasibility. After

finalizing the repository list, we retrieved the contributors

associated with each repository. For each contributor, we

began by extracting vital details such as email, display

name, location, and more to establish a foundational

profile. We then conducted a deep dive into the user's

GitHub activities, encompassing metrics like the number

of commits, code churn, and import statements. This

provided a detailed picture of the contributor's engagement

and

coding habits. Moreover, for our GitHub data

extraction, we discerned 13 activity-related features, each

offering a perspective into a contributor's engagement and

expertise. It's noteworthy to mention that our

characterization and terminology for these features have

been predominantly informed by Montandon's work [11],

which stands as a cornerstone in our research approach.

For instance, as elaborated in Table 1, "Client Projects"

denotes repositories encompassing code in any of our

target languages, thus serving as a metric to assess

developers' acumen in these specific languages.

Conversely, "Client Files" zooms in to highlight files

within these repositories written in the target languages,

offering a more granular view of the contributor's

expertise.

Having collected the GitHub features, we then turned

our attention to extracting features from Stack Overflow.

Figure 1. Process of the Data Collection Phase in the Proposed Method

Journal of Computer and Knowledge Engineering, Vol.7, No.2. 2024. 31

 Table 1 Extracted Features from GitHub and Stack Overflow

Step 2. Enriching Profiles with Stack Overflow Features

To augment our dataset, we aimed to identify the Stack

Overflow profile corresponding to each GitHub

contributor. We began by initiating a search using the

contributor’s GitHub username. If any list of Stack

Overflow profiles was returned, we took additional steps

to ensure the authenticity and relevance of the identified

profile. Specifically, we applied a method based on

probabilistic record linkage [32], a well-established

technique in data integration. This method involves

calculating a similarity score based on the probabilities of

agreement and disagreement for each attribute (website

URL, location, bio, and company affiliation). These

probabilities were computed based on the distribution of

values in each field in our dataset. The profile with the

highest similarity score was selected for further analysis.

In situations where no profiles met our stringent criteria,

we opted for the first profile returned by the search results,

given StackAPI’s tendency to list the most relevant user

first.

To complement our GitHub data, we delved deeply into

Stack Overflow, aiming to extract features that would

provide a detailed view of each contributor's expertise and

engagement. Starting with the Stack Overflow profile of

each contributor, identified in the previous step, we

centered our efforts on the target languages. For each

language, we:

(1) Retrieved answers and questions provided by the user,

which not only showcased their expertise but also their

level of engagement with the community.

(2) Computed various metrics that reflected the user's

overall activity and reputation for that target language

(Tag Score) on Stack Overflow. This encompassed the

number of answers they've given, upvotes received,

downvotes given, and other related metrics. find their

detailed representation in Table 1

(3) Consolidated these features and stored them in a CSV

file, ensuring they were organized and ready for

subsequent analysis.

Our research method heavily relied on the REST APIs

of both GitHub and Stack Overflow. By integrating the

GitHub REST API with the PyGitHub Python library, we

ensured timely and accurate data extraction from GitHub.

Similarly, our use of StackAPI streamlined our

interactions with Stack Overflow, particularly in retrieving

user profiles and associated data. We opted for these APIs

over pre-existing datasets to ensure we were working with

32 Aref Talebzadeh Bardsiri, et. al.: Evaluating Developers’ Expertise…

the most up-to-date online data, reinforcing the

repeatability of our method. Given the dynamic nature of

expertise, our method was designed to be adaptable,

allowing for potential replication in future studies. A

crucial part of our data collection process was managing

the rate limits imposed by both platforms. To ensure a

smooth data collection process, we sequentially extracted

data, first focusing on GitHub features for each contributor

and then moving to Stack Overflow.

Step 3. Creating Language Specific Datasets for

Evaluating Developers' Expertise in Serverless

Functions We initiated this phase by reaching out to

contributors for a self-assessment of their expertise. Each

contributor received an email detailing our research

objectives and was asked to rate their expertise on a scale

from 0 (no expertise) to 5 (expert level). Supported by

several studies as a reliable measure of expertise [11],

[23], [24], this method yielded a response rate of

approximately 9.33% from the 2539 emails dispatched.

After updating the contributors' profiles with their self-

assessed scores, we curated separate datasets for each of

the target languages: Java, Python, NodeJs, Ruby, Go, and

C#. These datasets encapsulated the contributors' activities

specific

to the respective programming language, with their self-

assessed scores serving as the labels. This approach

ensured a granular understanding of developer expertise in

serverless functions, tailored to the nuances of each

language.

Phase 2. Data Analysis

Upon completion of the data collection phase, we obtained

six distinct datasets. Each dataset encapsulates 22 features

detailing developers' activities on both GitHub and Stack

Overflow, specific to each of our target languages. In the

next step, we transitioned to the data analysis phase, which

is further divided into two main steps:

Step 1- Data Visualization

Our initial exploration began with visualizing the

distribution of developer expertise across our target

languages, as depicted in Figure 2. For clarity in the figure,

we've categorized our binned labels as follows: ratings of

0 and 1 are denoted as "Novice (0)", ratings of 2 and 3 are

labeled "Intermediate (1)", and ratings of 4 and 5 are

classified as "Expert (2)”. We will delve into the binning

process in a subsequent section. The visualization reveals

compelling insights. For instance, languages like Python

and Ruby, which are often considered beginner-friendly,

had a significant portion of their developer base in the

novice category.

This suggests that these languages are more accessible for

beginners. In contrast, languages such as Java, a prevalent

choice in enterprise settings, showcased a more balanced

expertise distribution, indicating a diverse user base with

varying levels of expertise.

Moving forward, we examined the skewness across

different programming languages, visualized in Figure 3.

Skewness, a measure indicating the asymmetry of data

distribution around the mean, revealed specific patterns. A

notable observation was the positive skewness values for

commits in languages like Go, NodeJs, and Ruby. This

suggests a scenario where a majority of users have fewer

commits, but a select few exhibit exceptionally high

commit counts. This skewness indicates that while most

developers contribute at a moderate pace, there are a few

highly active developers who contribute significantly

more. Understanding this skewness is pivotal as it

influences our data interpretation and subsequent

modeling strategies [20]. Our analysis subsequently

delved into correlation. It is crucial to emphasize that

correlation does not imply causation [21]. Particularly in

the realm of expertise, it is common for features to exhibit

high correlation. However, even if two variables appear to

move in tandem, this does not necessarily indicate a cause-

and-effect relationship. For example, we observed a high

correlation between the number of commits and the

number of pull requests made by a developer. While these

two variables are correlated, it does not necessarily mean

that making more commits causes a developer to make

more pull requests, or vice versa. It could simply be that

more active developers tend to both commit and pull

request more frequently.

Figure 2. Incremental Distribution of Ratings Across Target

Language

Figure 3. Skewness of Features Across Target Languages

Step 2- Data Preprocessing

After the data analysis phase, we transitioned to data

preprocessing, a crucial step to ensure the data was primed

for modeling. This phase addressed several challenges,

including missing values, skewness, feature selection,

Journal of Computer and Knowledge Engineering, Vol.7, No.2. 2024. 33

label binning, and label imputation.

Handling Missing Values: In addressing missing values,

we observed that their presence in our dataset often

signified a developer's inactivity for a specific feature.

Given this observation, we logically imputed these missing

values with zero, symbolizing no activity.

Addressing Skewness: Skewness presented another

challenge. Some features in our dataset displayed right-

skewed distributions. To make the data more suitable for

modeling, we applied a logarithmic transformation [22] to

these skewed features, stabilizing their variance and

approximating a normal distribution. However, before this

transformation, we had to manage zeros in the data, as the

logarithm of zero is undefined. To counteract this, we

added a constant of 1 to the respective columns.

Feature Selection: Feature selection emerged as a pivotal

aspect of our preprocessing [23]. Ensuring that our model

is trained on relevant features is paramount for enhancing

its performance and interpretability. Our multifaceted

approach to feature selection began with an examination

of correlations. While correlation provides a measure of

the linear relationship between two variables, it doesn't

capture non-linear relationships or causation, making sole

reliance on it potentially misleading [21]. We also

incorporated domain knowledge for the feature selection,

by understanding the context of each feature in the

software development realm, we made informed decisions.

For example, while the number of answers and accepted

answers on Stack Overflow might be correlated, the

emphasis on quality in the latter could offer more valuable

insights. Additionally, we employed the Gradient Boosting

technique, an ensemble learning method, to gain insights

into feature importance. This technique ranked features

based on their significance in influencing the model's

predictions. Armed with these analyses, we made

informed decisions on which features to discard, ensuring

our model was built on a relevant feature set, as visualized

in figure 4.

Figure 4: Dropped Features for Each Programming Language

Label Binning: Following feature selection, we addressed

the challenge of label binning. Our dataset contained

ratings ranging from 0 to 5, indicative of the expertise

level. To streamline our modeling process and make the

problem more approachable, we categorized these ratings

into three broader categories. Ratings between 0 and 1

were represented as Novice (0), those between 2 and 3 as

Intermediate (1), and ratings between 4 and 5 were

categorized as Expert (2). This categorization ensured our

models could predict expertise levels in broader, more

generalizable categories, enhancing the interpretability

and applicability of the results.

Label Imputation: Transitioning from the binning

process, we confronted another intricate challenge: Label

Imputation. In the vast landscape of data-driven research,

addressing the absence of labels is a multifaceted

endeavor. To adeptly navigate this, we adopted a dual-

strategy approach. This method seamlessly integrated the

domain-centric heuristic labeling [24] with the algorithmic

precision of k-Nearest Neighbors (kNN) [25] imputation.

The rationale behind employing heuristic labeling as our

initial step stemmed from the nature of our data. Given that

some of our labels represented minority classes, relying

solely on kNN label imputation could introduce biases

towards the majority classes. Heuristic labeling, while

dependent on the accuracy of the criteria set for label

determination, offers a way to balance the label

distribution without such biases. However, recognizing the

limitations of heuristic accuracy, we used this method to

label only 10-12% of the dataset. This preliminary step

aimed to create a more balanced label distribution, setting

the stage for the subsequent kNN imputation. The

combination of heuristic labeling and kNN imputation

allowed us to leverage the strengths of both methods,

providing a balance between domain-centric insights and

algorithmic precision, and mitigating the potential

weaknesses of each method when used alone.

1: Heuristic Labeling: Heuristic labeling leverages

domain insights and data patterns to make informed

decisions about labels. This method, while not

exhaustive, offers a valuable starting point, especially

when dealing with imbalanced datasets. Our heuristic

algorithm works iteratively. By adjusting criteria based

on the quantiles of key features, we assign scores and

labels to each instance. The process either converges to

a desired label distribution or stops after a predetermined

number of iterations.

2: k-Nearest Neighbors (kNN) Imputation: In advancing
our research, we transitioned from heuristic labeling to
the more nuanced kNN imputation. The underlying
principle of the kNN algorithm is rooted in similarity; for
any unlabeled data point, it identifies its ‘k’ closest
labeled neighbors and adopts the predominant label
among them. The selection of ‘k’ is crucial, and through
meticulous testing, we ascertained the ideal ‘k’ for
distinct data subsets. In our case, we performed an
iterative evaluation to determine the optimal ‘k’ value
and found that k=5 yielded the best results. Following the
primary imputation, certain labels emerged as fractional.
To ensure consistency with our discrete categories—
Novice, Intermediate, and Expert—we adjusted these by
rounding to the closest whole number. It’s worth noting
that we used kNN in conjunction with heuristic labeling
for the label binning task. While our two-phase approach
aimed to provide the most accurate labels possible, it’s

34 Aref Talebzadeh Bardsiri, et. al.: Evaluating Developers’ Expertise…

worth noting that any label imputation method can
introduce errors. For instance, heuristic labeling, while
effective in balancing the dataset, might not always
capture the nuances of individual developer expertise.
Similarly, kNN, though a more common method, can
sometimes be influenced by noisy neighbors, leading to
potential mislabeling.

After implementing our dual-strategy, the datasets

displayed more balanced distributions across various

programming languages. For example, widely-used

languages like Java showed a more uniform distribution,

whereas specialized languages like Go had a higher

concentration of expert developers. Notably, after the

labeling process, there was a noticeable increase in the

number of novice developers. This trend mirrors the real-

world scenario where many individuals begin coding, but

only a select few achieve expert status.

Upon addressing missing labels with heuristic labeling

and kNN imputation, we tackled class imbalance using the

Synthetic Minority Over-sampling Technique (SMOTE)

[26], [27]. For each dataset, we set target percentages for

the 'expert' class, like 15% for C# and 10% for others. We

then split the data, ensuring a representative class

distribution. Before applying SMOTE, we dynamically set

the number of nearest neighbors based on the 'expert'

instances in the training data. Using SMOTE, we balanced

our datasets, enhancing model accuracy. However,

SMOTE can introduce noise, potentially leading to model

over-generalization on real-world data.

Phase 3. Model Training:

With our datasets now complete and labeled, we

transitioned to the third phase of our research method, we

directed our attention towards the pivotal aspect of model

training. This phase is instrumental in elucidating the

predictive capabilities inherent within our rigorously

assembled datasets.
Given our objective of predicting developer expertise

levels, we identified it as a multi-class classification
problem. We experimented with various machine learning
algorithms, including Random Forest (RF), Gradient
Boosting (GB), Support Vector Machines (SVM), and
Logistic Regression (LR), to assess their performance on
our datasets. The rationale behind selecting these
classifiers is multi-fold:

Random Forest and Gradient Boosting are both

ensemble learning methods known for their high accuracy

and ability to handle large datasets with higher

dimensionality. They can effectively manage missing

values and provide a good indicator of feature importance.

Support Vector Machines are renowned for their power in

high-dimensional spaces, which is particularly beneficial

given the number of features in our dataset. They offer

robustness, especially when the number of dimensions

exceeds the number of samples. Logistic Regression while

is a simpler algorithm, is effective for binary and multi-

class classification problems. Its ease of implementation

and interpretability make it a valuable tool in our arsenal

[15], [17], [18].

In our study, we examined our six distinct datasets, each

corresponding to a target language, alongside three

datasets from the base article [11]. To understand the

potential influence of incorporating Stack Overflow

features, we employed a two-pronged analytical approach.

GitHub-Only Features: Initially, all Stack Overflow

features were dropped from our datasets, leaving only the

GitHub features. This step was inspired by our base article,

which solely considered GitHub features. It is essential to

note that the datasets derived from the base article [11]

were accessible to the public. To maintain consistency and

ensure an equitable comparison, we subjected these

datasets to analogous preprocessing steps as those

implemented for our own datasets. This approach not only

aligned our method but also enhanced the performance of

the models on the base article datasets. The

results presented in Table 3 for the three base datasets

surpass the performance metrics reported in their original

paper[11], offering a more robust comparison.

 Incorporating Stack Overflow Features: Subsequently,

we reintroduced the Stack Overflow features to our six

datasets and retrained our models. The performance results

post this addition are showcased in Table 4. For each of

the above approaches, we embarked on a systematic

method. First, we loaded the respective datasets, each

tailored to a specific approach, be it GitHub-only or

incorporating Stack Overflow features. Then, the data was

split into training and testing sets using stratified
sampling [28], ensuring that each set accurately
represented the overall class distribution. Subsequently,
we standardized the features using the StandardScaler
[29], ensuring they were on the same scale, which is
crucial for effective model training. Next, for each
classifier, we defined a set of hyperparameters. To find the
optimal parameters, we employed GridSearchCV, an
exhaustive search method over the specified parameter
values for an estimator. This method pinpointed the
parameters of the estimator that yielded the best results on
the left-out validation set, ensuring our models were
primed for optimal performance.

 3.1 Assumptions and Limitations of the proposed

method. In every research endeavor, certain assumptions

guide the method, and inherent limitations bound the

scope. This section elucidates the foundational

assumptions underpinning our proposed method and

highlights potential constraints that might influence the

interpretation of our findings. Recognizing these factors

ensures a nuanced understanding of our research

outcomes.

Assumptions:

Data Completeness: We assumed that the data sourced

from GitHub and Stack Overflow accurately represents the

activities and contributions of developers. However, there

might be private repositories or contributions that are not

publicly accessible.

Feature Relevance: The features selected for model

training were deemed relevant based on prior literature and

domain knowledge. It's assumed that these features are

indicative of a developer's expertise.

Journal of Computer and Knowledge Engineering, Vol.7, No.2. 2024. 35

Table 2 Performance metrics of models trained using GitHub for our Target Languages Datasets

Key: Metrics - Acc. (Accuracy), Kp. (Kappa), AUC (Area Under the Curve), P (Precision), R (Recall), F1 (F1 Score); Expertise Levels - Nv.

(Novice), Int. (Intermediate), Exp. (Expert); Models - LR. (Logistic Regression), RF. (Random Forest), GB. (Gradient Boosting).

Table 3 Performance metrics of models trained using GitHub for Datasets from the Base Article [11]

Table 4 Performance metrics of models trained using GitHub and Stack Overflow features

36 Aref Talebzadeh Bardsiri, et. al.: Evaluating Developers’ Expertise…

Model Applicability: We assumed that the machine

learning models chosen for this study are suitable for the

type of data and the problem at hand. The performance of

these models might vary with different datasets or

contexts.

Developer Overlap between NodeJs and MongoDB: In

the base article [11], MongoDB is represented as NODE-

MONGODB, the official NodeJs driver for the MongoDB

database server. While there's likely a significant overlap

between MongoDB and NodeJs developers, it's crucial to

acknowledge that not all MongoDB developers may be

proficient in NodeJs, and vice versa. For the purpose of a

more direct comparison between our datasets and those of

the base article, we operate under the assumption that

developers associated with MongoDB also have expertise

in NodeJs. Self-Assessment Reliability: We operate under

the assumption that the self-assessments provided by

contributors are accurate and offer a reliable representation

of their expertise levels.

Limitations:

Data Bias: Relying solely on GitHub and Stack Overflow

might introduce a bias, as developers might be active on

other platforms or might not be active online at all. This

could lead to an incomplete representation of a developer’s

true expertise. GitHub and Stack Overflow are widely used

platforms in the developer community, but they may not

fully represent the broader developer community. For

example, developers who primarily use other platforms or

who do not participate in online communities may not be

well-represented. Furthermore, the behaviors and

activities on these platforms may not fully reflect a

developer’s offline activities or their activities on other

platforms. One potential way to mitigate this bias, which

we discuss in our conclusion, is to integrate data from a

wider range of developer platforms in future research.

External Validity: While our models showed promising

results in the context of serverless functions, their

applicability to other technological domains needs further

validation.

Feature Limitations: While we integrated features from

GitHub and Stack Overflow, other platforms like LinkedIn

or TopCoder might offer additional insights that could

enhance the model's predictive power. We attempted to

use the public LinkedIn REST API7 to complement our

data collection with user activity data from LinkedIn.

However, to the best of our knowledge, the LinkedIn

public API is no longer accessible. Furthermore, while we

considered implementing a web crawler to gather data

from LinkedIn, we decided against it. Although it's not

illegal to collect publicly accessible data from the web,

such an approach would be against LinkedIn's terms and

conditions.

Model Constraints: Every machine learning model has

its inherent limitations. For instance, linear models might

not capture non-linear relationships well, and tree-based

models might overfit on sparse data [30].

7 https://developer.linkedin.com/product-catalog

4. Evaluation
In response to RQ1, which inquires about the most

effective machine learning algorithms for evaluating

developer expertise in serverless functions based on the

extracted features, we conducted a rigorous evaluation of

our trained models. Once the models were trained with the

best parameters; they underwent rigorous evaluation on

the test set. We computed a range of metrics, including

accuracy, kappa score, and AUC, to evaluate their

performance. Additionally, we calculated precision, recall,

and F1-score for each class - Novice, Intermediate, and

Expert.

This detailed evaluation ensured we captured the

nuances of each model's predictive capabilities, providing

a detailed understanding of their strengths and limitations.

By adhering to this method for both approaches, we

ensured a consistent evaluation, allowing for a fair

comparison between the utility of GitHub-only features

and the combined GitHub and Stack Overflow features.

The results for both approaches can be found in Table 2,

Table 3, and Table 4. Following the presentation of results,

we delve into a deeper analysis of the datasets. Initially,

we focus on datasets using only GitHub features,

subsequently, we discuss the datasets enhanced with Stack

Overflow features and the resultant impact on model

outcomes. The evaluation concludes with a feature

importance analysis using the SHAP method, offering

insights into the pivotal role of each feature. In this

structured discussion, we aim to present a thorough

understanding of our findings and their broader

implications.

Part 1. Discussion Datasets with only GitHub Features

In the evaluation of target languages' datasets presented in

Table 2, several trends and patterns emerge. RF model

consistently exhibits robust performance across multiple

datasets, often securing the lead in accuracy, Kappa, and

F1 scores. This superior performance can be attributed to

RF's ensemble nature, which amalgamates the results of

numerous decision trees, offering a more generalized and

resilient model. On the other hand, the SVM model also

demonstrates commendable performance, particularly in

precision. However, certain anomalies, such as in the

Python dataset for the Exp. category, reveal that while

SVM can predict with high confidence, it might

occasionally overlook specific classes, resulting in a

diminished recall.

Journal of Computer and Knowledge Engineering, Vol.7, No.2. 2024. 37

Figure 5. Comparison of performance metrics for NodeJs and MongoDB datasets

The GB model, another contender, frequently matches
the performance of RF across datasets. GB's strength lies
in its boosting algorithm, which zeroes in on challenging
instances, potentially enhancing its performance on
intricate datasets. Conversely, the LR model, inherently
linear, occasionally falls short compared to tree-based or
SVM models, especially when faced with datasets
characterized by non-linear decision boundaries. Table 3,
focusing on base work [11] results, highlights the
challenges encountered in model predictions. The
Socket.io dataset, for instance, presents notably low
metrics for both RF and SVM models.

In Figure 5, we compared the performance of the
Random Forest and SVM models for NodeJs and
MongoDB datasets. The motivation behind selecting the
NodeJs and MongoDB datasets for comparison is rooted
in the anticipated overlap between their developer
communities. Based on the premise that MongoDB,
denoted as NODE-MONGODB — the official NodeJs
driver for the MongoDB database server — would have a
substantial confluence of developers skilled in both
domains, these datasets were chosen for a deeper analysis.
Upon analyzing the performance metrics, a distinct pattern
becomes evident: models trained on the NodeJs dataset
tend to surpass those trained on the MongoDB dataset
across the majority of metrics. Moreover, within the
NodeJs dataset, the RF model consistently outshines the
SVM in parameters such as accuracy, kappa, and AUC.
Both models demonstrate laudable precision in
recognizing novice developers, underscoring a robust
ability to accurately discern beginner-level expertise.
Nonetheless, a discernible drop in precision is observed as
we transition to higher levels of expertise, particularly in
the SVM model for NodeJs. The performance metrics for
MongoDB were influenced by multiple factors. A primary
consideration is the label retrieval method, which
predominantly hinged on self-assessment. While our
datasets also utilized self-assessment, it is noteworthy that
around 9% of our data was labeled based on genuine

expertise levels. Our hybrid labeling approach,
encompassing heuristic techniques and kNN label
imputation, seemed to yield more consistent outcomes.
This approach counteracts the inherent discrepancies often
associated with sole reliance on self-assessments. The
potential for developers to inaccurately evaluate their own
skills introduces the risk of misclassification. Such
disparities might be accentuated for MongoDB, suggesting
potential variances between self-declared and actual
proficiency. In addition, the constraints posed by a limited
number of training instances cannot be overlooked.
Despite our efforts in employing techniques like SMOTE
to address dataset imbalance, the foundational issue of a
restricted data sample might induce overfitting,
consequently diminishing the model's generalization
capabilities. For consistency, the same preprocessing steps
were applied across all nine datasets, and it's worth
mentioning that the performance results reported for the
base work [11] witnessed an enhancement due to our
preprocessing techniques.

Moreover, while accuracy is a widely used metric, its

limitations become pronounced, especially in datasets with

class imbalances. Other metrics like Kappa, AUC,

precision, recall, and F1 score provide a more

comprehensive view, capturing the model's performance

nuances across various classes. In conclusion, while RF

often stands out in performance metrics, it's crucial to

consider each dataset's unique characteristics when

choosing a model. The occasional unexpected or below-

average metric emphasizes the importance of a holistic

evaluation using a diverse set of metrics, ensuring a well-

rounded understanding of model performance.

Part 2. Discussion on the Enhanced Datasets with Stack

Overflow Features

Upon integrating Stack Overflow features into our

datasets, as shown in Table 4, we observed a marked

improvement in the performance metrics of the models.

38 Aref Talebzadeh Bardsiri, et. al.: Evaluating Developers’ Expertise…

This enhancement underscores the significance of feature

engineering and the potential of external data sources in

boosting model performance. For the C# dataset, the RF

model stands out with the highest accuracy of 0.88 and a

Kappa score of 0.80. SVM, with an AUC of 0.97, indicates

its capability to distinguish between classes effectively.

Interestingly, LR showcases a perfect recall of 0.92 for the

Exp. category, emphasizing its strength in identifying true

positives for this class. In the Go dataset, SVM takes the

lead with an accuracy of 0.90 and a Kappa score of 0.82.

Its performance in the Int. category, with a recall of 0.92

and an F1 score of 0.89, is noteworthy, suggesting its

proficiency in classifying intermediate instances. For the

Java dataset, RF demonstrates robust performance with an

accuracy of 0.92 and a Kappa score of 0.87. Its precision

of 0.93 for the Int. category is commendable. However,

GB's AUC of 0.98 is the highest, indicating its superior

ability to differentiate between the classes.

In the NodeJs dataset, SVM emerges as the top performer

with an accuracy of 0.92 and a Kappa score of 0.87. Its F1

scores across all categories are consistently high, reflecting

its balanced precision and recall.

For the Python dataset, SVM shines with the highest

accuracy of 0.93 and a Kappa score of 0.88. Its

performance in the Exp. category, with an F1 score of 0.94,

is particularly impressive. LR's recall of 0.97 for the Nv.

category is the highest, indicating its strength in

identifying true positives for novice instances.

Lastly, in the Ruby dataset, SVM leads with an

accuracy of 0.89 and a Kappa score of 0.79. Its

performance in the Nv. category, with an F1 score of 0.94,

is outstanding, suggesting its proficiency in classifying

novice instances. The addition of Stack Overflow features

has evidently bolstered the models' performance across the

datasets. The enriched datasets provide a more detailed

view of each instance, allowing the models to capture

intricate patterns and relationships. It's worth noting that

while we couldn't expand the base datasets to include

Stack Overflow features due to privacy concerns related to

email hashing, the similarity in nature between NODE-

MONGODB (NodeJs driver for MongoDB) and NodeJs

offers a reasonable point of comparison. Given the

overlaps between MongoDB and NodeJs developers, this

similarity can serve as a benchmark to assess the impact of

the added features. We hypothesize that if we were able to

expand the MongoDB dataset similarly, we would likely

observe comparable improvements as seen with the

NodeJs dataset.

In conclusion, the integration of external features, such

as those from Stack Overflow, can substantially enhance

model performance. The importance of feature

engineering is evident, and the potential of utilizing

external data sources in machine learning tasks is

undeniable. Referring to the results depicted in Figure 6,

it's clear that leveraging additional features leads to

noticeable accuracy boosts across various programming

languages. For example, the SVM model accuracy for the

'Go' language saw an increase from 83% using only

GitHub features to 92% when integrated with Stack

Overflow features, and the continuous pursuit of

integrating relevant external data to achieve optimal model

performance. We observed similar significant

improvements for languages like 'Java', 'NodeJs', and

'Python'. However, for languages like 'C#' and 'Ruby', the

enhancements were more modest. These findings

underscore the value of broadening the feature space.

Part 3. Feature Importance Analysis

In response to RQ2, which seeks to identify the most

indicative features or metrics of a developer's expertise in

serverless functions, we employed the SHAP (SHapley

Additive exPlanations) method. SHAP values offer a

unified measure of feature importance, assigning each

feature an importance value for a specific prediction. This

method excels in providing both global interpretability—

indicating the importance of each feature across the entire

dataset—and local interpretability,

Figure 6: Comparison of SVM model accuracies using only

GitHub features versus the improvement achieved by adding

Stack Overflow features for target languages

which explains individual predictions. As illustrated in

Figure 7 (a SHAP summary plot), the SHAP analysis

offers a comprehensive perspective on the significance of

each feature [31].

Our analysis reveals the pivotal role of various features

in predicting a developer's proficiency. The

'avg_days_commits_import_library' feature, denoting the

average number of days between commits that import

libraries, stands out as paramount. This metric suggests

that a developer integrating new libraries frequently might

be inclined towards proactive experimentation and

learning. Similarly, the 'commits_import_library' feature,

which reflects the number of such commits, can hint at the

intricacy of applications a developer crafts. The

'time_of_activity' metric, capturing the span of a

developer's activity, indicates sustained technological

interest, which is crucial for continuous learning and

expertise development.

Yet, insights aren't solely derived from GitHub activity.

Additionally, 'commits_client_files', which counts

commits altering at least one client file, sheds light on a

developer's active involvement and contributions in a

project's primary language. This could be interpreted as a

sign of a developer’s commitment to a project and their

expertise in the project’s main language. Integration of

Stack Overflow features enriches our understanding. For

instance, 'upvotes', ranking as the third most influential

Journal of Computer and Knowledge Engineering, Vol.7, No.2. 2024. 39

feature, accentuates the community's acknowledgment of

a developer's input. A high 'tag_score' signifies domain-

specific expertise. Metrics like

'average_score_per_answer' and 'first_answers'

encapsulate both the caliber and the regularity of a user's

contributions—the former indicating consistent answer

quality and the latter reflecting active community

participation. 'Accepted_answers' further vouch for the

quality and pertinence of a developer's knowledge

dissemination. While GitHub metrics provide a window

into a developer's coding habits, Stack Overflow metrics

delve into their community engagement and problem-

solving acumen. Collectively, insights from both platforms

paint a holistic picture of a developer's expertise in a

specific technology.

4.1 DISCUSSION

Our results underscore the potential of integrating data

from multiple platforms to enhance the precision of

evaluating developers' expertise, especially those involved

in serverless functions. The incorporation of Stack

Overflow features alongside GitHub data, particularly in

the context of serverless function development, has shown

promising improvements in our model's performance.

In the industrial landscape, our model suggests a

nuanced approach to recruitment, talent acquisition, and

team optimization, especially for roles centered around

serverless functions. By amalgamating coding practices

and community engagement metrics from platforms like

GitHub and Stack Overflow, there's potential for a more

in-depth insight into a developer's skills and contributions

in the serverless domain. Such insights could refine the

hiring process, potentially leading to more targeted

training and role assignments. Although our study's focal

point is the serverless function domain, the method might

be adaptable to other technological areas. For new

instances, our model provides a framework for assessing

individual developer profiles, potentially offering

predictions on their expertise levels based on the features

we've identified.

In the academic realm, our model could serve as a

potential reference for research, curriculum development,

and student assessment in serverless function development

and beyond. It might offer insights for studies exploring

developer behavior and proficiency, especially when

integrating data from multiple sources. By evaluating

students' real-world coding activities, there's an

opportunity for educators to offer feedback that

encompasses both theoretical knowledge and practical

application, promoting a balanced learning experience.

Figure 7: SHAP Summary Plot

40 Aref Talebzadeh Bardsiri, et. al.: Evaluating Developers’ Expertise…

5. Threats to Validity
Research, especially in the domain of empirical studies, is

often subject to various threats that might affect the

generalizability and validity of the results. In this section,

we discuss potential threats to the validity of our study and

the measures we've taken to mitigate them.

Model Bias: While we experimented with multiple

machine learning algorithms, each model comes with its

inherent biases. For instance, tree-based models like

Random Forest might overfit on certain datasets, while

linear models like Logistic Regression might not capture

non-linear relationships effectively.

Hyperparameter Tuning: Although we employed

GridSearchCV for exhaustive hyperparameter tuning,

there's always a possibility that a different combination

might yield slightly better results.

Feature Selection: The inclusion or exclusion of features

can impact model performance. Our hybrid feature

selection method combined heuristic labeling with kNN

label imputation. However, heuristic labeling, despite

aiding dataset balance, may not always reflect the

intricacies of developer expertise. Likewise, while kNN is

widely used, it can be susceptible to mislabeling due to

noisy neighbors.

Dataset Specificity: Our study is based on specific

datasets tailored to certain programming languages. The

findings might not be directly generalizable to other

languages or platforms.

Data Absence from Other Platforms: The lack of data

from platforms like LinkedIn and TopCoder may limit our

model's comprehensiveness. Missing insights from these

platforms could challenge the external validity of our

findings, potentially overlooking essential indicators of

developer expertise.

Labeling and Classification: The classification of

developers into categories like Novice, Intermediate, and

Expert is based on certain metrics and might not capture

the complete essence of a developer's expertise.

Feature Interpretation: While we employed the SHAP

method for feature importance analysis, the interpretation

of the importance of certain features might vary among

experts.

Self-Assessment Accuracy: While we operated under the

assumption that the self-assessments provided by

contributors were accurate reflections of their expertise

levels, there's an inherent risk associated with relying on

subjective evaluations. Contributors might have

overestimated or underestimated their skills due to factors

8 https://github.com/aref98/Evaluating-Developer-Expertise-in-

Serverless- Functions-by-Mining-Activities-from-Multiple-Platforms

like overconfidence, modesty, or a lack of clear

understanding of the assessment criteria. This potential

discrepancy between perceived and actual expertise could

influence the validity of our findings, especially if these

self-assessments were used as ground truth or reference

points in our analysis.

6. Conclusion and Future Directions
In this research, we ventured into the domain of predicting

developer expertise specifically within the realm of

serverless functions, using features extracted from GitHub

and Stack Overflow. Our findings underscored the value

of multi-platform data integration in providing an in-depth

understanding of developer expertise.

In our research, we explored two key areas. The first

area of exploration (RQ1) revolved around identifying the

most effective machine learning algorithms for evaluating

developer expertise. Our journey led us to the Random

Forest (RF) model, which consistently demonstrated

robust performance across multiple datasets. We also

observed commendable performance from the Support

Vector Machine (SVM) model, particularly in terms of

precision.

The second area of exploration (RQ2) focused on

uncovering the features or metrics that best indicate a

developer’s expertise in serverless functions. Our

exploration revealed that the top 5 indicators were

‘avg_days_commits_import_library’,

commits_import_library’, ‘upvotes’, ‘time_of_activity’,

and ‘commits_client_files’. We used the SHAP method for

feature importance analysis to arrive at these insights.

Our research adds to the field by predicting developer

expertise in serverless functions, an area not widely

studied before. We used 22 features from GitHub and

Stack Overflow, which is more than what’s typically used

in this domain. This large set of features gives us a detailed

look at developer activities and expertise. While there are

other studies [4], [5] that also use data from multiple

platforms, our study stands out because we use both

GitHub and Stack Overflow data and a larger set of

features. Our results agree with other studies that find it

useful to combine insights from multiple platforms. But

our research goes one step further by showing how this

approach works well for serverless functions.

In addition, one of the tangible outputs of our research

is the creation and public release of six language-specific

datasets, representing our target languages. By making

these datasets publicly available8, we not only aim to

contribute to the academic community but also hope to

foster further research in this area.

Our current investigation has also highlighted the

potential benefits of integrating insights from platforms

such as Stack Overflow. Such an integrative approach,

which merges data from varied sources, can offer richer

insights into the multifaceted nature of developer

expertise, especially in the context of serverless functions.

Journal of Computer and Knowledge Engineering, Vol.7, No.2. 2024. 41

As we move forward, there are multiple avenues we can

explore to build upon our current findings. One potential

direction is to widen our data collection to encompass a

more extensive range of repositories, offering a deeper

dive into developer activities. Another promising avenue

is to investigate other metrics of developer expertise, such

as peer reviews or code quality assessments, which might

yield a more nuanced understanding. Finally, considering

the vast ecosystem of developer platforms, integrating data

from platforms like GitLab, Bitbucket, and LinkedIn, as

well as competitive coding platforms like TopCoder, can

provide a more rounded view of developer behavior and

skills. This could be the next step in further refining and

expanding our understanding of expertise in serverless

function development.

7. References

[1] S. Kourtzanidis, A. Chatzigeorgiou, and A. Ampatzoglou,

“RepoSkillMiner: Identifying software expertise from

GitHub repositories using Natural Language Processing,”

Proc. - 35th IEEE/ACM Int. Conf. Autom. Softw. Eng. ASE,

2020, pp. 1353–1357.

[2] X. Song, J. Yan, Y. Huang, H. Sun, and H. Zhang, “A

Collaboration-Aware Approach to Profiling Developer

Expertise with Cross-Community Data,” IEEE Int. Conf.

Softw. Qual. Reliab. Secur. QRS, Guangzhou, China, 2022,

pp. 344–355.

[3] E. Constantinou and G. M. Kapitsaki, “Developers expertise

and roles on software technologies,” Proc. - Asia-Pacific

Softw. Eng. Conf. APSEC, Hamilton, New Zealand, 2016,

pp. 365–368.

[4] Y. Tian, W. Ng, J. Cao, and S. McIntosh. (2019, Nov.).

Geek talents: Who are the top experts on GitHub and stack

overflow?. Comput, Mater & Contin. [Online]. 61(2), pp.

465–479. Available: 10.32604/cmc.2019.07818

[5] S. L. Vadlamani and O. Baysal, “Studying Software

Developer Expertise and Contributions in Stack Overflow

and GitHub,” IEEE International Conference on Software

Maintenance and Evolution (ICSME), Adelaide, SA,

Australia, 2020, pp. 312–323.

[6] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski.

(2019, Nov.). The rise of serverless computing.

Communications of the ACM. [Online]. 62(12), pp. 44–54.

Available: 10.1145/3368454

[7] M. Shahrad et al., “Serverless in the wild: Characterizing

and optimizing the serverless workload at a large cloud

provider,” Proc. 2020 USENIX Annu. Tech. Conf. ATC,

2020, pp. 205–218.

[8] A. Mujezinovic and V. Ljubovic, “Serverless architecture

for workflow scheduling with unconstrained execution

environment,” 42nd International Convention on

Information and Communication Technology, Electronics

and Microelectronics (MIPRO), Opatija, Croatiapp, 2019,

pp. 242–246.

[9] R. Cordingly et al., “Implications of Programming

Language Selection for Serverless Data Processing

Pipelines,” IEEE Intl Conf on Dependable, Autonomic and

Secure Computing, Intl Conf on Pervasive Intelligence and

Computing, Intl Conf on Cloud and Big Data Computing,

Intl Conf on Cyber Science and Technology Congress

(DASC/PiCom/CBDCom/CyberSciTech), Calgary, AB,

Canada, 2020, pp. 704–711.

[10] J. Oliveira, M. Viggiato, and E. Figueiredo, “How well do

you know this library? Mining experts from source code

analysis,” ACM Int. Conf. Proceeding Ser., 2019, pp. 49-58.

[11] J. E. Montandon, L. Lourdes Silva, and M. T. Valente,

“Identifying experts in software libraries and frameworks

among GitHub Users,” IEEE/ACM 16th International

Conference on Mining Software Repositories (MSR),

Montreal, QC, Canada, 2019, pp. 276–287.

[12] B. Vasilescu, V. Filkov, and A. Serebrenik, “StackOverflow

and GitHub: Associations between software development

and crowdsourced knowledge,” International Conference

on Social Computing, Alexandria, VA, USA, 2013, pp. 188–

195.

[13] A. Santos, M. Souza, J. Oliveira, and E. Figueiredo,

“Mining software repositories to identify library experts,”

ACM Int. Conf. Proceeding Ser., 2018, pp. 83–91.

[14] G. J. Greene and B. Fischer, “CVExplorer: Identifying

candidate developers by mining and exploring their open

source contributions,” Proceedings of the 31st IEEE/ACM

international conference on automated software

engineering, 2016, pp. 804–809.

[15] X. T. Trinh, “Online learning of multi-class Support Vector

Machines,” Master dissertation, no. 12 061, 2012.

[16] Christopher J.C. Burges. (1998, Jun.). A Tutorial on Support

Vector Machines for Pattern Recognition. Data Mining and

Knowledge Discovery. [Online]. 2(2), pp. 121–167.

Available: 10.1023/A:1009715923555

[17] G. Biau and E. Scornet. (2016, Apr.). A random forest

guided tour. Test. [Online]. 25(2), pp. 197–227. Available:

10.1007/s11749-016-0481-7

[18] A. Natekin and A. Knoll. (2013, Dec.). Gradient boosting

machines, a tutorial. Front. Neurorobot. [Online]. 7, p. 21.

Available: 10.3389/fnbot.2013.00021

[19] A. Schneider, G. Hommel, and M. Blettner. (2010, Nov.).

Lineare regressionsanalyse - Teil 14 der serie zur bewertung

wissenschaftlicher publikationen. Deutsches Ärzteblatt

International. [Online]. 107(44), pp. 776–782. Available:

10.3238/arztebl.2010.0776

[20] Ö. Senger. (2013, Aug.). Impact of skewness on statistical

power. Modern Applied Science. [Online]. 7(8), pp. 49–56.

Available: 10.5539/mas.v7n8p49

[21] N. J. Gogtay and U. M. Thatte. (2017, Mar.). Principles of

correlation analysis. Journal of the Association of

Physicians of India. [Online]. 65(3), pp. 78–81.

[22] S. Chulani, B. Boehm, and B. Steece. (1999, Jul.). Bayesian

Analysis of Empirical Software Engineering Cost Models.

IEEE Transactions on Software Engineering. [Online].

25(4), pp. 41–51. Available: 10.1109/32.799958

[23] J. Li et al. and H. Liu. (2017, Dec.). Feature selection: A

data perspective. ACM computing surveys (CSUR).

[Online]. 50(6), pp. 1-45. Available: 10.1145/3136625

[24] B. Boecking, W. Neiswanger, E. P. Xing, and A.

Dubrawski, “Interactive Weak Supervision: Learning

Useful Heuristics for Data Labeling,” ICLR 2021 - 9th Int.

Conf. Learn. Represent., 2021, pp. 1–27.

[25] S. Zhang, (2012, Nov.). Nearest neighbor selection for

iteratively kNN imputation. Journal of Systems and

Software. [Online]. 85(11), pp. 2541–2552. Available:

10.1016/j.jss.2012.05.073

[26] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online Defect

Prediction for Imbalanced Data,” IEEE/ACM 37th IEEE

International Conference on Software Engineering,

Florence, Italyvol, 2015, pp. 99–108.

[27] L. Li, T. F. Bissyandé, D. Octeau, and J. Klein, “Reflection-

aware static analysis of android apps,” Proceedings of the

31st IEEE/ACM International Conference on Automated

Software Engineering, 2016, pp. 756–761.

[28] A. S. Singh, M. B. Masuku, and Department. (2014, Nov.).

Sampling techniques & determination of sample size in

applied statistics research. International Journal of

economics, commerce and management. [Online]. 2(11),

https://ruomoplus.lib.uom.gr/handle/8000/1216
https://ruomoplus.lib.uom.gr/handle/8000/1216
https://ruomoplus.lib.uom.gr/handle/8000/1216
https://ruomoplus.lib.uom.gr/handle/8000/1216
https://ruomoplus.lib.uom.gr/handle/8000/1216
https://doi.org/10.1109/QRS57517.2022.00043
https://doi.org/10.1109/QRS57517.2022.00043
https://doi.org/10.1109/QRS57517.2022.00043
https://doi.org/10.1109/QRS57517.2022.00043
https://doi.org/10.1109/QRS57517.2022.00043
https://doi.org/10.1109/APSEC.2016.061
https://doi.org/10.1109/APSEC.2016.061
https://doi.org/10.1109/APSEC.2016.061
https://doi.org/10.1109/APSEC.2016.061
https://cdn.techscience.cn/files/cmc/2019/v61n2/20191015020741_24438.pdf
https://cdn.techscience.cn/files/cmc/2019/v61n2/20191015020741_24438.pdf
https://cdn.techscience.cn/files/cmc/2019/v61n2/20191015020741_24438.pdf
https://cdn.techscience.cn/files/cmc/2019/v61n2/20191015020741_24438.pdf
https://cdn.techscience.cn/files/cmc/2019/v61n2/20191015020741_24438.pdf
https://doi.org/10.1109/ICSME46990.2020.00038
https://doi.org/10.1109/ICSME46990.2020.00038
https://doi.org/10.1109/ICSME46990.2020.00038
https://doi.org/10.1109/ICSME46990.2020.00038
https://doi.org/10.1109/ICSME46990.2020.00038
https://dl.acm.org/doi/abs/10.1145/3368454
https://dl.acm.org/doi/abs/10.1145/3368454
https://dl.acm.org/doi/abs/10.1145/3368454
https://dl.acm.org/doi/abs/10.1145/3368454
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shahrad
https://ieeexplore.ieee.org/abstract/document/8756833
https://ieeexplore.ieee.org/abstract/document/8756833
https://ieeexplore.ieee.org/abstract/document/8756833
https://ieeexplore.ieee.org/abstract/document/8756833
https://ieeexplore.ieee.org/abstract/document/8756833
https://ieeexplore.ieee.org/abstract/document/8756833
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00120
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00120
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00120
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00120
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00120
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00120
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00120
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00120
https://dl.acm.org/doi/abs/10.1145/3364641.3364648
https://dl.acm.org/doi/abs/10.1145/3364641.3364648
https://dl.acm.org/doi/abs/10.1145/3364641.3364648
https://doi.org/10.1109/MSR.2019.00054
https://doi.org/10.1109/MSR.2019.00054
https://doi.org/10.1109/MSR.2019.00054
https://doi.org/10.1109/MSR.2019.00054
https://doi.org/10.1109/MSR.2019.00054
https://doi.org/10.1109/SocialCom.2013.35
https://doi.org/10.1109/SocialCom.2013.35
https://doi.org/10.1109/SocialCom.2013.35
https://doi.org/10.1109/SocialCom.2013.35
https://doi.org/10.1109/SocialCom.2013.35
https://dl.acm.org/doi/abs/10.1145/3267183.3267192
https://dl.acm.org/doi/abs/10.1145/3267183.3267192
https://dl.acm.org/doi/abs/10.1145/3267183.3267192
https://dl.acm.org/doi/abs/10.1145/2970276.2970285
https://dl.acm.org/doi/abs/10.1145/2970276.2970285
https://dl.acm.org/doi/abs/10.1145/2970276.2970285
https://dl.acm.org/doi/abs/10.1145/2970276.2970285
https://dl.acm.org/doi/abs/10.1145/2970276.2970285
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A570643&dswid=1110
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A570643&dswid=1110
https://link.springer.com/article/10.1023/A:1009715923555#citeas
https://link.springer.com/article/10.1023/A:1009715923555#citeas
https://link.springer.com/article/10.1023/A:1009715923555#citeas
https://link.springer.com/article/10.1023/A:1009715923555#citeas
https://link.springer.com/article/10.1007/s11749-016-0481-7#citeas
https://link.springer.com/article/10.1007/s11749-016-0481-7#citeas
https://link.springer.com/article/10.1007/s11749-016-0481-7#citeas
https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2013.00021/full
https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2013.00021/full
https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2013.00021/full
https://pmc.ncbi.nlm.nih.gov/articles/PMC2992018/
https://pmc.ncbi.nlm.nih.gov/articles/PMC2992018/
https://pmc.ncbi.nlm.nih.gov/articles/PMC2992018/
https://pmc.ncbi.nlm.nih.gov/articles/PMC2992018/
https://pmc.ncbi.nlm.nih.gov/articles/PMC2992018/
https://www.researchgate.net/profile/Oetueken-Senger/publication/269672002_Impact_of_Skewness_on_Statistical_Power/links/56b9a14408ae9d9ac67e2c11/Impact-of-Skewness-on-Statistical-Power.pdf
https://www.researchgate.net/profile/Oetueken-Senger/publication/269672002_Impact_of_Skewness_on_Statistical_Power/links/56b9a14408ae9d9ac67e2c11/Impact-of-Skewness-on-Statistical-Power.pdf
https://www.researchgate.net/profile/Oetueken-Senger/publication/269672002_Impact_of_Skewness_on_Statistical_Power/links/56b9a14408ae9d9ac67e2c11/Impact-of-Skewness-on-Statistical-Power.pdf
https://www.kem.edu/wp-content/uploads/2012/06/9-Principles_of_correlation-1.pdf
https://www.kem.edu/wp-content/uploads/2012/06/9-Principles_of_correlation-1.pdf
https://www.kem.edu/wp-content/uploads/2012/06/9-Principles_of_correlation-1.pdf
https://ieeexplore.ieee.org/document/799958
https://ieeexplore.ieee.org/document/799958
https://ieeexplore.ieee.org/document/799958
https://ieeexplore.ieee.org/document/799958
https://doi.org/10.1109/32.799958
https://dl.acm.org/doi/abs/10.1145/3136625
https://dl.acm.org/doi/abs/10.1145/3136625
https://dl.acm.org/doi/abs/10.1145/3136625
https://arxiv.org/abs/2012.06046
https://arxiv.org/abs/2012.06046
https://arxiv.org/abs/2012.06046
https://arxiv.org/abs/2012.06046
https://www.sciencedirect.com/science/article/abs/pii/S0164121212001586
https://www.sciencedirect.com/science/article/abs/pii/S0164121212001586
https://www.sciencedirect.com/science/article/abs/pii/S0164121212001586
https://www.sciencedirect.com/science/article/abs/pii/S0164121212001586
https://ieeexplore.ieee.org/abstract/document/7202954
https://ieeexplore.ieee.org/abstract/document/7202954
https://ieeexplore.ieee.org/abstract/document/7202954
https://ieeexplore.ieee.org/abstract/document/7202954
https://dl.acm.org/doi/abs/10.1145/2970276.2970277
https://dl.acm.org/doi/abs/10.1145/2970276.2970277
https://dl.acm.org/doi/abs/10.1145/2970276.2970277
https://dl.acm.org/doi/abs/10.1145/2970276.2970277
https://d1wqtxts1xzle7.cloudfront.net/65225177/21131_IJECM-libre.pdf?1608404466=&response-content-disposition=inline%3B+filename%3DInternational_Journal_of_Economics_Comme.pdf&Expires=1732562869&Signature=Y7wB9GA1TLL08KCjSwQwmVfXktSKRwlcxekLgplTlXMYer6pcgkJDE6fMKHYnMiP3n~iSrLn9K5JZp4IxRLOPTDoNPCt20X3v1PZeUdXyr9waM2TcDpcyFhQWNAjPQ9HsFiWg1lhoq~sp8BMq0IYzO893ZcOZFpH29u70SGDlmu91h2pJIMQU-XSoCYfe1XWr7IphGFiQon3JJSwLk2sgF7zIUDC7T2z9AQOULlcEKBwVjiFk4KYGVeN5XfThY1p1cBIr5akLr-SV2gJcjceuPVzvG3RRmzExkagXcLHgqJryLeaMlKAmcvEtxhYVLeLGNbEKiGUibKCvzwgBuNpog__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/65225177/21131_IJECM-libre.pdf?1608404466=&response-content-disposition=inline%3B+filename%3DInternational_Journal_of_Economics_Comme.pdf&Expires=1732562869&Signature=Y7wB9GA1TLL08KCjSwQwmVfXktSKRwlcxekLgplTlXMYer6pcgkJDE6fMKHYnMiP3n~iSrLn9K5JZp4IxRLOPTDoNPCt20X3v1PZeUdXyr9waM2TcDpcyFhQWNAjPQ9HsFiWg1lhoq~sp8BMq0IYzO893ZcOZFpH29u70SGDlmu91h2pJIMQU-XSoCYfe1XWr7IphGFiQon3JJSwLk2sgF7zIUDC7T2z9AQOULlcEKBwVjiFk4KYGVeN5XfThY1p1cBIr5akLr-SV2gJcjceuPVzvG3RRmzExkagXcLHgqJryLeaMlKAmcvEtxhYVLeLGNbEKiGUibKCvzwgBuNpog__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/65225177/21131_IJECM-libre.pdf?1608404466=&response-content-disposition=inline%3B+filename%3DInternational_Journal_of_Economics_Comme.pdf&Expires=1732562869&Signature=Y7wB9GA1TLL08KCjSwQwmVfXktSKRwlcxekLgplTlXMYer6pcgkJDE6fMKHYnMiP3n~iSrLn9K5JZp4IxRLOPTDoNPCt20X3v1PZeUdXyr9waM2TcDpcyFhQWNAjPQ9HsFiWg1lhoq~sp8BMq0IYzO893ZcOZFpH29u70SGDlmu91h2pJIMQU-XSoCYfe1XWr7IphGFiQon3JJSwLk2sgF7zIUDC7T2z9AQOULlcEKBwVjiFk4KYGVeN5XfThY1p1cBIr5akLr-SV2gJcjceuPVzvG3RRmzExkagXcLHgqJryLeaMlKAmcvEtxhYVLeLGNbEKiGUibKCvzwgBuNpog__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/65225177/21131_IJECM-libre.pdf?1608404466=&response-content-disposition=inline%3B+filename%3DInternational_Journal_of_Economics_Comme.pdf&Expires=1732562869&Signature=Y7wB9GA1TLL08KCjSwQwmVfXktSKRwlcxekLgplTlXMYer6pcgkJDE6fMKHYnMiP3n~iSrLn9K5JZp4IxRLOPTDoNPCt20X3v1PZeUdXyr9waM2TcDpcyFhQWNAjPQ9HsFiWg1lhoq~sp8BMq0IYzO893ZcOZFpH29u70SGDlmu91h2pJIMQU-XSoCYfe1XWr7IphGFiQon3JJSwLk2sgF7zIUDC7T2z9AQOULlcEKBwVjiFk4KYGVeN5XfThY1p1cBIr5akLr-SV2gJcjceuPVzvG3RRmzExkagXcLHgqJryLeaMlKAmcvEtxhYVLeLGNbEKiGUibKCvzwgBuNpog__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA

42 Aref Talebzadeh Bardsiri, et. al.: Evaluating Developers’ Expertise…

pp. 32–33. Available: ijecm.co.uk

[29] L. Buitinck et al. and R. Layton, “API design for machine

learning software: experiences from the scikit-learn

project,” European Conference on Machine Learning and

Principles and Practices of Knowledge Discovery in

Databases, 2013, pp. 1–15.

[30] R. M. Dawes, “The robust beauty of improper linear models

in decision making.,” Rationality and Social Responsibility,

2008, pp. 321-344.

[31] S. M. Lundberg and S. I. Lee, “A unified approach to

interpreting model predictions,” Adv. Neural Inf. Process.

Syst., 2017, pp. 4766–4775.

[32] A. Sayers, Y. Ben-Shlomo, A. W. Blom, and F. Steele. (2016,

Jun.). Probabilistic record linkage. International Journal of

Epidemiology. [Online]. 45(3), pp. 954-964. Available:

10.1093/ije/dyv322

https://d1wqtxts1xzle7.cloudfront.net/65225177/21131_IJECM-libre.pdf?1608404466=&response-content-disposition=inline%3B+filename%3DInternational_Journal_of_Economics_Comme.pdf&Expires=1732562869&Signature=Y7wB9GA1TLL08KCjSwQwmVfXktSKRwlcxekLgplTlXMYer6pcgkJDE6fMKHYnMiP3n~iSrLn9K5JZp4IxRLOPTDoNPCt20X3v1PZeUdXyr9waM2TcDpcyFhQWNAjPQ9HsFiWg1lhoq~sp8BMq0IYzO893ZcOZFpH29u70SGDlmu91h2pJIMQU-XSoCYfe1XWr7IphGFiQon3JJSwLk2sgF7zIUDC7T2z9AQOULlcEKBwVjiFk4KYGVeN5XfThY1p1cBIr5akLr-SV2gJcjceuPVzvG3RRmzExkagXcLHgqJryLeaMlKAmcvEtxhYVLeLGNbEKiGUibKCvzwgBuNpog__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://arxiv.org/abs/1309.0238
https://arxiv.org/abs/1309.0238
https://arxiv.org/abs/1309.0238
https://arxiv.org/abs/1309.0238
https://arxiv.org/abs/1309.0238
https://www.taylorfrancis.com/chapters/edit/10.4324/9780203889695-14/robust-beauty-improper-linear-models-decision-making-robyn-dawes
https://www.taylorfrancis.com/chapters/edit/10.4324/9780203889695-14/robust-beauty-improper-linear-models-decision-making-robyn-dawes
https://www.taylorfrancis.com/chapters/edit/10.4324/9780203889695-14/robust-beauty-improper-linear-models-decision-making-robyn-dawes
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://academic.oup.com/ije/article/45/3/954/2572621
https://academic.oup.com/ije/article/45/3/954/2572621
https://academic.oup.com/ije/article/45/3/954/2572621
https://academic.oup.com/ije/article/45/3/954/2572621

