
Journal of Computer and Knowledge Engineering, Vol. 5, No. 2, 2022. (11-20) 11

DOI: 10.22067/cke.2022.73802.1038

Embedding Knowledge Graph through Triple Base Neural Network

and Positive Samples*
Research Article

Sogol Haghani1 Mohammad Reza Keyvanpour2

Abstract: Representation learning on a knowledge graph

aims to capture patterns in the knowledge graph as low-

dimensional dense distributed representation vectors in the

continuous semantic space, which is a powerful technique

for predicting missing links in knowledge bases. The

problem of knowledge base completion can be viewed as

predicting new triples based on the existing ones. One of the

prominent approaches in knowledge base completion is the

embedding model. Currently, the majority of existing

knowledge graph embedding models cannot deal with

unbalanced entities and relations. In this paper, a new

embedding model is proposed, with a general solution

instead of using the additional corpus. First, a triple-based

neural network is presented to maximize the likelihood of the

knowledge bases finding a low-dimensional embedding

space. Second, two procedures to generate positive triples

are proposed. They produce positive triples and add them to

the training data. The policies can capture rare triples, and

simultaneously remain efficient to compute. Experiments

show that the embedded model proposed in this paper has

superior performance.

Keywords: Knowledge Graphs, Link Prediction, Positive

Samples, Embedding Neural Network, Graph Mining

1. Introduction

Knowledge bases like Wordnet [1], YAGO [2], or the

Google Knowledge Graph are useful resources used in many

AI tasks, which present ways to organize, manage, and

retrieve all digital knowledge. A knowledge base can be

represented as a set of (head, relation, and tail) triples. Any

information can reach from the knowledge base through

triples or concatenation of them [3, 4]. Although

completeness, accuracy, and high quality of data are the

parameters that guarantee their advantage of them, they

suffer from incompleteness and a lack of reasoning

capability [3]. The problem of knowledge base completion

can be viewed as predicting new triples based on the existing

ones [6].

One of the promising approaches to knowledge base

completion is to embed their entities and relations into low-

dimensional vector spaces. The methods define a score

function and assign a score to the triple [5, 6]. For any

unobserved triple, its plausibility can be predicted by using

the learned embedding and the score function. The high-

value score will assign to the probable triple [5].

Despite the substantial efforts and great successes in the

research, the effectiveness of the embedding methods has not

been directly compared. They mostly use various pre-

training methods to initialize the embedding vector space. It

is still unclear that which pre-training method should be

* Manuscript received: 22 November 2021, Revised, 07 July 2022; Accepted: 03 October 2022.
1. Master, Department of Computer Engineering, Alzahra University, Tehran, Iran.
2. Corresponding author. Professor, Department of Computer Engineering, Alzahra University, Tehran, Iran.

Email: Keyvanpour@alzahra.ac.ir

employed, though it has a considerable effect on the results

[7, 8]. Another issue is heterogeneous and unbalanced

entities and relations in the knowledge base. Heterogeneity

may affect overfitting on simple triples or underfitting on

rare ones. A simple triple is the one in which its elements

appear in most other triples, while rare triples lack their

entities and relations of looking most [9]. In Fig.1 triple

(𝐹, 𝑙𝑖𝑣𝑒_𝑖𝑛, 𝐸) is such a rare triple that the rate of relation

𝑙𝑖𝑣𝑒_𝑖𝑛 is lower than the other, or triple (𝐺, 𝑓𝑎𝑡ℎ𝑒𝑟_𝑜𝑓, 𝐻)

is the other kind rare one, which the degree of 𝐻 is low in

comparison to 𝐺. Alternatively, triple (𝐹 , 𝑏𝑜𝑟𝑛_𝑖𝑛 , 𝐷) is

such a simple one. Although embedding methods have a

strong ability to model knowledge graphs, it remains

challenging faced with heterogeneous data [10].

Figure 1. Example of rare and simple triple

The goal of this study is to introduce a novel algorithm

that does not require pre-training and can perform and

compete while it can deal with unbalanced entities and

relations. To that end, two methods are proposed.

First, we propose a new triple-based embedding neural

network, to encode the knowledge base to the embedding

vector space for entities and relations which maximizes the

likelihood of the whole knowledge base. It is a customized,

objective function using Stochastic Gradient Descent (SGD)

motivated by prior work on natural language processing to

the triple structure [11]. The proposed triple-based

embedding neural network was used to capture the semantic

and syntactic structure of the knowledge base. It takes a

knowledge graph as input and produces latent

representations for entities and relations. On this subject, we

showed that the triple-based embedding neural network used

in knowledge base completion obtains proper results in

comparison to the state of the arts.

Second, since the embedding models lack in predicting

rare triples, two different procedures are introduced to

augment the knowledge base to overcome this deficiency. To

address this issue, positive triples are generated during the

training with a semi-learned embedding vector. Generated

triples are added to the training data based on the rate of

appearing in previous training data. The rarer triple, the

https://cke.um.ac.ir/
https://cke.um.ac.ir/article_42935.html

12 Sogol Haghani et. al.: Embedding Knowledge Graph through …

higher the chance of being in the training set. Each procedure

uses a specific mechanism in adding positive triples to the

training data.

 GNSs (Generate New Samples) generate positive triples

after 𝛿 iteration of learning triple-based embedding

neural network, then add them to the training set. The rest

of the iterations are worked with the new augmented

training set.

 FCSA (Flip Coin Simulated Annealing) decides to

generate new triples or use the training sample in the

learning process. At the beginning of the process, it rarely

generates new triples, and by the time when the

embedding vectors learn, it can generate more new

triples.

We demonstrate their usefulness by applying them to our

triple based neural network. Our extensive experiments on

two benchmark datasets show that they achieve superior

performance over competitive baselines in two knowledge

base completion tasks.

The rest of the paper is structured as follows. Section 2

reviews literature on knowledge base embedding. Section 3

presents our approach. Section 4 presents empirical results.

Finally, section 5 includes the conclusion and plan of further

work.

2. Related works

Various models have been proposed for knowledge graph

completion through the link prediction task. Embedding the

knowledge graph into a low-dimensional continuous vector

space is one of the assuring approaches [12]. Various types

of knowledge graph embedding models have been proposed,

and they learn the relation between entities using observed

triple in the knowledge graph. These models can be

classified into three classes: translation-based models,

bilinear models, and compositional models [6]. Before

proceeding, mathematical notations need to be defined. h, r,

and t denote a head entity, relation, and tail entity,

respectively.

The bold letters 𝑒ℎ, 𝑒𝑟 , and 𝑒𝑡 denote embeddings of h, r,

and t, respectively, on an embedding space ℝ𝑑. E and R

represent sets of entities and relations, respectively.

Translation-based models

The existing translation-based model treats the triple as a

relation-specific translation from the head entity to the tail

entity. The entity vector obtains the optimal value during the

training process by score function, while the relation is

regarded as an operator or a translator [5, 12]. Meanwhile,

TransE has been introduced as a pioneer in this approach

[13]. It is assumed that there is 𝑒ℎ + 𝑒𝑟 ≈ 𝑒𝑡 equation for

each valid triple which assumes that the tail embedding 𝑒𝑡

should be in the neighborhood of 𝑒ℎ + 𝑒𝑟. TransE is used 𝐿2

to learn embedding vectors. It is not only a simple model but

also has a high degree of scalability for modeling complex

patterns by embedding dimensions. TransH [10], TransD [9],

and TransR [14] are other translation methods. For instance,

TransH is a transitional projection. TransD is similar to it,

with the difference that it uses the identity matrix of 𝑑 × 𝑘

size. The dimensionality of the entity and relation vector is

considered differently. TransR also uses a rotation

transformation for the train. CTransR [14] and TransSparse

[9] are an extension of TransR. CTransR considers

correlations under each relation type by clustering diverse

head-tail pairs into groups and learning distinct relation

vectors for each group. TransSparse focuses on solving the

imbalance issues in knowledge graphs, which are ignored by

previous translation models. The imbalance means that the

number of head entities and that of tail entities in relation

could be different.

Bilinear models

The DistMult [15] is based on a bilinear model where each

relation is represented by a diagonal rather than a full matrix.

It learns a tensor that is symmetric in the subject and object,

while datasets contain mostly non-symmetric triples.

ComplEx [12] solves the same issue of DistMult by the idea

that multiplication of complex values is not symmetric.

ComplEx represents a real-valued tensor 𝑋 ∈ ℝ𝑁1×𝑁2×𝑁3 as

the real part of the sum of R complex-valued rank one tensors

𝑢𝑟
(1)

⨂ 𝑢𝑟
(2)

⊗ 𝑢𝑟
(1)

where 𝑟 ∈ {1, … , 𝑅} and 𝑢𝑟
(𝑚)

∈ 𝐶𝑁𝑚

𝑓𝑟(ℎ, 𝑡) = 𝑅𝑒(∑ 𝑢𝑟
(1)

⨂ 𝑢𝑟
(2) ⊗ 𝑢𝑟

(1)𝑅
𝑟=1) (6)

where 𝑢𝑟
(1)

 is the complex conjugate of 𝑢𝑟
(1)

. Bilinear

models have more redundancy than translation-based models

and so easily become overfitted. Hence, embedding spaces

are limited to low-dimensional space. SimplE [34] are all

proved to be fully expressive when embedding dimensions

fulfill some requirements. The full expressiveness means

these models can express all the ground truth which exists in

the data, including complex relations. However, these

requirements are hardly fulfilled in practical use. RotatE [35]

represents relations as rotations in a complex latent space,

with h, r, and t all belonging to 𝐶𝑑. The r embedding is a

rotation vector: in all its elements, the complex component

conveys the rotation along that axis, whereas the real

component is always equal to 1. The rotation r is applied to

h by operating an element-wise product (once again noted

with ⊙ in 1). L1 norm is used for measuring the distance

from t. The authors demonstrate that rotation allows

modeling correctly numerous relational patterns, such as

symmetry/anti-symmetry, inversion, and composition.

Compositional models

In the LP field, KG embeddings are usually learned jointly

with the weights and biases of the layers; these shared

parameters make these models more expressive, but

potentially heavier, harder to train, and more prone to

overfitting [33]. NTN [16] is one of the most well-known

methods in knowledge base completion. The model uses a

three-way tensor in its score function. In other words, NTN

can replace the standard neural network layer with a three-

way tensor layer. Also, using 𝑡𝑎𝑛ℎ for applying the non-

linear actions, the score function can be calculated as

follows:

𝑓𝑟(ℎ, 𝑡) = 𝑢𝑟
T𝑓(𝑒ℎ

T 𝑊𝑟
[1:k]

𝑒𝑡 + 𝑊𝑟,1𝑒ℎ + 𝑊𝑟,2𝑒𝑡 + 𝑏𝑟) (7)

where 𝑊𝑟
[1:k]

 ∈ ℝ𝒅×𝒅×𝒌 is a tensor and 𝑊𝑟,1, 𝑊𝑟,2 ∈

 ℝ𝒌×𝒅 are weight matrices and 𝑏𝑟 ∈ ℝ𝒌 is the bias vector.

Despite the fascinating performance, this method is very

complicated, and the evaluation results show that

representations vectors with the pre-train can reach such a

function [17].

HOLE [18] is another method known in this field. This

Journal of Computer and Knowledge Engineering, Vol.5 , No.2. 2022. 13

method has high performance compared to the others. The

reason for this function is that it can be applied to a circle of

correlation in the score function to represent the space of

entities and relations. This method uses a pre-train to create

the initial representation space, which causes representation

vectors to not have random values at the beginning of the

training process and, conversely, have an appropriate

initialization.

ConvE [31] performs a global 2D convolution operation

on the subject entity and relation embedding vectors after

they are reshaped to matrices and concatenated. The obtained

feature maps are flattened and transformed through a linear

layer, and the inner product is taken with all object entity

vectors to generate a score for each triple. Whilst results

achieved by ConvE are impressive, the reshaping and

concatenating of vectors as well as using 2D convolution on

word embeddings is unintuitive. The R-GCN uses a graph

convolutional network to obtain an embedding of the triples,

then applies DistMult [15] to compute a score for the

embeddings.

As pointed out in [8], pre-training is an open question

where it is still unclear which pre-training method should be

employed. There is no standard, and no priority has been

mentioned for it.

3. Our approach

In this section, we first propose how the triple-based

embedding neural network is worked to represent entities

and relations. Second, the detail of generating positive triples

and two procedures of how to apply them in learning is

provided.

3.1. Triple-Based Embedding Neural Network

Figure 2 shows a perspective of the Triple-based Embedding

Neural Network's layers. It consists of three layers. As seen

in the figure, the first layer is composed of two parts

connected by the weight matrices to the hidden layer. The

upper part of the layer is a one-hot vector of the head entity,

and the bottom is a one-hot vector of the relation. The hidden

layer is a sum of the projection vectors of head and relation.

The number of neurons in the last layer is also equal to |E|,

which is equal to the size of the upper part of the first layer.

This layer describes the probability of tail with the given of

the head and relation. In other words, not only the last layer

is not the output but also the embedding vectors are its rows

of weight matrices.

Figure 2. Triple Based Embedding Neural Network

Three weight matrices 𝑊ℎ, 𝑊𝑟 and 𝑊𝑡 after training have

optimal weights, and each rows of 𝑊ℎ
T, 𝑊𝑡 and 𝑊𝑟

T are a

embedding vector for entities 𝑒ℎ, 𝑒𝑡 and relation 𝑒𝑟 [11, 13].

The overall process of learning embedded neural network

has been presented in algorithm 1.

The purpose of the Triple-based embedding neural

network is to estimate the maximum likelihood of a

knowledge base. Accordingly, as shown in algorithm 1 the

main loop of learning tries to maximize its likelihood by

considering all training triples of the knowledge base. A loss

function should minimize the error by considering corrupted

triples [3].

It should be noted that the purpose of the method is to

learn latent representations, not probable distribution

between two entities. Conditional probability 𝑃𝑟(𝑡|ℎ, 𝑟) is

considered for triple (ℎ , 𝑟 , 𝑡). The goal is to set the

parameter 𝜃 to maximize the probability of the knowledge

base (8).

arg max
 𝜃

∏ 𝑃𝑟(𝑡|ℎ, 𝑟; 𝜃)𝑡𝑟𝑖𝑝𝑙𝑒 ∈𝑇 (8)

𝑇 is the list of observed triples or training sets. 𝑃𝑟(𝑇 =
 1|(ℎ, 𝑟 , 𝑡)) is the probability that the triple (ℎ , 𝑟 , 𝑡) exists

in the training set, or, more precisely, a triple has been

observed.

Conversely, the probability of 𝑃𝑟(𝑇 = 0|(ℎ , 𝑟 , 𝑡)) =
 1 − 𝑃𝑟(𝑇 = 1|(ℎ, 𝑟 , 𝑡)) indicates that a triple has not

been observed. With these assumptions, the goal is to find

the parameters that maximize the likelihood of seeing all the

observed triples in the training set:

arg max
𝜃

∏ 𝑃𝑟(𝑇 = 1|(ℎ, 𝑟, 𝑡); 𝜃)

𝑡𝑟𝑖𝑝𝑙𝑒 ∈𝑇

≈ arg max 𝑙𝑜𝑔
𝜃

∏ 𝑃𝑟(𝑇 = 1|(ℎ, 𝑟, 𝑡); 𝜃)𝑡𝑟𝑖𝑝𝑙𝑒 ∈𝑇

= arg max
𝜃

∑ 𝑙𝑜𝑔 𝑃𝑟(𝑇 = 1|(ℎ, 𝑟, 𝑡); 𝜃)

𝑡𝑟𝑖𝑝𝑙𝑒 ∈𝑇

(9)

The sigmoid function is used to determine the value of

𝑃𝑟(𝑇 = 1|(ℎ, 𝑟, 𝑡); 𝜃), which is defined as:

𝑃𝑟(𝑇 = 1|(ℎ, 𝑟, 𝑡); 𝜃) =
1

1+𝑒−𝑧

 (10)

and it is expected to meet the objective shown in the

14 Sogol Haghani et. al.: Embedding Knowledge Graph through …

formula 11 [11].

arg max
𝜃

∑ 𝑙𝑜𝑔𝑡𝑟𝑖𝑝𝑙𝑒 ∈𝑇 =
1

1+𝑒−𝑧 (11)

To the triple based embedded neural network structure, the

parameter 𝑧 is defined as follows:

𝑧 = (𝑒ℎ + 𝑒𝑟). 𝑒𝑡 (12)

𝑒ℎ , 𝑒𝑟 , and 𝑒𝑡 are embedded vectors. They are for ℎ𝑒𝑎𝑑,

𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, and 𝑡𝑎𝑖𝑙 respectively. These are the rows of

𝑊ℎ
T, 𝑊𝑟 and 𝑊𝑟

T weight matrices. Figure 3Error! Reference

source not found.. illustrates the explanation of the equation

12 in vector space. According to the cosine similarity, the

smaller the angle between 𝑒ℎ + 𝑒𝑟 and 𝒆𝒕, maximize the dot

product [13]. Due to Figure 3Error! Reference source not

found.. it is desirable that the sum of 𝒆𝒉 and 𝒆𝒓 be parallel

with 𝑒𝑡 [11].

Figure 3. An overview of the relation between 𝑒ℎ , 𝑒𝑟 , and 𝑒𝑡

vectors

Due to the structure of Triple-based embedding neural

network, corrupted triples are used in learning. The table of

corrupted triples with uniform distribution is created []. As

shown in 1 the table is generated before the main loop. The

relevant question is, can a corrupted generated triple be an

observed one. In response, it should be stated that there is no

claim to the injection of noise in the learning procedures.

Owing to the high dimensionality of entities and their

relations, the probability of being a missing triple is low [11].

Finally, gradient descent is used to update the weights. As

shown in Algorithm 1, all weight matrices are randomly

initialized. By the continuation of the training, optimized

weights are obtained.

TransE is one of the popular models on large datasets due

to its scalability. Similar to TransE, the time complexity of

Triple based neural network is 𝑂(𝑑), where 𝑑 is the size of

embedding vectors, it is more efficient than ConvE, NTN,

and the neural network models [4].

3.2. Generate positive triples

In this section, we start by explaining why to generate

positive triples and then describe how to construct them. In

the next two sections, the two distinct procedures of how to

apply them in the learning model will be illustrated.
Triples are highly heterogeneous in knowledge bases [5].

The diversity is evident both in the type of relation and in the
entities. Most of the presented embedding methods are
incapable of dealing with such heterogeneity [9]. Therefore,
rare entities and relations get an argument. We try to
augment rare ones to get a consistent knowledge base. To the
best of our knowledge, there has not been an attempt to
petition to gain consistent a knowledge base. Inspired by
machine vision, data augmentation is used to imbalance
classification. Hence, it is being tried to create new images

from existing ones and add to the unbalanced classes [20,
21]. Such a mechanism is needed to balance the knowledge
base, though creating new triples from existing ones is not
possible in this manner.

To address this problem, we adopted the idea of sequence
modeling which is stated that the learning model randomly
predicts the next sequence at first, and with learning, the
model can correctly predict the following one [22]. In these
circumstances, the triple-based embedding neural network is
allowed to be learned: the model can generate new triples
even as the weight matrices are updating. In other words,
after several repetitions, the embedding vectors were found
to have reasonably optimized: they were able to predict new
instances.

For each entity, all possible triples are created, which it
has located as head or tail, and the probability of being a true
triple is calculated. Then N top of the probable triples is
nominated to be used in the learning model. These
candidates are chosen concerning their rareness: the rarer
relation and entity, the more chance to be selected. In other
words, a triple has a higher chance of being selected when
the head, tail, or relation has been less commonly observed
in the training set. The pseudo-code on how to Generate
Positive Triples has been shown in Algorithm 2. In the
following sections, two strategies named GNSs and FCSA
describe explaining how to use new triples in the learning
model.

A. GNSs
Figure 4 shows the whole process of when to apply GNSs.

In the GNSs strategy, the learning procedure stops after 𝛿
repetitions, and the model starts generating new positive
triples. These are created by the updated weights matrices
and then add to the training set. Then, the learning model
continues training with a new training set. In other words, the
new set has the original triples and the new positive triples,
which predicts by the semi-learned model. Entities and
relations in which there is a higher chance of prediction

regarding node reverse degree
1

deg (𝑒𝑛𝑡𝑖𝑡𝑦)
 and relation

repetition
1

|relation|
 can benefit from the algorithm. The more

infrequent relation and entity, the more chance to predict. In
other words, a triple has a higher chance of being selected

when ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙 or 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 has been less commonly
observed in the training set. In the opinion of the results of
the experiments, selecting a part of the probable triples will
increase the performance of the method. According to a
thumb rule, the size of the new samples should not be in such
a way that eliminates the effect of the original samples.

Journal of Computer and Knowledge Engineering, Vol.5, No.2. 2022. 15

Figure 4. An overview of applying GNSs strategy

Figure 5. An overview of applying FCSA strategy

The time complexity of finding positive triple is 𝑂(𝑑), and

it repeated to z times where 𝑧 ≪ |𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎|. As the

size of generated positive triples is much less than the

training data and they are calculated once in the training, it

remains efficient to apply this procedure to the learning.

B. FCSA

The fundamental idea of FCSA is illustrated in Figure 5.

During training, FCSA decides whether a new true triple will

be generated or use the original one. In contrast with GNS,

the training procedure never pauses. For every sample, we

propose to flip a coin and use the true triple or generate the

probable one. At the beginning of training, sampling from

the model would yield a random triple since the model is not

well trained. So, selecting more often, the original samples

should help. We thus propose to use a schedule to help the

model to generate new triples when it becomes more learned.

A sigmoid function is used to decide when new triples can

be generated:

𝜖 =
1

1+𝑒𝑧 (13)

𝑧 = 𝑡𝑜𝑡𝑎𝑙 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑟𝑎𝑡𝑖𝑜𝑛

It states that the chances of choosing a new triple are

higher at the closure of the learning process and expects the

model to sample reasonable triples [22]. If a new sample is

selected, FCSA will replace the original. FCSA’s goal is to

explore newer spaces. As in GNSs, the greater chance is

given to probable triples which are more heterogeneous

when selecting alternative triples. As the size of training sets

remains constant the time complexity of FCSA is 𝑂(𝑑).

4. Experiments

This section proposes an experimental comparison of the

proposed method and demonstrates that it can compete with

current state-of-the-art methods [3, 18]. The evaluations are

based on Wordnet11 and Wordnet18.

4.1. Datasets and metrics

To evaluate the proposed method, two datasets Wordnet11

[16] and Wordnet18 [13] were used: both are state-of-the-art

methods. The statistics of these data sets are given in Table

1.

Wordnet11 and Wordnet18 are not only different from

each other regarding the size of entities and relations, but

also in the structure of the test and the validation set. Each

dataset and assessment criteria are described individually in

the following sections.

 Wordnet11: Positive and negative samples are indicated

in the triple format with a label in test and validation sets.

In other words, triples with negative and positive labels

are wrong and right triples respectively. Negative triples

are constructed from the corruption of positive ones.

Test methodology

Due to the structure of the dataset, link prediction became a

binary classification issue. For each relation, a threshold 𝜃𝑟

was determined for evaluation by the validation set.

Therefore, the probability of each triple in the test set was

compared with its relation threshold: this determined the

decision to put a positive or negative label [16].

Evaluation criteria

Accuracy is a criterion for evaluating this data set, as shown

in Equation 14 [23].

Accuracy =
𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑡𝑛+𝑓𝑝+𝑓𝑛
 (14)

 Wordnet18: In this dataset, all triples were positive.

Therefore, the test methodology and evaluation criteria

were based on the triple's rank.

Test methodology

The rank of the triple was calculated following what is

mentioned in [13]. Accordingly, for each examination

sample, the tail of the triple was replaced with all entities,

and the probability for each of them was calculated. The

same procedure is also applied to the head entity. Finally,

two lists of all created triples were sorted in descending order

by their probability. This procedure is called raw mode,

which is composed of all possible triples. Another mode is

called filtered, in which all created triples that exist in the

training, test, and validation sets are removed except the one

that should be evaluated [13].

16 Sogol Haghani et. al.: Embedding Knowledge Graph through …

Table 1. Statistics of the experimental datasets used in this study (and previous works). #Entity is the number of entities, #Relation is the

number of relation types, and #Train, #Validation and #Test are the numbers of triples in the training, validation and test sets,

respectively

Datasets #Entity #Relation #Train #Validation #Test

Wordnet11 38,696 11 112,581 2,609 10,544

Wordnet18 40,943 18 141,442 5,000 5,000

Evaluation criteria

𝑀𝑅, 𝑀𝑅𝑅, and 𝐻𝑖𝑡@𝑘 are the evaluation criteria used for

Wordnet18. The mean of the triple's rank is called the mean

rank 𝑀𝑅. 𝑀𝑅 is in the range of [1 , ∞). As 𝑀𝑅 gets close

to 1, it shows that the proposed method can predict triples at

lower ranks [5] which indicates the efficiency of the method.

𝑀𝑅 =
∑ 𝑟𝑎𝑛𝑘𝑖

|𝑁|
 (15)

The Mean Reciprocal Rank (MRR) is a statistical measure

for evaluating each process that presents a list of possible

responses to a sample of questions that are arranged with the

correct probability. After calculating the rank of all triples,

the MRR is calculated as follows:

𝑀𝑅𝑅 =
1

|𝑁|
∑

1

𝑟𝑎𝑛𝑘𝑖

|𝑁|
𝑖=1 (16)

𝑀𝑅𝑅 is in the range of [0, 1]. 𝐻𝑖𝑡@𝑘, like the mean rank

criterion, is used to evaluate the prediction of links in the

knowledge base. The triple is considered as predicted when

the rank is less or equal to 𝐾. Finally, the ratio of predicted

triples to the total has been shown as the criterion of 𝐻𝑖𝑡@𝑘

(17).

𝐻𝑖𝑡@𝑘 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑖𝑝𝑙𝑒𝑠 𝑡ℎ𝑎𝑡 𝑟𝑎𝑛𝑘𝑠 𝑙𝑒𝑠𝑠 𝑜𝑟 𝑒𝑞𝑢𝑎𝑙 𝑡ℎ𝑎𝑛 𝐾

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑙𝑙 𝑇𝑟𝑖𝑝𝑙𝑒𝑠
 (17)

𝐻𝑖𝑡@𝑘 is in the range of [0, 1]. As the value of this

criterion is higher, it shows that most of the triples get a rank

lower or equal to 𝑘 [18].

4.2. Experimental setup

In training the triple-based embedding neural network, two

learning rates 𝛼 and 𝛽 are used for entity and relation

respectively. The learning rate is validated in

{ 0.001, 0.01, 0.03, 0.05, 0.07, 0.1, 0.15} and the learning

rate 𝛼 are 0.03 and 0.07 in Wordnet11 and Wordnet18

respectively. Also, the learning rate 𝛽, among the values

{0.001, 0.005, 0.01, 0.05, 0.1}, 0.005, and 0.001 is

validated for Wordnet11 and Wordnet18 respectively. The

reason for adding the 𝛽 learning rate is that the error

calculated from the model is added to the relationship

weights at a different rate. Since the entity-to-relation ratio

is very heterogeneous, two learning parameters are needed to

tune the neural network. The appropriate number of negative

samples for learning triple base neural network is considered

𝑘𝑛𝑠 = 1 and 𝑘𝑛𝑠 = 5 in Wordnet11 and Wordnet18 [16].

Furthermore, the number of positive triples in the training

process in the GNSs strategy is estimated at 500 and 1500

in Wordnet11 and Wordnet18, respectively. By increasing

large numbers of positive triples noise can spread. While, the

less samples impact minor effect on results. In GNSs the 𝛿 is

equal to 3/4 total iteration for each data set.

4.3. Baselines

This paper compared several state-of-the art relational

learning approaches. TransE, TransR, R-GCN, NTN,

ComplEx, ConvE and R-GCN comprise our baselines. The

results of TransE, R-GCN, TranSparse-DT, and ComplEx

are reported from [12] and the results of TransR and NTN

from [36], and the rest are from [31]. They are current, state-

of-the-art methods and they use the same evaluation

protocol.

4.4. Results

To specify the effect of each method, four distinct

examinations are presented:

1. ENN: Train Triple-based Embedding Neural Network

Without Any Strategy;

2. ENN + GNSs: Train Triple-based Embedding Neural

Network with GNSs;

3. ENN + FCSA: Train Triple-based Embedding Neural

Network with FCSA;

4. ENN + GNSs + FCSA: Train Triple-based Embedding

Neural Network with both GNSs and FCSA strategies

4.4. Results on Wordnet11

The results of the four examinations are provided in Figure

6. To illustrate the different aspects of the neural network's

capabilities and proposed strategies, these examinations are

presented. We also consider the results by the label of

relation, classifying each relation according to its labels. It

can be seen from Figure 6. that ENN detects their accuracy

less than others, such as the domain topic and the domain

region, by applying the strategies, the accuracy of each has

increased about 7%. Also, the relations chart shows that the

amount of heterogeneity of the relations causes the strategies

to have an effect on the accuracy of each relation. For

instance, the synset domain topic relation that the ENN

estimates its accuracy more than domain topic and domain

region, with applying the strategies the results show less

improvement compared the two mentioned. Even in some

relations, there is no increase in accuracy. In member

holonym and member meronym relations, the accuracy of the

ENN is greater than applying strategies (these relations have

the highest accuracy among them). The difference is about

0.5%. This phenomenon shows the decreasing effect of

original samples or existence noise in applying strategies.

However, it is worth noting that such decreasing is negligible

in comparison with the increase of accuracy in other

relations.

Journal of Computer and Knowledge Engineering, Vol.5, No.2. 2022. 17

Figure 6. Accuracy of each relation with 4 different tests

The results demonstrate that ENN associated with GNSs

is more accurate in comparison with ENN + FCSA. Not only
ENN + GNSs consider the training set at the end but also a
new training set has been given to the triple-based
embedding neural network. Comparing the superiority of the
applying FCSA strategy is to reduce the error in high-
frequency relations such as member holonym and member
meronym. In this regard, it can be ensured that the accuracy
of applying FCSA is not as good a less adverse effect, and is

relatively more stable. The ENN has an accuracy of 87.3%
and by applying strategies GNSs and FCSA, the accuracy

increases about 1 and 2 percent, and this demonstrates that
the proposed strategies have a positive effect on the
performance of the method. Applying strategies at the same
time performs inversely and does not increase accuracy. The
cause of this deterioration is related to various aspects. First,
by performing FCSA, choosing new samples occurs more
when the model is close to the end of the training. If applying
FCSA occurs with GNSs, it is probable that some of the new
positive samples generated by GNSs will be changed again
with FCSA and will be reduced the effect of the GNSs
strategy. Also, simultaneously applying these two strategies
will cause the original samples at the end of training more
faded, and the actual samples do not have their effect [24,
25].
In table 2, all four our distinct examination accuracy with the
previously reported results on Wordnet11 are compared.
Besides their accuracy, the optimization function that they
use for pre-training is shown. Some models have used
optimization functions to avoid overfitting. For instance, the

NTN method achieves the accuracy of 70.6 without any pre-
training, while initializing the embeddings with an
unsupervised semantic word vector the accuracy increases to

86.6. Table 2 shows the same result for TransE. Pre-training
is used to prevent overfitting, mainly on simple relations.
Each model uses distinct methodologies, which makes the
comparison not reasonably fair. However, as pointed out by
[10] and [34], averaging the pre-trained word vectors for
initializing entity vectors is an open problem, and it is not
always beneficial since entity names in many domain-
specific knowledge bases are not lexically meaningful.
However, a comparison has not been made on their
performance independently.

According to Table 2, ENN has a high accuracy compared

to methods with the same conditions (without any

optimization). It shows that the triple-based embedding

neural network is robust to overfitting. Also, applying the

GNSs strategy has the highest efficiency among all previous

states of the arts. It does not only increase the performance

but also it is not domain-specific and does not need external

data.

Table 1. Link prediction results on Wordnet11

Methods Acc% Opt

NTN [16] 70.06 None

NTN [16] 86.2

Initiate with unsupervised

semantic word

vectors

TransE(unif) [10] 75.85 None

TransE(bern) [10] 75.82 None

TransE [8] 85.2
Initiate embedding with

word2vec

TransH(unif) [10] 77.7 None

TransH (bern) [10] 78.8 None

TranSparse-DT

[26]
87.1 None

TransD [9] 86.4
Initiate embedding with the

result of TransE

TransR [14] 85.9
Initiate embedding with the

result of TransE

CTransR (bern)

[14]
85.7

Initiate embedding with the

result of TransE

TransG [27] 87.4 Initiate embedding by [28]

ENN 87.3 None

ENN+GNSs 89.4 None

ENN + FCSA 88.2 None

ENN + GNSs +

FCSA
87.4 None

Analysis of Generate Positive triples. In this section, the

effectiveness of the generated positive examples is analyzed.

In this regard, some of the positive samples generated in

procedure GNSs are given in Table 3. As shown in table 3,

the bold tails are also in the test data set. Adding these

positive samples and fine-tuning the triple based neural

18 Sogol Haghani et. al.: Embedding Knowledge Graph through …

network with the new training dataset will increase the

accuracy and improve the ranks of the test samples.

Table 3. Samples of Generated New Samples

Generated Positive triples in GNSs

(__chromatic_color_,1 _has_instance, __pink_4)

(__chromatic_color_,1 _has_instance, __red_1)

(__period_1, _has_instance, __bronze_age_1)

(__period_1, _has_instance, __civilisation_2)

(__period_1, _has_instance, __june_1)

(__astronomy_1, _domain_region, __apex_2)

(__astronomy_1, _domain_region, __zenith_1)

(__astronomy_1, _domain_region, __outer_planet_1)

(__family_lobeliaceae_1,_member_meronym,

__dicot_family_1)

(__japan_2, _has_part, __hondo_1)

Although triples like
(__period_1,_has_instance,__june_1) and
(__chromatic_color_,1 _has_instance, __pink_4) not in the
test data set, their tails are in the same community with
examples like (__period_1, _has_instance, __season_5) and
(__chromatic_color_1, _has_instance, __yellow_2)
respectively, as a result, according to Figure 6, they have
affected the performance of the relationship.

4.5. Results on Wordnet18
This section evaluates and represents results on Wordnet18
in two levels. First, results from the four examinations are
presented, then a comprehensive analysis of the results of a
variety of evaluation criteria with the other state-of-the-art
methods is provided. Table 3 shows the result of four
different examinations. In this table, the results are displayed
in two raw and filtered modes with evaluation criteria.

𝑀𝑅 is quite sensitive to the outliers. From Table 3, we see
that different strategies do not have much effect on the
outliers and make significant changes. Unlike Wordnet11,
applying both of the strategies has decreased the value of

𝑀𝑅, which indicates it has advantages in some ways. The

lower value of 𝑀𝑅, the more desirable. One of the matters is
to reduce the rank of the outliers. Although the effect is not

striking, cannot ignore. The 𝐻𝑖𝑡@𝑘 criterion is a significant
benchmark, due to it helps to understand the capability of
assigning better ranks to each triple. It is essential to be

assured, how many potential triples in the 𝐾 first choices are
predicted. Hence, the examinations have been evaluated by

𝐾 = 1, 3, 10 [18]. As illustrated in Table 3, over more than

90% of samples are predicted with 𝑘 = 10. Even in the

strictest mode, which 𝑘 = 1, more than half of the samples
predict as the first prediction option. An assessment with

𝑘 = 3 is the balance between a flexible and yet rigorous
one. However, more than two-thirds of the test cases have

been predicted. The combination of ENN and the GNSs
strategy has achieved the best value in all evaluation criteria
except MR compared to other examinations. It seems that the
model has a better performance in increasing the volume of
the knowledge base. Although applying the FCSA has a
positive effect, does not has a significant performance due to
the constant size of the due to the regularization is robust to
overfitting and does not need any pre-training and extra
optimization functions. It achieves state-of-the-art results on
benchmark datasets. Besides, we propose two strategies,
GNSs and FCSA, to augment datasets to overcome the
heterogeneity of the dataset. In our analysis, we show the
performance of applying the knowledge base, which the
original triple replaces with the new one. Regarding the
application of both strategies on the ENN, the same
argument applies to the Wordnet11 dataset. As a conclusion
from the experiments in Wordnet18, the number of added
triples must be controlled. Obviously, by combining both
strategies with the embedded neural network, it cannot
allocate very low ranks to triples. On the other hand, it
assigns the lower ranks to the outliers [5, 30]. It shows that
generated positive triples may be helpful to bring
information from other aspects.

In contrast to 𝑀𝑅, 𝑀𝑅𝑅 is insensitive to outliers. The
results also show that increasing the size of the knowledge

leads to better 𝑀𝑅𝑅 results. This supports our hypothesis.
Table 4 compares the proposed method with other states of
arts. In this table, the types of optimizations used are
specified to make better comparisons. The HolE and
ComplEx implement each of the comparison methods
individually and have performed different optimization
functions, which have the results reported for TransE being
different from one another and the original article. So, it is
difficult to determine precisely how much models with pre-

training gain over the other ones [12, 18].
ENN has been able to independently handle the structure

of the triple, without any pre-training and additional

information to perform better. On the 𝑀𝑅𝑅 metric, ENN
cannot achieve as good performance as the model with pre-
training. There are two noticeable phenomena in the result.
First, ENN cannot assign a lower rank to the triples. We
believe that this phenomenon is caused by the regularization
of the models, even though the principle of it has the
potential to represent real knowledge and to achieve
knowledge graph completion. Second, it shows that an
augmented knowledge base affects weaker but consistent
improvement on all metrics.

The proposed method has a significant performance
compared to non-pre-trained methods, and its results reflect

the evaluation criteria of 𝑀𝑅, 𝐻𝑖𝑡@10, and 𝑀𝑅𝑅. ENN with
GNSs and FCSA largely outperforms on MR and yields a
score of 109 among all methods. Since ENN's Regularization
cannot assign a lower rank to most of the triples, it can
compete with the state-of-the-art model [31, 32].

Table 4. The comparison of results on Wordnet18 with previous work

Methods Raw Filtered

MR MRR Hit@1 Hit@3 hit@10 MR MRR Hit@1 hit@3 Hit@10

ENN 120 0.65 37.42 70.9 85.18 115 0.696 46.24 86.64 93.29

ENN+GNSs 116 0.664 42.98 82.02 91.08 113 0.703 50.54 90.1 94.92

ENN + FCSA 117 0.659 39.92 75.22 90.6 111 0.68 46.8 87.2 93.67

ENN + GNSs + FCSA 114 0.643 38.96 73.66 89.21 109 0.679 47.22 86.12 93.34

Journal of Computer and Knowledge Engineering, Vol.5 , No.2. 2022. 19

Table 5. The comparison of results on Wordnet18 with previous work

Methods Raw Filtered Opt

MR hit@10 MR hit@10 mrr

TansE [13] 263 75.4 251 89.4 - None

TransE - - - 94.3 0.495 Using Optimize function [12]

TransH [10] 401 73.0 303 86.7 - None

NTN [16] - - - 66.1 0.53 None

ManifoldE Sphere [29] - 81.1 - 94.4 - Initiate embedding by [28]

ManifoldE Hyperplane [29] - 81.4 - 93.7 - Initiate embedding by [28]

TransR [14] 238 79.8 225 92.0 - Initiate embedding with the result of TransE

TransR [14] - - - 94.9 0.605 using optimize function [8]

CTransR (bern) [14] 231 79.4 218 92.3 - Initiate embedding with the result of TransE

TransD [9] 224 79.6 212 92.2 - Initiate embedding with the result of TransE

TransG [27] 483 81.4 470 93.3 - Initiate embedding by [28]

TranSparse-DT [26] 234 81.4 211 94.3 - None

HolE [18] - - - 94.9 0.938 using optimize function

ComplEx [12] - - - 94.7 0.941 using optimize function

ConvE [31] - - 504 94.2 0.955 Use dropout on the embeddings

R-GCN[32] - - - 96.4 0.819 None

TorusE [8] - - - 95.4 0.947 using optimize function

KE-GCN[32] - -

ENN 120 85.18 115 93.29 0.796 None

ENN+GNSs 116 91.08 113 94.92 0.803 None

ENN + FCSA 117 90.6 111 93.67 0.78 None

ENN + GNSs + FCSA 114 89.21 109 93.34 0.679 None

5. Conclusion and future studies

This paper describes a model based on a triple structure for

embedding entities and relations via an embedding neural

network (ENN). We found that previous methods failed to

overfit on infrequent relations. ENN strategies are consistent

and reliable. In particular, GNSs and FCSA aren't model

dependent, and they can be applied to any models. We

believe this observation is essential to assess and prioritize

directions for further research on the topic.

In our future work, we will focus on improving the ENN,

which needs to utilize loss function. Due to the significant

results of the proposed strategies, we will consider other

methods for generating new samples and employ them.

6. References

[1] Miller, G. A., "WordNet: a lexical database for

English," Communications of the ACM, pp. 39-41,

1995.

[2] Suchanek, F. M., Kasneci, G., and Weikum, G., "Yago:

a core of semantic knowledge," 2007.

[3] Nickel, M., Murphy, K., Tresp, V., and Gabrilovich, E.,

"A review of relational machine learning for knowledge

graphs," Proceedings of the IEEE, Vol. 104, No. 1, pp.

11-33, 2015.

[4] Sadeghi, A., Graux, D., and Lehmann, J., "MDE: Multi

Distance Embeddings for Link Prediction in

Knowledge Graphs," arXiv preprint arXiv:1905.10702,

2019.

[5] Cai, H., Zheng, V. W., and Chang, K., "A

comprehensive survey of graph embedding: Problems,

techniques and applications," IEEE Transactions on

Knowledge and Data Engineering, p. IEEE, 2018.

[6] Ebisu, T., and Ichise, R., "Toruse: Knowledge graph

embedding on a lie group," in Thirty-Second AAAI

Conference on Artificial Intelligence, 2018.

[7] Mighan, Sima Naderi, Mohsen Kahani, and Fateme

Pourgholamali. "POI Recommendation Based on

Heterogeneous Graph Embedding." 2019 9th

International Conference on Computer and Knowledge

Engineering (ICCKE). IEEE, 2019.

[8] Nguyen, D. Q., Sirts, K., Qu, L., and Johnson, M.,

"STransE: a novel embedding model of entities and

relationships in knowledge bases," in Proceedings of

NAACL-HLT, 2016.

[9] Ji, G., Liu, K., He, S., and Zhao, J., "Knowledge graph

completion with adaptive sparse transfer matrix," in

Thirtieth AAAI Conference on Artificial Intelligence,

2016.

[10] Wang, Z., Zhang, J., Feng, J., and Chen, Z.,

"Knowledge Graph Embedding by Translating on

Hyperplanes," in AAAI, 2014.

[11] Li, Zhifei, Hai Liu, Zhaoli Zhang, Tingting Liu, and

Neal N. Xiong. "Learning knowledge graph embedding

with heterogeneous relation attention networks." IEEE

Transactions on Neural Networks and Learning

Systems, 2021.

[12] Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., and

Bouchard, G., "Complex embeddings for simple link

prediction," in International Conference on Machine

Learning, 2016.

[13] Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J.,

and Yakhnenko, O., "Translating embeddings for

modeling multi-relational data," in Advances in neural

information processing systems, 2013.

[14] Lin, Y., Liu, Z., Sun, M., Liu, Y., and Zhu, X.,

"Learning Entity and Relation Embeddings for

Knowledge Graph Completion," in AAAI, 2015.

[15] Yang, B., Yih, W.-t., He, X., Gao, J., and Deng, L.,

"Embedding entities and relations for learning and

inference in knowledge bases," arXiv preprint

arXiv:1412.6575, 2014.

20 Sogol Haghani et. al.: Embedding Knowledge Graph through …

[16] Socher, R., Chen, D., Manning, C. D., and Ng, A.,

"Reasoning with neural tensor networks for knowledge

base completion," in Advances in neural information

processing systems, 2013.

[17] Abedini, F., Menhaj, M. B., and Keyvanpour, M. R.,

"Neuron Mathematical Model Representation of Neural

Tensor Network for RDF Knowledge Base

Completion," Journal of Computer & Robotics, Vol. 10,

No. 1, pp. 1-10, 2017.

[18] Nickel, M., Rosasco, L., Poggio, T. A., and others,

"Holographic Embeddings of Knowledge Graphs,"

AAAI, pp. 1955-1961, 2016.

[19] Haghani, S., and Keyvanpour, M. R., "moLink:

Modeling link representation of knowledge base," in

Information and Knowledge Technology (IKT), 2017

9th International Conference on, 2018.

[20] Cao, X., Wei, Y., Wen, F., and Sun, J., "Face alignment

by explicit shape regression," International Journal of

Computer Vision, Vol. 107, No. 2, pp. 177-190, 2014.

[21] Cui, X., Goel, V., and Kingsbury, B., "Data

augmentation for deep neural network acoustic

modeling," IEEE/ACM Transactions on Audio, Speech

and Language Processing (TASLP), Vol. 23, No. 9, pp.

1469-1477, 2015.

[22] Bengio, Y., Courville, A., and Vincent, P.,

"Representation learning: A review and new

perspectives," IEEE transactions on pattern analysis

and machine intelligence, Vol. 35, No. 8, pp. 1798-

1828, 2013.

[23] Haghani, S., and Keyvanpour, M. R., "A systemic

analysis of link prediction in social network," Artificial

Intelligence Review, Vol. 52, pp. 1961-1995, 2019.

[24] Keyvanpour, M., Kholghi, M., and Haghani, S.,

"Hybrid of Active Learning and Dynamic Self-Training

for Data Stream Classification," International Journal

of Information & Communication Technology

Research, Vol. 9, No. 4, 2017.

[25] Zhu, J., Jia, Y., Xu, J., and others, "Modeling the

Correlations of Relations for Knowledge Graph

Embedding," J. Comput. Sci. & Technol, Vol. 33, No.

2, 2018.

[26] Chang, L., Zhu, M., Gu, T., Bin, C., Qian, J., and Zhang,

J., "Knowledge Graph Embedding by Dynamic

Translation," IEEE Access, Vol. 5, pp. 20898-20907,

2017.

[27] Xiao, H., Huang, M., and Zhu, X., "TransG: A

generative model for knowledge graph embedding," in

Proceedings of the 54th Annual Meeting of the

Association for Computational Linguistics, 2016.

[28] Glorot, X., and Bengio, Y., "Understanding the

difficulty of training deep feedforward neural

networks," in Proceedings of the thirteenth

international conference on artificial intelligence and

statistics, 2010.

[29] Xiao, H., Huang, M., and Zhu, X., "From one point to a

manifold: Knowledge graph embedding for precise link

prediction," arXiv preprint arXiv:1512.04792, 2015.

[30] Rosso, Paolo, Dingqi Yang, and Philippe Cudré-

Mauroux. "Beyond triplets: hyper-relational knowledge

graph embedding for link prediction." Proceedings of

The Web Conference 2020.

[31] Dettmers, T., Minervini, P., Stenetorp, P., and Riedel,

S., "Convolutional 2d knowledge graph embeddings,"

in Thirty-Second AAAI Conference on Artificial

Intelligence, 2018.

[32] Schlichtkrull, M. a. K. T. N., Bloem, P., van den Berg,

R., Titov, I., and Welling, M., "Modeling relational data

with graph convolutional networks," in European

Semantic Web Conference, 2018.

[33] Yu, Donghan, et al. "Knowledge embedding based

graph convolutional network." Proceedings of the Web

Conference 2021. 2021

[34] Kazemi, Seyed Mehran, and David Poole. "Simple

embedding for link prediction in knowledge

graphs." Advances in neural information processing

systems 31, 2018.

[35] Sun, Zhiqing, et al. "Rotate: Knowledge graph

embedding by relational rotation in complex

space." arXiv preprint arXiv:1902.10197, 2019.

[36] Nguyen, Dat Quoc. "An overview of embedding models

of entities and relationships for knowledge base

completion." arXiv preprint arXiv:1703.08098, 2017

