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Abstract: Neural Architecture Search (NAS), which 
automatically designs a neural architecture for a specific 
task, has attracted much attention in recent years. Properly 

defining the search space is a key step in the success of NAS 
approaches, which allows us to reduce the required time for 
evaluation. Thus, late strategies for searching a NAS space 
is to leverage supervised learning models for ranking the 
potential neural models, i.e., surrogate predictive models. 
The predictive model takes the specification of an 
architecture (or its feature representation) and predicts the 
probable efficiency of the model ahead of training. 
Therefore, proper representation of a candidate architecture 
is an important factor for a predictor NAS approach. While 
several works have been devoted to training a good surrogate 
model, there exits limited research focusing on learning a 
good representation for these neural models. To address this 
problem, we investigate how to learn a representation with 
both structural and non-structural features of a network. In 
particular, we propose a tree structured encoding which 
permits to fully represent both networks’ layers and their 
intra-connections. The encoding is easily extendable to 
larger or more complex structures. Extensive experiments on 
two NAS datasets, NasBench101 and NasBench201, 
demonstrate the effectiveness of the proposed method as 
compared with the state-of-the-art predictors. 
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1. Introduction 

The success of various machine learning tasks heavily 

depends on effective design of a proper neural model. 

Extensive studies demonstrate that relying on expert 

experience often results in subjective sub-optimal solutions, 

needs huge time, and resource consumption. Generally, 

designing an optimal network architecture is a crucial and 

arduous step for every machine learning problem. 

Traditionally, an expert proposes a neural model for the 

given task and then the model is trained with various hyper-

parameters to achieve the best design. 

The process is repetitive, timely and error-prone. As such 

automating network design process, i.e., specifying network 

parameters, also known as Neural Architecture Search 

(NAS), has become an emerging topic in automatic machine 

learning (autoML). While NAS framework focuses on 

automatic ways to select hyper-parameters and design 

appropriate network architectures, designing an effective 

framework for NAS is still challenging and under-researched 

issue problem. The search space of NAS task is formed by 
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all feasible combinations of various components of a 

network; an enormous space which can exhaust any search 

algorithm. Thus, a well-defined search space is essential to 

compensate the shortcomings of average search strategies 

like random sampling methods. To do so, retrospective 

studies in NAS have proposed various strategies for pruning 

the search space. For example, Reinforcement Learning (RL) 

and Evolutionary Algorithms seek the optimal solution in a 

discrete space [1, 2]. One-shot learning and stochastic neural 

search model the problem in a continuous space [3, 4]. 

However, these approaches often need a considerable 

amount of time (hours or days) merely to find the exact 

performance of candidate models and hence fully training 

and evaluating thousands of architectures. As a result, 

selecting the optimal architectures with the best performance 

on validation data is a matter of thousands of GPU days and 

the institute which adopts this approach should be able to 

afford such equipment, otherwise the search is actually 

impractical. 
Recent studies in this regard show that a very efficient 

strategy for making the NAS feasible, is training a 
performance predicting model with the most influential 
network features to predict the proposed model’s 

performance and thus keep the 𝐾 −top promising modes for 
actual training [5, 6]. The predictor takes a network 
representation as input, i.e., input features, and estimates its 
final performance according to the previously seen models. 
The hypothesis behind this is that the predictor is trained with 
a few pair of fully trained networks and their performances. 
If the selected models are of high quality, training with this 
small set of models will help the predictor to reliably select 
a good model. While predictor’s estimation makes the main 
algorithm needless of a complete training chore to assess 
other proposed models and thus saves time, training a meta-
predictor is a nontrivial task due to following challenges. 
First, every network architecture is defined via two factors: 
the layer specifications and the connections between layers. 
Although critically important, the prior works have merely 
focused on search space and search strategy and have not 
considered a complete structure encoding for the networks 
presented to the predictor, i.e., their encoding whether 
ignores the layer specifications or the interconnections 
(misses some important aspects of a network) [1, 7]. But as 
we can see in another branch of NAS studies, named curve 
extrapolation, adding some structural information to the 
training reports [8, 9] improved the performance estimation 
and convergence time drastically. Since the introduction of 
additive (residual) networks like ResNet, DenseNet, etc., the 
connections between layers has become very complicated. 
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The skip connections can make a network actually an 
ensemble structure as each way from the input layer to the 
output layer is a complete convolutional network (Figure 1). 
Simple encodings that were used in early works [10, 7] are 
totally inefficient to represent the possible options in each 
single element of the network. Due to their inflexibility, their 
rules of connectivity are also very strict and limiting. Second, 
a convolutional network is a discrete structure so a tabular 
(discrete) representation seems more suitable than 
continuous representations. Previous works mostly have 
employed a neural based predictor (RNN, CNN, and GCN) 
and continuous representations to build and train the 
predictor. Some discussions criticize using them saying 
neural networks are more designed to receive image/speech 
data and not much to handle tabular or discrete data which 
seems more compatible with tree structured models [11, 22]. 
Also, the training data insufficiency, which is very common 
in NAS, may affect the neural based predictors more than 
tree based ones. The predictor [11] that introduced as GBDT-
NAS is a GBDT based regression model using a tabular, 
layer by layer encoding and gained the best performance till 
2020 and best top 10 results on ImageNet and CIFAR10. 
However, we argue that their encoding has very limited 
power and cannot be extended easily. Encoding new 
generation additive networks is also a challenge for them. In 
this paper, we introduce a new tree structured representation 
for deep convolutional networks. The representation is a 
complete encoding of network structure including layer’s 
full specification and the connection patterns inside the 
network. Each path is encoded independent of others, thus 
extending, reducing or any optimization of a path does not 
affect others. We trained the GBDT predictor with our 
encoding and tested it on ImageNet16 and CIFAR10. 

The training and validation data are provided by 

NASBench101 [12] and [13]. We investigate the effect of 

data insufficiency on the predictor’s performance. We beat 

the path-based encoding proposed by BANANAS and 

together with NAS-GBDT reached the best results on 

baseline datasets. The main contribution of this paper are as 

follows:  

•  We propose an approach to embed the structure of a 

neural model into the network encoding; 

•  We demonstrate how to learn a unified representation 

from both the structure information and layers’ attributes 

of a neural model; 

•  We evaluate the proposed model in two widely used NAS 

datasets and show that a good representation is crucial for 

NAS predictor. 

The formal definition of the problem is presented in 

section 2 for more clarification. Network representation is 

discussed in section 3. We also discuss different aspects of 

representation and our method of representation in its 

subsections A. and B. Then, we talk about the neural 

predictor in section 4. Finally, the results and the conclusion 

are presented in section 5 and section 6, respectively.  

 

2. Statement of the problem 

The aim is predicting the performance of a neural 

architecture before training. This can be modelled as a 

regression problem in machine learning where we aim at 

learning a regressor 𝐹 to take the representation of an 

architecture 𝑁𝑖𝜖𝑁 and return its estimated performance as 

𝑦�̂� = 𝐹(𝑊𝐹 , 𝑁𝑖), where 𝑊𝑓 denotes the trainable function 

parameters. The function 𝐹 is trained to minimize the 

following error: 
 

min
𝑊𝑓

||ℱ(𝑊𝑓 , 𝑋𝑖) − 𝑦𝑖||2
2    (1) 

where 𝑦𝑖 denotes the actual performance of the network as 

label data. The key to success of the predictor is to learn a 

representative encoding for the network 𝑁𝑖. In next section, 

representation issues are discussed and our method is 

presented to fully represent a deep convolutional network.  

 

3. Network representation 
Any deep neural architecture can be defined via a set of 
layers, their specifications (i.e., type of filters in each layer, 
order of filters and their set of hyperparameters, type of 
activation functions, etc.), and the interconnections among 
them. The CNN is a series of layers which receive the inputs 
from previous layers, transform them via some operations 
and pass them to the next layers. Thus, designing is a series 
of successive and dependent decisions about the layers’ 
specifications and their interconnections. To leverage 
predictors for NAS, we need to extract discriminative 
features from both structural features of the network and 
non-structural attributes of its layers. Suppose we have a 

network 𝑁 with 𝐿 successive layers denoted by (𝑙1, 𝑙2… , 𝑙𝐿), 
where 𝑙1 and 𝑙𝐿 are the input and the output layers of the 
network, respectively. In the following sections, we explain 
how to build a representation for both structures of the 
network and attributes of its layers, respectively. 
 

 
(a) 

 

 
(b) 

igure 1. A typical CNN model and its paths from input to output: 

(a). The typical representation of Residual networks, (b). The 

unraveled view of a 3-block residual network; adding a block 

doubles the number of paths 

 

A. Modeling network structure 
A major aspect of any neural architecture is the 
interconnections between layers which controls how features 
are extracted and passed into consecutive layers. In a typical 
convolutional neural network (CNN) layers are connected to 
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each other in a feed-forward manner. However, it is likely to 
have several paths from the input layer to the output layer, 
especially if skip connections are allowed [14], as shown in 
Figure 1. Different paths extract various type of features for 
the final layer. A good representation should denote all such 
paths so that the predictor can learn the process through the 
extracted features. Here, we try to model a network by a set 
of paths from input layer to output layer and to represent all 
existing paths in a tree structure. We say that the number of 
possible unique paths from input to output layer of a neural 
architecture is finite and can be pre-computed from the 

network architecture. Suppose 𝑁 is a convolutional network 

with 𝐿 layers denoted by (𝑙1, 𝑙2… , 𝑙𝐿) and 𝐴𝐿×𝐿is its 

adjacency matrix and 𝐴𝑖 is the 𝑖 −th layer connectivity, then 
the total number of unique paths from the input layer to the 
output is 

{
∏ deg⁡(𝐴𝑖)

𝐿−1
𝑖=1 𝑖𝑓⁡𝐴1𝐿 = 0

((deg(𝐴1) − 1) × ∏ deg⁡(𝐴𝑖)
𝐿−1
𝑖=2 ) + 1 𝑜𝑡ℎ.

    (2) 

 

where deg⁡(𝐴𝑖) is the number of outgoing connections from 

the layer i. Assume an isolated tree root. It does not 
correspond to any layer of the original network and will only 
connect all the found paths as the root. So, the number of 
Root’s first level children is the total number of paths which 
can be computed using the equation. These children nodes, 
represent the input/first network layer. The adjacency matrix 
is then traversed in a semi depth-first order beginning from 

𝐴1 connections and the paths are recognized one by one and 
attached to the previously built level of the tree. Each branch 

terminates by 𝐴𝐿 as the tree leaf. There are possibly a number 
of repeated order of nodes but it doesn’t matter. 

 
We employ Depth First Search (DFS) algorithm to 

convert the network graph into a tree. This can be stated as 

follows. Suppose 𝜎(𝑙1, 𝑙2… , 𝑙𝐿) defines the set of paths of the 

tree composed of 𝑙1, 𝑙2… , 𝑙𝐿  and rooted from 𝑙1. If 𝛥(𝑙𝑖) 
denotes the set of layers for them there is a direct connection 

from 𝑙𝑖 in the network, then for all 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝐿 if 𝑙𝑖 ∈
Δ(𝑙𝑘)\⁡Δ(𝑙𝑗) there exists a 𝑙𝑚 (𝑖 < 𝑚 < 𝑗) such that 𝑙𝑚 ∈

Δ(𝑙𝑗). 

Algorithm 1 shows the pseudo code of an algorithm for 

computing the paths and their representations. 

 

B. Modeling layer attributes 

So far, we only modelled the structure of a neural model. 

However, each layer can represent various operations. In this 

section, we explain how to model attributes of a single layer 

of a neural model. For the sake of simplicity, we only discuss 

the case that the network consists of convolution blocks; 

however, the extension to other neural models is intuitive. 

Different convolutional operations (convolution, pooling, 

etc.), basically convolve a kernel of arbitrary size with the 

input. So each operation can be represented by a numeric 

vector, as shown in Figure 2. The vector consists of four 

different values where the first one represents the type of 

operation via one-hot representation. The remaining 

elements represent all parameters associated to that 

operation. A convolutional operation needs kernel 

specification in terms of the width and height of the kernel 

and its number of input and output channels. We focus on 

square kernels and like [6] take number of output to input 

channels ratio to make it simple and efficient. The options 

for the ratio are not vast as the number of output channels is 

limited within a range of input channel number. The “skip-

connection” is not a convolutional operation and it is 

necessary in residual networks to model skip connections. If 

the network is bound to be fully connected, we can add a 

semi-operation ‘No-op’ which means no transaction between 

the respective layers and thus lets us have freedom in 

establishing connections between layers. An operation is 

defined part by part by the integer values chosen from the set 

of valid ones. The operation set can be defined narrower or 

wider based on the task at hand. Some search spaces like 

NASBench-101 [12] define combined operations (layers) 

like 𝐶𝑜𝑛𝑣 − 𝑎 × 𝑎 which is a 𝑎 × 𝑎 convolution followed by 

a Batchnorm and then a Relu. 

See Table 1 for the full list of operations. 

 

 
Figure 2. Vector representation of neural operations. Each 

operation can be fully represented by a vector of four values. 
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Table 1. The integer coding of various neural operations 
 

Op. 

Name 

Op. 

type 

Kernel 

width 

Kernel 

height 

O/I channel 

ratio 

Convolution 1 3,5 3,5 0.25,3 

Max-pooling 2 3,5 3,5 1 

Avg-Pooling 3 3,5 3,5 1 

Relu 4 1 1 1 

BatchNorm 5 1 1 1 

Skip-connection 6 0 0 0 

No-op 7 0 0 0 

 
The sequence of operations should also be investigated. 

For example, to use 3x3 convolution at earlier levels rather 
than later produces a better network based on what [11] 
found in some tests with its method of assessment on a small 
set of convolutional operations. So, it’s advantageous    that 
the representation considers the order of operations as well. 

Our strategy is to recognize different sequences after 
denoting existing paths and to keep counts of them. The 

smallest complete path is ′𝑖𝑛𝑝𝑢𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡′ if there is a skip-

connection between these two layers otherwise it is ′𝑖𝑛𝑝𝑢𝑡 −
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑜𝑢𝑡𝑝𝑢𝑡′ and there would be no smaller path. 

The feature vector is of length 𝐷 where 𝐷 is the number of 

all possible 𝑛 −length operation sequences. For a set of 

𝑚(𝑚 > 1) possible operations, the operation dataset 

contains 𝑚𝑛 sequences from which (𝑚 − 1)2 × (𝑚 − 2)𝑛−2 
are valid (patterns like operation-input-operation, output-

operation-operation, etc. are considered invalid). An 𝑚+ 1 

operation set has (1 + 1
𝑚⁄ )𝑛 times more operation 

sequences with the same length than the first set. While the 

feed forward network with 𝐿 + 1(𝐿 > 1) layers has (𝐿 × 𝑚) 
times more paths than a 𝐿 −layered one. The maximum 

number of  paths of the mentioned network is 𝑚𝐿−1 × (𝐿! ×
𝑚). We have: 

 

(1 + 1
𝑚⁄ )

𝑛
≤ (

3

2
)
𝑛

≤ (
3

2
)
𝐿

      (3) 

 

(𝑚 − 1)2 × (𝑚 − 2)𝑛−2 ≅ (𝑚 − 2)𝑛       (4) 

 

∀𝑛 ≤ 𝐿⁡ ((𝑚 − 1)2 × (𝑚 − 2)𝑛−2 ×⁡(1 + 1
𝑚⁄ )

𝑛
⁡) ≤

𝑚𝐿 × (𝐿!)        

     (5) 

Even at the extreme case when 𝑛 = 𝐿, we can still favor 

the counter vector of 𝑛 −length sequences to counter-vector 
of the full paths. When the number of layers and the pattern 
of connectivity is fixed in a search space, it is harmless and 
efficient to count full paths. The path-based feature vector 
which BANANAS proposed is well doing in NASBench-201 
[13] where the connections are fixed and only the operations 
are varied but it’s not applicable without truncation even in 
small cells when we have freedom in establishing connection 
among layers. To find better architectures, different number 
of layers and connections should be freely investigated. In 
these spaces, we propose that feature vectors represent 

𝑛 −length operation sequences. In section 4 our approach of 
constructing a performance predictor for receiving the 
mentioned encoding is discussed.  

4. Neural predictor 
Our objective is building an effective predictor for well 

estimating the performance of an architecture before 

training. This model takes a network architecture 𝑁 and an 

epoch index 𝑡 and produces a scalar value 𝐹(𝑁, 𝑡) as the 

prediction of the performance after exactly 𝑡 epochs. Here, 
we incorporate both structural and non-structural 

information of the feature space to represent the network 𝑁. 
Further, inspiring from current estimation approaches [6], we 

consider the epoch index 𝑡 another input to the model. The 
hypothesis behind this is that the validation accuracy 
generally changes as training proceeds. Therefore, when we 
predict performance, we have to be specific about time point 
of the prediction. This also helps us to better model the 
possible correlations between training samples. Inspired by 
[15], we use a three-step predictor to select promising 
models as follows. 

 

4.1. Construction 
To obtain a small training dataset, we train a random 

sample of architectures and construct training multivariates 

in (𝑁𝑖 , 𝑝𝑖 , 𝑡𝑖) where 𝑁𝑖 ⁡and 𝑝𝑖  are in turn a network’s 
architecture and validation accuracy at a certain training 
epoch plus the epoch number. Next, we use this small dataset 

to train a regression model 𝐹𝑖 for predicting the accuracy of 
any architecture. 

 

4.2. Ranking 

The predictor model 𝐹𝑖 is used to estimate the accuracy 
of a large number of random architectures. These 
architectures are then ranked based on their predicted 

accuracy and top 𝐾 architectures are passed to the next step 
for final evaluation.  

 

4.3. Evaluation 

Here top 𝐾 architectures, i.e., the promising ones, are 
trained and evaluated on real data to calculate their actual 
validation accuracy. 

 

A. GBDT performance predictor 
A single tree may not be powerful enough to capture 

complex relations in data. Gradient boosting decision trees 
(GBDT) boosts the prediction by leveraging multiple 
additive trees and thus different views on data:  

 

�̂�𝐺𝐵𝐷𝑇(𝑥) = ∑ �̂�𝐷𝑇𝑆(𝑥)
𝑆
𝑠=1      (6) 

 

where 𝑆 is the number of additive trees, and �̂�𝐷𝑇𝑆 is the 

predictive model for the 𝑠 −th tree. Each tree maps a feature 
vector to a weighted leaf node. The weights are adjusted 
according to the problem objective. Together GBDT 

extracts⁡𝑆 rules to predict the target value of a given feature 
vector. Supposing the trees have enough diversity, each rule 
models different high-order feature interactions without 
human interference. Figure 3 illustrates our predictive 
model. 
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Figure 3. The schematic overview of the proposed framework 

 
B. Sample efficiency 

The predictor is trained by a 𝑀 random architectures so as 

much as the 𝑀 increases, the predictor becomes more 

accurate. Also, a large 𝐾 makes the validation results very 

reliable. But there is a tradeoff between 𝑀 and 𝐾 as the 

whole training actually is done with 𝑀 + 𝐾 models and the 

computation resources are limited. We have no formula to 

exactly determine best values and they are determined by 

repeated experiments.  

 

C. Robustness to adversarial examples 

Adversarial examples are the data deliberately perturbed by 
adversaries to mis-lead the classifiers. Network robustness 

is how the network resists or keeps performance against 

adversarial inputs. The problem is formulated as:  
 

min
𝜃

𝔼(𝑥,𝑦)~𝒟 [max
𝑥′∈𝑆

ℒ(𝑦,𝑀(𝑥′; 𝜃))] 
 

  (7) 

where 𝑆 = {𝑥′: ‖𝑥 − 𝑥′‖𝑝 < 𝜖} is the set of perturbed 

inputs,⁡𝑦 is the true output, 𝑀 is the model and 𝒟 is the 

distribution. The model takes the architecture parameters as 

input and predicts its robustness [32]. To have a robust 

network, we need adversarial training and both accuracy 

and robustness should be taken into account. The objective 

function is generally presented as:  
 

𝑚𝑖𝑛: 𝐹(𝑥) = {𝑓1, 𝑓2}  (8) 
 

Here 𝑓1represents the error rate on clean data.  
 

𝑓1 = 1 − (
1

𝑛
∑ 𝕀(�̂� == 𝑦)) × 100%   (9) 

 

where 𝑛 is the number of examples and 𝕀 is an indicator 

function. While 𝑓2 has the following general form: 
 

𝑓2 =
(1−(

1

𝑛
∑𝕀(�̂�𝑎==𝑦))×100%)−𝜇

𝜎
   (10) 

 

the term inside parenthesis, is the error on adversarial 

examples generated from a random type of attack and 𝜇 and 

𝜎⁡are the mean and standard deviation of the error rate of 

different training architectures for the attack [33].  

The types of attacks are numerous. An architecture which 

resists against one type of attack may not do so against 

another one. This reveals the difficulty of designing a loss 

function for the problem. The related methods try to 

discover influential patterns or influential paths in 

robustness against certain adversarial attacks or how the 

parameters should be assigned to gain maximum 

robustness, and what is the reliable indicator of network 

robustness. The system should be trained with a huge 

amount of different architectures and various attacks to 

evaluate their robustness. The process of adversarial 

training for one type of attack is already very space and time 

consuming. So, to design a multi-objective loss function to 

consider a collection of attacks can be pursued in our future 

work independently.   

5. Experiments 

In this section, we conduct several experiments to evaluate 

the effectiveness of the proposed predictor. We evaluated 

our approach on two commonly used datasets for NAS, i.e., 

NASBench-101 and NASBench-201, which show 

superiority of our proposed approach over the state-of-the 

art baseline methods for NAS. While the architectures in 

NASBench datasets are limited in structures and types; the 

proposed representation paradigm can potentially encode 

various type of cells. 

 

5-1. Experiments on NASBench 101 

NASBench-101 search space is a dataset of more than 

400‘000 pre-built and tested architectures on CIFAR-10. 

The search space is built upon NASnet principles [10]. The 

main stem of the architecture is composed of three times 

repetitions of a cell followed by a downsampling layer to 

manage the input dimensions. The architecture ends with a 

global average pooling layer and a dense softmax layer. 

Each cell is composed of up to 7 layers (two of them are 

reserved for input and output) and 5 valid operations. The 

operations include ‘CONV1x1’, ‘CONV3x3’, 

‘MAXPOOL1x1’, plus ‘INPUT’ and ‘OUTPUT’ which 

refer to convolution with 1x1 kernel, 3x3 kernel, max 

pooling with 1x1 kernel, simple input and output resp. The 

convolution operations actually apply a series of 

[convolution-batchnorm-relu] operations. The cells are 

described with adjacency matrix and the list of applied 

operations. Each structure is trained, validated and tested 

three times and the results are averaged and reported. The 

dataset however contains some inconsistencies because the 

models with best validation errors do not necessarily report 

best test errors. Also, due to unstable models (like a model 

with only pooling operations), high variance is expected. 

The highest test accuracy which is reported by Regularized 

evolution [16] is 94.32% but running extensive search 

several times has led to a mean test accuracy of 94.1% and 
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a mean validation accuracy of 95.13% [15]. To better 

compare the results with [15, 11, 17], the current state of the 

art predictors, we validate the results on 2000 models and 

test them on the rest. So, next we will describe the predictor 

setup. 
 

A. Experimental setting 

NASBench-101 contains small cells with varied 

connectivity. As mentioned in section III our strategy is to 

recognize different sequences after denoting existing paths 

and to keep counts of them. We take the adjacency matrix 

and set of operations of a structure to extract all the paths 

from the input to the output layer and represent them in 

terms of applied operations. The order is important and 

different orders lead to different efficiency. Here we borrow 

the term n-gram to denote different n-length operation 

sequences. For example, a 3-gram can be [Conv1x1-

MaxPool3x3-Output]. The feature vector to represent a 

network from the current dataset is the counter vector of all 

48 introduced 3-grams. An addition to the operation set, 

adds a maximum of 52 more elements to the feature vector 

(about 2.08 times) while when a single layer is added to the 

once 7-layered structure, (even if assuming there is no 

operation set to choose from) it will make the primary 720-

d path-indexing feature vector 7 times lengthier. Our 

encoding is independent of the number of paths and avoids 

this increase. For each training model, the predictor takes 

the vector and its accuracy. So, it knows how many of each 

n-gram exists in a structure and learns the goodness of such 

structure. We also tried other sequence lengths (bigrams 

and 4-grams) and observed that longer sequences do not 

have a very significant impact on the performance and can 

be omitted. A 4-length sequence can be represented by two 

interleaving 3-grams. We use a theorem from [17] which 

expresses longer sequences (paths) have a lower occurrence 

probability than shorter sequences and can be omitted. This 

theorem has come in the supplementary. We propose to use 

sequences up to length L/2 where L is the total number of 

layers. Also, the only important bigram (2-gram) is 

′𝑖𝑛𝑝𝑢𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡′ because the rest will appear in valid 3-

grams.  

 
B. Regression Results 

At first, we test our encoding in a simple prediction task. A 

total sample of 2000 (1000+1000) architectures are taken 

randomly from the dataset to make the training and 

validation set. Similar to [11], we train a Gradient Boosting 

Decision Tree (GBDT) model with 100 trees and 31 leaves 

per tree for a single epoch. We compared our model with 

following baselines in NAS: 

•  Random Search: The simple and fast cell-based search 

method that combines random search with weight-

sharing and is proposed in [18]; 

•  NAO: A predictor-based NAS method which encodes 

the architecture cell in continuous space to optimize it 

there [7]; 

•  RE: One of the first methods based on evolution and 

competes against RL in large spaces [16]; 

•  Neural Predictor: It uses Graph Convolutional Networks 

to extract features and is proposed in [15]; 

•  GBDT-NAS: The method proposes discrete encoding 

and uses GBDT as the predictor [11]; 

•  BANANAS: The path-based predictor which proposes a 

one-hot feature vector to index the existing paths and 

Bayesian optimization [17]; 

•  Weak NAS Predictor: A recent study which is proposed 

in [19] and focuses on using power of ensembles to 

improve the results rather than encoding. 

The whole experiment is performed 50 times. For 

GBDT-NAS, Weak Predictors and BANANAS we used the 

authors’ code. Also, we had valid codes for RE, RS and 

Neural Predictor but for NAO the values come from [15, 

11]. Table 2 shows the results.  

 
Table 2. Test and validation results of different NAS methods on 

CIFAR-10 using NASBench-101. The training and validation 

set, each consists of 1000 randomly sampled architectures. 
 

Method 
Test 

Acc(%) 
Val Acc(%) Test Regret 

Random Search 93.7 94.5 0.62 

NAO 93.90 94.1 0.42 

RE 93.96 94.7 0.36 

Neural 

Predictor 
94.04 95.1 0.28 

NAS-GBDT 94.14 94.5 0.18 

BANANAS 93.9 94.5 0.42 

Weak 

Predictors 
94.23 94.9 0.09 

Ours 94.21 94.9 0.11 

 
We also tested several values for the best number of 

training samples (Figure 4.). We assumed an equal share for 
the number of training and validation samples. We varied 
the total number of samples up to 5000. After reaching 5000 
samples, Regularized Evolution achieves 94.1%  test and 
94.8% validation accuracy; Random Search achieves 
93.8% and 94.5% test and validation accuracies 
respectively. The weak predictors method reaches 94.2% 
and 95% test and validation accuracy. We observed after 
2000 samples, the results do not improve significantly and 
there is a risk of overfitting. So, we chose 2000 samples 
with a fair share of 1000-1000 for the number of training 
and validation samples. Figure 4 shows the test accuracy 
results and Figure 5 presents the validation results. 
 

 
Figure 4. Test accuracy for a varied best number of samples 
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Figure 5. Validation results for a varied best number of samples 

 

Table 3. The Kendall-Tau of using different encoders on the 

NAS-Bench-101 dataset. The encoders are trained with different 

proportions of the first 90% (381262) architectures tested with 

other 42362 ones. 
 

Encod

er 

Proportions of 381262 training instances (%) 
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LST

M 
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7 
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4 

0.8

5 

0.8

8 
0.89 

GCN 0.55 
0.5

7 

0.7

9 

0.8

2 

0.8

6 

0.8

7 

0.8

9 
0.89 

GAT

ES 
0.76 

0.7

7 

0.8

4 

0.8

5 

0.8

8 

0.8

9 

0.9

0 
0.90 

Ours 0.80 
0.8

5 

0.8

6 

0.8

7 

0.8

8 

0.8

8 

0.8

9 
0.90 

 

3. Ranking results 

A predictor evaluates an untrained model so it may 

underestimate a model’s actual performance. If the 

predictor exhibits a uniform behavior towards each model, 

the results can be used to produce a meaningful ranking and 

the underestimation would not cause a problem. Thus, the 

relative ranking of the architectures is more explanatory 

than their exact performance values. Here, we adopt 

Kendall’s Tau ranking correlation to evaluate several 

performance predictors. To keep up with [27]’s setting and 

use their reports, we used the first 90% (381262) 

architectures as the training data and the other 42362 

architectures as the test data. Table 3 shows the Kendall’s 

Tau correlation for several base predictors such as LSTM 

[28], MLP [28], GCN [29], and GATES [27] which is a new 

graph-based predictor. The proportions of training data is 

varied from 0.05% to 100%. The results related to our 

predictor on the small training sets (0.05% and 0.1%) 

proves its generalization ability. The data for the mentioned 

predictors come from [27].The other measure that we 

considered is the N@K which evaluates the true ranking 

among the top-k architectures. Table 4 shows the results. 

The estimated average FLOPS of the found 

architectures with our method is 512M and the parameters 

are 2.8M. The found architectures by different cell-based 

NAS methods are compared in terms of number of 

parameters in Table 5. The methods include the RL-based 

Amoebanet [16], Progressive NAS (PNAS) [4], 

DARTS[30], ENAS [31] and GATES [27]. 

 
Table 4. N@K on NAS-Bench-101. The predictors are trained 

with 0.1% of the training data (381 architectures). 
 

Encoder N@5 N@10 

MLP 1397 (3.30%) 552 (1.30%) 

LSTM 1080 (2.54%) 312 (0.73%) 

GCN 405 (0.97%) 405 (0.95%) 

GATES 27 (0.05%) 27 (0.05%) 

Ours 585 (1.38 %) 526 (1.24%) 

 
Table 5. Comparison of discovered architectures on CIFAR-10 

 

Method 
Number of 

Parameters (M) 

Number of 

Evaluated Archs. 

Amoebanet[16] 2.8 20000 

PNAS[4] 3.3 27000 

DARTS[30] 3.2 1160 

ENAS[31] 4.6 -- 

GATES[27] 4.1 800 

Ours 2.8 500 

 

The next step is to test the method on a more challenging 

dataset which was ImageNet in our case. Part B discusses 

the results we observed.  

 

5.2. ImageNet Experiments  

To evaluate our model on ImageNet, we used NASBench-

201 which consists of validation and test results on about 

16,000 architectures [13]. The results are reported on 

CIFAR-10, CIFAR-100, and ImageNet-16-120. The search 

space is similar to NASBench-101, however the cells are 

bound to be fully connected with four nodes but can choose 

from a variety of five operations per node. The main 

architecture is composed of a pre-convolution layer, 

followed by 3 times repetitions of the cell separated by a 

residual block of stride 2 and a final global average pooling 

layer. The lowest validation error and test error reported 

after 500 runs are 53.233% and 53.1556%, respectively 

which do not belong to the same architecture. The problem 

of inconsistency is more severe here which can lead to 

overfit to validation errors and increase in test error. We add 

the Input and Output to the operation set to form operational 

sequences. The feature vector length is 180. After 50 runs 

which took less than 1 TPU hour, we reached 54% 

validation error and 54.10% test error. BANANAS reported 

54.6% and 54.7% for validation and test error after 200 

trials which took over 40 TPU hours. We tested BANANAS 

with its proposed truncated path-based encoding and 

observed an average of 64% test error there. 

We also calculated the Kendall-Tau correlation 

coefficient this time for NASBench-201 cells on ImageNet. 

Table 6 shows the results. The method is compared with 

MLP, LSTM, and GATES encoder. The encoder is trained 

using the first 50% (about 7800) samples and tested on the 

rest (about 7800 samples). The proportion of training data 

changes from 1% of the training set to 100%. As it can be 
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seen clearly in the table, our encoder reached much higher 

ranking correlations than other encoders. The first stage of 

experiment uses only 78 training samples and exhibits 91% 

correlation with the target values. 

 
Table 6. The Kendall-Tau of different encoders on the NAS-

Bench-201. The encoders are trained with different proportions 

of 50% (8713) of architectures and tested with other 7812 ones. 
 

Encoder 
Proportion of 7813 training instances 

1% 5% 10% 50% 100% 

MLP 0.0974 0.3959 0.5388 0.8299 0.8703 

LSTM 0.5550 0.6407 0.7268 0.8791 0.9002 

GATES 0.7401 0.8628 0.8802 0.9192 0.9259 

Ours 0.9109 0.9125 0.9171 0.9227 0.9428 

 

6. Related works 

A proper encoding of the neural architectures is needed 

when sampling a new architecture, perturbing it in some 

way and training the predictor with it. There is not much 

study regarding the optimal encoding for each phase [20], 

thus, different encodings often mismatch. The architecture 

encoding can roughly be categorized into vector encoding 

and graph encoding [21]. Encoding via vectors is the 

serialization of the architecture mostly layer by layer (or 

block by block). For example, [6, 22, 23] had vector 

encodings composed of the layer type, kernel width 

(height), channel number, output to input ratio (layer 

information), number of consecutive convolution 

layers/blocks, pooling to convolution ratio (sub-network 

information), and some summary statistics. However, these 

features are not rigorous enough to encode all types of 

structures. The topological information also is not properly 

included. Besides, as long as it matters the predictor, the 

encoding should produce the same representation for 

isomorphic architectures [24]. The adjacency matrix 

provides a more powerful representation of the network. 

Each element of the binary matrix shows the existence of a 

connection between the two respective layers. Some other 

versions also represent the type of transformation/operation 

between the two layers [25]. An operation can be defined 

such that it can also show the layer type, kernel size, channel 

number, etc. (e.g., MaxPool 3x3). Encoding with adjacency 

matrix is not one to one, and different architectures may 

have similar encodings. To make it worse for a neural 

predictor, an architecture can have many different matrix 

representations. BANANAS [17] adopted a path-based 

encoding. They extracted all the input-to-output paths in the 

neural network (in terms of the operations) and considered 

a binary feature for each path. The corresponding features 

of the present paths are set to 1s. Although, not being 

suitable for macro-level search space, the study showed that 

path-based encoding significantly increases the 

performance of neural predictors and is the best choice for 

them. This is because the features do not depend on one 

another (each feature represents a unique path) and each 

neural architecture is mapped to only one encoding. Path-

based encoding is also applied in [21, 25, 26]. 

Path-based encoding handles structural isomorphism 

but it may map different architectures to the same encoding 

as well. However, as it is discussed in [24] such 

architectures actually have a similar behavior. We use [20] 

as a benchmark to compare our results with. The Graph-

based encodings apply Graph Convolutional Networks 

(GCN) to encode the neural architectures. The GCNs often 

take the directed acyclic graph of the network and embed 

them to fixed-length vector representations [15]. These 

encodings represent the topological information very well. 

The graphs need retraining each time a new dataset or space 

is added. However [17] claims that based on experimental 

results, the best-performing neural predictors are the 

feedforward network with the path encoding and the GCN 

with graph-based encoding. The feedforward networks had 

shorter runtime compared to the GCN and autoencoders. It 

is discussed in [11] that the representation data of an 

architecture is more tabular rather than continuous and is 

not well suited to the widely used neural predictors such as 

RNN, CNN and GCN. Their study proposes a tabular one-

hot encoding such that bits of 0/1 describe a layer. Each bit 

defines a property of the layer in terms of existence/non-

existence of a particular property in a specific layer: 

convolution: Yes/No, kernel size 3x3: Yes/No, skip 

connection with the layer i: Yes/No. This consecutive 

binary decisions build a tree structure in which each branch 

defines a whole unique structure. This tree structures 

representation is limited to 5 layers. The encoding is unable 

to properly show the interconnections and can support a 

very limited set of operations, thus it is not suitable for 

macro architectures or complicated cells. They applied a 

tree-based predictor (GBDT) to receive the encoding. A tree 

based predictor can very well handle discrete 

representations. Besides, the limited amount of training 

instances (which is very common in NAS) does not harm 

tree based predictors as much as it harms the neural 

predictors. The results showed significant enhancement in 

accuracy and elapsed time for simple cell-based 

architectures and is considered state of the art for 2020. In 

our study, we pursue path-based encoding and propose a 

tree-like encoding of the network. The feature vector counts 

the number of basic subtrees of arbitrary length. This is used 

as a kind of similarity between trees or different networks. 

Finally, we apply GBDT to take the encoding and do its task 

as the performance predictor. 

 

7. Conclusion 

Automatically designing neural architectures, i.e., NAS, 

is a promising path in machine learning. However, the main 

challenge for NAS algorithms is reducing the elapsed time 

on evaluating a proposed network. A recent strategy which 

attracted much attention has been using surrogate predictive 

models. The predictive models attempt to forecast the 

performance of a neural model ahead of training. In this 

study, we proposed to leverage both structural features of a 

deep network and attributes of each layer to learn an 

encoding for surrogate predictor. We proposed to represent 

each neural network via a tree structure and then extract 

features from the given tree. Extensive results on two 

widely used datasets of NAS task demonstrate the 

effectiveness of the proposed model. Many extensions of 

this work can be exploited. For example, structural features 

can be extracted using graph-based method like random 
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walks and graph convolutional networks.  

Many existing deep models are vulnerable to adversarial 

attacks. Various methods have been proposed to design 

network architectures that are robust to one particular type 

of attacks or a random selection of them. We might pursue 

the idea of using proposed encoding in RAS (Robust 

Architecture Search) to test its ability against adversarial 

attacks and to observe on what kind of attack, it performs 

best. Training a robust model is quite challenging, so it 

needs to be fully investigated in an independent future 

work.  

 

8. Appendix 

8.1. Encoding of NASBench101 

A simple cell is presented and encoded into vector in Figure 

6. 

 

8.2. Performance on isomorphic graphs 

We provided a set of 10 architectures consisted of 5 pair of 

isomorphic graphs and tested the encoding to see whether 

or not it recognizes isomorphism. An instance of 

isomorphic cells found in NASBench-101 is presented 

Figure 7. The results are listed in Table 7. 

 

8.3. Qualitative talk on best found cells 

Here in Figure 8 we bring some of the 20-best performing 

NAS-Bench 101 cells together with the operation paths 

produced by the algorithm for a better view. Note that the 

results are reported on CIFAR-10 and are not to be 

generalized to other problems but can be a hint.  
As it can be seen in Figure 9, the encoding vector is simple and 

interpretable. We observe that some paths are common in almost 

all these cells. For example, there exists a direct path/skip 

connection between the input layer and output layer in all the 

mentioned cells. More over the cells with more convolution layers 

act better than their similar networks where some layers are 

replaced with MaxPooling and 3x3 convolution seems a better 

choice than 1x1 but the key is to place them at the crowded layers 

(the layers with more connections). The cells can become more 

compact using mostly convolution layers and still have a high 

performance.  

 

 
 

Figure 6. An illustration of graph and node representations. A neural network architecture with 5 possible operations per node defined in 

string format (Left). The paths are recognized (Top right) and the encoding vector is built up using both the path graph and the list of 

operations (Bottom). 

 

 

 
 

Figure 7. Isomorophic cells from NASBench-101 
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Table 7. Test accuracies on 5 NASBench-101 isomprphic pairs 
 

 1 2 3 4 5 

(a) 93.40 93.01 94.1 93.5 94.1 

(b) 93.40 93.01 94.1 93.5 94.1 

 

 

 
Figure 8. Best compact cells with extracted operation paths 

 

 
 

Figure 9. The 3-gram counter feature vector of 6 cells from the best performing set. The first element recognizes the ‘input-output’ 

sequence. 

 

8.4. Selecting the length of sequences  

We practically observed that for Bench-101 and 201 3-

length sequences produce satisfying results. But we also 

used the following theorem to decide on the length of 

operation sequences to consider in the feature vector.  

If 𝐺𝑛,𝑘,𝑟 denotes a graph with 𝑛 nodes, 𝑟 choices of 

operations on each node, and 𝑘 expected number of edges 

the following theorem is applied.  

Theorem 1. Given integers 𝑟, 𝑐 > 0 there exists 𝑁 such that 

∀𝑛 > 𝑁, there exists a set of 𝑛 paths 𝒫′ and the probability 

that 𝐺𝑛,𝑛+𝑐,𝑟 contains a path not in 𝒫′ is less than 1/𝑛2. 

The theorem says that when 𝑘 = 𝑛 + 𝑐 and when 𝑛 is 

large enough compared to 𝑐 and 𝑟, the probability that 

random sampling method outputs a graph 𝐺𝑛,𝑘,𝑟 with a path 

outside of 𝒫′ is very small. For the proof see [17]. 
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