
Journal of Computer and Knowledge Engineering, Vol. 6, No. 1, 2023. (1-14) 1

DOI: 10.22067/cke.2022.63258.0

A Novel Two-Step Classification Approach for Runtime

Performance Improvement of Duplicate Bug Report Detection*
Research Article

Behzad Soleimani Neysiani1 Seyed Morteza Babamir 2

Abstract: Duplicate Bug Report Detection (DBRD) is one
of the famous problems in software triage systems like
Bugzilla. There are two main approaches to this problem,
including information retrieval and machine learning. The
second one is more effective for validation performance.
Duplicate detection needs feature extraction, which is a time-
consuming process. Both approaches suffer runtime issues,
because they should check the new bug report to all bug
reports in the repository, and it takes a long time for feature
extraction and duplicate detection. This study proposes a
new two-step classification approach which tries to reduce
the search space of the bug repository search space in the first
step and then check the duplicate detection using textual
features. The Mozilla and Eclipse datasets are used for
experimental evaluation. The results show that overall,
87.70% and 89.01% validation performance achieved
averagely for accuracy and F1-measure, respectively.
Moreover, 95.85% and 87.65% of bug reports can be
classified in step one very fast for Eclipse and Mozilla
datasets, respectively, and the other one needs textual feature
extraction until it can be checked by the traditional DBRD
approach. An average of 90% runtime improvement is
achieved using the proposed method.
Keywords: Duplicate Detection, Bug Report, Machine
Learning, Runtime Performance, Search Space Reduction

1. Introduction
Duplicate detection is one of the essential and time-
consuming operations in social communities like software
repositories of bug reports (e.g., Bugzilla) or question and
answering forums (e.g., Stack Overflow). There has been
about 30% to 60% duplicate bug reports in various software
repositories, especially open-source projects, and it is
growing every day with growing their communities [1].
Duplicate detection needs to compare a new bug report to all
bug reports of the repository. The comparing process is not
straightforward because bug reports contain many data fields
with various domains (e.g., identity, temporal, categorical,
and textual domains). The textual data fields cannot be
compared simply because two texts may have the same
content but different forms and words. So, feature extraction
should be used to convert bug reports as unstructured data to
structured data [2]. There are many efforts on feature
extraction, like using time difference of temporal data fields
[3], textual features considering term frequencies [4], and
subsequence matching [5, 6], using similarity of bug reports
to specific topics as contextual features [7, 8, 9]. By the way,
there are some issues for feature extraction, especially for
textual data fields, e.g., stemming, removing the stop words,
correcting typos [10, 11, 12, 13, 14], which can improve the

* Manuscript received: 2020 May 2, Revised, 2020 November 2, Accepted, 2022 May 17.
1. PhD Candidate, Department of Software Engineering, University of Kashan, Kashan, Iran.
2 Corresponding author. Professor, Department of Software Engineering, University of Kashan, Kashan, Iran.

Email: babamir@kashanu.ac.ir

validation performance of duplicate bug report detection
(DBRD).

After feature extraction, the features of a pair of bug
reports, including a new bug report and another one from the
repository, should be checked for duplication. The
Information Retrieval (IR) approach checks the similarity of
these features to the features of other pairs of bug reports. If
the two feature vectors were very similar, they would be
reported as duplicates. Machine Learning (ML) approach
tries to learn the features of duplicate pairs and predict the
label of a new pair without comparing it to other pairs,
usually [15]. ML approach is a little faster than IR approach
because, after feature extraction, it uses the ML algorithm to
predict the duplication, but IR approach compares the feature
to other features that take a long time again [16].

Duplicate detection is a binary operator that needs two
bug reports, and we cannot say a bug report is duplicated
without considering other bug reports. It is challenging
because of the massive number of bug reports in the
repository. If we suppose every feature extraction and
duplicate detection using ML algorithms take just 1 second
–even though it can take more time based on the feature
extraction methods, especially for textual features-, for a bug
report repository containing 10,000 bug reports, it takes
10,000 seconds, which is about 2.7 hours. So, this approach
cannot be used for online DBRD. Besides, some feature
extractors like the longest common subsequence sometimes
take more than 1 second to calculate.

Offline DBRD has no time limit. It has a repository of bug
reports and tries to find duplicate bug reports like a clustering
problem that categorizes data in some clusters. Here, the
clusters contain those bug reports that are related and
duplicated. Online DBRD tries to find a duplicate of new bug
reports as it wants to be submitted in the repository and even
helps the writer avoid submitting duplicated bug report real-
time. The continuous query is a kind of online DBRD that
repeatedly checks duplications [17, 18], and the time
complexity is very important in the online DBRD versus the
offline version. Such complexity is the major problem of
online DBRD, which is currently lacking knowledge.

This study focuses on the runtime performance as a
significant online DBRD objective to avoid comparing a new
bug report to all bug reports of the repository in online
DBRD. The significant difference between this study and
related works is that this stufy considers runtime challenges
for online DBRD, not just the validation performance. The
main contributions of this study are:
1. Introducing a novel two-step classifying approach for

improving the runtime performance of DBRD based on
two light and full classifiers. The first one uses faster and

https://cke.um.ac.ir/article_43120.html
https://cke.um.ac.ir/article_43120.html
https://cke.um.ac.ir/article_43120.html
https://cke.um.ac.ir/article_43120.html
https://orcid.org/0000-0002-1645-4002

2 Seyed Morteza Babamir et. al.: A Novel Two-Step Classification Approach …

easier features, and the second one uses all the time-
consuming features;

2. Using voting ensemble approach to improve the

validation performance of the proposed online and two-

step DBRD.
This study’s fundamental hypothesis is that a two-step

filtering-based classification approach reduces the feature
extraction runtime for online DBRD.

Section 2 will review the machine learning approach, and
Section 3 introduces our proposed machine learning
algorithm. Section 4 includes the results of the experiments,
and Section 5 concludes the study.

2. Literature review

The following first sub-section will introduce methodology
of Duplicate Bug Report Detection (DBRD) and then the
feature extraction methods will be illustrated to clear
demonstration of examples about proposed method.
Moreover, a comparative tabular review on the related works
will be summarized to show lack of runtime improvement in
state-of-the-arts.

2.1. The methodology of Duplicate Bug Report
Detection (DBRD)
Figure 1 shows the traditional approach of duplicate bug
report detection (DBRD). The bug reports of a dataset will
be pre-processed in the first step (box 2). There are many
pre-processing operations such as dealing with null values,
homogenizing data types, cleaning textual fields, and
preparing for feature extraction. Then pairs of bug reports
should be selected for duplicate checking (box 4).

This methodology is for offline DBRD, but it can also be

used for online DBRD. In online DBRD, there is no need to

select pairs of bug reports. The new bug report can be paired

with all bug reports of the repository instead. Then, feature

extraction will be used to extract various types of features

such as categorical, temporal, textual, and contextual

features (box 6) [2]. The feature selection [19] or instance-

based learning [20] can be used at this time after feature

extraction and before the train and test process. The feature

vector sets will be divided into two parts for offline usage,

including some vectors for training a machine learning (ML)

algorithm and others for testing the ML (outputs of box 7).

Now it is time to use an ML for training the features of

duplicated pairs (box 8). The trained ML will then be used to

predict the test set label (box 10). Four modes occurr here

based on the prediction label and the real one, which is

tabulated in Table 1. The validation performance metrics of

the evaluation process can be calculated based on Table 1.

There are many reliable and robust metrics for this purpose.

Accuracy refers to true predictions for duplication or non-

duplication status of all bug reports (1).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (𝑇𝑃)

𝑇𝑜𝑡𝑎𝑙 (𝑇𝑇)
 (1)

Precision indicates the exactitude of duplication detection

of duplicates as (2).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠 (𝑇𝐷)

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠
 (2)

Recall shows the memory of an ML algorithm for actual

duplicates as (3).

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝐷

𝐴𝑐𝑡𝑢𝑎𝑙 𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠=𝑇𝐷+𝐹𝑁𝐷
 (3)

F1-measure or F1-score is a harmonic mean of precision

and recall as (4).

𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

1. Dataset

of Bug Reports

2. Preprocess:

1- Null Values

2- Convert Data Types

3- Cleaning Text

3. Ready

Dataset

6. Feature Extraction:
1- Categorical

2- Textual

3-Contextual

 - 4 Temporal

7. Feature Vector

Set of Bug Reports

8- Create a

Duplicate Item

Finder Model

9. Duplicate

Finder Model

10. Finding

Duplicates

11. Predicted

Bug Reports

12. Evaluation

13. Validity

Performance

Metrics

Test

Train

4. Selecting

Pairs of BRs5. Pairs of

Bug Reports

Figure 1. The methodology of Duplicate Bug Report Detection using Machine Learning Algorithms [15]

Table 1. Modes of the duplicate detection

Actual →

/Predict ↓
Actual Dup (AD) Actual Non-Dup (AND) Total Actual Status

Predicted Duplicated True Dup (TD) False Dup (FD) AD = TD+FND

Predicted Non-Duplicated False Non-Dup (FND) True Non-Dup (TND) AND = FD+TND

Total Prediction True Prediction (TP=TD+TND) False Prediction (FP=FD+FND)
Total (TT =

TP+FP=AD+AND)

Journal of Computer and Knowledge Engineering, Vol. 6, No. 1, 2023. 3

2.2. Feature extraction methods

The most crucial bug reports’ fileds are textual which can not

be used by machine learning techniques and need to be

converted to nominal or numerical data which is called

feature extraction. There are many feature extraction types in

state-of-the-art, which can be categorized as:

1. Textual features extract the similarity of textual fields of

bug reports using natural language processing and

information retrieval techniques. The tokenizing sentences

and extracting words, removing useless and frequent words

known as stop words, removing conjunctions and

punctuation, removing redundant words, and stemming

words to find the pure form of each noun or verb. The

process of counting the same words in two bug reports

requires pre-processing.

The N-gram model compares the n-sequence-word of two

text fields. Increasing n in n-gram indicates greater similarity

between two documents. TF and IDF refer to the frequency

of a term in a document and in a set of documents,

respectively. Equation 1 and 2 are commonly used in a

DBRD context, and the BM25F model is built based on these

equations [4]. An occurrence of a term t in document d,

which can be a textual field of a bug report in a bug triage

system is checked through Equation 1. Parameter K is the

number of textual fields in document d, and f is an index of

the textual fields of a bug report. The weight factor wf is

based on the importance of each text field, the length is the

number of characters in term t, and average_lengthf is the

average length of all words in this field. The importance of a

term t of document D is calculated using Equation 2 in all

bug reports of the software repository, which contains many

documents d, and each document contains many terms t. The

result of BM25F is an aggregated value representing the

weighted average of the TF and IDF approaches for all

standard terms in both texts d and q, and K1 is a constant for

preventing division by zero in Equation 3.

𝑇𝐹𝐷(𝑡, 𝑑) = ∑
𝑤𝑓×𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠(𝑑[𝑓],𝑡)

1−𝑏𝑓+
𝑏𝑓×𝑙𝑒𝑛𝑔𝑡ℎ

𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑙𝑒𝑛𝑔𝑡ℎ𝑓

𝐾
𝑓=1 (1)

𝐼𝐷𝐹(𝑡, 𝐷) = 𝑙𝑜𝑔
𝑁

|{𝑑∈𝐷:𝑡∈𝑑[𝑓]}|
 (2)

𝐵𝑀25𝐹𝑒𝑥𝑡(𝑑, 𝑞) =

∑ 𝐼𝐷𝐹(𝑡, 𝑇𝑜𝑡𝑎𝑙 𝑇𝑒𝑥𝑡 𝐹𝑖𝑒𝑙𝑑𝑠 𝑜𝑓 𝐵𝑢𝑔 𝑅𝑒𝑝𝑜𝑟𝑡𝑠)

𝑀𝑡∈𝑑[𝑓]∩𝑞[𝑓]

×
𝑇𝐹𝐷(𝑡, 𝑑[𝑓])

𝐾1 + 𝑇𝐹𝐷(𝑡, 𝑑[𝑓])

(3)

There are two major text fields in bug reports: title and

description. It should be noted that at least one of the title and

description fields is non-empty [10]. Comparing the different

combination of these two fields requires more computational

overhead and is time-consuming for feature extraction.

Sometimes, simple features can also be extracted from

texts, such as text size (length of text in characters or number

of words in the text) [21], which is shown in Equation 4 and

where the norm (||) refers to the size of bug reports in words,

and abs is the absolute value. There are many typos in bug

reports [10], which have adverse side impacts on textual

features and should be corrected as a pre-processing phase.

𝑆𝑖𝑧𝑒𝐷𝑖𝑓𝑓(𝑑, 𝑞) = 𝑎𝑏𝑠(|𝑑[𝑓]| − |𝑞[𝑓]|) (4)

The interconnected typos are usual in software bug reports

because of the identity of variables and methods in the stack

traces, or sometimes they record user-typing mistakes. Some

algorithms proposed a correction of these typos [11, 12], but

this phase is more complicated and needs additional effort to

find the best candidates among the suggested corrections

based on the context of a bug report. A new labeled dataset

is introduced for typo corrections in the bug report context in

which the correction algorithms have about 80% accuracy,

and the effectiveness of typo correction on DBRD is an

unresolved issue [13].

It is also possible to use other textual features, such as

extracting the length of the longest common subsequence

(LCS) in two texts as a textual feature and some other

derived features (such as the number of words in LCS [5, 6]),

or by using word embedding vectors [22]. The bag of words

is another textual feature extraction method that considers

different textual fields of bug reports as a bag and compares

textual features of each bag with other bags.

The time complexity of textual feature extraction methods

is greater than other feature types. The bag of words

produces many textual features that are very time-

consuming. Additionally, the extracted features may be

unnecessary and need dimension reduction to select the best

features, which causes a further deceleration of the

workflow, and is not used in state-of-the-art features [23].

The technique of word embedding has been used regularly

to extract the frequency of each term considering nearby

terms in a bug report textual field [22, 24]. This technique

suffers from high dimensionality and a sparsity problem,

because it considers all terms in the bug report repository as

vectors and counts the frequency of each term in a specific

bug report for nearby terms to convert the unstructured

textual field to a numeric structured vector. This method is a

type of word2vec model. It is a very time and memory

intensive and is appropriate for training neural network

models, especially deep models. The neural network models

are especially appropriate for solving non-linear problems,

but related works showed that DBRD is a rule-based problem

which can be solved by linear models as well [5, 7].

Therefore, it is better to avoid using this technique until it

becomes necessary.

2. Temporal feature is a type of feature that shows an

interval time between two bug reports (Equation 5 and 6) in

the seconds or milliseconds [3, 25]. Usually, when a new

release of the software is published, many users report

duplicate bugs, and so there is a relationship between the

submission dates of bug reports. The lesser value of these

features indicates the highest probability of similarity of two

bug reports. However, some researchers use a timing

window instead of temporal features to limit the search space

4 Seyed Morteza Babamir et. al.: A Novel Two-Step Classification Approach …

of the duplicate finder and find the duplication in a specific

period [26].

𝑓𝐼𝑑(𝑑, 𝑞) = 𝑎𝑏𝑠(𝑑. 𝐵𝑢𝑔𝐼𝑑 − 𝑞. 𝐵𝑢𝑔𝐼𝑑) (5)

𝑓𝐷𝑎𝑡𝑒(𝑑, 𝑞) = 𝑎𝑏𝑠(𝑑. 𝑂𝑝𝑒𝑛𝐷𝑎𝑡𝑒 − 𝑞. 𝑂𝑝𝑒𝑛𝐷𝑎𝑡𝑒) (6)

3. Structural features are calculated based on runtime

information [27] and stack traces [28] in bug reports. Only

some bug reports have this type of information in their

description; therefore, it is not possible to calculate these

features for all of the bug reports. Textual similarity

techniques can also be used to calculate these features; new

methods convert the stack trace to a graph and extract some

graph-based features like number of nodes, number of

incoming and outgoing edges of nodes, and similar metrics.

The hidden Markov model can also be used to investigate the

similarity of chain on method calls in stack traces as a feature

[29].

4. Categorical feature is a type of feature that shows how

much two bug reports are related [4] using equality

comparisons or subtraction of categorical fields. These

features can be calculated by either checking the equality of

two nominal values like (7), (8), and (9) or subtracting two

ordinal or interval values like (10), (11), (12), and (13) in two

bug reports d and q [4, 25]. Both (10) and (11) or (12) and

(13) are similar, and both pairs always generate a number

less than 1. However, (11) and (13) sometimes may be

invalid because of division by zero, for the same priorities or

variations, which can be considered as zero. Perhaps Lazar

et al. [25] wrote or misused the equations, but these new

features can also be studied. The letters “A” and “S” at the

end of these equations refers to “Addition” and

“Subtraction” in their denominators, respectively.

 𝑓𝑃𝑟𝑜𝑑𝑢𝑐𝑡(𝑑, 𝑞) = {
1 𝑖𝑓 𝑑. 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 = 𝑞. 𝑃𝑟𝑜𝑑𝑢𝑐𝑡
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7)

 𝑓𝐶𝑜𝑚𝑝𝑎𝑛𝑦(𝑑, 𝑞) = {
1 𝑖𝑓 𝑑. 𝐶𝑜𝑚𝑝𝑎𝑛𝑦 = 𝑞. 𝐶𝑜𝑚𝑝𝑎𝑛𝑦
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(8)

 𝑓𝑇𝑦𝑝𝑒(𝑑, 𝑞) = {
1 𝑖𝑓 𝑑. 𝑇𝑦𝑝𝑒 = 𝑞. 𝑇𝑦𝑝𝑒
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (9)

 𝑓𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝐴(𝑑, 𝑞) =
1

1+|𝑑.𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦−𝑞.𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦|
 (10)

 𝑓𝑃𝑟 𝑖𝑜𝑟𝑖𝑡𝑦𝑆(𝑑, 𝑞) =
1

1−|𝑑.𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦−𝑞.𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦|
 (11)

 𝑓𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴(𝑑, 𝑞) =
1

1+|𝑑.𝑉𝑒𝑟𝑠𝑖𝑜𝑛−𝑞.𝑉𝑒𝑟𝑠𝑖𝑜𝑛|
 (12)

 𝑓𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝑆(𝑑, 𝑞) =
1

1−|𝑑.𝑉𝑒𝑟𝑠𝑖𝑜𝑛−𝑞.𝑉𝑒𝑟𝑠𝑖𝑜𝑛|
 (13)

5. Topical or contextual feature is a type of feature that is

used to compare textual fields of a bug report with a word

list containing exclusive content, like (1) security, (2)

performance of software [30], (3) the anonymous topics

made by latent Dirichlet analysis (LDA) [31], or (4) latent

semantic indexing (LSI). The results obtained from these

semi-textual features indicate how much the report involves

specific contexts; thus, the conceptual category for bug

reports. Contextual features of two bug reports can be

compared as a vector by the cosine similarity equation or the

Manhattan similarity individually to expand the feature

space of bug reports [7].

2.3. Machine learning algorithms

As Table 2 shows, so much effort has been done over the past

decade to detect duplicate bug reports based on the above

descriptions. The numbered columns refer to textual,

identical, temporal, structural, categorical, and contextual

features. Some features (textual, temporal, and categorical)

are essential, and the duplicate detection process should

mention them, while contextual features are less important

[7]. Textual features can also cover structural features, even

though structural features represent another aspect of

similarity between bug reports. Further, all bug reports

cannot calculate them, except those that have stack trace(s).

Contextual features need contextual attributes as some

derived attributes based on textual fields can be calculated

and stored in preprocessing phase in clearning texts section

to reduce feature extraction runtime.

Most state-of-the-art approaches use ML algorithm.

Almost all related works have focused on improving the

validation performance using new feature extraction

methods [5, 7, 8, 32, 33] and/or using various ML algorithms

like deep learning [24, 34, 35, 36]. Table 2 shows a brief

review of related and state-of-the-art works using ML

algorithms. As Table 2 hows, none of these related works

mentioned the search space and runtime challenges of

duplication-checking, except a continuous query study that

tried to improve validation performance on the continuous

query as an online challenge [17]. The related works usually

choose a part of pairs of bug reports randomly to evaluate

their methods without considering runtime challenge,

although if they want to compare a new bug report with the

entire database, it was very time-consuming. As there is no

related work for the DBRD runtime problem, the literature

review is limited to state-of-the-art studies' general

parameters and features.

Reviewing the literature showed that runtime challenge is

considered for the first time for DBRD. Therefore, we will

choose the best current methods for comparison. Besides, the

literature review shows that the selected parameters for

experiments are almost the same as state-of-the-art.

Journal of Computer and Knowledge Engineering, Vol. 6, No. 1, 2023. 5

Table 2. Review of related works in state-of-the-art using machine learning algorithms

Ro
w

Ref Year Machine Learning Algorithms Dataset Validation Metrics

1 Bettenburg et al. [38] 2008 SVM, Naïve Bayes, Eclipse Accuracy

2 Sun et al. [39] 2010 SVM
Eclipse, Mozilla,

OpenOffice
Recall

3 Nguyen et al. [31] 2012 LDA, Ensemble Averaging
Eclipse, Mozilla,

OpenOffice
Accuracy

4 Tian et al. [40] 2012 SVM Mozilla
F1-measure, TP and

TN Rates

5 Liu et al. [41] 2013 SVM Eclipse, Mozilla F1-measure, MAP

6
Alipour et al. [30],

[42]
2013

0-R, C4.5, kNN, Logistic Regression,
Naïve Bayes

Android
Accuracy, Kappa,

ROC, AUC

7 Feng et al. [43] 2013 SVM, Naïve Bayes, Decision Tree MeeGo
Accuracy, Precision,
Recall, MAP, TP and

TN Rates

8 Lazar et al. [25] 2014
kNN, Linear SVM, RBF SVM, Naïve
Bayes, Decision Tree, Random Forest

Eclipse, Mozilla,
OpenOffice, NetBeans

Accuracy, Precision,
Recall, AUC

9 Tsuruda et al. [44] 2015 SVM Eclipse, OpenOffice
Accuracy, Precision,

Recall

10
Aggarwal et al. [8],

[9]
2015,
2017

0-R, Naïve Bayes, Logistic
Regression, SVM, C4.5

Eclipse, Mozilla,
OpenOffice

Accuracy, Kappa

11
Sharma and Sharma

[45]
2015 SVM Bugzilla

ROC, TP and FP
Rates,

12 Hindle et al. [46] 2016
0-R, C4.5, kNN, Logistic Regression,

Naïve Bayes
Android, Eclipse,

Mozilla, OpenOffice
Accuracy, Kappa,
ROC, AUC, MAP

13 Lin et al. [23] 2016 SVM
Apache, ArgoUML,

SVN
Recall

14 Pasala et al. [47] 2016 kNN Chrome Recall

15 Rakha et al. [48] 2016
Random Forest

Eclipse, Mozilla,

Bugzilla, SeaMonkey
Precision, Recall, F1-

measure, AUC

16 Deshmukh et al. [34] 2017
Siamese Convolutional Neural

Networks (CNN), Long Short-Term
Memory (LSTM)

Eclipse, OpenOffice,
NetBeans

Accuracy, Recall

17 Budhiraja et al. [24] 2018 Deep Neural Network Mozilla, OpenOffice Recall

18 Su and Joshi [49] 2018 Logistic Regression Oracle Recall

19 Xie et al. [36] 2018 Convolutional Neural Networks
Hadoop, HDFS,

MapReduce, Spark
Accuracy, F1-

measure

20
Soleimani Neysiani

and Babamir [5]
2019

Naïve Bayes, Decision Tree, Linear
Regression, Perceptron Neural

Network, Bayesian Boosting by
Decision Tree

Android, Eclipse,
Mozilla, OpenOffice

Accuracy, Precision,
Recall

21
Soleimani Neysiani

and Babamir [7]
2019

Naïve Bayes, Decision Tree, Linear
Regression, Auto MLP, Bagging

ensemble of Decision Tree

Android, Eclipse,
Mozilla, OpenOffice

Accuracy, Precision,
Recall

22
Soleimani Neysiani
and Babamir [14]

2019

Naïve Bayes, k-Nearest
Neighborhood, Decision Tree, Linear

Regression, Auto Multi-Layer
Perceptron, Deep Learning with H2O

Android
Accuracy, Precision,

Recall

23
Soleimani Neysiani
and Babamir [16]

2020
k-Nearest Neighborhood, Linear

Regression
Android

Accuracy, Precision,
Recall, F1 Measure

24
Soleimani Neysiani et

al. [50]
2020

Linear Regression, Decision Tree,
Auto Multi-Layer Perceptron, Deep

Learning with H2O

Android, Eclipse,
Mozilla, OpenOffice

Accuracy, Precision,
Recall, F1 Measure

25
Soleimani Neysiani et

al. [20]
2020

Linear Regression, Decision Tree, k-
Nearest Neighborhood

Android, Mozilla,
Accuracy, Precision,

Recall

26 Kukkar et al. [51] 2020 Deep Learning (CNN)
Eclipse, Mozilla,

OpenOffice, Gnome,
NetBeans, Firefox

Accuracy, Precision,
Recall, F1 Measure,

Recall @k

27 Kim and Yang [52] 2021
Naïve Bayes, Random Forest, CNN,

LSTM, CNN+LSTM
Eclipse, Mozilla,

Apache, KDE
Accuracy, Precision,
Recall, F1 Measure

28 Zhang et al. [53] 2022 Deep Learning (Dual Channel-CNN)
Eclipse, Mozilla,

Hadoop, Spark, Kibana,
VS Code

Recall @k

6 Seyed Morteza Babamir et. al.: A Novel Two-Step Classification Approach …

3. Proposed method

Calculating the textual features is very time-consuming. The

main idea of the proposed approach is dividing the duplicate

detection process into two phases: 1) trying to predict the

duplication status using light features like non-textual

features, which can be calculated quickly; 2) predicting the

duplication status using all features, including the textual

features that are more time-consuming. Figure 2 shows the

methodology of the proposed approach.

Steps 1 to 5 as the pre-processing phase (red box) are

similar to the traditional methodology of duplicate bug report

detection (DBRD), but the splitting data for evaluation is

held on Step 6 here (box 6). The pairs of bug reports must be

divided into two different parts to train and test machine

learning (ML) algorithms. It is better to split data samples by

considering the distribution of duplicated pairs in both parts,

which have the same percentage of duplicated pairs. After

splitting the pairs of bug reports, the training phase (green

box) starts, which uses the training pairs for feature

extraction (box 6.1.2) but without textual features. Then an

ML algorithm is used to train the non-textual features of pairs

of bug reports (box 6.1.4).

On the other hand, textual features of pairs must be

extracted, too (box 6.1.6), and appended to non-textual

features (box 6.1.8) till another ML algorithm can be trained

for all kinds of features, including textual and non-textual

features (box 6.1.10). Now we have two ML algorithms as

duplicate item finders (DIF).

The test phase (blue box) will be started after the training

phase is finished, and the test pairs will be feature extracted

using non-textual features, too (boxes 6.2.1, 6.2.2, and

6.2.3). It is time to evaluate testing pairs' features using the

first light DIF (box 7). The results of ML algorithms usually

contain two values: 1) The predicted label, which is the status

of a pair of bug reports as duplicated or non-duplicated here;

2) The confidence of the ML algorithm for this prediction.

Every ML algorithm can predict the confidence level in a

customized method. For example, the Naïve Bayes

confidence is the algorithm’s direct calculated probability

when the confidence value is real. The k-NN confidence is

the number of the k neighbors with the predicted class

divided by k, and the single values are weighted by distance

in weighted predictions. The SVM has a reasonable

estimation of a binomial class problem's positive class (14),

where the function_value is the SVM prediction. This

approach is also used by the RapidMiner tool [54].

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =
1

1+𝑒−𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑣𝑎𝑙𝑢𝑒 (14)

1. Dataset

of Bug Reports

2. Preprocess:

1- Null Values

2- Convert Data Types

3- Cleaning Text

3. Ready

Dataset

14. Finding

Duplicates

15. Predicted

Bug Reports

16. Evaluation

17. Validity

Performance

Metrics

Test Train

4. Selecting

Pairs of BRs
5. Pairs of

Bug Reports

6.1.4. Create a Duplicate

Item Finder Model using
a Machine Learning

Algorithm

6.1.2. Feature Extraction:

1- Categorical
3-Contextual

 - 4 Temporal

6. Split Pairs

for Validation

6.1.5. Duplicate

Finder Model for

Non-Textual Features

6.1.1. Training

Pairs Samples
6.2.1. Testing

Pairs Samples

6.1.3. Non-Textual

Feature Vector Set of

Pairs of Bug Reports

7. Finding

Duplicates

6.2.2. Feature Extraction:

1- Categorical
3-Contextual

 - 4 Temporal

6.2.3. Non-Textual

Feature Vector Set of

Pairs of Bug Reports

9. Check the Confidence

of Prediction which is

enough?

8. Predicted Status

and its Confidence

6.1.10- Create a

Duplicate Item Finder
Model using a Machine

Learning Algorithm

6.1.6. Feature Extraction:
2- Textual

6.1.11. Duplicate

Finder Model for Total

Features

6.1.7. Textual Feature
Vector Set of Pairs of Bug

Reports

6.18. Combine

Feature Vector Sets

6.1.9. Total Feature Vector

Sets of Pairs of Bug Reports

Yes

10. Feature Extraction:

2- Textual

11. Textual Feature

Vector Set of Pairs of

Bug Reports

12. Combine Feature

Vector Sets

13. Total Feature

Vector Sets of Pairs

of Bug Reports

No

Test
Train

Preprocessing

Figure 2. The methodology of Duplicate Bug Report Detection using the proposed two-step Classification Approach of Machine

Learning Algorithms

Journal of Computer and Knowledge Engineering, Vol.6 , No.1. 2023. 7

Now it is time to check the confidence of predicted status

(box 9). If the confidence is more than a specific threshold,

e.g., 90%, the prediction can be accepted; otherwise, the

textual features of that pair should be extracted too (box 10),

and the combined features (boxes 12 and 13), including

textual and non-textual features of that pair of the testing set

must be used for second DIF (box 6.1.11), which considers

all kinds of features to predict the status of this pair (box 14).

Then the predicted status (box 15) is used to compare the real

status of that pair (box 16) and evaluate the validation

performance metrics of DIF as the final result of DBRD (box

17).

For example, consider following three real bug reports in

Table 3 from Eclipse dataset [4, 46, 55], where the two first

ones already exist in the bug reports database and the third

one is a new or target bug report that is compared to other

existing bug reports. Their identical fields include bug report

id and master id which is the bug report id of main bug report

for duplicate bug reports and it is null for those bug reports

which are not duplicate. The categorical fields determine

detail categories for each bug report like the software product

and component, The status field shows the last state of bug

report which can be new, assigned to developer for fixing,

fixed, duplicate, and so on. The textual fields are the main

fields of every bug report because they are the main fields to

find uniqueness or duplication of each bug report.

The contextual fields are derived from textual fields and

as mentioned before, can be calculated and stored once time

to be used later for feature extraction in comparison with

other bug reports. There can be more contextual fields in

various domains based on the software triage system

modules or external aspects like software engineering topics.

The selected example consider four general, networking,

cryptography, and java conexts to calculate contextual fields,

but it is possible to build dictionaries based on each module

of software triage system and calculate contextual fields for

those topics based on built dictionaries.

Table 4 shows some extracted features for comparing the

new bug report to existing bug reports in the database. The

class label shows that the selected pair is really duplicate or

not based on master ID field in the dataset. For training

dataset, the master ID fields are filled, so the training dataset

including training pairs have deterministic label. In test

phase, the label should be predicted using machine learning

algorithms. Various types of features based on state-of-the-

art are calculated and determined in Table 4 and their name

and equations are referenced in second column. The values

of the features are shown in two last columns.

Table 3. Real Sample Bug Reports Data

Field Type Field Bug Report 1 Bug Report 2 Target Bug Report

Identical
Bug ID 240427 258365 258935

MasterID 233269 - 258365

Categorical

Product Equinox Equinox Equinox

Component P2 P2 P2

Type Normal Major Normal

Priority 3 3 3

Version 3.4 3.5 3.5

Status Duplicate Fixed Duplicate

Temporal
Open Date (GMT) 11/7/2008 00:25:00 10/12/2008 21:33:00 16/12/2008 14:18:00

Close Date (GMT) 14/7/2008 15:27:48 21/1/2010 07:12:35 18/12/2008 03:52:48

Textual

Title
software update dialog / filter field

blocks user input

[fwkadmin][shared] shared

install eclipse.ini not read

[shared] shared tests

are failing on mac

Description

menu: help->software updates displays

a dialog with available software to

install. in the top part there is a filter

field. when typing a text into this filter

eclipse starts to immediately applying

the filter and whole dialog is block -

what blocks possibility to continue

typing into the filter field. there is

certain delay but it is too short to be

able to type in you filter expression. it

almost imposible to use the filter field

resonably.

i20081210-0800 when i

install something in shared

install i loose my p2 menus.

n20081215

testreadonlydropinsst

artup and

testuserdropinsstartu

p are failing

Contextual

(Derived

from

textual)

General 26.858 8.973 4.298

Networking 23.838 6.821 4.298

Crypto graphy 21.514 5.501 2.325

Java 22.946 3.291 4.298

8 Seyed Morteza Babamir et. al.: A Novel Two-Step Classification Approach …

Table 4. Real sample extracted features

Features Type Features
Target Bug Report

vs Bug Report 1

Target Bug

Report

vs Bug Report 2

Label Duplicate No Yes

Textual

fBM25F-1G (3) 1.407 1.786

fBM25F-2G (3) 1.270 2.395

fSizeDiff (4) 386 17

fLCS [5, 6] 83 59

Temporal
fId (5) 18508 570

fDate (6) (sec) 13387812 34620875

Categorical

fproduct (7) 1 1

fcompany (8) 1 1

ftype (9) 1 0

fPriorityA (10) 1 1

fPriorityS (11) 1 1

fVersionA (12) 0.9 1

fVersionS (13) 1.1 1

Contextual (Distance)

Cosine 0.984 0.937

General Manhattan 22.560 4.674

Networking Manhattan 19.539 2.522

Cryptography Manhattan 19.188 3.175

Java Manhattan 18.647 1.006

It should be mentioned that textual features are very

important for DBRD, but their time complexity is more than

other feature types and depends on the length of texts. For

example, the minimum, average and maximum text length of

Eclipse dataset is 8, 1080, and 65,054 characters, and 2, 136,

and 10,762 words, respectively. A pretest for comparing bug

report 259801 with 697 characters and 130 words to more

than 18,000 other bug reports shows that the minimum,

average, and maximum runtime of all non-textual features

calculation were 0, 2.8 and 100.8 micro seconds for each

pair. These times for textual features were 0.6, 11.3 and

968.1 milli seconds which are four thousand times more than

non-textual features times. If the selected bug report length

is more, the runtime will be increased a lot too. So, textual

features are harmful for runtime performance, and useful for

validation performance of DBRD.

After feature extraction, the feature vectors including

some numerical values and a label will be made and given to

a ML algorithm to be trained and learn features of duplicated

pairs. In the test phase, a feature vector will be provided in

comparison of new bug report with other existing bug reports

in the triage system. Then each feature vector will be given

to the trained ML algorithm to predict its label. In the

proposed approach, just non textual features will be

calculated in the first stage and they will be given to simple

or light or non-textual ML algorithm. Adside the predicted

label by ML algorithm, the confidence of ML algorithm will

be checked. If the confidence is more than a certain threshold

(e.g., 90%), the predicted label based on non-textual features

will be accepted and reported as the final result. Otherwise,

the textual features will be calculated and appended to

feature vector and the new full feature vector will be given

to heavy or full ML algorithm and its result will be reported

as the final result.

Furthermore, the DBRD process is divided into two parts

based on the textual features. There are some considerations

to improve the validation performance of this two-step

classification approach as a DBRD:

1. Using more robust non-textual features to improve the

validation performance of non-textual DIF, e.g., using more

topics for contextual features [7];

2. Using robust and powerful ideas for ML algorithms of first

DIF, e.g., ensemble algorithms like using some ML

algorithms and voting their results to improve the validation

performance of non-textual DIF;

3. Using an ML algorithm like linear regression to predict

the best value for the threshold of confidence checking step

(box 9).

4. Experimental results

The traditional and proposed methodologies of duplicate bug

report detection (DBRD) are implemented using Takelab

script [56] in Python 3.8 for textual feature extraction and

RapidMiner 9.5 [57] for implementing the machine learning

Journal of Computer and Knowledge Engineering, Vol.6 , No.1. 2023. 9

algorithms. The state-of-the-art approach is the most

commonly used ML-based DBRD [5, 7, 8, 14, 20, 21, 30, 46,

50]. In the first experiment, we use all the ML algorithms

based on [50] as the best results between related works for

comparison. Besides, the ID difference feature was the most

important feature that improves the validation performance

results a lot, so it was eliminated because there may be some

biased judgment in considering a relation between ID

difference and duplication status. However, the open date

difference was kept as a temporal feature. The results were

much realistic, and there is hope that there is no more

difference between the proposed approach and the triager

needs in the real world. Figure 3 shows the results of the

comparison of various ML algorithms for different

scenarios. The results of the scenario of simple features (S)

must be worse than the scenario of full features (F), but,

interestingly, the results of the scenario of two-step

classification (TSC) are in the middle of other scenarios that

are more than 87% and 89% for both accuracy and F1-

measure metrics, respectively. The ML algorithm of TSC is

a voting-based ensemble algorithm of other ML algorithms;

that is, S-Vote for non-textual duplicate item finder (DIF)

and F-Vote for full DIF. Even though the deep learning ML

algorithm has better performance in both simple and full

feature scenarios, the TSC just tested using the voting

algorithm because deep learning training is time-consuming

at ist improvement is less than one percent for both simple

and full feature scenarios.

Table 5 shows the experiments’ parameters. Various

machine learning (ML) algorithms are chosen to compare

their efficiency for DBRD in three different scenarios with

non-textual features, full features, or the proposed two-step

classification. Three scenarios are considered for evaluating

the proposed method, including: 1) Simple or light scenario

just including the non-textual features as an old approach of

state-of-the-art; 2) Full feature as the current state-of-the-art

approach; 3) Two-Step Classification (TSC) as the proposed

approach.

Moreover, the detailed properties of datasets are

tabulated in the control variable section of The state-of-the-

art approach is the most commonly used ML-based DBRD

[5, 7, 8, 14, 20, 21, 30, 46, 50]. In the first experiment, we

use all the ML algorithms based on [50] as the best results

between related works for comparison. Besides, the ID

difference feature was the most important feature that

improves the validation performance results a lot, so it was

eliminated because there may be some biased judgment in

considering a relation between ID difference and duplication

status. However, the open date difference was kept as a

temporal feature. The results were much realistic, and there

is hope that there is no more difference between the proposed

approach and the triager needs in the real world. Figure 3

shows the results of the comparison of various ML

algorithms for different scenarios. The results of the scenario

of simple features (S) must be worse than the scenario of full

features (F), but, interestingly, the results of the scenario of

two-step classification (TSC) are in the middle of other

scenarios that are more than 87% and 89% for both accuracy

and F1-measure metrics, respectively. The ML algorithm of

TSC is a voting-based ensemble algorithm of other ML

algorithms; that is, S-Vote for non-textual duplicate item

finder (DIF) and F-Vote for full DIF. Even though the deep

learning ML algorithm has better performance in both simple

and full feature scenarios, the TSC just tested using the

voting algorithm because deep learning training is time-

consuming at ist improvement is less than one percent for

both simple and full feature scenarios.

Table 5, which indicates the number of bug reports in

each dataset and the number of selected bug report pairs in

step four of both state-of-the-art and the proposed

methodologies. The K-fold cross-validation is used for the

evaluation of ML algorithms to avoid biased results.

Moreover, various kinds of features are extracted for

duplicate detection.

The state-of-the-art approach is the most commonly used

ML-based DBRD [5, 7, 8, 14, 20, 21, 30, 46, 50]. In the first

experiment, we use all the ML algorithms based on [50] as

the best results between related works for comparison.

Besides, the ID difference feature was the most important

feature that improves the validation performance results a

lot, so it was eliminated because there may be some biased

judgment in considering a relation between ID difference

and duplication status. However, the open date difference

was kept as a temporal feature. The results were much

realistic, and there is hope that there is no more difference

between the proposed approach and the triager needs in the

real world. Figure 3 shows the results of the comparison of

various ML algorithms for different scenarios. The results of

the scenario of simple features (S) must be worse than the

scenario of full features (F), but, interestingly, the results of

the scenario of two-step classification (TSC) are in the

middle of other scenarios that are more than 87% and 89%

for both accuracy and F1-measure metrics, respectively. The

ML algorithm of TSC is a voting-based ensemble algorithm

of other ML algorithms; that is, S-Vote for non-textual

duplicate item finder (DIF) and F-Vote for full DIF. Even

though the deep learning ML algorithm has better

performance in both simple and full feature scenarios, the

TSC just tested using the voting algorithm because deep

learning training is time-consuming at ist improvement is

less than one percent for both simple and full feature

scenarios.

10 Seyed Morteza Babamir et. al.: A Novel Two-Step Classification Approach …

Table 5. The parameters of experiments

Variable

Type
Variable Name Variable States (Values)

Independent

Classifier
Linear Regression (LR), Decision Tree (DT), Random Forest (RF), Deep Learning with H2O

(DL) [58, 59], Voting of all mentioned Classifiers as an Ensemble approach (Vote)

Scenarios

Simple (S): using the non-textual features

Full Features (F): as the traditional approach

Two-Step Classification approach (TSC): the proposed approach

Control

Dataset Eclipse and Mozilla [4, 46, 55]

Number of Bug

Reports

Dataset # Bug Reports

Eclipse 45,234

Mozilla 75,648

Number of Bug

Pairs

Pairs→ /Dataset

↓
Duplicates

None-

Duplicates
Total Dup%

Eclipse 15,219 5,536 20,755 26.6%

Mozilla 40,537 14,297 54,834 26.0%

Total 55,756 19,833 75,589 26.3%

K-fold 10

Stemming Is used

Features ollection Temporal, Categorical, Contextual [7, 46], Textual [56]

Figure 3. The runtime of three scenarios for both datasets based on seconds in logarithmic scale

Table 6. The maximum performance of different machine learning algorithms for various kinds of scenarios of classification

Scenario→ State-ot-the-art Classification Two-step Classification Full Features [50]

Dataset ↓ Accuracy F1-measure Accuracy F1-measure Accuracy F1-measure

Eclipse 87.33% 77.67% 88.05% 86.43% 91.53% 84.75%

Mozilla 84.26% 89.34% 87.34% 91.60% 90.98% 93.80%

Average 85.80% 83.51% 87.70% 89.01% 91.26% 89.28%

Eclipse Mozilla

Simple 219.2 579.0

TSC 1,698.9 15,141.3

Full 47,146.2 124,549.6

1
2
4
8

16
32
64

128
256
512

1,024
2,048
4,096
8,192

16,384
32,768
65,536

131,072

11 Seyed Morteza Babamir et. al.: A Novel Two-Step Classification Approach …

Table 6 shows the detailed results on the experiments'

maximum performance for each dataset. The results show

that the TSC validation performance is almost in the middle

of both scenarios in various datasets even though the TSC is

implemented only using the Vote-based ML, but those are

compared to their best ML algorithms.

Although no one expects the results of TSC to be less than

the results of simple scenario, it is time to know the impact

of TSC on runtime performance. The number of pairs of bug

reports is used for runtime comparison instead of execution

time to eliminate hardware configuration impact on the

results and have a better insight about the time complexity

improvement. Using a logarithmic scale to better show value

contrast, Table 4 shows the number of used features using

the first and second DIFs. The first DIF uses Simple Features

for classification, and the second DIF uses Full Features, as

mentioned in Table 3. The results show that many bug report

pairs can be classified using the first classifier, and just a few

pairs need the complex textual feature extraction phase. Non-

textual features can be extracted in less than a millisecond,

but textual feature sometimes takes more than 5 seconds to

be extracted for just a pair based on their text lengths.

Figure 4. The average validation performance of various scenarios of Table 5

Figure 5. The number of bug reports which can be detected fast using simple features versus full features scenario

(including textual features)

Table 7. Percentage of bug reports predicted for classification

Time Complexity Improvement

→

/ Dataset ↓

using Non-

Textual Features

using All

Features

Total Number of Bug

Reports

(100%)

Eclipse 95.85% 4.15% 16,604

Mozilla 87.65% 12.35% 43,868

Average of Results 89.90% 10.10%

LR RF DT Vote DL Vote DL LR DT RF Vote DL

Simple-Light Features
Two Step

Classification
Full-All Features

Accuracy 85.21 85.34 85.26 85.70 85.86 87.59 90.81 89.57 90.65 91.87 91.98 92.05

F1-Measure 82.90 83.08 83.48 83.41 83.46 87.65 88.53 87.15 88.92 90.21 90.26 90.36

81.00

83.00

85.00

87.00

89.00

91.00

93.00

Eclipse Mozilla

Simple Features 15,914 38,452

Full Features 690 5,416

Total Pairs 16,604 43,868

1

4

16

64

256

1,024

4,096

16,384

65,536

12 Seyed Morteza Babamir et. al.: A Novel Two-Step Classification Approach …

The values are converted to percentage in Table 7. It

shows that 87% and 95% of pairs of bug reports can be

classified faster than the traditional approach using non-

textual features for Eclipse and Mozilla datasets,

respectively. These predictions' average validation

performance was 87% and 89% for accuracy and F1-

measure, respectively, which are relatively more than many

related works [48].

Furthermore, 89.9% of pairs of bug reports averagely in

both datasets can be classified with more than 87% accuracy

and F1-measure, using simple checking of the categorical,

temporal, and contextual features. The contextual features

can be calculated. At first a new bug report is inserted in the

repository to improve the performance of DBRD. So, the

DBRD can be implemented merely using a SQL query in the

repository for almost all bug reports, and those which are

suspicious and need more checking, can be sent for textual

feature extraction and give the full features vector of those to

the full DIF.

5. Conclusion

This study focused on the runtime performance of the

process of duplicate bug report detection (DBRD). A novel

two-step classification method was proposed for DBRD,

which uses non-textual features in the first step to check the

duplication of a pair of bug reports. A machine learning

(ML) algorithm is trained as a duplicate item finder (DIF) to

predict the duplication status of non-textual feature vectors

of pairs of bug reports. If the first DIF has low confidence in

its prediction, the textual features should be extracted, and

the second DIF is used to predict the status of the pair based

on all features, especially textual features. The experiments

show that the validation performance results of the proposed

approach are better than those using the first non-textual DIF

alone. Moreover, the runtime performance results of the

proposed approach are better than using the second DIF

alone. So, the proposed approach has a good runtime and

validation performance in comparison with the traditional

approaches. Every non-textual feature, like more contextual

features, can improve the first DIF validation performance in

the future. Also, the threshold of the first DIF for switching

to the second DIF can be improved. Other datasets can be

used to evaluate their validation performance. A semi-

supervised [60] machine learning algorithm can be used for

an incremental bug report repository of software triage

systems.

6. References

[1] Zhang, J., Wang, X., Hao, D., Xie, B., Zhang, L., and

Mei, H., "A survey on bug-report analysis", Science

China Information Sciences, journal article vol. 58, no.

2, pp. 1-24, doi: 10.1007/s11432-014-5241-2. Science

China Press, February 01, 2015.

[2] Soleimani, Neysiani, B., and Babamir, S. M., "Methods

of Feature Extraction for Detecting the Duplicate Bug

Reports in Software Triage Systems", presented at the

International Conference on Information Technology,

Communications and Telecommunications (IRICT),

Tehran, Iran, 2016, 2016. [Online]. Available:

http://www.sid.ir/En/Seminar/ViewPaper.aspx?ID=76

77.

[3] Runeson, P., Alexandersson, M., and Nyholm, O.,

"Detection of duplicate defect reports using natural

language processing", in 29th International Conference

on Software Engineering (ICSE) IEEE, pp. 499-510,

2007.

[4] Sun, C., Lo, D., Khoo, S. -C., and Jiang, J., "Towards

more accurate retrieval of duplicate bug reports," in

Proceedings of the 26th IEEE/ACM International

Conference on Automated Software Engineering

(ASE), IEEE Computer Society, pp. 253-262, 2011.

[5] Soleimani Neysiani, B., and Babamir, S. M.,

"Improving Performance of Automatic Duplicate Bug

Reports Detection Using Longest Common Sequence",

in IEEE 5th International Conference on Knowledge-

Based Engineering and Innovation (KBEI), Tehran,

Iran, Vol. 5, 2019.

[6] Banerjee, S., Cukic, B., and Adjeroh, D., "Automated

duplicate bug report classification using subsequence

matching", in IEEE 14th International Symposium on

High-Assurance Systems Engineering (HASE), IEEE,

pp. 74-81, doi: http://dx.doi.org/10.1109/HASE.2012.

38, 2012.

[7] Soleimani Neysiani, B., and Babamir, S. M., "New

Methodology of Contextual Features Usage in

Duplicate Bug Reports Detection", in IEEE 5th

International Conference on Web Research (ICWR),

Tehran, Iran, Vol. 5, 2019.

[8] Aggarwal, K., Rutgers, T., Timbers, F., Hindle, A.,

Greiner, R., and Stroulia, E., "Detecting duplicate bug

reports with software engineering domain knowledge",

in IEEE 22nd International Conference on Software

Analysis, Evolution and Reengineering (SANER),

Montreal, IEEE, pp. 211-220, doi:

http://dx.doi.org/10.1109/SANER.2015.7081831, QC

2015.

[9] Aggarwal, K., Timbers, F., Rutgers, T., Hindle, A.,

Stroulia, E., and Greiner, R., "Detecting duplicate bug

reports with software engineering domain knowledge",

Journal of Software: Evolution and Process, Vol. 29,

No. 3, pp. e1821-n/a, Art no. e1821, doi:

10.1002/smr.1821, 2017.

[10] Soleimani Neysiani, B., and Babamir, S. M.,

"Automatic Typos Detection in Bug Reports,"

presented at the IEEE 12th International Conference

Application of Information and Communication

Technologies, Kazakhstan, 2018.

[11] Soleimani Neysiani, B., and Babamir, S. M.,

"Automatic Interconnected Lexical Typo Correction in

Bug Reports of Software Triage Systems", presented at

the International Conference on Contemporary Issues in

Data Science, Zanjan, Iran, 2019.

[12] Soleimani Neysiani, B., and Babamir, S. M., "Fast

Language-Independent Correction of Interconnected

Typos to Finding Longest Terms", presented at the 24th

International Conference on Information Technology

(IVUS), Lithuania, 2019.

[13] Soleimani Neysiani, B., and Babamir, S. M., "New

labeled dataset of interconnected lexical typos for

automatic correction in the bug reports", SN Applied

Sciences, Vol. 1, No. 11, pp. 1385, 2019.

[14] Soleimani Neysiani, B., and Babamir, S. M., "Effect of

Typos Correction on the validation performance of

http://www.sid.ir/En/Seminar/ViewPaper.aspx?ID=7677
http://www.sid.ir/En/Seminar/ViewPaper.aspx?ID=7677
http://dx.doi.org/10.1109/SANER.2015.7081831

Journal of Computer and Knowledge Engineering, Vol.6 , No.1. 2023. 13

Duplicate Bug Reports Detection", presented at the 10th

International Conference on Information and

Knowledge Technology (IKT), Tehran, Iran, 2020-1-2,

1157, 2019.

[15] Soleimani Neysiani, B., and Babamir, S. M., "Duplicate

Detection Models for Bug Reports of Software Triage

Systems: A Survey", Current Trends In Computer

Sciences & Applications, Review Article, Vol. 1, No. 5,

pp. 128-134, 11-22 2019, doi:

10.32474/CTCSA.2019.01.000123, 2019.

[16] Soleimani Neysiani, B., and Babamir, S. M.,

"Automatic Duplicate Bug Report Detection using

Information Retrieval-based versus Machine Learning-

based Approaches", in IEEE 6th International

Conference on Web Research (ICWR), Tehran, Iran,

Vol. 6, pp. 288-293, doi:

10.1109/ICWR49608.2020.9122288, 2020.

[17] Hindle, A., "Stopping duplicate bug reports before they

start with Continuous Querying for bug reports", PeerJ

Preprints, 2167-9843, 2016.

[18] Hindle, A., and Onuczko, C., "Preventing duplicate bug

reports by continuously querying bug reports,"

Empirical Software Engineering, pp. 1-35, 2018.

[19] Soleimanian Gharehchopogh, F., and Mousavi, S. K.,

"A New Feature Selection in Email Spam Detection by

Particle Swarm Optimization and Fruit Fly

Optimization Algorithms", Journal of Computer and

Knowledge Engineering, Vol. 2, No. 2, pp. 49-62,

2020-02-11, doi: 10.22067/cke.v2i2.81750, 2020.

[20] Soleimani Neysiani, B., Doostali, S., Babamir, S. M.,

and Aminoroaya, Z., "Fast Duplicate Bug Reports

Detector Training using Sampling for Dimension

Reduction: Using Instance-based Learning for

Continous Query in Real-World", presented at the 11th

International (Virtual) Conference on Information and

Knowledge Technology (IKT), Tehran, Iran, 22-23

Dec. 2020, 2020.

[21] Banerjee, S., Syed, Z., Helmick, J., Culp, M., Ryan, K.,

and Cukic, B., "Automated triaging of very large bug

repositories," Information and Software Technology,

Vol. 89, pp. 1-13, 2017/09/01, doi:

https://doi.org/10.1016/j.infsof.2016.09.006, 2017.

[22] Yang, X., Lo, D., Xia, X., Bao, L., and Sun, J.,

"Combining word embedding with information

retrieval to recommend similar bug reports," in IEEE

27th International Symposium on Software Reliability

Engineering (ISSRE), IEEE, pp. 127-137, 2016.

[23] Lin, M.-J., Yang, C.-Z., Lee, C.-Y., and Chen, C.-C.,

"Enhancements for duplication detection in bug reports

with manifold correlation features", Journal of Systems

and Software, Vol. 121, No. Supplement C, pp. 223-

233, 2016/11/01, doi: https://doi.org/10.1016/j.jss.

2016.02.022, 2016.

[24] Budhiraja, A., Dutta, K., Reddy, R., and Shrivastava,

M., "DWEN: deep word embedding network for

duplicate bug report detection in software repositories",

in Proceedings of the 40th International Conference on

Software Engineering: Companion Proceedings, ACM,

pp. 193-194, 2018.

[25] Lazar, A., Ritchey, S., and Sharif, B., "Improving the

accuracy of duplicate bug report detection using textual

similarity measures", in MSR 2014 Proceedings of the

11th Working Conference on Mining Software

Repositories, Hyderabad, India ACM, pp. 308-311, doi:

10.1145/2597073.2597088. [Online]. Available:

http://icse2014.acm.org/, 2014.

[26] Wang, S., Khomh, F., and Zou, Y., "Improving bug

localization using correlations in crash reports," in 10th

IEEE Working Conference on Mining Software

Repositories (MSR) IEEE, pp. 247-256, doi:

http://dx.doi.org/10.1109/MSR.2013.6624036, 2013.

[27] Wang, X., Zhang, L., Xie, T., Anvik, J., and Sun, J., "An

approach to detecting duplicate bug reports using

natural language and execution information", in

Proceedings of the 30th international conference on

Software engineering, Leipzig, Germany, ACM, in

ICSE '08, pp. 461-470, doi:

http://doi.acm.org/10.1145/1368088.1368151, 2008.

[28] Kim, S., Zimmermann, T., and Nagappan, N., "Crash

graphs: An aggregated view of multiple crashes to

improve crash triage", in Dependable Systems &

Networks (DSN), 2011 IEEE/IFIP 41st International

Conference on, IEEE, pp. 486-493, 2011.

[29] Ebrahimi, N., Trabelsi, A., Islam, M. S., Hamou-Lhadj,

A., and Khanmohammadi, K., "An HMM-based

approach for automatic detection and classification of

duplicate bug reports", Information and Software

Technology, Vol. 113, pp. 98-109, 2019/09/01, doi:

https://doi.org/10.1016/j.infsof.2019.05.007, 2019.

[30] Alipour, A., Hindle, A., and Stroulia, E., "A Contextual

Approach Towards More Accurate Duplicate Bug

Report Detection", in Proceedings of the 10th Working

Conference on Mining Software Repositories, San

Francisco, CA, USA, IEEE Press, pp. 183-192, doi:

10.1109/MSR.2013.6624026. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2487085.2487123,

2013.

[31] Nguyen, A. T., Nguyen, T. T., Nguyen, T. N., Lo, D.,

and Sun, C., "Duplicate bug report detection with a

combination of information retrieval and topic

modeling", in Proceedings of the 27th IEEE/ACM

International Conference on Automated Software

Engineering (ASE), IEEE, pp. 70-79, 2012.

[32] Bagal, P. V., et al., "Duplicate bug report detection

using machine learning algorithms and automated

feedback incorporation", Patent US 2017/01998.03 A1,

2017.

[33] Koochekian Sabor, K., Hamou-Lhadj, A., and Larsson,

A., "DURFEX: A Feature Extraction Technique for

Efficient Detection of Duplicate Bug Reports", in 2017

IEEE International Conference on Software Quality,

Reliability and Security (QRS), Prague, Czech

Republic, IEEE, pp. 240-250, doi:

10.1109/QRS.2017.35, 25-29 July, 2017.

[34] Deshmukh, J., Podder, S., Sengupta, S., and Dubash,

N., "Towards Accurate Duplicate Bug Retrieval Using

Deep Learning Techniques", in 2017 IEEE

International Conference on Software Maintenance and

Evolution (ICSME), IEEE, pp. 115-124, 2017.

[35] Ebrahimi Koopaei, N., "Machine Learning And Deep

Learning Based Approaches For Detecting Duplicate

Bug Reports With Stack Traces", Concordia University,

2019.

https://doi.org/10.1016/j.infsof.2016.09.006
http://icse2014.acm.org/
http://dx.doi.org/10.1109/MSR.2013.6624036
http://doi.acm.org/10.1145/1368088.1368151
https://doi.org/10.1016/j.infsof.2019.05.007
http://dl.acm.org/citation.cfm?id=2487085.2487123

14 Seyed Morteza Babamir et. al.: A Novel Two-Step Classification Approach …

[36] Xie, Q., Wen, Z., Zhu, J., Gao, C., and Zheng, Z.,

"Detecting Duplicate Bug Reports with Convolutional

Neural Networks", in 2018 25th Asia-Pacific Software

Engineering Conference (APSEC), 4-7 Dec. 2018, pp.

416-425, doi: 10.1109/APSEC.2018.00056, 2018.

[37] Aminoroaya, Z., Soleimani Neysiani, B., and Nadimi

Shahraki, M. H., "Detecting Duplicate Bug Reports

Techniques", Research Journal of Applied Sciences,

Vol. 13, No. 9, pp. 522-531, 2018/09/30, 2018.

[38] Bettenburg, N., Premraj, R., Zimmermann, T., and Kim,

S., "Duplicate bug reports considered harmful…

really?", in IEEE International Conference on Software

Maintenance (ICSM), IEEE, pp. 337-345, doi:

http://dx.doi.org/10.1109/ICSM.2008.4658082,

[Online]. Available: https://www.st.cs.uni-saarland.de/

softevo/, 2008.

[39] Sun, C., Lo, D., Wang, X., Jiang, J., and Khoo, S.-C.,

"A discriminative model approach for accurate

duplicate bug report retrieval", in Proceedings of the

32nd ACM/IEEE International Conference on Software

Engineering-Volume 1, ACM, pp. 45-54, 2010.

[40] Tian, Y., Sun, C., and Lo, D., "Improved duplicate bug

report identification," in Software Maintenance and

Reengineering (CSMR), 2012 16th European

Conference on, IEEE, pp. 385-390, 2012.

[41] Liu, K., Tan, H. B. K., and Chandramohan, M., "Has

this bug been reported?", in Proceedings of the ACM

SIGSOFT 20th International Symposium on the

Foundations of Software Engineering, ACM, p. 28, doi:

10.1109_wcre.2013.6671283, 2012.

[42] Alipour, A., "A Contextual Approach Towards More

Accurate Duplicate Bug Report Detection", Master of

Science, Department of Computing Science, University

of Alberta, Faculty of Graduate Studies and Research,

2013.

[43] Feng, L., Song, L., Sha, C., and Gong, X., "Practical

duplicate bug reports detection in a large web-based

development community", in Asia-Pacific Web

Conference, Springer, pp. 709-720, 2013.

[44] Tsuruda, A., Manabe, Y., and Aritsugi, M., "Can We

Detect Bug Report Duplication with Unfinished Bug

Reports?", in Asia-Pacific Software Engineering

Conference (APSEC), IEEE, pp. 151-158, 2015.

[45] Sharma, A., and Sharma, S., "Bug Report Triaging

Using Textual, Categorical and Contextual Features

Using Latent Dirichlet Allocation", International

Journal for Innovative Research in Science and

Technology (IJIRST), Vol. 1, No. 9, pp. 85-96, Feb,

2015.

[46] Hindle, A., Alipour, A., and Stroulia, E., "A contextual

approach towards more accurate duplicate bug report

detection and ranking", Empirical Software

Engineering, journal article, Vol. 21, No. 2, pp. 368-

410, doi: 10.1007/s10664-015-9387-3, April 01, 2016.

[47] Pasala, A., Guha, S., Agnihotram, G., Prateek B, S., and

Padmanabhuni, S., "An Analytics-Driven Approach to

Identify Duplicate Bug Records in Large Data

Repositories," in Data Science and Big Data

Computing: Frameworks and Methodologies, Z.

Mahmood Ed. Cham: Springer International

Publishing, pp. 161-187, 2016.

[48] Rakha, M. S., Shang, W., and Hassan, A. E., "Studying

the needed effort for identifying duplicate issues",

Empirical Software Engineering, journal article, Vol.

21, No. 5, pp. 1960-1989, October 01, doi:

10.1007/s10664-015-9404-6, 2016.

[49] Su, E., and Joshi, S., "Leveraging product relationships

to generate candidate bugs for duplicate bug

prediction", in Proceedings of the 40th International

Conference on Software Engineering: Companion

Proceedings, ACM, pp. 210-211, 2018.

[50] Soleimani Neysiani, B., Babamir, S. M., and Aritsugi,

M., "Efficient Feature Extraction Model for Validation

Performance Improvement of Duplicate Bug Report

Detection in Software Bug Triage Systems",

Information and Software Technology, vol. 126, pp.

106344-106363, 2020/10/01 2020, doi:

10.1016/j.infsof.2020.106344.

[51] Kukkar, A., Mohana, R., Kumar, Y., Nayyar, A., Bilal,

M., and Kwak, K., "Duplicate Bug Report Detection

and Classification System based on Deep Learning

Technique", IEEE Access, Vol. 8, pp. 200749-200763,

10/23, doi: 10.1109/ACCESS.2020.3033045, 2020.

[52] Kim, T., and Yang, G., "Predicting Duplicate in Bug

Report Using Topic-Based Duplicate Learning With

Fine Tuning-Based BERT Algorithm", IEEE Access,

Vol. 10, pp. 129666-129675, doi:

10.1109/ACCESS.2022.3226238, 2022.

[53] Zhang, T., et al., "Duplicate Bug Report Detection:

How Far Are We?", ACM Transactions on Software

Engineering and Methodology, doi: 10.1145/3576042,

2022.

[54] IngoRM., "Confidence values", RapidMiner.

https://community.rapidminer.com/discussion/17058/c

onfidence-values, accessed 12/10/2020, 2020.

[55] Alipour, A., Hindle, A., Rutgers, T., Dawson, R.,

Timbers, F., and Aggarwal, K., "Bug Reports Dataset",

https://github.com/kaggarwal/Dedup, accessed.

[56] Šarić, F., Glavaš, G., Karan, M., Šnajder, J., and Bašić,

B. D., "Takelab: Systems for measuring semantic text

similarity", in Proceedings of the First Joint Conference

on Lexical and Computational Semantics-Volume 1:

Proceedings of the main conference and the shared task,

and Volume 2: Proceedings of the Sixth International

Workshop on Semantic Evaluation, Montréal, Canada,

Stroudsburg, PA, USA: Association for Computational

Linguistics, in SemEval '12, pp. 441-448, doi:

10.5555/2387636.2387708. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2387636.2387708,

2012.

[57] RapidMiner Studio (9.5.1) RapidMiner Inc. [Online].

Available: rapidminer.com, , (2019).

[58] Candel, A., Parmar, V., LeDell, E., and Arora, A.,

"Deep learning with H2O", H2O. ai Inc, 2016.

[59] Cook, D., "Practical machine learning with H2O:

powerful, scalable techniques for deep learning and

AI", O'Reilly Media, Inc.", 2016.

[60] Karimi Zandian, Z., and Keyvanpour, M. R., "SSLBM:

A New Fraud Detection Method Based on Semi-

Supervised Learning", Journal of Computer and

Knowledge Engineering, Vol. 2, No. 2, pp. 10-18,

2020-02-26, doi: 10.22067/cke.v2i2.82152, 2020.

http://dx.doi.org/10.1109/ICSM.2008.4658082
https://www.st.cs.uni-saarland.de/softevo/
https://www.st.cs.uni-saarland.de/softevo/
https://community.rapidminer.com/discussion/17058/confidence-values
https://community.rapidminer.com/discussion/17058/confidence-values
https://github.com/kaggarwal/Dedup
http://dl.acm.org/citation.cfm?id=2387636.2387708

