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Abstract In the domain of software development, the 

evaluation of developer expertise has gained prominence, 

particularly with the rise of serverless functions. These 

functions, which simplify the development process by 

delegating infrastructure management to cloud providers, 

are becoming more common. As developers may utilize 

functions created by their peers, understanding the 

expertise of the original developer is crucial since it can 

serve as an indicator of the functions' quality. While there 

are existing methods for expertise evaluation, certain gaps 

remain, especially concerning serverless functions. To 

address this, our research aims to enhance the assessment 

of developer expertise in this area by extracting activity-

based features from both GitHub and Stack Overflow. 

After processing the extracted data, we applied various 

machine learning algorithms. Our findings suggest a 

potential improvement in evaluating developer expertise 

when incorporating features from Stack Overflow 

compared to using only GitHub data. The extent of this 

improvement was observed to differ among programming 

languages, with variations in accuracy improvement 

percentages ranging from 2% to 19%. This study 

contributes to the ongoing discourse on developer 

expertise evaluation, highlighting the potential benefits of 

drawing from multiple data sources. 

Keywords: Developer Expertise Evaluation, Data 

Analysis, Machine Learning Algorithms, Serverless 

Functions, Software Development. 

1. Introduction 

In the domain of software development, the ability to 

accurately evaluate developer expertise has become 

paramount [1-5]. This emphasis on expertise evaluation is 

not just a theoretical concern but has practical 

implications, especially in the evolving landscape of 
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serverless functions. Serverless functions, often referred to 

as Function as a Service (FaaS) [6], simplify the 

development process by offloading infrastructure 

management to cloud providers. Recent data suggests that 

over 40% of companies have integrated serverless 

functions into their workflows, drawn by their scalability, 

cost-effectiveness, and the convenience of reduced 

infrastructure management [7][8]. 

With the increasing adoption of serverless functions, 

there's a growing need to understand the expertise behind 

the functions being developed. Developers frequently 

integrate functions developed by others into their projects. 

In such contexts, assessing the expertise of the original 

developer is crucial to ensure the reliability and efficiency 

of the integrated functions. Evaluating developer expertise 

in serverless functions is particularly important as it can 

significantly impact the quality and performance of the 

applications that use these functions. 

Furthermore, as serverless functions are often developed 

using "Target Languages" like Java, Python, NodeJs3, 

Ruby, Go, and C#—selected for their compatibility with 

serverless architectures and their widespread use [9] it 

becomes imperative to evaluate expertise specifically 

within these languages to ensure the quality and efficiency 

of serverless applications. 

The accurate assessment of developer expertise in the 

broader software development field has been the focus of 

numerous investigations [1-4], [10–14] . While many 

works have been conducted in this area, several challenges 

persist. For instance, some studies have found that simple 

metrics, such as counting commits, might not be a reliable 

indicator of expertise within specific libraries or 

frameworks. Others have introduced tools that leverage 

Natural Language Processing (NLP) to pinpoint expertise, 

but these often rely solely on data from a single platform 

like GitHub. There's also a recognized need to merge data 
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from multiple platforms, such as GitHub and Stack 

Overflow, but many existing approaches primarily focus 

on user profiles and specific APIs.  

Building on these valuable insights from prior research, 

our study endeavors to bridge the identified gaps. 

Specifically, we aim to offer a fresh perspective on 

developer expertise by tapping into both GitHub and Stack 

Overflow, thereby opening a broader window of feature 

collecting, especially in the context of serverless functions. 

We've observed that while some research has adeptly 

employed machine learning classifiers, a predominant 

reliance on a single data platform suggests an opportunity 

for enhancement. Our work underscores the significance 

of adopting a multi-platform approach, which we believe 

can pave the way for a more holistic understanding of 

developer expertise. 

Evaluating developer expertise, especially within 

serverless functions, requires a systematic approach. 

Following this notion, our research utilized the official 

GitHub REST API4 for data extraction. We initially 

identified 408 GitHub repositories related to serverless 

functions. From these, we selected the top 150 to ensure 

representation across different target languages. On 

GitHub, we extracted 13 activity-related features, 

providing insights into a contributor's activities and 

expertise. Our interpretation of these features was 

informed by Montandon's work [11]. 

Turning to Stack Overflow, we sought to link 

contributors to their Stack Overflow profiles using the 

official StackAPI5. This allowed us to extract 9 additional 

features related to their activity on this platform. After data 

collection, we invited contributors to self-assess their 

expertise on a 0 to 5 scale. Of the 2539 emails we sent, 237 

were answered, leading to a response rate of about 9.3%. 

This feedback aided in initially labeling our dataset. 

After data extraction, we engaged in preprocessing to 

manage data-related challenges. For analysis, we 

employed machine learning algorithms like SVM [15], 

[16], Random Forest [17], Gradient Boosting [18], and 

Logistic Regression [19]. Initial results showed a 

preference for SVM and Random Forest in several 

datasets. When compared to other research, our findings 

suggested potential benefits from using data from both 

Stack Overflow and GitHub. The efficacy varied by target 

language: NodeJs exhibited an accuracy increase of 

approximately 19%, while C# showed an increase of about 

2%, resulting in an average improvement of around 10.7%. 

Having outlined our proposed method, we sought to 

address these two specific research questions: 

 

RQ1. Which machine learning algorithms are most 

effective in evaluating developer expertise in serverless 

functions based on the extracted features? The answers 

                                                           
4 https://docs.github.com/en/rest?apiVersion=2022-11-28 
5 https://stackapi.readthedocs.io/en/latest 
6 In this study, term 'contributors' refers to developers active in serverless functions. 

to this question, based on our comparative analyses of 

different algorithms, are discussed in the 'Evaluation' 

section. 

 

RQ2. What features or metrics are most indicative of a 

developer's expertise in serverless functions? The 

insights related to this question, derived from our feature 

importance analysis, can be found in the 'Evaluation' 

section, specifically in the third part of that section. 

In our research, we've made several contributions to 

evaluating developer expertise in serverless functions. 

Notably, we've adopted a dual-platform data extraction 

approach, gathering activity-based features of 

contributors6 from both GitHub and Stack Overflow. This 

approach aims to provide a more detailed perspective on a 

developer's engagement by leveraging data from two 

major platforms. From this extraction, we've compiled six 

language-specific datasets, representing developer 

activities in serverless functions for the respective target 

languages. Importantly, by making these datasets publicly 

available, we aim to foster collaborative research and 

encourage further exploration in this domain. This detailed 

approach allows for a nuanced evaluation based on the 

specific programming language. Additionally, we've 

conducted a feature importance analysis using SHAP 

values to understand the relative importance of each 

extracted feature. This step helps in discerning which 

activities might be more indicative of a developer's 

expertise in serverless functions. 

Our proposed method caters not only to serverless 

functions but also have versatility for broader software 

development contexts. This adaptability accentuates the 

potential of our techniques in navigating the multifaceted 

challenges of contemporary software development. 

Furthermore, our research underscores the imperative of a 

holistic, multi-platform approach in developer expertise 

evaluation, with implications for refining recruitment 

strategies in the industry and fostering a platform 

proficiency within academic frameworks. 

The remainder of this paper is structured as follows: 

The next section delves into the Background, providing a 

foundational understanding of the domain and 

contextualizing our work within existing literature. 

Following this, we present our Proposed Method, detailing 

the approach and techniques we employed. The Evaluation 

section then discusses our findings, shedding light on the 

efficacy and implications of our method. We subsequently 

address potential Threats to Validity, ensuring a 

transparent and critical discussion of our study's 

limitations. The paper concludes with a Conclusion 

section, summarizing our key contributions, and then 

looks ahead to Future Directions, suggesting potential 

avenues for further research and exploration in this 
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domain. 

2. Background 
The rapid evolution of software development has led to the 

emergence of various platforms where developers 

collaborate, share knowledge, and showcase their 

expertise. Platforms like GitHub and Stack Overflow have 

become central to this ecosystem, providing a wealth of 

data that can be mined to understand developer expertise 

and behavior. Several studies have delved into this realm, 

each offering unique insights and methodologies [5]. 

Vasilescu et al. embarked on a comprehensive 

exploration of the intricate relationship between Stack 

Overflow and GitHub activities, Their exploration 

spanned three distinct levels: macro, intermediate, and 

micro. Their macro-level analysis aimed to discern the 

differences between GitHub contributors based on their 

Stack Overflow involvement, probing whether activity on 

one platform could serve as a proxy for the other. The 

intermediate level delved into the distribution of 

developers' time between GitHub commits and their Q&A 

activity on Stack Overflow. At the micro level, the 

temporal coordination between GitHub commits and Stack 

Overflow Q&A activities was scrutinized. This 

multifaceted analysis underscores the intertwined nature of 

developer activities across these platforms, emphasizing 

the potential influence of participation on one platform 

over the other [12]. 

In a similar vein, Song et al. sought to profile developer 

expertise by harnessing data from both Stack Overflow 

and GitHub. The research underscored the challenges of 

profiling expertise based solely on a single platform, given 

the sparsity of expertise matrices for both Stack Overflow 

and GitHub. By integrating data from both platforms, the 

study illuminated the multifaceted nature of developer 

expertise, underscoring the potential benefits of a cross-

community approach. Such a collaboration-aware method 

can potentially mitigate challenges like unanswered 

questions on Stack Overflow and delayed responses to pull 

requests on GitHub [2].  

The realm of developer expertise assessment witnessed 

a novel approach with the introduction of "CVExplorer," a 

tool designed to identify potential developer candidates by 

meticulously analyzing their contributions to open-source 

projects on GitHub. By mining skills from GitHub 

contributions, the tool offers recruiters a more accurate 

representation of a developer's skills, emphasizing the 

importance of real-world contributions in assessing 

developer expertise. This approach, which transcends the 

traditional reliance on self-authored CVs, underscores the 

evolving paradigms in developer assessment and 

recruitment [14]. 

Building on this Constantinou and Kapitsaki delved 

deep into the nuances of developer expertise and their roles 

in software technologies. Their research introduced the 

concept of "core expertise," signifying the primary domain 

or technology group where a developer is most prolific. By 

employing various metrics and data from platforms like 

Stack Overflow and GitHub, the study provided a granular 

analysis of how developers transition between roles and 

how their expertise can be categorized. Such insights are 

pivotal in understanding the evolutionary trajectory of 

developers and the multifarious roles they assume over 

time [3]. 

Tian et al. introduced a novel approach aimed at 

constructing a cross-platform expert recommendation 

system by synergizing datasets from GitHub and Stack 

Overflow. This system, designed to spotlight top expert 

developers, or "geek talents," underscores the value of 

expert recommendation systems in the open-source 

community and for companies at large. By leveraging 

various attributes of user profiles, platform-specific APIs, 

and multiple account matching strategies, the system can 

adeptly identify top experts in specific technology fields. 

Such a method offers a fresh perspective on 

recommending top expert developers, emphasizing the 

increasing importance of these platforms in the software 

development community [4]. Santos et al. ventured into 

the domain of mining software repositories with the 

primary objective of identifying library experts. By 

analyzing the source code of collaborative projects on 

GitHub, the study introduced a method that ranks 

developers based on five dimensions of skills. Preliminary 

results from this research underscored the method's 

capability of identifying relevant users of specific libraries, 

emphasizing the importance of GitHub as a platform to 

showcase developers' knowledge and skills. Such a 

structured approach offers a comprehensive evaluation of 

a developer's proficiency, highlighting the potential 

benefits for recruitment and human resource allocation 

[13]. 

Oliveira et al. embarked on a comprehensive empirical 

study to identify library experts by analyzing source code. 

By evaluating the strategy with popular Java libraries and 

conducting an online survey with developers, the study 

provided insights into the challenges and methodologies of 

identifying library experts based on code analysis. The 

findings underscored that traditional metrics like "Lines of 

Code" or "Number of Commits" might not be sufficient 

indicators of a developer's expertise with specific libraries. 

Such insights are pivotal in understanding the nuances of 

developer expertise in specific libraries and the potential 

limitations of certain metrics in the identification process 

[10]. 

Lastly, Montandon's research focused on identifying 

experts in popular JavaScript libraries by mining GitHub 

data. By integrating repository mining with developer 

surveys, Montandon provided a robust method for 

pinpointing expertise in specific software libraries and 

frameworks. While this approach emphasized the 

importance of combining multiple data sources for 

accurate assessments, our research Recognizing the 

potential limitations in Montandon's approach, we 

advocate for a broader spectrum of features, underscoring 

the significance of a more detailed and comprehensive 

feature set. This expanded perspective is particularly 

crucial in the realm of serverless functions, where the 

landscape is rapidly evolving and the nuances of developer 

expertise are multifaceted [11]. In light of the existing 

studies, our research aims to enhance the understanding of 

developer expertise by amalgamating data from both 

GitHub and Stack Overflow. While we draw inspiration 

from the works mentioned, our unique contribution lies in 
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showcasing the importance of adding more detailed 

features, offering a richer and more holistic understanding 

of developer expertise. 

 

3. Proposed Method 

We employed a structured research method to assess 

contributors’ expertise in a balanced manner, drawing 

from their activities on GitHub and Stack Overflow. The 

method was divided into three main phases: Data 

Collection, Data Analysis, and Model Training. 

 

Phase 1. Data Collection 

In this phase, we aimed to gather data from GitHub and 

Stack Overflow to understand contributors' activities. 

Using the REST APIs of both platforms, we followed a 

structured process that began with the selection of 

repositories and culminated in the formation of language-

specific datasets. This method was designed to ensure that 

our data was up-to-date and relevant to our research 

objectives. The steps outlined in Figure 1 provide a 

detailed breakdown of our data collection approach. 

 

Step 1. GitHub Profile Collection for Contributors 

We initially amassed a collection of 408 repositories 

pertinent to serverless functions. To optimize the scope of 

our study and ensure manageability, these repositories 

were filtered based on their number of stars. This criterion 

narrowed down our dataset to 150 repositories, striking a 

balance between comprehensiveness and feasibility. After 

finalizing the repository list, we retrieved the contributors 

associated with each repository. For each contributor, we 

began by extracting vital details such as email, display 

name, location, and more to establish a foundational 

profile. We then conducted a deep dive into the user's 

GitHub activities, encompassing metrics like the number 

of commits, code churn, and import statements. This 

provided a detailed picture of the contributor's engagement 

and 

coding habits. Moreover, for our GitHub data 

extraction, we discerned 13 activity-related features, each 

offering a perspective into a contributor's engagement and 

expertise. It's noteworthy to mention that our 

characterization and terminology for these features have 

been predominantly informed by Montandon's work [11], 

which stands as a cornerstone in our research approach. 

For instance, as elaborated in Table 1, "Client Projects" 

denotes repositories encompassing code in any of our 

target languages, thus serving as a metric to assess 

developers' acumen in these specific languages. 

Conversely, "Client Files" zooms in to highlight files 

within these repositories written in the target languages, 

offering a more granular view of the contributor's 

expertise. 

Having collected the GitHub features, we then turned 

our attention to extracting features from Stack Overflow. 

 

 

Figure 1. Process of the Data Collection Phase in the Proposed Method 
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 Table 1 Extracted Features from GitHub and Stack Overflow 

 

Step 2. Enriching Profiles with Stack Overflow Features 

To augment our dataset, we aimed to identify the Stack 

Overflow profile corresponding to each GitHub 

contributor. We began by initiating a search using the 

contributor’s GitHub username. If any list of Stack 

Overflow profiles was returned, we took additional steps 

to ensure the authenticity and relevance of the identified 

profile. Specifically, we applied a method based on 

probabilistic record linkage [32], a well-established 

technique in data integration. This method involves 

calculating a similarity score based on the probabilities of 

agreement and disagreement for each attribute (website 

URL, location, bio, and company affiliation). These 

probabilities were computed based on the distribution of 

values in each field in our dataset. The profile with the 

highest similarity score was selected for further analysis. 

In situations where no profiles met our stringent criteria, 

we opted for the first profile returned by the search results, 

given StackAPI’s tendency to list the most relevant user 

first. 

To complement our GitHub data, we delved deeply into 

Stack Overflow, aiming to extract features that would 

provide a detailed view of each contributor's expertise and 

engagement. Starting with the Stack Overflow profile of 

each contributor, identified in the previous step, we 

centered our efforts on the target languages. For each 

language, we: 

(1) Retrieved answers and questions provided by the user, 

which not only showcased their expertise but also their 

level of engagement with the community. 

(2) Computed various metrics that reflected the user's 

overall activity and reputation for that target language 

(Tag Score) on Stack Overflow. This encompassed the 

number of answers they've given, upvotes received, 

downvotes given, and other related metrics. find their 

detailed representation in Table 1 

(3) Consolidated these features and stored them in a CSV 

file, ensuring they were organized and ready for 

subsequent analysis. 

Our research method heavily relied on the REST APIs 

of both GitHub and Stack Overflow. By integrating the 

GitHub REST API with the PyGitHub Python library, we 

ensured timely and accurate data extraction from GitHub. 

Similarly, our use of StackAPI streamlined our 

interactions with Stack Overflow, particularly in retrieving 

user profiles and associated data. We opted for these APIs 

over pre-existing datasets to ensure we were working with 
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the most up-to-date online data, reinforcing the 

repeatability of our method. Given the dynamic nature of 

expertise, our method was designed to be adaptable, 

allowing for potential replication in future studies. A 

crucial part of our data collection process was managing 

the rate limits imposed by both platforms. To ensure a 

smooth data collection process, we sequentially extracted 

data, first focusing on GitHub features for each contributor 

and then moving to Stack Overflow. 

 

Step 3. Creating Language Specific Datasets for 

Evaluating Developers' Expertise in Serverless 

Functions We initiated this phase by reaching out to 

contributors for a self-assessment of their expertise. Each 

contributor received an email detailing our research 

objectives and was asked to rate their expertise on a scale 

from 0 (no expertise) to 5 (expert level). Supported by 

several studies as a reliable measure of expertise [11], 

[23], [24], this method yielded a response rate of 

approximately 9.33% from the 2539 emails dispatched. 

After updating the contributors' profiles with their self-

assessed scores, we curated separate datasets for each of 

the target languages: Java, Python, NodeJs, Ruby, Go, and 

C#. These datasets encapsulated the contributors' activities 

specific 

to the respective programming language, with their self-

assessed scores serving as the labels. This approach 

ensured a granular understanding of developer expertise in 

serverless functions, tailored to the nuances of each 

language. 

 

Phase 2. Data Analysis 

Upon completion of the data collection phase, we obtained 

six distinct datasets. Each dataset encapsulates 22 features 

detailing developers' activities on both GitHub and Stack 

Overflow, specific to each of our target languages. In the 

next step, we transitioned to the data analysis phase, which 

is further divided into two main steps: 

 

Step 1- Data Visualization 

Our initial exploration began with visualizing the 

distribution of developer expertise across our target 

languages, as depicted in Figure 2. For clarity in the figure, 

we've categorized our binned labels as follows: ratings of 

0 and 1 are denoted as "Novice (0)", ratings of 2 and 3 are 

labeled "Intermediate (1)", and ratings of 4 and 5 are 

classified as "Expert (2)”. We will delve into the binning 

process in a subsequent section. The visualization reveals 

compelling insights. For instance, languages like Python 

and Ruby, which are often considered beginner-friendly, 

had a significant portion of their developer base in the 

novice category.   

This suggests that these languages are more accessible for 

beginners. In contrast, languages such as Java, a prevalent 

choice in enterprise settings, showcased a more balanced 

expertise distribution, indicating a diverse user base with 

varying levels of expertise. 

Moving forward, we examined the skewness across 

different programming languages, visualized in Figure 3. 

Skewness, a measure indicating the asymmetry of data 

distribution around the mean, revealed specific patterns. A 

notable observation was the positive skewness values for 

commits in languages like Go, NodeJs, and Ruby. This 

suggests a scenario where a majority of users have fewer 

commits, but a select few exhibit exceptionally high 

commit counts. This skewness indicates that while most 

developers contribute at a moderate pace, there are a few 

highly active developers who contribute significantly 

more. Understanding this skewness is pivotal as it 

influences our data interpretation and subsequent 

modeling strategies [20]. Our analysis subsequently 

delved into correlation. It is crucial to emphasize that 

correlation does not imply causation [21]. Particularly in 

the realm of expertise, it is common for features to exhibit 

high correlation. However, even if two variables appear to 

move in tandem, this does not necessarily indicate a cause-

and-effect relationship. For example, we observed a high 

correlation between the number of commits and the 

number of pull requests made by a developer. While these 

two variables are correlated, it does not necessarily mean 

that making more commits causes a developer to make 

more pull requests, or vice versa. It could simply be that 

more active developers tend to both commit and pull 

request more frequently. 

 

 

 

 

 

 

 

 

 

Figure 2. Incremental Distribution of Ratings Across Target 

Language 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Skewness of Features Across Target Languages 

 

Step 2- Data Preprocessing 

After the data analysis phase, we transitioned to data 

preprocessing, a crucial step to ensure the data was primed 

for modeling. This phase addressed several challenges, 

including missing values, skewness, feature selection, 
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label binning, and label imputation. 

Handling Missing Values: In addressing missing values, 

we observed that their presence in our dataset often 

signified a developer's inactivity for a specific feature. 

Given this observation, we logically imputed these missing 

values with zero, symbolizing no activity. 

 

Addressing Skewness: Skewness presented another 

challenge. Some features in our dataset displayed right-

skewed distributions. To make the data more suitable for 

modeling, we applied a logarithmic transformation [22] to 

these skewed features, stabilizing their variance and 

approximating a normal distribution. However, before this 

transformation, we had to manage zeros in the data, as the 

logarithm of zero is undefined. To counteract this, we 

added a constant of 1 to the respective columns.  

 

Feature Selection: Feature selection emerged as a pivotal 

aspect of our preprocessing [23]. Ensuring that our model 

is trained on relevant features is paramount for enhancing 

its performance and interpretability. Our multifaceted 

approach to feature selection began with an examination 

of correlations. While correlation provides a measure of 

the linear relationship between two variables, it doesn't 

capture non-linear relationships or causation, making sole 

reliance on it potentially misleading [21]. We also 

incorporated domain knowledge for the feature selection, 

by understanding the context of each feature in the 

software development realm, we made informed decisions. 

For example, while the number of answers and accepted 

answers on Stack Overflow might be correlated, the 

emphasis on quality in the latter could offer more valuable 

insights. Additionally, we employed the Gradient Boosting 

technique, an ensemble learning method, to gain insights 

into feature importance. This technique ranked features 

based on their significance in influencing the model's 

predictions. Armed with these analyses, we made 

informed decisions on which features to discard, ensuring 

our model was built on a relevant feature set, as visualized 

in figure 4. 

 
Figure 4: Dropped Features for Each Programming Language 

Label Binning: Following feature selection, we addressed 

the challenge of label binning. Our dataset contained 

ratings ranging from 0 to 5, indicative of the expertise 

level. To streamline our modeling process and make the 

problem more approachable, we categorized these ratings 

into three broader categories. Ratings between 0 and 1 

were represented as Novice (0), those between 2 and 3 as 

Intermediate (1), and ratings between 4 and 5 were 

categorized as Expert (2). This categorization ensured our 

models could predict expertise levels in broader, more 

generalizable categories, enhancing the interpretability 

and applicability of the results. 

 

Label Imputation: Transitioning from the binning 

process, we confronted another intricate challenge: Label 

Imputation. In the vast landscape of data-driven research, 

addressing the absence of labels is a multifaceted 

endeavor. To adeptly navigate this, we adopted a dual-

strategy approach. This method seamlessly integrated the 

domain-centric heuristic labeling [24] with the algorithmic 

precision of k-Nearest Neighbors (kNN) [25] imputation. 

The rationale behind employing heuristic labeling as our 

initial step stemmed from the nature of our data. Given that 

some of our labels represented minority classes, relying 

solely on kNN label imputation could introduce biases 

towards the majority classes. Heuristic labeling, while 

dependent on the accuracy of the criteria set for label 

determination, offers a way to balance the label 

distribution without such biases. However, recognizing the 

limitations of heuristic accuracy, we used this method to 

label only 10-12% of the dataset. This preliminary step 

aimed to create a more balanced label distribution, setting 

the stage for the subsequent kNN imputation. The 

combination of heuristic labeling and kNN imputation 

allowed us to leverage the strengths of both methods, 

providing a balance between domain-centric insights and 

algorithmic precision, and mitigating the potential 

weaknesses of each method when used alone. 

1: Heuristic Labeling: Heuristic labeling leverages 

domain insights and data patterns to make informed 

decisions about labels. This method, while not 

exhaustive, offers a valuable starting point, especially 

when dealing with imbalanced datasets. Our heuristic 

algorithm works iteratively. By adjusting criteria based 

on the quantiles of key features, we assign scores and 

labels to each instance. The process either converges to 

a desired label distribution or stops after a predetermined 

number of iterations. 

2: k-Nearest Neighbors (kNN) Imputation: In advancing 
our research, we transitioned from heuristic labeling to 
the more nuanced kNN imputation. The underlying 
principle of the kNN algorithm is rooted in similarity; for 
any unlabeled data point, it identifies its ‘k’ closest 
labeled neighbors and adopts the predominant label 
among them. The selection of ‘k’ is crucial, and through 
meticulous testing, we ascertained the ideal ‘k’ for 
distinct data subsets. In our case, we performed an 
iterative evaluation to determine the optimal ‘k’ value 
and found that k=5 yielded the best results. Following the 
primary imputation, certain labels emerged as fractional. 
To ensure consistency with our discrete categories—
Novice, Intermediate, and Expert—we adjusted these by 
rounding to the closest whole number. It’s worth noting 
that we used kNN in conjunction with heuristic labeling 
for the label binning task. While our two-phase approach 
aimed to provide the most accurate labels possible, it’s 
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worth noting that any label imputation method can 
introduce errors. For instance, heuristic labeling, while 
effective in balancing the dataset, might not always 
capture the nuances of individual developer expertise. 
Similarly, kNN, though a more common method, can 
sometimes be influenced by noisy neighbors, leading to 
potential mislabeling. 

After implementing our dual-strategy, the datasets 

displayed more balanced distributions across various 

programming languages. For example, widely-used 

languages like Java showed a more uniform distribution, 

whereas specialized languages like Go had a higher 

concentration of expert developers. Notably, after the 

labeling process, there was a noticeable increase in the 

number of novice developers. This trend mirrors the real-

world scenario where many individuals begin coding, but 

only a select few achieve expert status. 

Upon addressing missing labels with heuristic labeling 

and kNN imputation, we tackled class imbalance using the 

Synthetic Minority Over-sampling Technique (SMOTE) 

[26], [27]. For each dataset, we set target percentages for 

the 'expert' class, like 15% for C# and 10% for others. We 

then split the data, ensuring a representative class 

distribution. Before applying SMOTE, we dynamically set 

the number of nearest neighbors based on the 'expert' 

instances in the training data. Using SMOTE, we balanced 

our datasets, enhancing model accuracy. However, 

SMOTE can introduce noise, potentially leading to model 

over-generalization on real-world data. 

 

Phase 3. Model Training: 

With our datasets now complete and labeled, we 

transitioned to the third phase of our research method, we 

directed our attention towards the pivotal aspect of model 

training. This phase is instrumental in elucidating the 

predictive capabilities inherent within our rigorously 

assembled datasets. 
Given our objective of predicting developer expertise 

levels, we identified it as a multi-class classification 
problem. We experimented with various machine learning 
algorithms, including Random Forest (RF), Gradient 
Boosting (GB), Support Vector Machines (SVM), and 
Logistic Regression (LR), to assess their performance on 
our datasets. The rationale behind selecting these 
classifiers is multi-fold: 

Random Forest and Gradient Boosting are both 

ensemble learning methods known for their high accuracy 

and ability to handle large datasets with higher 

dimensionality. They can effectively manage missing 

values and provide a good indicator of feature importance. 

Support Vector Machines are renowned for their power in 

high-dimensional spaces, which is particularly beneficial 

given the number of features in our dataset. They offer 

robustness, especially when the number of dimensions 

exceeds the number of samples. Logistic Regression while 

is a simpler algorithm, is effective for binary and multi-

class classification problems. Its ease of implementation 

and interpretability make it a valuable tool in our arsenal 

[15], [17], [18]. 

In our study, we examined our six distinct datasets, each 

corresponding to a target language, alongside three 

datasets from the base article [11]. To understand the 

potential influence of incorporating Stack Overflow 

features, we employed a two-pronged analytical approach. 

GitHub-Only Features: Initially, all Stack Overflow 

features were dropped from our datasets, leaving only the 

GitHub features. This step was inspired by our base article, 

which solely considered GitHub features. It is essential to 

note that the datasets derived from the base article [11] 

were accessible to the public. To maintain consistency and 

ensure an equitable comparison, we subjected these 

datasets to analogous preprocessing steps as those 

implemented for our own datasets. This approach not only 

aligned our method but also enhanced the performance of 

the models on the base article datasets. The 

results presented in Table 3 for the three base datasets 

surpass the performance metrics reported in their original 

paper[11], offering a more robust comparison. 

 Incorporating Stack Overflow Features: Subsequently, 

we reintroduced the Stack Overflow features to our six 

datasets and retrained our models. The performance results 

post this addition are showcased in Table 4. For each of 

the above approaches, we embarked on a systematic 

method. First, we loaded the respective datasets, each 

tailored to a specific approach, be it GitHub-only or 

incorporating Stack Overflow features. Then, the data was 

split into training and testing sets using stratified 
sampling [28], ensuring that each set accurately 
represented the overall class distribution. Subsequently, 
we standardized the features using the StandardScaler 
[29], ensuring they were on the same scale, which is 
crucial for effective model training. Next, for each 
classifier, we defined a set of hyperparameters. To find the 
optimal parameters, we employed GridSearchCV, an 
exhaustive search method over the specified parameter 
values for an estimator. This method pinpointed the 
parameters of the estimator that yielded the best results on 
the left-out validation set, ensuring our models were 
primed for optimal performance. 

 

 3.1 Assumptions and Limitations of the proposed 

method.  In every research endeavor, certain assumptions 

guide the method, and inherent limitations bound the 

scope. This section elucidates the foundational 

assumptions underpinning our proposed method and 

highlights potential constraints that might influence the 

interpretation of our findings. Recognizing these factors 

ensures a nuanced understanding of our research 

outcomes. 

 

Assumptions: 

Data Completeness: We assumed that the data sourced 

from GitHub and Stack Overflow accurately represents the 

activities and contributions of developers. However, there 

might be private repositories or contributions that are not 

publicly accessible. 

Feature Relevance: The features selected for model 

training were deemed relevant based on prior literature and 

domain knowledge. It's assumed that these features are 

indicative of a developer's expertise. 
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Table 2 Performance metrics of models trained using GitHub for our Target Languages Datasets 

 

 
Key: Metrics - Acc. (Accuracy), Kp. (Kappa), AUC (Area Under the Curve), P (Precision), R (Recall), F1 (F1 Score); Expertise Levels - Nv. 

(Novice), Int. (Intermediate), Exp. (Expert); Models - LR. (Logistic Regression), RF. (Random Forest), GB. (Gradient Boosting). 
 

Table 3 Performance metrics of models trained using GitHub for Datasets from the Base Article [11] 
 

 
 

Table 4 Performance metrics of models trained using GitHub and Stack Overflow features 
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Model Applicability: We assumed that the machine 

learning models chosen for this study are suitable for the 

type of data and the problem at hand. The performance of 

these models might vary with different datasets or 

contexts. 

Developer Overlap between NodeJs and MongoDB: In 

the base article [11], MongoDB is represented as NODE-

MONGODB, the official NodeJs driver for the MongoDB 

database server. While there's likely a significant overlap 

between MongoDB and NodeJs developers, it's crucial to 

acknowledge that not all MongoDB developers may be 

proficient in NodeJs, and vice versa. For the purpose of a 

more direct comparison between our datasets and those of 

the base article, we operate under the assumption that 

developers associated with MongoDB also have expertise 

in NodeJs. Self-Assessment Reliability: We operate under 

the assumption that the self-assessments provided by 

contributors are accurate and offer a reliable representation 

of their expertise levels. 

Limitations: 

Data Bias: Relying solely on GitHub and Stack Overflow 

might introduce a bias, as developers might be active on 

other platforms or might not be active online at all. This 

could lead to an incomplete representation of a developer’s 

true expertise. GitHub and Stack Overflow are widely used 

platforms in the developer community, but they may not 

fully represent the broader developer community. For 

example, developers who primarily use other platforms or 

who do not participate in online communities may not be 

well-represented. Furthermore, the behaviors and 

activities on these platforms may not fully reflect a 

developer’s offline activities or their activities on other 

platforms. One potential way to mitigate this bias, which 

we discuss in our conclusion, is to integrate data from a 

wider range of developer platforms in future research. 

External Validity: While our models showed promising 

results in the context of serverless functions, their 

applicability to other technological domains needs further 

validation. 

Feature Limitations: While we integrated features from 

GitHub and Stack Overflow, other platforms like LinkedIn 

or TopCoder might offer additional insights that could 

enhance the model's predictive power. We attempted to 

use the public LinkedIn REST API7 to complement our 

data collection with user activity data from LinkedIn. 

However, to the best of our knowledge, the LinkedIn 

public API is no longer accessible. Furthermore, while we 

considered implementing a web crawler to gather data 

from LinkedIn, we decided against it. Although it's not 

illegal to collect publicly accessible data from the web, 

such an approach would be against LinkedIn's terms and 

conditions.  

Model Constraints: Every machine learning model has 

its inherent limitations. For instance, linear models might 

not capture non-linear relationships well, and tree-based 

models might overfit on sparse data [30]. 

                                                           
7 https://developer.linkedin.com/product-catalog 

4. Evaluation 
In response to RQ1, which inquires about the most 

effective machine learning algorithms for evaluating 

developer expertise in serverless functions based on the 

extracted features, we conducted a rigorous evaluation of 

our trained models. Once the models were trained with the 

best parameters; they underwent rigorous evaluation on 

the test set. We computed a range of metrics, including 

accuracy, kappa score, and AUC, to evaluate their 

performance. Additionally, we calculated precision, recall,  

and F1-score for each class - Novice, Intermediate, and 

Expert.  

This detailed evaluation ensured we captured the 

nuances of each model's predictive capabilities, providing 

a detailed understanding of their strengths and limitations. 

By adhering to this method for both approaches, we 

ensured a consistent evaluation, allowing for a fair 

comparison between the utility of GitHub-only features 

and the combined GitHub and Stack Overflow features. 

The results for both approaches can be found in Table 2, 

Table 3, and Table 4. Following the presentation of results, 

we delve into a deeper analysis of the datasets. Initially, 

we focus on datasets using only GitHub features, 

subsequently, we discuss the datasets enhanced with Stack 

Overflow features and the resultant impact on model 

outcomes. The evaluation concludes with a feature 

importance analysis using the SHAP method, offering 

insights into the pivotal role of each feature. In this 

structured discussion, we aim to present a thorough 

understanding of our findings and their broader 

implications. 

 

Part 1. Discussion Datasets with only GitHub Features 

In the evaluation of target languages' datasets presented in 

Table 2, several trends and patterns emerge. RF model 

consistently exhibits robust performance across multiple 

datasets, often securing the lead in accuracy, Kappa, and 

F1 scores. This superior performance can be attributed to 

RF's ensemble nature, which amalgamates the results of 

numerous decision trees, offering a more generalized and 

resilient model. On the other hand, the SVM model also 

demonstrates commendable performance, particularly in 

precision. However, certain anomalies, such as in the 

Python dataset for the Exp. category, reveal that while 

SVM can predict with high confidence, it might 

occasionally overlook specific classes, resulting in a 

diminished recall. 
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Figure 5. Comparison of performance metrics for NodeJs and MongoDB datasets 

The GB model, another contender, frequently matches 
the performance of RF across datasets. GB's strength lies 
in its boosting algorithm, which zeroes in on challenging 
instances, potentially enhancing its performance on 
intricate datasets. Conversely, the LR model, inherently 
linear, occasionally falls short compared to tree-based or 
SVM models, especially when faced with datasets 
characterized by non-linear decision boundaries. Table 3, 
focusing on base work [11] results, highlights the 
challenges encountered in model predictions. The 
Socket.io dataset, for instance, presents notably low 
metrics for both RF and SVM models. 

In Figure 5, we compared the performance of the 
Random Forest and SVM models for NodeJs and 
MongoDB datasets. The motivation behind selecting the 
NodeJs and MongoDB datasets for comparison is rooted 
in the anticipated overlap between their developer 
communities. Based on the premise that MongoDB, 
denoted as NODE-MONGODB — the official NodeJs 
driver for the MongoDB database server — would have a 
substantial confluence of developers skilled in both 
domains, these datasets were chosen for a deeper analysis. 
Upon analyzing the performance metrics, a distinct pattern 
becomes evident: models trained on the NodeJs dataset 
tend to surpass those trained on the MongoDB dataset 
across the majority of metrics. Moreover, within the 
NodeJs dataset, the RF model consistently outshines the 
SVM in parameters such as accuracy, kappa, and AUC. 
Both models demonstrate laudable precision in 
recognizing novice developers, underscoring a robust 
ability to accurately discern beginner-level expertise. 
Nonetheless, a discernible drop in precision is observed as 
we transition to higher levels of expertise, particularly in 
the SVM model for NodeJs. The performance metrics for 
MongoDB were influenced by multiple factors. A primary 
consideration is the label retrieval method, which 
predominantly hinged on self-assessment. While our 
datasets also utilized self-assessment, it is noteworthy that 
around 9% of our data was labeled based on genuine 

expertise levels. Our hybrid labeling approach, 
encompassing heuristic techniques and kNN label 
imputation, seemed to yield more consistent outcomes. 
This approach counteracts the inherent discrepancies often 
associated with sole reliance on self-assessments. The 
potential for developers to inaccurately evaluate their own 
skills introduces the risk of misclassification. Such 
disparities might be accentuated for MongoDB, suggesting 
potential variances between self-declared and actual 
proficiency. In addition, the constraints posed by a limited 
number of training instances cannot be overlooked. 
Despite our efforts in employing techniques like SMOTE 
to address dataset imbalance, the foundational issue of a 
restricted data sample might induce overfitting, 
consequently diminishing the model's generalization 
capabilities. For consistency, the same preprocessing steps 
were applied across all nine datasets, and it's worth 
mentioning that the performance results reported for the 
base work [11] witnessed an enhancement due to our 
preprocessing techniques.  

Moreover, while accuracy is a widely used metric, its 

limitations become pronounced, especially in datasets with 

class imbalances. Other metrics like Kappa, AUC, 

precision, recall, and F1 score provide a more 

comprehensive view, capturing the model's performance 

nuances across various classes. In conclusion, while RF 

often stands out in performance metrics, it's crucial to 

consider each dataset's unique characteristics when 

choosing a model. The occasional unexpected or below-

average metric emphasizes the importance of a holistic 

evaluation using a diverse set of metrics, ensuring a well-

rounded understanding of model performance. 

Part 2. Discussion on the Enhanced Datasets with Stack 

Overflow Features 

Upon integrating Stack Overflow features into our 

datasets, as shown in Table 4, we observed a marked 

improvement in the performance metrics of the models. 
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This enhancement underscores the significance of feature 

engineering and the potential of external data sources in 

boosting model performance. For the C# dataset, the RF 

model stands out with the highest accuracy of 0.88 and a 

Kappa score of 0.80. SVM, with an AUC of 0.97, indicates 

its capability to distinguish between classes effectively. 

Interestingly, LR showcases a perfect recall of 0.92 for the 

Exp. category, emphasizing its strength in identifying true 

positives for this class. In the Go dataset, SVM takes the 

lead with an accuracy of 0.90 and a Kappa score of 0.82. 

Its performance in the Int. category, with a recall of 0.92 

and an F1 score of 0.89, is noteworthy, suggesting its 

proficiency in classifying intermediate instances. For the 

Java dataset, RF demonstrates robust performance with an 

accuracy of 0.92 and a Kappa score of 0.87. Its precision 

of 0.93 for the Int. category is commendable. However, 

GB's AUC of 0.98 is the highest, indicating its superior 

ability to differentiate between the classes. 

In the NodeJs dataset, SVM emerges as the top performer 

with an accuracy of 0.92 and a Kappa score of 0.87. Its F1 

scores across all categories are consistently high, reflecting 

its balanced precision and recall. 

For the Python dataset, SVM shines with the highest 

accuracy of 0.93 and a Kappa score of 0.88. Its 

performance in the Exp. category, with an F1 score of 0.94, 

is particularly impressive. LR's recall of 0.97 for the Nv. 

category is the highest, indicating its strength in 

identifying true positives for novice instances.  

Lastly, in the Ruby dataset, SVM leads with an 

accuracy of 0.89 and a Kappa score of 0.79. Its 

performance in the Nv. category, with an F1 score of 0.94, 

is outstanding, suggesting its proficiency in classifying 

novice instances. The addition of Stack Overflow features 

has evidently bolstered the models' performance across the 

datasets. The enriched datasets provide a more detailed 

view of each instance, allowing the models to capture 

intricate patterns and relationships. It's worth noting that 

while we couldn't expand the base datasets to include 

Stack Overflow features due to privacy concerns related to 

email hashing, the similarity in nature between NODE-

MONGODB (NodeJs driver for MongoDB) and NodeJs 

offers a reasonable point of comparison. Given the 

overlaps between MongoDB and NodeJs developers, this 

similarity can serve as a benchmark to assess the impact of 

the added features. We hypothesize that if we were able to 

expand the MongoDB dataset similarly, we would likely 

observe comparable improvements as seen with the 

NodeJs dataset. 

In conclusion, the integration of external features, such 

as those from Stack Overflow, can substantially enhance 

model performance. The importance of feature 

engineering is evident, and the potential of utilizing 

external data sources in machine learning tasks is 

undeniable. Referring to the results depicted in Figure 6, 

it's clear that leveraging additional features leads to 

noticeable accuracy boosts across various programming 

languages. For example, the SVM model accuracy for the 

'Go' language saw an increase from 83% using only 

GitHub features to 92% when integrated with Stack 

Overflow features, and the continuous pursuit of 

integrating relevant external data to achieve optimal model 

performance. We observed similar significant 

improvements for languages like 'Java', 'NodeJs', and 

'Python'. However, for languages like 'C#' and 'Ruby', the 

enhancements were more modest. These findings 

underscore the value of broadening the feature space. 

Part 3. Feature Importance Analysis 

In response to RQ2, which seeks to identify the most 

indicative features or metrics of a developer's expertise in 

serverless functions, we employed the SHAP (SHapley 

Additive exPlanations) method. SHAP values offer a 

unified measure of feature importance, assigning each 

feature an importance value for a specific prediction. This 

method excels in providing both global interpretability—

indicating the importance of each feature across the entire 

dataset—and local interpretability,  

 
 

Figure 6: Comparison of SVM model accuracies using only 

GitHub features versus the improvement achieved by adding 

Stack Overflow features for target languages 

which explains individual predictions. As illustrated in 

Figure 7 (a SHAP summary plot), the SHAP analysis 

offers a comprehensive perspective on the significance of 

each feature [31]. 

Our analysis reveals the pivotal role of various features 

in predicting a developer's proficiency. The 

'avg_days_commits_import_library' feature, denoting the 

average number of days between commits that import 

libraries, stands out as paramount. This metric suggests 

that a developer integrating new libraries frequently might 

be inclined towards proactive experimentation and 

learning. Similarly, the 'commits_import_library' feature, 

which reflects the number of such commits, can hint at the 

intricacy of applications a developer crafts. The 

'time_of_activity' metric, capturing the span of a 

developer's activity, indicates sustained technological 

interest, which is crucial for continuous learning and 

expertise development. 

Yet, insights aren't solely derived from GitHub activity.  

Additionally, 'commits_client_files', which counts 

commits altering at least one client file, sheds light on a 

developer's active involvement and contributions in a 

project's primary language. This could be interpreted as a 

sign of a developer’s commitment to a project and their 

expertise in the project’s main language. Integration of 

Stack Overflow features enriches our understanding. For 

instance, 'upvotes', ranking as the third most influential 
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feature, accentuates the community's acknowledgment of 

a developer's input. A high 'tag_score' signifies domain-

specific expertise. Metrics like 

'average_score_per_answer' and 'first_answers' 

encapsulate both the caliber and the regularity of a user's 

contributions—the former indicating consistent answer 

quality and the latter reflecting active community 

participation. 'Accepted_answers' further vouch for the 

quality and pertinence of a developer's knowledge 

dissemination. While GitHub metrics provide a window 

into a developer's coding habits, Stack Overflow metrics 

delve into their community engagement and problem-

solving acumen. Collectively, insights from both platforms 

paint a holistic picture of a developer's expertise in a 

specific technology. 

4.1 DISCUSSION  

Our results underscore the potential of integrating data 

from multiple platforms to enhance the precision of 

evaluating developers' expertise, especially those involved 

in serverless functions. The incorporation of Stack 

Overflow features alongside GitHub data, particularly in 

the context of serverless function development, has shown 

promising improvements in our model's performance. 

In the industrial landscape, our model suggests a 

nuanced approach to recruitment, talent acquisition, and 

team optimization, especially for roles centered around 

serverless functions. By amalgamating coding practices 

and community engagement metrics from platforms like 

GitHub and Stack Overflow, there's potential for a more 

in-depth insight into a developer's skills and contributions 

in the serverless domain. Such insights could refine the 

hiring process, potentially leading to more targeted 

training and role assignments. Although our study's focal 

point is the serverless function domain, the method might 

be adaptable to other technological areas. For new 

instances, our model provides a framework for assessing 

individual developer profiles, potentially offering 

predictions on their expertise levels based on the features 

we've identified. 

In the academic realm, our model could serve as a 

potential reference for research, curriculum development, 

and student assessment in serverless function development 

and beyond. It might offer insights for studies exploring 

developer behavior and proficiency, especially when 

integrating data from multiple sources. By evaluating 

students' real-world coding activities, there's an 

opportunity for educators to offer feedback that 

encompasses both theoretical knowledge and practical 

application, promoting a balanced learning experience. 

 

 

 

 
 

Figure 7: SHAP Summary Plot 
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5. Threats to Validity 
Research, especially in the domain of empirical studies, is 

often subject to various threats that might affect the 

generalizability and validity of the results. In this section, 

we discuss potential threats to the validity of our study and 

the measures we've taken to mitigate them. 

 

Model Bias: While we experimented with multiple 

machine learning algorithms, each model comes with its 

inherent biases. For instance, tree-based models like 

Random Forest might overfit on certain datasets, while 

linear models like Logistic Regression might not capture 

non-linear relationships effectively. 

 

Hyperparameter Tuning: Although we employed 

GridSearchCV for exhaustive hyperparameter tuning, 

there's always a possibility that a different combination 

might yield slightly better results. 

 

Feature Selection: The inclusion or exclusion of features 

can impact model performance. Our hybrid feature 

selection method combined heuristic labeling with kNN 

label imputation. However, heuristic labeling, despite 

aiding dataset balance, may not always reflect the 

intricacies of developer expertise. Likewise, while kNN is 

widely used, it can be susceptible to mislabeling due to 

noisy neighbors. 

 

Dataset Specificity: Our study is based on specific 

datasets tailored to certain programming languages. The 

findings might not be directly generalizable to other 

languages or platforms. 

 

Data Absence from Other Platforms: The lack of data 

from platforms like LinkedIn and TopCoder may limit our 

model's comprehensiveness. Missing insights from these 

platforms could challenge the external validity of our 

findings, potentially overlooking essential indicators of 

developer expertise. 

 

Labeling and Classification: The classification of 

developers into categories like Novice, Intermediate, and 

Expert is based on certain metrics and might not capture 

the complete essence of a developer's expertise. 

 

Feature Interpretation: While we employed the SHAP 

method for feature importance analysis, the interpretation 

of the importance of certain features might vary among 

experts. 

 

Self-Assessment Accuracy: While we operated under the 

assumption that the self-assessments provided by 

contributors were accurate reflections of their expertise 

levels, there's an inherent risk associated with relying on 

subjective evaluations. Contributors might have 

overestimated or underestimated their skills due to factors 

                                                           
8 https://github.com/aref98/Evaluating-Developer-Expertise-in-

Serverless- Functions-by-Mining-Activities-from-Multiple-Platforms 

like overconfidence, modesty, or a lack of clear 

understanding of the assessment criteria. This potential 

discrepancy between perceived and actual expertise could 

influence the validity of our findings, especially if these 

self-assessments were used as ground truth or reference 

points in our analysis. 

 

6. Conclusion and Future Directions 
In this research, we ventured into the domain of predicting 

developer expertise specifically within the realm of 

serverless functions, using features extracted from GitHub 

and Stack Overflow. Our findings underscored the value 

of multi-platform data integration in providing an in-depth 

understanding of developer expertise. 

In our research, we explored two key areas. The first 

area of exploration (RQ1) revolved around identifying the 

most effective machine learning algorithms for evaluating 

developer expertise. Our journey led us to the Random 

Forest (RF) model, which consistently demonstrated 

robust performance across multiple datasets. We also 

observed commendable performance from the Support 

Vector Machine (SVM) model, particularly in terms of 

precision. 

The second area of exploration (RQ2) focused on 

uncovering the features or metrics that best indicate a 

developer’s expertise in serverless functions. Our 

exploration revealed that the top 5 indicators were 

‘avg_days_commits_import_library’, 

commits_import_library’, ‘upvotes’, ‘time_of_activity’, 

and ‘commits_client_files’. We used the SHAP method for 

feature importance analysis to arrive at these insights. 

Our research adds to the field by predicting developer 

expertise in serverless functions, an area not widely 

studied before. We used 22 features from GitHub and 

Stack Overflow, which is more than what’s typically used 

in this domain. This large set of features gives us a detailed 

look at developer activities and expertise. While there are 

other studies [4], [5] that also use data from multiple 

platforms, our study stands out because we use both 

GitHub and Stack Overflow data and a larger set of 

features. Our results agree with other studies that find it 

useful to combine insights from multiple platforms. But 

our research goes one step further by showing how this 

approach works well for serverless functions. 

In addition, one of the tangible outputs of our research 

is the creation and public release of six language-specific 

datasets, representing our target languages. By making 

these datasets publicly available8, we not only aim to 

contribute to the academic community but also hope to 

foster further research in this area. 

Our current investigation has also highlighted the 

potential benefits of integrating insights from platforms 

such as Stack Overflow. Such an integrative approach, 

which merges data from varied sources, can offer richer 

insights into the multifaceted nature of developer 

expertise, especially in the context of serverless functions. 
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As we move forward, there are multiple avenues we can 

explore to build upon our current findings. One potential 

direction is to widen our data collection to encompass a 

more extensive range of repositories, offering a deeper 

dive into developer activities. Another promising avenue 

is to investigate other metrics of developer expertise, such 

as peer reviews or code quality assessments, which might 

yield a more nuanced understanding. Finally, considering 

the vast ecosystem of developer platforms, integrating data 

from platforms like GitLab, Bitbucket, and LinkedIn, as 

well as competitive coding platforms like TopCoder, can 

provide a more rounded view of developer behavior and 

skills. This could be the next step in further refining and 

expanding our understanding of expertise in serverless 

function development. 
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