
Journal of Computer and Knowledge Engineering, Vol. 5, No. 1, 2022. (47-57) 47

https://cke.um.ac.ir/ DOI: 10.22067/cke.2022.73356.1031

Towards Leveraging Structure for Neural Predictor in NAS*
Research Article

Saeedeh Eslami1 Reza Monsefi2 Mohammad Akbari3

Abstract: Neural Architecture Search (NAS), which
automatically designs a neural architecture for a specific
task, has attracted much attention in recent years. Properly

defining the search space is a key step in the success of NAS
approaches, which allows us to reduce the required time for
evaluation. Thus, late strategies for searching a NAS space
is to leverage supervised learning models for ranking the
potential neural models, i.e., surrogate predictive models.
The predictive model takes the specification of an
architecture (or its feature representation) and predicts the
probable efficiency of the model ahead of training.
Therefore, proper representation of a candidate architecture
is an important factor for a predictor NAS approach. While
several works have been devoted to training a good surrogate
model, there exits limited research focusing on learning a
good representation for these neural models. To address this
problem, we investigate how to learn a representation with
both structural and non-structural features of a network. In
particular, we propose a tree structured encoding which
permits to fully represent both networks’ layers and their
intra-connections. The encoding is easily extendable to
larger or more complex structures. Extensive experiments on
two NAS datasets, NasBench101 and NasBench201,
demonstrate the effectiveness of the proposed method as
compared with the state-of-the-art predictors.

Keywords: Neural Architecture Search (NAS), Search

Space Pruning, Network Architecture, Representation

Learning

1. Introduction

The success of various machine learning tasks heavily

depends on effective design of a proper neural model.

Extensive studies demonstrate that relying on expert

experience often results in subjective sub-optimal solutions,

needs huge time, and resource consumption. Generally,

designing an optimal network architecture is a crucial and

arduous step for every machine learning problem.

Traditionally, an expert proposes a neural model for the

given task and then the model is trained with various hyper-

parameters to achieve the best design.

The process is repetitive, timely and error-prone. As such

automating network design process, i.e., specifying network

parameters, also known as Neural Architecture Search

(NAS), has become an emerging topic in automatic machine

learning (autoML). While NAS framework focuses on

automatic ways to select hyper-parameters and design

appropriate network architectures, designing an effective

framework for NAS is still challenging and under-researched

issue problem. The search space of NAS task is formed by

*Manuscript received: 02 November 2021; Revised, 2 February 2022, Accepted: 05 March 2022.
1 PhD student, Department of Computer Engineering, Engineering Faculty of Ferdowsi University, Mashhad, Iran..
2 Corresponding Author, Professor, Department of Computer Engineering, Engineering Faculty of Ferdowsi University,

Mashhad, Iran. Email: Monsefi@um.ac.ir
3 Assistant Professor, Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran.

all feasible combinations of various components of a

network; an enormous space which can exhaust any search

algorithm. Thus, a well-defined search space is essential to

compensate the shortcomings of average search strategies

like random sampling methods. To do so, retrospective

studies in NAS have proposed various strategies for pruning

the search space. For example, Reinforcement Learning (RL)

and Evolutionary Algorithms seek the optimal solution in a

discrete space [1, 2]. One-shot learning and stochastic neural

search model the problem in a continuous space [3, 4].

However, these approaches often need a considerable

amount of time (hours or days) merely to find the exact

performance of candidate models and hence fully training

and evaluating thousands of architectures. As a result,

selecting the optimal architectures with the best performance

on validation data is a matter of thousands of GPU days and

the institute which adopts this approach should be able to

afford such equipment, otherwise the search is actually

impractical.
Recent studies in this regard show that a very efficient

strategy for making the NAS feasible, is training a
performance predicting model with the most influential
network features to predict the proposed model’s

performance and thus keep the 𝐾 −top promising modes for
actual training [5, 6]. The predictor takes a network
representation as input, i.e., input features, and estimates its
final performance according to the previously seen models.
The hypothesis behind this is that the predictor is trained with
a few pair of fully trained networks and their performances.
If the selected models are of high quality, training with this
small set of models will help the predictor to reliably select
a good model. While predictor’s estimation makes the main
algorithm needless of a complete training chore to assess
other proposed models and thus saves time, training a meta-
predictor is a nontrivial task due to following challenges.
First, every network architecture is defined via two factors:
the layer specifications and the connections between layers.
Although critically important, the prior works have merely
focused on search space and search strategy and have not
considered a complete structure encoding for the networks
presented to the predictor, i.e., their encoding whether
ignores the layer specifications or the interconnections
(misses some important aspects of a network) [1, 7]. But as
we can see in another branch of NAS studies, named curve
extrapolation, adding some structural information to the
training reports [8, 9] improved the performance estimation
and convergence time drastically. Since the introduction of
additive (residual) networks like ResNet, DenseNet, etc., the
connections between layers has become very complicated.

https://cke.um.ac.ir/
https://cke.um.ac.ir/article_42708.html

48 Saeedeh Eslami, et. al.: Towards Leveraging Structure for …

The skip connections can make a network actually an
ensemble structure as each way from the input layer to the
output layer is a complete convolutional network (Figure 1).
Simple encodings that were used in early works [10, 7] are
totally inefficient to represent the possible options in each
single element of the network. Due to their inflexibility, their
rules of connectivity are also very strict and limiting. Second,
a convolutional network is a discrete structure so a tabular
(discrete) representation seems more suitable than
continuous representations. Previous works mostly have
employed a neural based predictor (RNN, CNN, and GCN)
and continuous representations to build and train the
predictor. Some discussions criticize using them saying
neural networks are more designed to receive image/speech
data and not much to handle tabular or discrete data which
seems more compatible with tree structured models [11, 22].
Also, the training data insufficiency, which is very common
in NAS, may affect the neural based predictors more than
tree based ones. The predictor [11] that introduced as GBDT-
NAS is a GBDT based regression model using a tabular,
layer by layer encoding and gained the best performance till
2020 and best top 10 results on ImageNet and CIFAR10.
However, we argue that their encoding has very limited
power and cannot be extended easily. Encoding new
generation additive networks is also a challenge for them. In
this paper, we introduce a new tree structured representation
for deep convolutional networks. The representation is a
complete encoding of network structure including layer’s
full specification and the connection patterns inside the
network. Each path is encoded independent of others, thus
extending, reducing or any optimization of a path does not
affect others. We trained the GBDT predictor with our
encoding and tested it on ImageNet16 and CIFAR10.

The training and validation data are provided by

NASBench101 [12] and [13]. We investigate the effect of

data insufficiency on the predictor’s performance. We beat

the path-based encoding proposed by BANANAS and

together with NAS-GBDT reached the best results on

baseline datasets. The main contribution of this paper are as

follows:

• We propose an approach to embed the structure of a

neural model into the network encoding;

• We demonstrate how to learn a unified representation

from both the structure information and layers’ attributes

of a neural model;

• We evaluate the proposed model in two widely used NAS

datasets and show that a good representation is crucial for

NAS predictor.

The formal definition of the problem is presented in

section 2 for more clarification. Network representation is

discussed in section 3. We also discuss different aspects of

representation and our method of representation in its

subsections A. and B. Then, we talk about the neural

predictor in section 4. Finally, the results and the conclusion

are presented in section 5 and section 6, respectively.

2. Statement of the problem

The aim is predicting the performance of a neural

architecture before training. This can be modelled as a

regression problem in machine learning where we aim at

learning a regressor 𝐹 to take the representation of an

architecture 𝑁𝑖𝜖𝑁 and return its estimated performance as

𝑦�̂� = 𝐹(𝑊𝐹 , 𝑁𝑖), where 𝑊𝑓 denotes the trainable function

parameters. The function 𝐹 is trained to minimize the

following error:

min
𝑊𝑓

||ℱ(𝑊𝑓 , 𝑋𝑖) − 𝑦𝑖||2
2 (1)

where 𝑦𝑖 denotes the actual performance of the network as

label data. The key to success of the predictor is to learn a

representative encoding for the network 𝑁𝑖. In next section,

representation issues are discussed and our method is

presented to fully represent a deep convolutional network.

3. Network representation
Any deep neural architecture can be defined via a set of
layers, their specifications (i.e., type of filters in each layer,
order of filters and their set of hyperparameters, type of
activation functions, etc.), and the interconnections among
them. The CNN is a series of layers which receive the inputs
from previous layers, transform them via some operations
and pass them to the next layers. Thus, designing is a series
of successive and dependent decisions about the layers’
specifications and their interconnections. To leverage
predictors for NAS, we need to extract discriminative
features from both structural features of the network and
non-structural attributes of its layers. Suppose we have a

network 𝑁 with 𝐿 successive layers denoted by (𝑙1, 𝑙2… , 𝑙𝐿),
where 𝑙1 and 𝑙𝐿 are the input and the output layers of the
network, respectively. In the following sections, we explain
how to build a representation for both structures of the
network and attributes of its layers, respectively.

(a)

(b)

igure 1. A typical CNN model and its paths from input to output:

(a). The typical representation of Residual networks, (b). The

unraveled view of a 3-block residual network; adding a block

doubles the number of paths

A. Modeling network structure
A major aspect of any neural architecture is the
interconnections between layers which controls how features
are extracted and passed into consecutive layers. In a typical
convolutional neural network (CNN) layers are connected to

Journal of Computer and Knowledge Engineering, Vol.5, No.1. 2022. 49

each other in a feed-forward manner. However, it is likely to
have several paths from the input layer to the output layer,
especially if skip connections are allowed [14], as shown in
Figure 1. Different paths extract various type of features for
the final layer. A good representation should denote all such
paths so that the predictor can learn the process through the
extracted features. Here, we try to model a network by a set
of paths from input layer to output layer and to represent all
existing paths in a tree structure. We say that the number of
possible unique paths from input to output layer of a neural
architecture is finite and can be pre-computed from the

network architecture. Suppose 𝑁 is a convolutional network

with 𝐿 layers denoted by (𝑙1, 𝑙2… , 𝑙𝐿) and 𝐴𝐿×𝐿is its

adjacency matrix and 𝐴𝑖 is the 𝑖 −th layer connectivity, then
the total number of unique paths from the input layer to the
output is

{
∏ deg⁡(𝐴𝑖)

𝐿−1
𝑖=1 𝑖𝑓⁡𝐴1𝐿 = 0

((deg(𝐴1) − 1) × ∏ deg⁡(𝐴𝑖)
𝐿−1
𝑖=2) + 1 𝑜𝑡ℎ.

 (2)

where deg⁡(𝐴𝑖) is the number of outgoing connections from

the layer i. Assume an isolated tree root. It does not
correspond to any layer of the original network and will only
connect all the found paths as the root. So, the number of
Root’s first level children is the total number of paths which
can be computed using the equation. These children nodes,
represent the input/first network layer. The adjacency matrix
is then traversed in a semi depth-first order beginning from

𝐴1 connections and the paths are recognized one by one and
attached to the previously built level of the tree. Each branch

terminates by 𝐴𝐿 as the tree leaf. There are possibly a number
of repeated order of nodes but it doesn’t matter.

We employ Depth First Search (DFS) algorithm to

convert the network graph into a tree. This can be stated as

follows. Suppose 𝜎(𝑙1, 𝑙2… , 𝑙𝐿) defines the set of paths of the

tree composed of 𝑙1, 𝑙2… , 𝑙𝐿 and rooted from 𝑙1. If 𝛥(𝑙𝑖)
denotes the set of layers for them there is a direct connection

from 𝑙𝑖 in the network, then for all 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝐿 if 𝑙𝑖 ∈
Δ(𝑙𝑘)\⁡Δ(𝑙𝑗) there exists a 𝑙𝑚 (𝑖 < 𝑚 < 𝑗) such that 𝑙𝑚 ∈

Δ(𝑙𝑗).

Algorithm 1 shows the pseudo code of an algorithm for

computing the paths and their representations.

B. Modeling layer attributes

So far, we only modelled the structure of a neural model.

However, each layer can represent various operations. In this

section, we explain how to model attributes of a single layer

of a neural model. For the sake of simplicity, we only discuss

the case that the network consists of convolution blocks;

however, the extension to other neural models is intuitive.

Different convolutional operations (convolution, pooling,

etc.), basically convolve a kernel of arbitrary size with the

input. So each operation can be represented by a numeric

vector, as shown in Figure 2. The vector consists of four

different values where the first one represents the type of

operation via one-hot representation. The remaining

elements represent all parameters associated to that

operation. A convolutional operation needs kernel

specification in terms of the width and height of the kernel

and its number of input and output channels. We focus on

square kernels and like [6] take number of output to input

channels ratio to make it simple and efficient. The options

for the ratio are not vast as the number of output channels is

limited within a range of input channel number. The “skip-

connection” is not a convolutional operation and it is

necessary in residual networks to model skip connections. If

the network is bound to be fully connected, we can add a

semi-operation ‘No-op’ which means no transaction between

the respective layers and thus lets us have freedom in

establishing connections between layers. An operation is

defined part by part by the integer values chosen from the set

of valid ones. The operation set can be defined narrower or

wider based on the task at hand. Some search spaces like

NASBench-101 [12] define combined operations (layers)

like 𝐶𝑜𝑛𝑣 − 𝑎 × 𝑎 which is a 𝑎 × 𝑎 convolution followed by

a Batchnorm and then a Relu.

See Table 1 for the full list of operations.

Figure 2. Vector representation of neural operations. Each

operation can be fully represented by a vector of four values.

50 Saeedeh Eslami, et. al.: Towards Leveraging Structure for …

Table 1. The integer coding of various neural operations

Op.

Name

Op.

type

Kernel

width

Kernel

height

O/I channel

ratio

Convolution 1 3,5 3,5 0.25,3

Max-pooling 2 3,5 3,5 1

Avg-Pooling 3 3,5 3,5 1

Relu 4 1 1 1

BatchNorm 5 1 1 1

Skip-connection 6 0 0 0

No-op 7 0 0 0

The sequence of operations should also be investigated.

For example, to use 3x3 convolution at earlier levels rather
than later produces a better network based on what [11]
found in some tests with its method of assessment on a small
set of convolutional operations. So, it’s advantageous that
the representation considers the order of operations as well.

Our strategy is to recognize different sequences after
denoting existing paths and to keep counts of them. The

smallest complete path is ′𝑖𝑛𝑝𝑢𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡′ if there is a skip-

connection between these two layers otherwise it is ′𝑖𝑛𝑝𝑢𝑡 −
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑜𝑢𝑡𝑝𝑢𝑡′ and there would be no smaller path.

The feature vector is of length 𝐷 where 𝐷 is the number of

all possible 𝑛 −length operation sequences. For a set of

𝑚(𝑚 > 1) possible operations, the operation dataset

contains 𝑚𝑛 sequences from which (𝑚 − 1)2 × (𝑚 − 2)𝑛−2
are valid (patterns like operation-input-operation, output-

operation-operation, etc. are considered invalid). An 𝑚+ 1

operation set has (1 + 1
𝑚⁄)𝑛 times more operation

sequences with the same length than the first set. While the

feed forward network with 𝐿 + 1(𝐿 > 1) layers has (𝐿 × 𝑚)
times more paths than a 𝐿 −layered one. The maximum

number of paths of the mentioned network is 𝑚𝐿−1 × (𝐿! ×
𝑚). We have:

(1 + 1
𝑚⁄)

𝑛
≤ (

3

2
)
𝑛

≤ (
3

2
)
𝐿

 (3)

(𝑚 − 1)2 × (𝑚 − 2)𝑛−2 ≅ (𝑚 − 2)𝑛 (4)

∀𝑛 ≤ 𝐿⁡ ((𝑚 − 1)2 × (𝑚 − 2)𝑛−2 ×⁡(1 + 1
𝑚⁄)

𝑛
⁡) ≤

𝑚𝐿 × (𝐿!)

 (5)

Even at the extreme case when 𝑛 = 𝐿, we can still favor

the counter vector of 𝑛 −length sequences to counter-vector
of the full paths. When the number of layers and the pattern
of connectivity is fixed in a search space, it is harmless and
efficient to count full paths. The path-based feature vector
which BANANAS proposed is well doing in NASBench-201
[13] where the connections are fixed and only the operations
are varied but it’s not applicable without truncation even in
small cells when we have freedom in establishing connection
among layers. To find better architectures, different number
of layers and connections should be freely investigated. In
these spaces, we propose that feature vectors represent

𝑛 −length operation sequences. In section 4 our approach of
constructing a performance predictor for receiving the
mentioned encoding is discussed.

4. Neural predictor
Our objective is building an effective predictor for well

estimating the performance of an architecture before

training. This model takes a network architecture 𝑁 and an

epoch index 𝑡 and produces a scalar value 𝐹(𝑁, 𝑡) as the

prediction of the performance after exactly 𝑡 epochs. Here,
we incorporate both structural and non-structural

information of the feature space to represent the network 𝑁.
Further, inspiring from current estimation approaches [6], we

consider the epoch index 𝑡 another input to the model. The
hypothesis behind this is that the validation accuracy
generally changes as training proceeds. Therefore, when we
predict performance, we have to be specific about time point
of the prediction. This also helps us to better model the
possible correlations between training samples. Inspired by
[15], we use a three-step predictor to select promising
models as follows.

4.1. Construction
To obtain a small training dataset, we train a random

sample of architectures and construct training multivariates

in (𝑁𝑖 , 𝑝𝑖 , 𝑡𝑖) where 𝑁𝑖 ⁡and 𝑝𝑖 are in turn a network’s
architecture and validation accuracy at a certain training
epoch plus the epoch number. Next, we use this small dataset

to train a regression model 𝐹𝑖 for predicting the accuracy of
any architecture.

4.2. Ranking

The predictor model 𝐹𝑖 is used to estimate the accuracy
of a large number of random architectures. These
architectures are then ranked based on their predicted

accuracy and top 𝐾 architectures are passed to the next step
for final evaluation.

4.3. Evaluation

Here top 𝐾 architectures, i.e., the promising ones, are
trained and evaluated on real data to calculate their actual
validation accuracy.

A. GBDT performance predictor
A single tree may not be powerful enough to capture

complex relations in data. Gradient boosting decision trees
(GBDT) boosts the prediction by leveraging multiple
additive trees and thus different views on data:

�̂�𝐺𝐵𝐷𝑇(𝑥) = ∑ �̂�𝐷𝑇𝑆(𝑥)
𝑆
𝑠=1 (6)

where 𝑆 is the number of additive trees, and �̂�𝐷𝑇𝑆 is the

predictive model for the 𝑠 −th tree. Each tree maps a feature
vector to a weighted leaf node. The weights are adjusted
according to the problem objective. Together GBDT

extracts⁡𝑆 rules to predict the target value of a given feature
vector. Supposing the trees have enough diversity, each rule
models different high-order feature interactions without
human interference. Figure 3 illustrates our predictive
model.

Journal of Computer and Knowledge Engineering, Vol.5, No.1. 2022. 51

Figure 3. The schematic overview of the proposed framework

B. Sample efficiency

The predictor is trained by a 𝑀 random architectures so as

much as the 𝑀 increases, the predictor becomes more

accurate. Also, a large 𝐾 makes the validation results very

reliable. But there is a tradeoff between 𝑀 and 𝐾 as the

whole training actually is done with 𝑀 + 𝐾 models and the

computation resources are limited. We have no formula to

exactly determine best values and they are determined by

repeated experiments.

C. Robustness to adversarial examples

Adversarial examples are the data deliberately perturbed by
adversaries to mis-lead the classifiers. Network robustness

is how the network resists or keeps performance against

adversarial inputs. The problem is formulated as:

min
𝜃

𝔼(𝑥,𝑦)~𝒟 [max
𝑥′∈𝑆

ℒ(𝑦,𝑀(𝑥′; 𝜃))]

 (7)

where 𝑆 = {𝑥′: ‖𝑥 − 𝑥′‖𝑝 < 𝜖} is the set of perturbed

inputs,⁡𝑦 is the true output, 𝑀 is the model and 𝒟 is the

distribution. The model takes the architecture parameters as

input and predicts its robustness [32]. To have a robust

network, we need adversarial training and both accuracy

and robustness should be taken into account. The objective

function is generally presented as:

𝑚𝑖𝑛: 𝐹(𝑥) = {𝑓1, 𝑓2} (8)

Here 𝑓1represents the error rate on clean data.

𝑓1 = 1 − (
1

𝑛
∑ 𝕀(�̂� == 𝑦)) × 100% (9)

where 𝑛 is the number of examples and 𝕀 is an indicator

function. While 𝑓2 has the following general form:

𝑓2 =
(1−(

1

𝑛
∑𝕀(�̂�𝑎==𝑦))×100%)−𝜇

𝜎
 (10)

the term inside parenthesis, is the error on adversarial

examples generated from a random type of attack and 𝜇 and

𝜎⁡are the mean and standard deviation of the error rate of

different training architectures for the attack [33].

The types of attacks are numerous. An architecture which

resists against one type of attack may not do so against

another one. This reveals the difficulty of designing a loss

function for the problem. The related methods try to

discover influential patterns or influential paths in

robustness against certain adversarial attacks or how the

parameters should be assigned to gain maximum

robustness, and what is the reliable indicator of network

robustness. The system should be trained with a huge

amount of different architectures and various attacks to

evaluate their robustness. The process of adversarial

training for one type of attack is already very space and time

consuming. So, to design a multi-objective loss function to

consider a collection of attacks can be pursued in our future

work independently.

5. Experiments

In this section, we conduct several experiments to evaluate

the effectiveness of the proposed predictor. We evaluated

our approach on two commonly used datasets for NAS, i.e.,

NASBench-101 and NASBench-201, which show

superiority of our proposed approach over the state-of-the

art baseline methods for NAS. While the architectures in

NASBench datasets are limited in structures and types; the

proposed representation paradigm can potentially encode

various type of cells.

5-1. Experiments on NASBench 101

NASBench-101 search space is a dataset of more than

400‘000 pre-built and tested architectures on CIFAR-10.

The search space is built upon NASnet principles [10]. The

main stem of the architecture is composed of three times

repetitions of a cell followed by a downsampling layer to

manage the input dimensions. The architecture ends with a

global average pooling layer and a dense softmax layer.

Each cell is composed of up to 7 layers (two of them are

reserved for input and output) and 5 valid operations. The

operations include ‘CONV1x1’, ‘CONV3x3’,

‘MAXPOOL1x1’, plus ‘INPUT’ and ‘OUTPUT’ which

refer to convolution with 1x1 kernel, 3x3 kernel, max

pooling with 1x1 kernel, simple input and output resp. The

convolution operations actually apply a series of

[convolution-batchnorm-relu] operations. The cells are

described with adjacency matrix and the list of applied

operations. Each structure is trained, validated and tested

three times and the results are averaged and reported. The

dataset however contains some inconsistencies because the

models with best validation errors do not necessarily report

best test errors. Also, due to unstable models (like a model

with only pooling operations), high variance is expected.

The highest test accuracy which is reported by Regularized

evolution [16] is 94.32% but running extensive search

several times has led to a mean test accuracy of 94.1% and

52 Saeedeh Eslami, et. al.: Towards Leveraging Structure for …

a mean validation accuracy of 95.13% [15]. To better

compare the results with [15, 11, 17], the current state of the

art predictors, we validate the results on 2000 models and

test them on the rest. So, next we will describe the predictor

setup.

A. Experimental setting

NASBench-101 contains small cells with varied

connectivity. As mentioned in section III our strategy is to

recognize different sequences after denoting existing paths

and to keep counts of them. We take the adjacency matrix

and set of operations of a structure to extract all the paths

from the input to the output layer and represent them in

terms of applied operations. The order is important and

different orders lead to different efficiency. Here we borrow

the term n-gram to denote different n-length operation

sequences. For example, a 3-gram can be [Conv1x1-

MaxPool3x3-Output]. The feature vector to represent a

network from the current dataset is the counter vector of all

48 introduced 3-grams. An addition to the operation set,

adds a maximum of 52 more elements to the feature vector

(about 2.08 times) while when a single layer is added to the

once 7-layered structure, (even if assuming there is no

operation set to choose from) it will make the primary 720-

d path-indexing feature vector 7 times lengthier. Our

encoding is independent of the number of paths and avoids

this increase. For each training model, the predictor takes

the vector and its accuracy. So, it knows how many of each

n-gram exists in a structure and learns the goodness of such

structure. We also tried other sequence lengths (bigrams

and 4-grams) and observed that longer sequences do not

have a very significant impact on the performance and can

be omitted. A 4-length sequence can be represented by two

interleaving 3-grams. We use a theorem from [17] which

expresses longer sequences (paths) have a lower occurrence

probability than shorter sequences and can be omitted. This

theorem has come in the supplementary. We propose to use

sequences up to length L/2 where L is the total number of

layers. Also, the only important bigram (2-gram) is

′𝑖𝑛𝑝𝑢𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡′ because the rest will appear in valid 3-

grams.

B. Regression Results

At first, we test our encoding in a simple prediction task. A

total sample of 2000 (1000+1000) architectures are taken

randomly from the dataset to make the training and

validation set. Similar to [11], we train a Gradient Boosting

Decision Tree (GBDT) model with 100 trees and 31 leaves

per tree for a single epoch. We compared our model with

following baselines in NAS:

• Random Search: The simple and fast cell-based search

method that combines random search with weight-

sharing and is proposed in [18];

• NAO: A predictor-based NAS method which encodes

the architecture cell in continuous space to optimize it

there [7];

• RE: One of the first methods based on evolution and

competes against RL in large spaces [16];

• Neural Predictor: It uses Graph Convolutional Networks

to extract features and is proposed in [15];

• GBDT-NAS: The method proposes discrete encoding

and uses GBDT as the predictor [11];

• BANANAS: The path-based predictor which proposes a

one-hot feature vector to index the existing paths and

Bayesian optimization [17];

• Weak NAS Predictor: A recent study which is proposed

in [19] and focuses on using power of ensembles to

improve the results rather than encoding.

The whole experiment is performed 50 times. For

GBDT-NAS, Weak Predictors and BANANAS we used the

authors’ code. Also, we had valid codes for RE, RS and

Neural Predictor but for NAO the values come from [15,

11]. Table 2 shows the results.

Table 2. Test and validation results of different NAS methods on

CIFAR-10 using NASBench-101. The training and validation

set, each consists of 1000 randomly sampled architectures.

Method
Test

Acc(%)
Val Acc(%) Test Regret

Random Search 93.7 94.5 0.62

NAO 93.90 94.1 0.42

RE 93.96 94.7 0.36

Neural

Predictor
94.04 95.1 0.28

NAS-GBDT 94.14 94.5 0.18

BANANAS 93.9 94.5 0.42

Weak

Predictors
94.23 94.9 0.09

Ours 94.21 94.9 0.11

We also tested several values for the best number of

training samples (Figure 4.). We assumed an equal share for
the number of training and validation samples. We varied
the total number of samples up to 5000. After reaching 5000
samples, Regularized Evolution achieves 94.1% test and
94.8% validation accuracy; Random Search achieves
93.8% and 94.5% test and validation accuracies
respectively. The weak predictors method reaches 94.2%
and 95% test and validation accuracy. We observed after
2000 samples, the results do not improve significantly and
there is a risk of overfitting. So, we chose 2000 samples
with a fair share of 1000-1000 for the number of training
and validation samples. Figure 4 shows the test accuracy
results and Figure 5 presents the validation results.

Figure 4. Test accuracy for a varied best number of samples

Journal of Computer and Knowledge Engineering, Vol.5, No.1. 2022. 53

Figure 5. Validation results for a varied best number of samples

Table 3. The Kendall-Tau of using different encoders on the

NAS-Bench-101 dataset. The encoders are trained with different

proportions of the first 90% (381262) architectures tested with

other 42362 ones.

Encod

er

Proportions of 381262 training instances (%)

0.05

%

0.1

%

0.5

%
1% 5%

10

%

50

%

100

%

MLP 0.39
0.5

2

0.6

4

0.7

3

0.8

5

0.8

7
0.8 0.89

LST

M
0.55

0.5

9

0.7

1

0.7

7

0.8

4

0.8

5

0.8

8
0.89

GCN 0.55
0.5

7

0.7

9

0.8

2

0.8

6

0.8

7

0.8

9
0.89

GAT

ES
0.76

0.7

7

0.8

4

0.8

5

0.8

8

0.8

9

0.9

0
0.90

Ours 0.80
0.8

5

0.8

6

0.8

7

0.8

8

0.8

8

0.8

9
0.90

3. Ranking results

A predictor evaluates an untrained model so it may

underestimate a model’s actual performance. If the

predictor exhibits a uniform behavior towards each model,

the results can be used to produce a meaningful ranking and

the underestimation would not cause a problem. Thus, the

relative ranking of the architectures is more explanatory

than their exact performance values. Here, we adopt

Kendall’s Tau ranking correlation to evaluate several

performance predictors. To keep up with [27]’s setting and

use their reports, we used the first 90% (381262)

architectures as the training data and the other 42362

architectures as the test data. Table 3 shows the Kendall’s

Tau correlation for several base predictors such as LSTM

[28], MLP [28], GCN [29], and GATES [27] which is a new

graph-based predictor. The proportions of training data is

varied from 0.05% to 100%. The results related to our

predictor on the small training sets (0.05% and 0.1%)

proves its generalization ability. The data for the mentioned

predictors come from [27].The other measure that we

considered is the N@K which evaluates the true ranking

among the top-k architectures. Table 4 shows the results.

The estimated average FLOPS of the found

architectures with our method is 512M and the parameters

are 2.8M. The found architectures by different cell-based

NAS methods are compared in terms of number of

parameters in Table 5. The methods include the RL-based

Amoebanet [16], Progressive NAS (PNAS) [4],

DARTS[30], ENAS [31] and GATES [27].

Table 4. N@K on NAS-Bench-101. The predictors are trained

with 0.1% of the training data (381 architectures).

Encoder N@5 N@10

MLP 1397 (3.30%) 552 (1.30%)

LSTM 1080 (2.54%) 312 (0.73%)

GCN 405 (0.97%) 405 (0.95%)

GATES 27 (0.05%) 27 (0.05%)

Ours 585 (1.38 %) 526 (1.24%)

Table 5. Comparison of discovered architectures on CIFAR-10

Method
Number of

Parameters (M)

Number of

Evaluated Archs.

Amoebanet[16] 2.8 20000

PNAS[4] 3.3 27000

DARTS[30] 3.2 1160

ENAS[31] 4.6 --

GATES[27] 4.1 800

Ours 2.8 500

The next step is to test the method on a more challenging

dataset which was ImageNet in our case. Part B discusses

the results we observed.

5.2. ImageNet Experiments

To evaluate our model on ImageNet, we used NASBench-

201 which consists of validation and test results on about

16,000 architectures [13]. The results are reported on

CIFAR-10, CIFAR-100, and ImageNet-16-120. The search

space is similar to NASBench-101, however the cells are

bound to be fully connected with four nodes but can choose

from a variety of five operations per node. The main

architecture is composed of a pre-convolution layer,

followed by 3 times repetitions of the cell separated by a

residual block of stride 2 and a final global average pooling

layer. The lowest validation error and test error reported

after 500 runs are 53.233% and 53.1556%, respectively

which do not belong to the same architecture. The problem

of inconsistency is more severe here which can lead to

overfit to validation errors and increase in test error. We add

the Input and Output to the operation set to form operational

sequences. The feature vector length is 180. After 50 runs

which took less than 1 TPU hour, we reached 54%

validation error and 54.10% test error. BANANAS reported

54.6% and 54.7% for validation and test error after 200

trials which took over 40 TPU hours. We tested BANANAS

with its proposed truncated path-based encoding and

observed an average of 64% test error there.

We also calculated the Kendall-Tau correlation

coefficient this time for NASBench-201 cells on ImageNet.

Table 6 shows the results. The method is compared with

MLP, LSTM, and GATES encoder. The encoder is trained

using the first 50% (about 7800) samples and tested on the

rest (about 7800 samples). The proportion of training data

changes from 1% of the training set to 100%. As it can be

54 Saeedeh Eslami, et. al.: Towards Leveraging Structure for …

seen clearly in the table, our encoder reached much higher

ranking correlations than other encoders. The first stage of

experiment uses only 78 training samples and exhibits 91%

correlation with the target values.

Table 6. The Kendall-Tau of different encoders on the NAS-

Bench-201. The encoders are trained with different proportions

of 50% (8713) of architectures and tested with other 7812 ones.

Encoder
Proportion of 7813 training instances

1% 5% 10% 50% 100%

MLP 0.0974 0.3959 0.5388 0.8299 0.8703

LSTM 0.5550 0.6407 0.7268 0.8791 0.9002

GATES 0.7401 0.8628 0.8802 0.9192 0.9259

Ours 0.9109 0.9125 0.9171 0.9227 0.9428

6. Related works

A proper encoding of the neural architectures is needed

when sampling a new architecture, perturbing it in some

way and training the predictor with it. There is not much

study regarding the optimal encoding for each phase [20],

thus, different encodings often mismatch. The architecture

encoding can roughly be categorized into vector encoding

and graph encoding [21]. Encoding via vectors is the

serialization of the architecture mostly layer by layer (or

block by block). For example, [6, 22, 23] had vector

encodings composed of the layer type, kernel width

(height), channel number, output to input ratio (layer

information), number of consecutive convolution

layers/blocks, pooling to convolution ratio (sub-network

information), and some summary statistics. However, these

features are not rigorous enough to encode all types of

structures. The topological information also is not properly

included. Besides, as long as it matters the predictor, the

encoding should produce the same representation for

isomorphic architectures [24]. The adjacency matrix

provides a more powerful representation of the network.

Each element of the binary matrix shows the existence of a

connection between the two respective layers. Some other

versions also represent the type of transformation/operation

between the two layers [25]. An operation can be defined

such that it can also show the layer type, kernel size, channel

number, etc. (e.g., MaxPool 3x3). Encoding with adjacency

matrix is not one to one, and different architectures may

have similar encodings. To make it worse for a neural

predictor, an architecture can have many different matrix

representations. BANANAS [17] adopted a path-based

encoding. They extracted all the input-to-output paths in the

neural network (in terms of the operations) and considered

a binary feature for each path. The corresponding features

of the present paths are set to 1s. Although, not being

suitable for macro-level search space, the study showed that

path-based encoding significantly increases the

performance of neural predictors and is the best choice for

them. This is because the features do not depend on one

another (each feature represents a unique path) and each

neural architecture is mapped to only one encoding. Path-

based encoding is also applied in [21, 25, 26].

Path-based encoding handles structural isomorphism

but it may map different architectures to the same encoding

as well. However, as it is discussed in [24] such

architectures actually have a similar behavior. We use [20]

as a benchmark to compare our results with. The Graph-

based encodings apply Graph Convolutional Networks

(GCN) to encode the neural architectures. The GCNs often

take the directed acyclic graph of the network and embed

them to fixed-length vector representations [15]. These

encodings represent the topological information very well.

The graphs need retraining each time a new dataset or space

is added. However [17] claims that based on experimental

results, the best-performing neural predictors are the

feedforward network with the path encoding and the GCN

with graph-based encoding. The feedforward networks had

shorter runtime compared to the GCN and autoencoders. It

is discussed in [11] that the representation data of an

architecture is more tabular rather than continuous and is

not well suited to the widely used neural predictors such as

RNN, CNN and GCN. Their study proposes a tabular one-

hot encoding such that bits of 0/1 describe a layer. Each bit

defines a property of the layer in terms of existence/non-

existence of a particular property in a specific layer:

convolution: Yes/No, kernel size 3x3: Yes/No, skip

connection with the layer i: Yes/No. This consecutive

binary decisions build a tree structure in which each branch

defines a whole unique structure. This tree structures

representation is limited to 5 layers. The encoding is unable

to properly show the interconnections and can support a

very limited set of operations, thus it is not suitable for

macro architectures or complicated cells. They applied a

tree-based predictor (GBDT) to receive the encoding. A tree

based predictor can very well handle discrete

representations. Besides, the limited amount of training

instances (which is very common in NAS) does not harm

tree based predictors as much as it harms the neural

predictors. The results showed significant enhancement in

accuracy and elapsed time for simple cell-based

architectures and is considered state of the art for 2020. In

our study, we pursue path-based encoding and propose a

tree-like encoding of the network. The feature vector counts

the number of basic subtrees of arbitrary length. This is used

as a kind of similarity between trees or different networks.

Finally, we apply GBDT to take the encoding and do its task

as the performance predictor.

7. Conclusion

Automatically designing neural architectures, i.e., NAS,

is a promising path in machine learning. However, the main

challenge for NAS algorithms is reducing the elapsed time

on evaluating a proposed network. A recent strategy which

attracted much attention has been using surrogate predictive

models. The predictive models attempt to forecast the

performance of a neural model ahead of training. In this

study, we proposed to leverage both structural features of a

deep network and attributes of each layer to learn an

encoding for surrogate predictor. We proposed to represent

each neural network via a tree structure and then extract

features from the given tree. Extensive results on two

widely used datasets of NAS task demonstrate the

effectiveness of the proposed model. Many extensions of

this work can be exploited. For example, structural features

can be extracted using graph-based method like random

Journal of Computer and Knowledge Engineering, Vol.5, No.1. 2022. 55

walks and graph convolutional networks.

Many existing deep models are vulnerable to adversarial

attacks. Various methods have been proposed to design

network architectures that are robust to one particular type

of attacks or a random selection of them. We might pursue

the idea of using proposed encoding in RAS (Robust

Architecture Search) to test its ability against adversarial

attacks and to observe on what kind of attack, it performs

best. Training a robust model is quite challenging, so it

needs to be fully investigated in an independent future

work.

8. Appendix

8.1. Encoding of NASBench101

A simple cell is presented and encoded into vector in Figure

6.

8.2. Performance on isomorphic graphs

We provided a set of 10 architectures consisted of 5 pair of

isomorphic graphs and tested the encoding to see whether

or not it recognizes isomorphism. An instance of

isomorphic cells found in NASBench-101 is presented

Figure 7. The results are listed in Table 7.

8.3. Qualitative talk on best found cells

Here in Figure 8 we bring some of the 20-best performing

NAS-Bench 101 cells together with the operation paths

produced by the algorithm for a better view. Note that the

results are reported on CIFAR-10 and are not to be

generalized to other problems but can be a hint.
As it can be seen in Figure 9, the encoding vector is simple and

interpretable. We observe that some paths are common in almost

all these cells. For example, there exists a direct path/skip

connection between the input layer and output layer in all the

mentioned cells. More over the cells with more convolution layers

act better than their similar networks where some layers are

replaced with MaxPooling and 3x3 convolution seems a better

choice than 1x1 but the key is to place them at the crowded layers

(the layers with more connections). The cells can become more

compact using mostly convolution layers and still have a high

performance.

Figure 6. An illustration of graph and node representations. A neural network architecture with 5 possible operations per node defined in

string format (Left). The paths are recognized (Top right) and the encoding vector is built up using both the path graph and the list of

operations (Bottom).

Figure 7. Isomorophic cells from NASBench-101

56 Saeedeh Eslami, et. al.: Towards Leveraging Structure for …

Table 7. Test accuracies on 5 NASBench-101 isomprphic pairs

 1 2 3 4 5

(a) 93.40 93.01 94.1 93.5 94.1

(b) 93.40 93.01 94.1 93.5 94.1

Figure 8. Best compact cells with extracted operation paths

Figure 9. The 3-gram counter feature vector of 6 cells from the best performing set. The first element recognizes the ‘input-output’

sequence.

8.4. Selecting the length of sequences

We practically observed that for Bench-101 and 201 3-

length sequences produce satisfying results. But we also

used the following theorem to decide on the length of

operation sequences to consider in the feature vector.

If 𝐺𝑛,𝑘,𝑟 denotes a graph with 𝑛 nodes, 𝑟 choices of

operations on each node, and 𝑘 expected number of edges

the following theorem is applied.

Theorem 1. Given integers 𝑟, 𝑐 > 0 there exists 𝑁 such that

∀𝑛 > 𝑁, there exists a set of 𝑛 paths 𝒫′ and the probability

that 𝐺𝑛,𝑛+𝑐,𝑟 contains a path not in 𝒫′ is less than 1/𝑛2.

The theorem says that when 𝑘 = 𝑛 + 𝑐 and when 𝑛 is

large enough compared to 𝑐 and 𝑟, the probability that

random sampling method outputs a graph 𝐺𝑛,𝑘,𝑟 with a path

outside of 𝒫′ is very small. For the proof see [17].

 References

[1] M. B. Zoph, Q. V. Le, Neural architecture search with

reinforcement learning, arXiv preprint

arXiv:1611.01578 (2016).

[2] B. Baker, O. Gupta, N. Naik, R. Raskar, Designing

neural network architectures using reinforcement

learning, arXiv preprint arXiv:1611.02167, (2016).

[3] A. Brock, T. Lim, J. M. Ritchie, N. Weston, Smash:

one-shot model architecture search through

hypernetworks, arXiv preprint arXiv:1708.05344

(2017).

[4] H. Liu, K. Simonyan, Y. Yang, Darts: Differentiable

architecture search, arXiv preprint arXiv:1806.09055

(2018).

[5] L. Wang, Y. Zhao, Y. Jinnai, Y. Tian, R. Fonseca,

Neural architecture search using deep neural networks

and monte carlo tree search, Proceedings of the AAAI

Conference on Artificial Intelligence, Vol. 34, (2020)

[6] B. Deng, J. Yan, D. Lin, Peephole: Predicting network

performance before training, arXiv preprint

arXiv:1712.03351 (2017)

[7] R. Luo, F. Tian, T. Qin, E. Chen, T.-Y. Liu, Neural

architecture optimization, arXiv preprint

arXiv:1808.07233 (2018)

[8] B. Baker, O. Gupta, R. Raskar, N. Naik, Accelerating

neural architecture search using performance

prediction, arXiv preprint arXiv:1705.10823 435,

(2017)

[9] Z. Zhong, J. Yan, W. Wu, J. Shao, C.-L. Liu, Practical

block-wise neural network architecture generation, in:

Journal of Computer and Knowledge Engineering, Vol.5, No.1. 2022. 57

Proceedings of the IEEE conference on computer vision

and pattern recognition, (2018).

[10] B. Zoph, V. Vasudevan, J. Shlens, Q. V. Le, Learning

transferable architectures for scalable image

recognition, in: Proceedings of the IEEE conference on

computer vision and pattern recognition, (2018).

[11] R. Luo, X. Tan, R. Wang, T. Qin, E. Chen, T.-Y. Liu,

Neural architecture search with gbdt, arXiv preprint

arXiv:2007.04785 (2020)

[12] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy,

F. Hutter, Nas-bench-101: Towards reproducible neural

architecture search, in: International Conference on

Machine Learning, PMLR, (2019).

[13] X. Dong, Y. Yang, Nas-bench-201: Extending the

scope of reproducible neural architecture search, arXiv

preprint arXiv:2001.00326 (2020).

[14] A. Veit, M. J. Wilber, S. Belongie, Residual networks

behave like ensembles of relatively shallow networks,

Advances in neural information processing systems 29

(2016).

[15] W. Wen, H. Liu, Y. Chen, H. Li, G. Bender, P.-J.

Kindermans, Neural predictor for neural architecture

search, in: European Conference on Computer Vision,

Springer, (2020)

[16] E. Real, A. Aggarwal, Y. Huang, Q. V. Le, Regularized

evolution for image classifier architecture search, in:

Proceedings of the aaai conference on artificial

intelligence, Vol. 33, (2019)

[17] C. White, W. Neiswanger, Y. Savani, Bananas:

Bayesian optimization with neural architectures for

neural architecture search, arXiv preprint

arXiv:1910.11858 1 (2) (2019).

[18] L. Li, A. Talwalkar, Random search and reproducibility

for neural architecture search, in: arXiv preprint

arXiv:1902.07638, (2019).

[19] J. Wu, X. Dai, D. Chen, Y. Chen, M. Liu, Y. Yu, Z.

Wang, Z. Liu, M. Chen, L. Yuan, Weak nas predictors

are all you need, arXiv preprint arXiv:2102.10490

(2021).

[20] C. White, W. Neiswanger, S. Nolen, Y. Savani, A study

on encodings for neural architecture search, arXiv

preprint arXiv:2007.04965 (2020)

[21] C. Wei, C. Niu, Y. Tang, Y. Wang, H. Hu, J. Liang,

Npenas: Neural predictor guided evolution for neural

architecture search, arXiv preprint arXiv:2003.12857

(2020).

[22] Y. Sun, H. Wang, B. Xue, Y. Jin, G. G. Yen, M. Zhang,

Surrogate-assisted evolutionary deep learning using an

end-to-end random forest-based performance predictor,

IEEE Transactions on Evolutionary Computation 24

(2), (2019)

[23] R. Istrate, F. Scheidegger, G. Mariani, D. Nikolopoulos,

C. Bekas, A. C. I. Malossi, Tapas: Train-less accuracy

predictor for architecture search, in: Proceedings of the

AAAI Conference on Artificial Intelligence, Vol. 33,

(2019)

[24] X. Ning, Y. Zheng, T. Zhao, Y. Wang, H. Yang, A

generic graph-based neural architecture encoding

scheme for predictor-based nas, in: Computer Vision–

ECCV 2020: 16th European Conference, 28, 2020,

Proceedings, Part XIII 16, Springer, (2020)

[25] E.-G. Talbi, Optimization of deep neural networks: a

survey and unified taxonomy (2020).

[26] H. Cai, T. Chen, W. Zhang, Y. Yu, J. Wang, Efficient

architecture search by network transformation, in:

Proceedings of the AAAI Conference on Artificial

Intelligence, Vol. 32, (2018)

[27] X. Ning, Y. Zheng, T. Zhao, Y. Wang, and H. Yang. A

generic graph-based neural architecture encoding

scheme for predictor-based nas. arXiv preprint

arXiv:2004.01899, (2020)
[28] Wang, L., Zhao, Y., Jinnai, Y., Fonseca, R.: Alphax:

exploring neural architec- tures with deep neural

networks and monte carlo tree search. arXiv preprint

arXiv:1805.07440 (2018)

[29] Shi, H., Pi, R., Xu, H., Li, Z., Kwok, J.T., Zhang, T.:

Multi-objective neural architecture search via

predictive network performance optimization. arXiv

preprint arXiv:1911.09336 (2019)  

[30] Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W.,

Li, L.J., Fei-Fei, L., Yuille, A., Huang, J., Murphy, K.:

Progressive neural architecture search. In: Proceedings

of the European Conference on Computer Vision

(ECCV). pp. 19–34 (2018)  

[31] Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.:

Efficient neural architecture search via parameter

sharing. arXiv preprint arXiv:1802.03268 (2018)  

[32] Minghao Guo, Yuzhe Yang, Rui Xu, Ziwei Liu, Dahua

Lin; When NAS Meets Robustness: In Search of Robust

Architectures Against Adversarial Attacks, Proc. Of the

IEEE/CVF conference on Computer Vision and Pattern

Recognition (CVPR), (2020)

[33] Liu J., Jin Y., Multi-Objective search of robust neural

architectures against multiple types of adversarial

attacks, Neurocomputing Vol. 453 (2021).

58 Saeedeh Eslami, et. al.: Towards Leveraging Structure for …

