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Abstract: Representation learning on a knowledge graph 

aims to capture patterns in the knowledge graph as low-

dimensional dense distributed representation vectors in the 

continuous semantic space, which is a powerful technique 

for predicting missing links in knowledge bases. The 

problem of knowledge base completion can be viewed as 

predicting new triples based on the existing ones. One of the 

prominent approaches in knowledge base completion is the 

embedding model. Currently, the majority of existing 

knowledge graph embedding models cannot deal with 

unbalanced entities and relations. In this paper, a new 

embedding model is proposed, with a general solution 

instead of using the additional corpus. First, a triple-based 

neural network is presented to maximize the likelihood of the 

knowledge bases finding a low-dimensional embedding 

space. Second, two procedures to generate positive triples 

are proposed. They produce positive triples and add them to 

the training data. The policies can capture rare triples, and 

simultaneously remain efficient to compute. Experiments 

show that the embedded model proposed in this paper has 

superior performance. 

Keywords: Knowledge Graphs, Link Prediction, Positive 

Samples, Embedding Neural Network, Graph Mining 

 

1. Introduction 

Knowledge bases like Wordnet [1], YAGO [2], or the 

Google Knowledge Graph are useful resources used in many 

AI tasks, which present ways to organize, manage, and 

retrieve all digital knowledge. A knowledge base can be 

represented as a set of (head, relation, and tail) triples. Any 

information can reach from the knowledge base through 

triples or concatenation of them [3, 4]. Although 

completeness, accuracy, and high quality of data are the 

parameters that guarantee their advantage of them, they 

suffer from incompleteness and a lack of reasoning 

capability [3]. The problem of knowledge base completion 

can be viewed as predicting new triples based on the existing 

ones [6].  

One of the promising approaches to knowledge base 

completion is to embed their entities and relations into low-

dimensional vector spaces. The methods define a score 

function and assign a score to the triple [5, 6]. For any 

unobserved triple, its plausibility can be predicted by using 

the learned embedding and the score function. The high-

value score will assign to the probable triple [5]. 

Despite the substantial efforts and great successes in the 

research, the effectiveness of the embedding methods has not 

been directly compared. They mostly use various pre-

training methods to initialize the embedding vector space. It 

is still unclear that which pre-training method should be 
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employed, though it has a considerable effect on the results 

[7, 8]. Another issue is heterogeneous and unbalanced 

entities and relations in the knowledge base. Heterogeneity 

may affect overfitting on simple triples or underfitting on 

rare ones. A simple triple is the one in which its elements 

appear in most other triples, while rare triples lack their 

entities and relations of looking most [9]. In Fig.1 triple 

(𝐹, 𝑙𝑖𝑣𝑒_𝑖𝑛, 𝐸) is such a rare triple that the rate of relation 

𝑙𝑖𝑣𝑒_𝑖𝑛 is lower than the other, or triple (𝐺, 𝑓𝑎𝑡ℎ𝑒𝑟_𝑜𝑓, 𝐻) 

is the other kind rare one, which the degree of 𝐻 is low in 

comparison to 𝐺. Alternatively, triple (𝐹 , 𝑏𝑜𝑟𝑛_𝑖𝑛 , 𝐷) is 

such a simple one. Although embedding methods have a 

strong ability to model knowledge graphs, it remains 

challenging faced with heterogeneous data [10]. 

 

 
 

Figure 1. Example of rare and simple triple 

 

The goal of this study is to introduce a novel algorithm 

that does not require pre-training and can perform and 

compete while it can deal with unbalanced entities and 

relations. To that end, two methods are proposed. 

First, we propose a new triple-based embedding neural 

network, to encode the knowledge base to the embedding 

vector space for entities and relations which maximizes the 

likelihood of the whole knowledge base. It is a customized, 

objective function using Stochastic Gradient Descent (SGD) 

motivated by prior work on natural language processing to 

the triple structure [11]. The proposed triple-based 

embedding neural network was used to capture the semantic 

and syntactic structure of the knowledge base. It takes a 

knowledge graph as input and produces latent 

representations for entities and relations. On this subject, we 

showed that the triple-based embedding neural network used 

in knowledge base completion obtains proper results in 

comparison to the state of the arts. 

Second, since the embedding models lack in predicting 

rare triples, two different procedures are introduced to 

augment the knowledge base to overcome this deficiency. To 

address this issue, positive triples are generated during the 

training with a semi-learned embedding vector. Generated 

triples are added to the training data based on the rate of 

appearing in previous training data. The rarer triple, the 
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higher the chance of being in the training set. Each procedure 

uses a specific mechanism in adding positive triples to the 

training data.  

 GNSs (Generate New Samples) generate positive triples 

after 𝛿 iteration of learning triple-based embedding 

neural network, then add them to the training set. The rest 

of the iterations are worked with the new augmented 

training set.   

 FCSA (Flip Coin Simulated Annealing) decides to 

generate new triples or use the training sample in the 

learning process. At the beginning of the process, it rarely 

generates new triples, and by the time when the 

embedding vectors learn, it can generate more new 

triples. 

We demonstrate their usefulness by applying them to our 

triple based neural network. Our extensive experiments on 

two benchmark datasets show that they achieve superior 

performance over competitive baselines in two knowledge 

base completion tasks. 

The rest of the paper is structured as follows. Section 2 

reviews literature on knowledge base embedding. Section 3 

presents our approach. Section 4 presents empirical results. 

Finally, section 5 includes the conclusion and plan of further 

work. 

 

2. Related works 

Various models have been proposed for knowledge graph 

completion through the link prediction task. Embedding the 

knowledge graph into a low-dimensional continuous vector 

space is one of the assuring approaches [12]. Various types 

of knowledge graph embedding models have been proposed, 

and they learn the relation between entities using observed 

triple in the knowledge graph. These models can be 

classified into three classes: translation-based models, 

bilinear models, and compositional models [6]. Before 

proceeding, mathematical notations need to be defined. h, r, 

and t denote a head entity, relation, and tail entity, 

respectively.  

The bold letters 𝑒ℎ, 𝑒𝑟 , and 𝑒𝑡 denote embeddings of h, r, 

and t, respectively, on an embedding space ℝ𝑑. E and R 

represent sets of entities and relations, respectively. 

Translation-based models 

The existing translation-based model treats the triple as a 

relation-specific translation from the head entity to the tail 

entity. The entity vector obtains the optimal value during the 

training process by score function, while the relation is 

regarded as an operator or a translator [5, 12]. Meanwhile, 

TransE has been introduced as a pioneer in this approach 

[13]. It is assumed that there is 𝑒ℎ + 𝑒𝑟  ≈  𝑒𝑡 equation for 

each valid triple which assumes that the tail embedding 𝑒𝑡 

should be in the neighborhood of 𝑒ℎ +  𝑒𝑟. TransE is used 𝐿2 

to learn embedding vectors. It is not only a simple model but 

also has a high degree of scalability for modeling complex 

patterns by embedding dimensions. TransH [10], TransD [9], 

and TransR [14] are other translation methods. For instance, 

TransH is a transitional projection. TransD is similar to it, 

with the difference that it uses the identity matrix of 𝑑 × 𝑘 

size. The dimensionality of the entity and relation vector is 

considered differently. TransR also uses a rotation 

transformation for the train. CTransR [14] and TransSparse 

[9] are an extension of TransR. CTransR considers 

correlations under each relation type by clustering diverse 

head-tail pairs into groups and learning distinct relation 

vectors for each group. TransSparse focuses on solving the 

imbalance issues in knowledge graphs, which are ignored by 

previous translation models. The imbalance means that the 

number of head entities and that of tail entities in relation 

could be different. 

Bilinear models 

The DistMult [15] is based on a bilinear model where each 

relation is represented by a diagonal rather than a full matrix. 

It learns a tensor that is symmetric in the subject and object, 

while datasets contain mostly non-symmetric triples. 

ComplEx [12] solves the same issue of DistMult by the idea 

that multiplication of complex values is not symmetric. 

ComplEx represents a real-valued tensor 𝑋 ∈  ℝ𝑁1×𝑁2×𝑁3  as 

the real part of the sum of R complex-valued rank one tensors 

𝑢𝑟
(1)

⨂ 𝑢𝑟
(2)

⊗  𝑢𝑟
(1)

where 𝑟 ∈ {1, … , 𝑅} and 𝑢𝑟
(𝑚)

∈  𝐶𝑁𝑚 
 

𝑓𝑟(ℎ, 𝑡) = 𝑅𝑒(∑ 𝑢𝑟
(1)

⨂ 𝑢𝑟
(2) ⊗ 𝑢𝑟

(1)𝑅
𝑟=1 )                (6) 

 

where 𝑢𝑟
(1)

 is the complex conjugate of 𝑢𝑟
(1)

. Bilinear 

models have more redundancy than translation-based models 

and so easily become overfitted. Hence, embedding spaces 

are limited to low-dimensional space. SimplE [34] are all 

proved to be fully expressive when embedding dimensions 

fulfill some requirements. The full expressiveness means 

these models can express all the ground truth which exists in 

the data, including complex relations. However, these 

requirements are hardly fulfilled in practical use. RotatE [35] 

represents relations as rotations in a complex latent space, 

with h, r, and t all belonging to 𝐶𝑑. The r embedding is a 

rotation vector: in all its elements, the complex component 

conveys the rotation along that axis, whereas the real 

component is always equal to 1. The rotation r is applied to 

h by operating an element-wise product (once again noted 

with ⊙ in 1). L1 norm is used for measuring the distance 

from t. The authors demonstrate that rotation allows 

modeling correctly numerous relational patterns, such as 

symmetry/anti-symmetry, inversion, and composition. 

Compositional models 

In the LP field, KG embeddings are usually learned jointly 

with the weights and biases of the layers; these shared 

parameters make these models more expressive, but 

potentially heavier, harder to train, and more prone to 

overfitting [33]. NTN [16] is one of the most well-known 

methods in knowledge base completion. The model uses a 

three-way tensor in its score function. In other words, NTN 

can replace the standard neural network layer with a three-

way tensor layer. Also, using 𝑡𝑎𝑛ℎ for applying the non-

linear actions, the score function can be calculated as 

follows: 
 

𝑓𝑟(ℎ, 𝑡) =  𝑢𝑟
T𝑓(𝑒ℎ

T 𝑊𝑟
[1:k]

𝑒𝑡 +  𝑊𝑟,1𝑒ℎ + 𝑊𝑟,2𝑒𝑡 +  𝑏𝑟)   (7) 

 

where 𝑊𝑟
[1:k]

 ∈  ℝ𝒅×𝒅×𝒌  is a tensor and 𝑊𝑟,1, 𝑊𝑟,2 ∈

 ℝ𝒌×𝒅 are weight matrices and 𝑏𝑟 ∈  ℝ𝒌 is the bias vector. 

Despite the fascinating performance, this method is very 

complicated, and the evaluation results show that 

representations vectors with the pre-train can reach such a 

function [17].  

HOLE [18] is another method known in this field. This 
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method has high performance compared to the others. The 

reason for this function is that it can be applied to a circle of 

correlation in the score function to represent the space of 

entities and relations. This method uses a pre-train to create 

the initial representation space, which causes representation 

vectors to not have random values at the beginning of the 

training process and, conversely, have an appropriate 

initialization.  

ConvE [31] performs a global 2D convolution operation 

on the subject entity and relation embedding vectors after 

they are reshaped to matrices and concatenated. The obtained 

feature maps are flattened and transformed through a linear 

layer, and the inner product is taken with all object entity 

vectors to generate a score for each triple. Whilst results 

achieved by ConvE are impressive, the reshaping and 

concatenating of vectors as well as using 2D convolution on 

word embeddings is unintuitive. The R-GCN uses a graph 

convolutional network to obtain an embedding of the triples, 

then applies DistMult [15] to compute a score for the 

embeddings.  

As pointed out in [8], pre-training is an open question 

where it is still unclear which pre-training method should be 

employed. There is no standard, and no priority has been 

mentioned for it. 

  
3. Our approach 

In this section, we first propose how the triple-based 

embedding neural network is worked to represent entities 

and relations. Second, the detail of generating positive triples 

and two procedures of how to apply them in learning is 

provided. 

 
3.1. Triple-Based Embedding Neural Network  

Figure 2 shows a perspective of the Triple-based Embedding 

Neural Network's layers. It consists of three layers. As seen 

in the figure, the first layer is composed of two parts 

connected by the weight matrices to the hidden layer. The 

upper part of the layer is a one-hot vector of the head entity, 

and the bottom is a one-hot vector of the relation. The hidden 

layer is a sum of the projection vectors of head and relation. 

The number of neurons in the last layer is also equal to |E|, 

which is equal to the size of the upper part of the first layer. 

This layer describes the probability of tail with the given of 

the head and relation. In other words, not only the last layer 

is not the output but also the embedding vectors are its rows 

of weight matrices. 

 

 
 

Figure 2. Triple Based Embedding Neural Network 

 

Three weight matrices 𝑊ℎ, 𝑊𝑟 and 𝑊𝑡 after training have 

optimal weights, and each rows of 𝑊ℎ
T, 𝑊𝑡 and 𝑊𝑟

T are a 

embedding vector for entities 𝑒ℎ, 𝑒𝑡 and relation 𝑒𝑟 [11, 13].  

The overall process of learning embedded neural network 

has been presented in algorithm 1. 

 

 
 

The purpose of the Triple-based embedding neural 

network is to estimate the maximum likelihood of a 

knowledge base. Accordingly, as shown in algorithm 1 the 

main loop of learning tries to maximize its likelihood by 

considering all training triples of the knowledge base. A loss 

function should minimize the error by considering corrupted 

triples [3]. 

It should be noted that the purpose of the method is to 

learn latent representations, not probable distribution 

between two entities. Conditional probability 𝑃𝑟(𝑡|ℎ, 𝑟) is 

considered for triple ( ℎ , 𝑟 , 𝑡). The goal is to set the 

parameter 𝜃 to maximize the probability of the knowledge 

base (8). 

 

arg max
 𝜃

∏ 𝑃𝑟(𝑡|ℎ, 𝑟;  𝜃 )𝑡𝑟𝑖𝑝𝑙𝑒 ∈𝑇                        (8) 

 

𝑇 is the list of observed triples or training sets. 𝑃𝑟(𝑇 =
 1|( ℎ, 𝑟 , 𝑡 )) is the probability that the triple (ℎ , 𝑟 , 𝑡) exists 

in the training set, or, more precisely, a triple has been 

observed.  

Conversely, the probability of 𝑃𝑟(𝑇 =  0|( ℎ , 𝑟 , 𝑡 ))  =
 1 −  𝑃𝑟(𝑇 =  1|( ℎ, 𝑟 , 𝑡 )) indicates that a triple has not 

been observed. With these assumptions, the goal is to find 

the parameters that maximize the likelihood of seeing all the 

observed triples in the training set: 
 

arg max
𝜃

∏ 𝑃𝑟(𝑇 = 1|(ℎ, 𝑟, 𝑡);  𝜃 )

𝑡𝑟𝑖𝑝𝑙𝑒 ∈𝑇

 

 

≈ arg max 𝑙𝑜𝑔
𝜃

∏ 𝑃𝑟(𝑇 = 1|(ℎ, 𝑟, 𝑡);  𝜃 )𝑡𝑟𝑖𝑝𝑙𝑒 ∈𝑇                           

 
 

= arg max
𝜃

∑ 𝑙𝑜𝑔 𝑃𝑟(𝑇 = 1|(ℎ, 𝑟, 𝑡);  𝜃 )

𝑡𝑟𝑖𝑝𝑙𝑒 ∈𝑇

 

(9) 

The sigmoid function is used to determine the value of 

𝑃𝑟(𝑇 = 1|(ℎ, 𝑟, 𝑡);  𝜃 ), which is defined as:   
 

𝑃𝑟(𝑇 = 1|(ℎ, 𝑟, 𝑡);  𝜃 ) =  
1

1+𝑒−𝑧            

 (10) 

 

and it is expected to meet the objective shown in the 
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formula 11 [11]. 

arg max
𝜃

∑ 𝑙𝑜𝑔𝑡𝑟𝑖𝑝𝑙𝑒 ∈𝑇 =  
1

1+𝑒−𝑧                   (11) 

 

To the triple based embedded neural network structure, the 

parameter 𝑧 is defined as follows: 
 

𝑧 = (𝑒ℎ + 𝑒𝑟). 𝑒𝑡                                        (12) 

𝑒ℎ , 𝑒𝑟 , and 𝑒𝑡 are embedded vectors. They are for ℎ𝑒𝑎𝑑, 

𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, and 𝑡𝑎𝑖𝑙 respectively. These are the rows of 

𝑊ℎ
T, 𝑊𝑟 and 𝑊𝑟

T weight matrices. Figure 3Error! Reference 

source not found.. illustrates the explanation of the equation 

12 in vector space. According to the cosine similarity, the 

smaller the angle between 𝑒ℎ + 𝑒𝑟 and 𝒆𝒕, maximize the dot 

product [13]. Due to Figure 3Error! Reference source not 

found.. it is desirable that the sum of 𝒆𝒉 and 𝒆𝒓 be parallel 

with 𝑒𝑡 [11]. 

 

 
 

Figure 3. An overview of the relation between 𝑒ℎ , 𝑒𝑟 , and 𝑒𝑡 

vectors 

 

Due to the structure of Triple-based embedding neural 

network, corrupted triples are used in learning. The table of 

corrupted triples with uniform distribution is created []. As 

shown in 1 the table is generated before the main loop. The 

relevant question is, can a corrupted generated triple be an 

observed one. In response, it should be stated that there is no 

claim to the injection of noise in the learning procedures. 

Owing to the high dimensionality of entities and their 

relations, the probability of being a missing triple is low [11]. 

Finally, gradient descent is used to update the weights. As 

shown in Algorithm 1, all weight matrices are randomly 

initialized. By the continuation of the training, optimized 

weights are obtained. 

TransE is one of the popular models on large datasets due 

to its scalability. Similar to TransE, the time complexity of 

Triple based neural network is 𝑂(𝑑), where 𝑑 is the size of 

embedding vectors, it is more efficient than ConvE, NTN, 

and the neural network models [4]. 

 

3.2. Generate positive triples 

In this section, we start by explaining why to generate 

positive triples and then describe how to construct them. In 

the next two sections, the two distinct procedures of how to 

apply them in the learning model will be illustrated.  
Triples are highly heterogeneous in knowledge bases [5]. 

The diversity is evident both in the type of relation and in the 
entities. Most of the presented embedding methods are 
incapable of dealing with such heterogeneity [9]. Therefore, 
rare entities and relations get an argument. We try to 
augment rare ones to get a consistent knowledge base. To the 
best of our knowledge, there has not been an attempt to 
petition to gain consistent a knowledge base. Inspired by 
machine vision, data augmentation is used to imbalance 
classification. Hence, it is being tried to create new images 

from existing ones and add to the unbalanced classes [20, 
21]. Such a mechanism is needed to balance the knowledge 
base, though creating new triples from existing ones is not 
possible in this manner. 

To address this problem, we adopted the idea of sequence 
modeling which is stated that the learning model randomly 
predicts the next sequence at first, and with learning, the 
model can correctly predict the following one [22]. In these 
circumstances, the triple-based embedding neural network is 
allowed to be learned: the model can generate new triples 
even as the weight matrices are updating. In other words, 
after several repetitions, the embedding vectors were found 
to have reasonably optimized: they were able to predict new 
instances. 

For each entity, all possible triples are created, which it 
has located as head or tail, and the probability of being a true 
triple is calculated. Then N top of the probable triples is 
nominated to be used in the learning model. These 
candidates are chosen concerning their rareness: the rarer 
relation and entity, the more chance to be selected. In other 
words, a triple has a higher chance of being selected when 
the head, tail, or relation has been less commonly observed 
in the training set. The pseudo-code on how to Generate 
Positive Triples has been shown in Algorithm 2. In the 
following sections, two strategies named GNSs and FCSA 
describe explaining how to use new triples in the learning 
model. 

 
 

A. GNSs 
Figure 4 shows the whole process of when to apply GNSs. 

In the GNSs strategy, the learning procedure stops after 𝛿 
repetitions, and the model starts generating new positive 
triples. These are created by the updated weights matrices 
and then add to the training set. Then, the learning model 
continues training with a new training set. In other words, the 
new set has the original triples and the new positive triples, 
which predicts by the semi-learned model. Entities and 
relations in which there is a higher chance of prediction 

regarding node reverse degree 
1

deg (𝑒𝑛𝑡𝑖𝑡𝑦)
 and relation 

repetition 
1

|relation|
 can benefit from the algorithm. The more 

infrequent relation and entity, the more chance to predict. In 
other words, a triple has a higher chance of being selected 

when ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙 or 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 has been less commonly 
observed in the training set. In the opinion of the results of 
the experiments, selecting a part of the probable triples will 
increase the performance of the method. According to a 
thumb rule, the size of the new samples should not be in such 
a way that eliminates the effect of the original samples.
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Figure 4. An overview of applying GNSs strategy 

 

 
 

Figure 5. An overview of applying FCSA strategy 

 

 

The time complexity of finding positive triple is 𝑂(𝑑), and 

it repeated to z times where 𝑧 ≪  |𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎|. As the 

size of generated positive triples is much less than the 

training data and they are calculated once in the training, it 

remains efficient to apply this procedure to the learning. 

 

B. FCSA 

The fundamental idea of FCSA is illustrated in Figure 5. 

During training, FCSA decides whether a new true triple will 

be generated or use the original one. In contrast with GNS, 

the training procedure never pauses. For every sample, we 

propose to flip a coin and use the true triple or generate the 

probable one. At the beginning of training, sampling from 

the model would yield a random triple since the model is not 

well trained. So, selecting more often, the original samples 

should help. We thus propose to use a schedule to help the 

model to generate new triples when it becomes more learned. 

A sigmoid function is used to decide when new triples can 

be generated: 
 

𝜖 =  
1

1+𝑒𝑧                      (13) 
 

𝑧 = 𝑡𝑜𝑡𝑎𝑙 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑟𝑎𝑡𝑖𝑜𝑛             
 

It states that the chances of choosing a new triple are 

higher at the closure of the learning process and expects the 

model to sample reasonable triples [22]. If a new sample is 

selected, FCSA will replace the original. FCSA’s goal is to 

explore newer spaces. As in GNSs, the greater chance is 

given to probable triples which are more heterogeneous 

when selecting alternative triples. As the size of training sets 

remains constant the time complexity of FCSA is 𝑂(𝑑). 

 

4. Experiments 

This section proposes an experimental comparison of the 

proposed method and demonstrates that it can compete with 

current state-of-the-art methods [3, 18]. The evaluations are 

based on Wordnet11 and Wordnet18. 
 

4.1. Datasets and metrics 

To evaluate the proposed method, two datasets Wordnet11 

[16] and Wordnet18 [13] were used: both are state-of-the-art 

methods. The statistics of these data sets are given in Table 

1. 

Wordnet11 and Wordnet18 are not only different from 

each other regarding the size of entities and relations, but 

also in the structure of the test and the validation set. Each 

dataset and assessment criteria are described individually in 

the following sections. 

 Wordnet11: Positive and negative samples are indicated 

in the triple format with a label in test and validation sets. 

In other words, triples with negative and positive labels 

are wrong and right triples respectively. Negative triples 

are constructed from the corruption of positive ones.  

Test methodology 

Due to the structure of the dataset, link prediction became a 

binary classification issue. For each relation, a threshold 𝜃𝑟 

was determined for evaluation by the validation set. 

Therefore, the probability of each triple in the test set was 

compared with its relation threshold: this determined the 

decision to put a positive or negative label [16]. 

Evaluation criteria 

Accuracy is a criterion for evaluating this data set, as shown 

in Equation 14 [23].  
 

Accuracy =
𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑡𝑛+𝑓𝑝+𝑓𝑛
                                (14) 

 

 Wordnet18:  In this dataset, all triples were positive. 

Therefore, the test methodology and evaluation criteria 

were based on the triple's rank. 

Test methodology 

The rank of the triple was calculated following what is 

mentioned in [13]. Accordingly, for each examination 

sample, the tail of the triple was replaced with all entities, 

and the probability for each of them was calculated. The 

same procedure is also applied to the head entity. Finally, 

two lists of all created triples were sorted in descending order 

by their probability. This procedure is called raw mode, 

which is composed of all possible triples. Another mode is 

called filtered, in which all created triples that exist in the 

training, test, and validation sets are removed except the one 

that should be evaluated [13]. 
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Table 1. Statistics of the experimental datasets used in this study (and previous works). #Entity is the number of entities, #Relation is the 

number of relation types, and #Train, #Validation and #Test are the numbers of triples in the training, validation and test sets, 

respectively 

 

Datasets #Entity #Relation #Train #Validation #Test 

Wordnet11 38,696 11 112,581 2,609 10,544 

Wordnet18 40,943 18 141,442 5,000 5,000 

 
Evaluation criteria 

𝑀𝑅, 𝑀𝑅𝑅, and 𝐻𝑖𝑡@𝑘 are the evaluation criteria used for 

Wordnet18. The mean of the triple's rank is called the mean 

rank 𝑀𝑅. 𝑀𝑅 is in the range of [ 1 , ∞ ). As 𝑀𝑅 gets close 

to 1, it shows that the proposed method can predict triples at 

lower ranks [5] which indicates the efficiency of the method. 

  

𝑀𝑅 =
∑ 𝑟𝑎𝑛𝑘𝑖

|𝑁|
                                              (15) 

 

The Mean Reciprocal Rank (MRR) is a statistical measure 

for evaluating each process that presents a list of possible 

responses to a sample of questions that are arranged with the 

correct probability. After calculating the rank of all triples, 

the MRR is calculated as follows: 

 

𝑀𝑅𝑅 =
1

|𝑁|
∑

1

𝑟𝑎𝑛𝑘𝑖

|𝑁|
𝑖=1                                            (16) 

 
𝑀𝑅𝑅 is in the range of [0, 1]. 𝐻𝑖𝑡@𝑘, like the mean rank 

criterion, is used to evaluate the prediction of links in the 

knowledge base. The triple is considered as predicted when 

the rank is less or equal to 𝐾.  Finally, the ratio of predicted 

triples to the total has been shown as the criterion of 𝐻𝑖𝑡@𝑘 

(17).     
 

𝐻𝑖𝑡@𝑘 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑖𝑝𝑙𝑒𝑠 𝑡ℎ𝑎𝑡 𝑟𝑎𝑛𝑘𝑠 𝑙𝑒𝑠𝑠 𝑜𝑟 𝑒𝑞𝑢𝑎𝑙 𝑡ℎ𝑎𝑛 𝐾

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑙𝑙 𝑇𝑟𝑖𝑝𝑙𝑒𝑠
   (17) 

 

𝐻𝑖𝑡@𝑘 is in the range of [0, 1]. As the value of this 

criterion is higher, it shows that most of the triples get a rank 

lower or equal to 𝑘 [18]. 

 

4.2. Experimental setup 

In training the triple-based embedding neural network, two 

learning rates 𝛼 and 𝛽 are used for entity and relation 

respectively. The learning rate is validated in 

{ 0.001, 0.01, 0.03, 0.05, 0.07, 0.1, 0.15} and the learning 

rate 𝛼 are 0.03 and 0.07 in Wordnet11 and Wordnet18 

respectively. Also, the learning rate 𝛽, among the values 

{0.001, 0.005, 0.01, 0.05, 0.1}, 0.005, and 0.001 is 

validated for Wordnet11 and Wordnet18 respectively. The 

reason for adding the 𝛽 learning rate is that the error 

calculated from the model is added to the relationship 

weights at a different rate. Since the entity-to-relation ratio 

is very heterogeneous, two learning parameters are needed to 

tune the neural network. The appropriate number of negative 

samples for learning triple base neural network is considered 

𝑘𝑛𝑠 = 1 and 𝑘𝑛𝑠 = 5 in Wordnet11 and Wordnet18 [16]. 

Furthermore, the number of positive triples in the training 

process in the GNSs strategy is estimated at 500 and 1500 

in Wordnet11 and Wordnet18, respectively. By increasing 

large numbers of positive triples noise can spread. While, the 

less samples impact minor effect on results. In GNSs the 𝛿 is 

equal to 3/4 total iteration for each data set.  

 

4.3. Baselines 

This paper compared several state-of-the art relational 

learning approaches. TransE, TransR, R-GCN, NTN, 

ComplEx, ConvE and R-GCN comprise our baselines. The 

results of TransE, R-GCN, TranSparse-DT, and ComplEx 

are reported from [12] and the results of TransR and NTN 

from [36], and the rest are from [31]. They are current, state-

of-the-art methods and they use the same evaluation 

protocol. 

 

4.4. Results 

To specify the effect of each method, four distinct 

examinations are presented: 

1. ENN: Train Triple-based Embedding Neural Network 

Without Any Strategy; 

2. ENN + GNSs: Train Triple-based Embedding Neural 

Network with GNSs; 

3. ENN + FCSA: Train Triple-based Embedding Neural 

Network with FCSA; 

4. ENN + GNSs + FCSA: Train Triple-based Embedding 

Neural Network with both GNSs and FCSA strategies 

 

4.4. Results on Wordnet11  

The results of the four examinations are provided in Figure 

6. To illustrate the different aspects of the neural network's 

capabilities and proposed strategies, these examinations are 

presented. We also consider the results by the label of 

relation, classifying each relation according to its labels. It 

can be seen from Figure 6. that ENN detects their accuracy 

less than others, such as the domain topic and the domain 

region, by applying the strategies, the accuracy of each has 

increased about 7%. Also, the relations chart shows that the 

amount of heterogeneity of the relations causes the strategies 

to have an effect on the accuracy of each relation. For 

instance, the synset domain topic relation that the ENN 

estimates its accuracy more than domain topic and domain 

region, with applying the strategies the results show less 

improvement compared the two mentioned. Even in some 

relations, there is no increase in accuracy. In member 

holonym and member meronym relations, the accuracy of the 

ENN is greater than applying strategies (these relations have 

the highest accuracy among them). The difference is about 

0.5%. This phenomenon shows the decreasing effect of 

original samples or existence noise in applying strategies. 

However, it is worth noting that such decreasing is negligible 

in comparison with the increase of accuracy in other 

relations.
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Figure 6. Accuracy of each relation with 4 different tests 

 
The results demonstrate that ENN associated with GNSs 

is more accurate in comparison with ENN + FCSA. Not only 
ENN + GNSs consider the training set at the end but also a 
new training set has been given to the triple-based 
embedding neural network. Comparing the superiority of the 
applying FCSA strategy is to reduce the error in high-
frequency relations such as member holonym and member 
meronym. In this regard, it can be ensured that the accuracy 
of applying FCSA is not as good a less adverse effect, and is 

relatively more stable. The ENN has an accuracy of 87.3% 
and by applying strategies GNSs and FCSA, the accuracy 

increases about 1 and 2 percent, and this demonstrates that 
the proposed strategies have a positive effect on the 
performance of the method. Applying strategies at the same 
time performs inversely and does not increase accuracy. The 
cause of this deterioration is related to various aspects. First, 
by performing FCSA, choosing new samples occurs more 
when the model is close to the end of the training. If applying 
FCSA occurs with GNSs, it is probable that some of the new 
positive samples generated by GNSs will be changed again 
with FCSA and will be reduced the effect of the GNSs 
strategy. Also, simultaneously applying these two strategies 
will cause the original samples at the end of training more 
faded, and the actual samples do not have their effect [24, 
25]. 
In table 2, all four our distinct examination accuracy with the 
previously reported results on Wordnet11 are compared. 
Besides their accuracy, the optimization function that they 
use for pre-training is shown. Some models have used 
optimization functions to avoid overfitting. For instance, the 

NTN method achieves the accuracy of 70.6 without any pre-
training, while initializing the embeddings with an 
unsupervised semantic word vector the accuracy increases to 

86.6. Table 2 shows the same result for TransE. Pre-training 
is used to prevent overfitting, mainly on simple relations. 
Each model uses distinct methodologies, which makes the 
comparison not reasonably fair. However, as pointed out by 
[10] and [34], averaging the pre-trained word vectors for 
initializing entity vectors is an open problem, and it is not 
always beneficial since entity names in many domain-
specific knowledge bases are not lexically meaningful. 
However, a comparison has not been made on their 
performance independently. 

According to Table 2, ENN has a high accuracy compared 

to methods with the same conditions (without any 

optimization). It shows that the triple-based embedding 

neural network is robust to overfitting. Also, applying the 

GNSs strategy has the highest efficiency among all previous 

states of the arts. It does not only increase the performance 

but also it is not domain-specific and does not need external 

data. 

 
Table 1. Link prediction results on Wordnet11 

 

Methods Acc% Opt 

NTN [16] 70.06 None 

NTN [16] 86.2 

Initiate with unsupervised 

semantic word 

vectors 

TransE(unif) [10] 75.85 None 

TransE(bern) [10] 75.82 None 

TransE [8] 85.2 
Initiate embedding with 

word2vec 

TransH(unif) [10] 77.7 None 

TransH (bern) [10] 78.8 None 

TranSparse-DT 

[26] 
87.1 None 

TransD [9] 86.4 
Initiate embedding with the 

result of TransE 

TransR [14] 85.9 
Initiate embedding with the 

result of TransE 

CTransR (bern) 

[14] 
85.7 

Initiate embedding with the 

result of TransE 

TransG [27] 87.4 Initiate embedding by [28] 

ENN 87.3 None 

ENN+GNSs 89.4 None 

ENN + FCSA 88.2 None 

ENN + GNSs + 

FCSA 
87.4 None 

 

Analysis of Generate Positive triples. In this section, the 

effectiveness of the generated positive examples is analyzed. 

In this regard, some of the positive samples generated in 

procedure GNSs are given in Table 3. As shown in table 3, 

the bold tails are also in the test data set. Adding these 

positive samples and fine-tuning the triple based neural 
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network with the new training dataset will increase the 

accuracy and improve the ranks of the test samples.  

 
Table 3. Samples of Generated New Samples 

 

Generated Positive triples in GNSs  

(__chromatic_color_,1 _has_instance, __pink_4)  

(__chromatic_color_,1 _has_instance, __red_1)  

(__period_1, _has_instance, __bronze_age_1) 

(__period_1, _has_instance, __civilisation_2) 

(__period_1, _has_instance, __june_1) 

(__astronomy_1, _domain_region, __apex_2) 

(__astronomy_1, _domain_region, __zenith_1) 

(__astronomy_1, _domain_region, __outer_planet_1) 

(__family_lobeliaceae_1,_member_meronym, 

__dicot_family_1) 

(__japan_2, _has_part, __hondo_1) 

Although triples like 
(__period_1,_has_instance,__june_1) and 
(__chromatic_color_,1 _has_instance, __pink_4)  not in the 
test data set, their tails are in the same community with 
examples like (__period_1, _has_instance, __season_5) and 
(__chromatic_color_1, _has_instance, __yellow_2) 
respectively, as a result, according to Figure 6, they have 
affected the performance of the relationship. 

 

4.5. Results on Wordnet18   
This section evaluates and represents results on Wordnet18 
in two levels. First, results from the four examinations are 
presented, then a comprehensive analysis of the results of a 
variety of evaluation criteria with the other state-of-the-art 
methods is provided. Table 3 shows the result of four 
different examinations. In this table, the results are displayed 
in two raw and filtered modes with evaluation criteria. 

𝑀𝑅 is quite sensitive to the outliers. From Table 3, we see 
that different strategies do not have much effect on the 
outliers and make significant changes. Unlike Wordnet11, 
applying both of the strategies has decreased the value of 

𝑀𝑅, which indicates it has advantages in some ways. The 

lower value of 𝑀𝑅, the more desirable. One of the matters is 
to reduce the rank of the outliers. Although the effect is not 

striking, cannot ignore. The 𝐻𝑖𝑡@𝑘 criterion is a significant 
benchmark, due to it helps to understand the capability of 
assigning better ranks to each triple. It is essential to be 

assured, how many potential triples in the 𝐾 first choices are 
predicted. Hence, the examinations have been evaluated by 

𝐾 =  1, 3, 10 [18].  As illustrated in Table 3, over more than 

90% of samples are predicted with 𝑘 =  10. Even in the 

strictest mode, which 𝑘 =  1, more than half of the samples 
predict as the first prediction option. An assessment with 

𝑘 =  3 is the balance between a flexible and yet rigorous 
one. However, more than two-thirds of the test cases have 

been predicted. The combination of ENN and the GNSs 
strategy has achieved the best value in all evaluation criteria 
except MR compared to other examinations. It seems that the 
model has a better performance in increasing the volume of 
the knowledge base. Although applying the FCSA has a 
positive effect, does not has a significant performance due to 
the constant size of the due to the regularization is robust to 
overfitting and does not need any pre-training and extra 
optimization functions. It achieves state-of-the-art results on 
benchmark datasets. Besides, we propose two strategies, 
GNSs and FCSA, to augment datasets to overcome the 
heterogeneity of the dataset. In our analysis, we show the 
performance of applying the knowledge base, which the 
original triple replaces with the new one. Regarding the 
application of both strategies on the ENN, the same 
argument applies to the Wordnet11 dataset. As a conclusion 
from the experiments in Wordnet18, the number of added 
triples must be controlled. Obviously, by combining both 
strategies with the embedded neural network, it cannot 
allocate very low ranks to triples. On the other hand, it 
assigns the lower ranks to the outliers [5, 30]. It shows that 
generated positive triples may be helpful to bring 
information from other aspects. 

In contrast to 𝑀𝑅, 𝑀𝑅𝑅 is insensitive to outliers. The 
results also show that increasing the size of the knowledge 

leads to better 𝑀𝑅𝑅 results. This supports our hypothesis. 
Table 4 compares the proposed method with other states of 
arts. In this table, the types of optimizations used are 
specified to make better comparisons. The HolE and 
ComplEx implement each of the comparison methods 
individually and have performed different optimization 
functions, which have the results reported for TransE being 
different from one another and the original article.  So, it is 
difficult to determine precisely how much models with pre-

training gain over the other ones [12, 18].  
ENN has been able to independently handle the structure 

of the triple, without any pre-training and additional 

information to perform better. On the 𝑀𝑅𝑅 metric, ENN 
cannot achieve as good performance as the model with pre-
training. There are two noticeable phenomena in the result. 
First, ENN cannot assign a lower rank to the triples. We 
believe that this phenomenon is caused by the regularization 
of the models, even though the principle of it has the 
potential to represent real knowledge and to achieve 
knowledge graph completion.  Second, it shows that an 
augmented knowledge base affects weaker but consistent 
improvement on all metrics. 

The proposed method has a significant performance 
compared to non-pre-trained methods, and its results reflect 

the evaluation criteria of 𝑀𝑅, 𝐻𝑖𝑡@10, and 𝑀𝑅𝑅. ENN with 
GNSs and FCSA largely outperforms on MR and yields a 
score of 109 among all methods. Since ENN's Regularization 
cannot assign a lower rank to most of the triples, it can 
compete with the state-of-the-art model [31, 32].

 

Table 4. The comparison of results on Wordnet18 with previous work 
 

Methods Raw Filtered 

MR MRR Hit@1 Hit@3 hit@10 MR MRR Hit@1 hit@3 Hit@10 

ENN 120 0.65 37.42 70.9 85.18 115 0.696 46.24 86.64 93.29 

ENN+GNSs 116 0.664 42.98 82.02 91.08 113 0.703 50.54 90.1 94.92 

ENN + FCSA 117 0.659 39.92 75.22 90.6 111 0.68 46.8 87.2 93.67 

ENN + GNSs + FCSA 114 0.643 38.96 73.66 89.21 109 0.679 47.22 86.12 93.34 
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Table 5. The comparison of results on Wordnet18 with previous work 
 

Methods Raw Filtered Opt 

MR hit@10 MR hit@10 mrr  

TansE [13] 263 75.4 251 89.4 - None 

TransE - - - 94.3 0.495 Using Optimize function [12] 

TransH [10] 401 73.0 303 86.7 - None 

NTN [16] - - - 66.1 0.53 None 

ManifoldE Sphere [29] - 81.1 - 94.4 - Initiate embedding by [28] 

ManifoldE Hyperplane [29] - 81.4 - 93.7 - Initiate embedding by [28] 

TransR [14] 238 79.8 225 92.0 - Initiate embedding with the result of TransE 

TransR [14] - - - 94.9 0.605 using optimize function [8] 

CTransR (bern)  [14] 231 79.4 218 92.3 - Initiate embedding with the result of TransE 

TransD [9] 224 79.6 212 92.2 - Initiate embedding with the result of TransE 

TransG [27] 483 81.4 470 93.3 - Initiate embedding by  [28] 

TranSparse-DT [26] 234 81.4 211 94.3 - None 

HolE [18] - - - 94.9 0.938 using optimize function 

ComplEx [12] - - - 94.7 0.941 using optimize function 

ConvE [31] - - 504 94.2 0.955 Use dropout on the embeddings 

R-GCN[32] - - - 96.4 0.819 None 

TorusE [8] - - - 95.4 0.947 using optimize function 

KE-GCN[32] - -     

ENN 120 85.18 115 93.29 0.796 None 

ENN+GNSs 116 91.08 113 94.92 0.803 None 

ENN + FCSA 117 90.6 111 93.67 0.78 None 

ENN + GNSs + FCSA 114 89.21 109 93.34 0.679 None 

 

5. Conclusion and future studies 

This paper describes a model based on a triple structure for 

embedding entities and relations via an embedding neural 

network (ENN). We found that previous methods failed to 

overfit on infrequent relations. ENN strategies are consistent 

and reliable. In particular, GNSs and FCSA aren't model 

dependent, and they can be applied to any models. We 

believe this observation is essential to assess and prioritize 

directions for further research on the topic. 

In our future work, we will focus on improving the ENN, 

which needs to utilize loss function. Due to the significant 

results of the proposed strategies, we will consider other 

methods for generating new samples and employ them. 
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