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Abstract: One of the most important problems in 

computational linguistics is the grammar and, consequently, 

syntactic structures and structural parsing. The structural 

parser tries to analyze the relationships between words and 

to extract the syntactic structure of the sentence. The 

dependency-based structural parser is proper for free-word-

order and morphologically-rich languages such as Persian. 

The data-driven dependency parser performs the 

categorization process based on a wide range of features, 

which, in addition to the problems such as sparsity and curse 

of dimensionality, it requires the correct selection of the 

features and proper setting of the parameters. The aim of this 

study is to obtain high performance with minimal feature 

engineering for dependency parsing of Persian sentences. In 

order to achieve this goal, the required features of the 

Maximum Spanning Tree Parser (MSTParser) are extracted 

with a Bidirectional Long Short-Term Memory (Bi-LSTM) 

Network and the edges of the dependency graph is scored by 

that. Experiments are conducted on the Persian Dependency 

Treebank (PerDT) and the Uppsala Persian Dependency 

Treebank (UPDT). The obtained results indicate that the 

definition of new features improves the performance of the 

dependency parser for Persian. The achieved unlabeled 

attachment scores for PerDT and UPDT are 90.53% and 

87.02%, respectively. 

Keywords: Dependency Parser, Data-Driven Parser, 
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1. Introduction 

Processing the natural language is performed at phonology, 

morphology (including lemmatization and stemming), 

lexical (including normalization, tokenization and spell 

checking), syntactic (including part of speech tagging (POS 

tagging) and structural parsing), semantic (including 

semantic role labeling and semantic parsing), discourse 

(including anaphora resolution and discourse/text structure 

recognition), and pragmatic levels [1]. The structural parsing 

is performed in the middle layer aiming at determining the 

grammatical role of words in the sentence. Although 

structural parsing is not the last step in the process of natural 

language, it is considered one of the most important steps, 

because it paves the ground for the next steps [2]. In the 

theory of knowledge graphs, words are represented by word 

graphs. Sentences are to be represented by sentence graphs. 
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This is called structural or syntactic parsing [1]. 

In general, structural parsers are divided into two 

categories: phrase-structure parsers and dependency parsers 

[3]. Figure 1 shows a sample of phrase-structure-based 

parsing and dependency-based parsing and Figure 2 presents 

a simple categorization of parsers.  

 

 
 

Figure 1. An example of syntactic parsing 

 

 
 

Figure 2. Taxonomy of parser 

Phrase-structure parsers: In this type of parser, based on 

structural grammar, the sentence is parsed into smaller 

phrases reciprocally, as a first-level phrase [4]. The 

limitations of this type of parser are as follows: 

1.  Inflexibility respect to words order: in some languages 
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(for example Czech, Persian), the words order is free; 

2. Language-dependent: the need to new rules set for each 

language; 

3. Syntax-based: does not include conceptual information 

like conceptual rules. 

As depicted in Figure 2, the phrase-structure parser is 

divided into two categories: rule-based and statistical-based 

[4]. In the rule-based parsing, a number of rules are defined 

by linguists based on the grammar for parsing the sentences. 

Limitations of this method are impossibility of providing 

complete rules with high coverage power, especially for free 

word order languages, being time-consuming, and 

impossibility of parsing for sentences outside the defined 

rules [4]. Statistical-based parser tries to extract grammar 

automatically using statistical techniques and linguistic 

corpora. The problem of this method is the requirement for 

annotated Treebank [5]. 

Dependency parsers: In this kind of parsing, it is assumed 

that syntactical structures include lexical components that 

are related to each other by asymmetric relations [6]. Based 

on the dependency grammar, this parser determines the 

syntactic structure of each sentence by examining the 

relationship between the head and dependent. Dependency 

parsing is divided into two categories [6]:  

1. Data-driven parsing: In this kind of parsing, a parametric 

model is created where the model parameters are calculated 

using the methods of machine learning from the training 

data. This kind of parsing has been considered as the most 

important type due to the lack of language dependency and 

the availability of appropriate data. This method is divided 

into the general categories of graph-based and transition-

based [7]. In the graph-based methodology, the graph theory 

is used to construct the parsing tree of the input sentence. 

This method first draws a complete graph for the input 

sentence and then tries to obtain the graph with the highest 

score. Dependency graphs can be divided into projective (a 

word along with its dependents are seen as a substring of the 

sentence [8] and the dependency graph lacks an intersecting 

edge (overlapping edge)), non-projective (having at least two 

overlapping edges) or well-constructed (that has root, unique 

labels, acyclic, connected and projective) types. In Persian, 

the projective trees cover more sentences due to the free 

word-ordering property [9]. The transition-based approach 

involves a number of configurations and transitions between 

them (similar to the Turing machine in computation theory). 

In the algorithms of this method, the parsing operation 

begins with the initial configuration and proceeds to the next 

configuration by selecting the transition based on the 

existing features. This continues until it reaches a final 

configuration [10]. Graph-based parsing is a global parsing, 

i.e., all words of the input sentence are analyzed to achieve 

the dependency tree, while in the transition-based methods a 

small part of the input sentence is analyzed based on features 

extracted from the configuration. Transition-based methods 

are of local parsing type.  

2. Grammar-driven parsing: Grammar-driven parsing is 

similar to the data-driven method, with the difference that in 

this method some grammar is defined, based on grammatical 

system [11]. Grammar-driven method is divided into two 

categories too: context-free and constraint-based. In context-

free method, dependency structure is converted to context-

free expression structure and uses current algorithms in that 

field. In constraint-based method, the problem is converted 

to constraint satisfaction problem and the grammar is 

determined as a set of dependency graph building 

constraints. In this case, the aim is to find a dependency 

graph that satisfies all the constraints of grammar [11]. 

The most significant difference between data-driven 

methods with grammar-driven methods is that a data-driven 

approach produces outputs for the incorrect sentences, while 

in a grammar-driven approach no parsing tree is made for the 

sentences that are not part of the language. However, in some 

languages, the use of a data-driven parser requires proper 

selection of features and proper adjustment of parameters to 

achieve maximum performance [12].  

Phrase-structure parsers are not flexible in terms of words 

and by changing the order of words, create another parsing 

tree; therefore, they cannot be efficient for the Persian 

language. On the other hand, due to its simplicity, the 

dependency parser has a higher ability to be learned by 

machine and humans [13]. The focus of this research is on 

developing a graph-based dependency parser for Persian. 

According to previous research [9] and considering 

specific features of Persian language, MSTParser (Maximum 

Spanning Tree) [14] is suitable for this language, for the 

following reasons:  

1.  Due to the SOV (Subject-Object-Verb) property, the head 

and the dependent are usually spaced far from each other, 

and MSTParser is appropriate to determine long-distance 

relationships due to the creation of a sentence graph; 

2.  Due to the free word-order property, most Persian 

sentences produce non-projective trees, and MSTParser is 

able to produce non-projective trees. 

The rest of the paper is organized as follows. In the second 

part, the conducted researches on Persian parsers are 

discussed. In the third section, our method is presented. The 

fourth section includes experiments and results. Finally, in 

the fifth section, a summary of the study is presented with 

some future works. 

 

2. Review of related works 

In spite of the fact that dependency parsing has a long history 

and diverse researches in other languages (especially 

English) have been done, it doesn't have very long history in 

Persian and is limited to a number of novice researches and 

is based on traditional methods (most of them have focused 

on the compatibility of existing tools for Persian). In our 

opinion, this occurs because Persian belongs to a low-

resource language group. The lack or shortage of data 

resources has reduced the willingness of researchers to work 

in the Persian domain.  

 

2.1. Phrase-structure parser 

Estiri et al. [15] provided the first rule-based phrase-structure 

parser. After performing preprocesses (unification and 

removing the short space), their tried to identify sentences 

(using punctuation and Persian language grammar) and 

words (using space and punctuation). In the next step, the 

initial tag of words is obtained through a search in a provided 

database and defined rules. In the final step, by combining 
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the tags and formation the groups, a general tag or identical 

tag is assigned to several successive words. Finally, by 

assigning labels to all groups and words, the parsing tree is 

obtained. Due to the lack of similar parser for Persian, the 

comparison and evaluation has not been done. One of the 

disadvantages of the parser can be the inability to deal with 

unstructured and non-grammatical sentences. 

 

2.2. Dependency parser 

Researches in this area are limited to testing the existing 

state-of-the-art parsers and choosing the proper feature sets 

for Persian. Seraji et al. [16] compared the state-of-the-art 

graph-based and transition-based parsers like MaltParser 

[17], MSTParser [18], MateParser [19, 20] and TurboParser 

[21] for Persian. They find the best POSTag-set and 

dependency relationships using Maltparser, and thereafter, 

perform their experiments with other parsers. According to 

their experiments, the graph-based parser provides better 

results. 

Falavarjani and Ghassem-Sani [9] tested two state-of-the-

art parsers, MaltParser (transition-based) and MSTParser 

(graph-based) for Persian. They tested two parsers to find the 

appropriate parser for projective and non-projective 

sentences. According to their experiments, the graph-based 

parser provided better results. In another study, Seraji et al. 

[22] tested two other state-of-the-art parsers, MaltParser and 

MSTParser, using the UPEDT corpus for Persian with 

different settings. According to their experiments, arc-eager 

algorithm is selected with the gold standard POS features for 

MaltParser and second order feature and projective setting is 

selected for MSTParser.  

Kalash et al. [13] analyzed the effects of lexical and 

morphological information on MSTParser and MaltParser. 

They tried to investigate the gold and automatic features and 

to choose the best feature set. MaltOptimizer was used to 

optimize MaltParser. Second order feature and non-

projective settings have been selected for the MSTParser.  

Lazemi and Ebrahimpour-Komleh [23] tried to improve 

the MSTParser. They defined 21 new semantic and structural 

features and added them to the MSTParser by the stacking 

method. Semantic features were obtained using word 

clustering algorithms based on syntagmatic analysis, and the 

syntactic features were obtained using the Persian phrase-

structure parser, and were used as bit-string. 

 

3. Proposed method 

Almost all dependency parsers perform the categorization 

process based on millions of features, which sparsity is one 

of their main consequence. Not only these features are not 

very powerful, but also the extraction of these features and 

their computations is time consuming. In this study, the 

required features for the MSTParser were extracted from a 

deep model, which will be discussed as follow. 

The graph-based dependency parsing consists of three 

main stages (definition of sentence space, learning, and 

parsing). In the first step, a space of candidate dependency 

directed graphs is created for the sentence. In the learning 

phase, a model for scoring is determined for the dependency 

graph of the sentence. The parsing stage seeks to find the 

highest-score dependency graph (to resolve the ambiguity). 

There are different algorithms for graph-based parsing, and 

the most notable one is the arc-factored model. In the arc-

factored model, the dependency graph is divided into several 

sub-graphs, P1, P2, ..., Pn; each sub-graph is individually 

scored and the score of the graph is considered as the total 

score of the sub-graphs (Equation 1). In this model, each 

edge is represented by a feature vector and at the learning 

stage, each feature is weighted.  

 

𝑠𝑐𝑜𝑟𝑒(𝐺) = 𝑠𝑐𝑜𝑟𝑒(𝑃1) + ⋯ + 𝑠𝑐𝑜𝑟𝑒(𝑃𝑛)                   (1) 

 
MSTParser is a member of graph-based dependency 

parsers. For a given sentence 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛), a 

dependency graph is defined as 𝐺𝑋 = (𝑉𝑋, 𝐸𝑋) such that 𝑉𝑋 

is a set of word (or token) in 𝑋 along with a root (𝑥0), and 

𝐸𝑋 is a set of labeled dependency relations between elements 

in 𝑉𝑋. During the parsing stage, MSTParser first builds a 

complete directed graph; for each pair of  (𝑥𝑖 , 𝑥𝑗) where 𝑥𝑖 ≠

 𝑥𝑗 , there exists a directed edge from 𝑥𝑖  to 𝑥𝑗 . The score of an 

edge is defined as the weighted sum of all its features, 

(Equation 2). 

 

𝑠𝑐𝑜𝑟𝑒(𝑥𝑖, 𝑥𝑗) = 𝑓1𝑤1 + ⋯ + 𝑓𝑛𝑤𝑛                                  (2) 

 

𝑤 is the weight vector, which is calculated using the machine 

learning algorithms from the training samples (pairs of 

sentences and the corresponding dependency trees). 

Assume that T(GX) is the spanning tree set of the GX. In 

MSTParser, finding a dependency graph with the highest 

score converts to the determining of the spanning tree �́� with 

the highest weight (Equation 3):  

𝑃𝑎𝑟𝑠𝑒𝑇𝑟𝑒𝑒(𝑋) = arg max
�́�∈𝑇(𝐺𝑋)

𝑠𝑐𝑜𝑟𝑒𝑔𝑙𝑜𝑏𝑎𝑙(𝑋, �́�)      (3) 

that the dependency tree score equals to the sum of edge 

scores (Equation 4). 

𝑃𝑎𝑟𝑠𝑒𝑇𝑟𝑒𝑒(𝑋) = arg max
�́�∈𝑇(𝐺𝑋)

∑ 𝑠𝑐𝑜𝑟𝑒(𝑥𝑖, 𝑥𝑗)

(𝑥𝑖,𝑥𝑗)∈�́�

 

(4) 
 

 
 

Figure 3. Maximum spanning tree derived from a complete 

directed graph 
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Figure 3 shows the maximum spanning tree derived from 

a complete directed graph for a sentence: 

 .«بانگ خروس در اوایل سحر برخاست»

The default feature set that has been used in MSTParser is 

summarized as follows, used as uni-gram and bi-gram: 

1.  POS tags of the words Hi and Dj and the label LK 

2.  POS tags of words surrounding and between Hi and Dj 

3. Number of words between Hi and Dj and their orientation 

4.  Label features 

Despite the traditional MSTParser method, in which each 

edge score is obtained through weighted sum of features, our 

proposed method extracts the score of each edge in three 

steps: 

1. A Bi-LSTM network that receives the distributive 

representation of words and their lexical-morphological 

information in vector space as inputs. 

 
 

Figure 4. An example of score computing for each pair of (𝒙𝒊, 𝒙𝒋) 

using our proposed method from sentence shown in Figure 2 

 

2.  A hidden layer with a rectified activation function 

combining the output features of each pair of words 

(𝑥𝑖 , 𝑥𝑗). 

3.  An output layer for generating scores for each kind of 

dependency type between each pair of words (𝑥𝑖 , 𝑥𝑗).  

Each step will be described in details. Neighborhood 

information is very useful in graph-based structure parsing 

[14, 18], so we use the LSTM to extract foundation 

information. The LSTM network allows the use of 

information far from the current word. The bidirectional 

network allows us to access the information on the right and 

left side of the words. In other words, by using the bi-

directional network, we can obtain the information of 

surrounding neighbors and neighbors between head and 

dependent. To achieve this, at first, each word is represented 

by word embedding with a d-dimensional vector, dw

ie  . 

The generated vector for each word is used as an input for 

the Bi-LSTM network.  

In morphologically-rich languages, the data on lexical 

features are also introduced as useful features. Therefore, we 

enter these features into the network as the binary features. 

In Persian, the verb corresponds to the subject in terms of 

person and number [24]. The use of these two features can 

be useful in determining some roles such as subject in 

sentences containing more than one word with the noun tag. 

In some special cases, some words are created by the 

combination of several components that each of them is 

attached to the previous or next component [24]. The 

relationship between these components should be defined in 

the dependency parsing in order to extract the relation 

between the components of the sentence.  

Table 1 shows different morphological categories and the 

possible values of them. Given that word order in Persian 

sentences is relatively free, morphological information is 

important to determine dependency relation. 

The concatenation of generated word embedding vector, 

POS tag and extracted morphological features of each word 

are fed into a forward LSTM network and a backward LSTM 

network. The concatenation of the output of two words 

(𝑂𝑖 , 𝑂𝑗) goes into the hidden layer, including dH number of 

nodes and the rectified activation function (Equation 5).  
 

𝐻 = 𝑔(𝑊1(𝑂𝑖 ⊕ 𝑂𝑗) + 𝑏1)                                               (5) 

 

where ⊕ denotes the concatenation process. 

The output score (Equation 6), 𝑠𝑐𝑜𝑟𝑒(𝑥𝑖 , 𝑥𝑗) ∈  R |L|, is a 

score vector where |L| is the number of dependency types and 

each dimension of 𝑠𝑐𝑜𝑟𝑒(𝑥𝑖 , 𝑥𝑗) is the score for each kind of 

dependency type of a pair of words (𝑥𝑖 , 𝑥𝑗). The maximum 

value is used in Equation 2 as 𝑠𝑐𝑜𝑟𝑒(𝑥𝑖 , 𝑥𝑗). 

 

𝑠𝑐𝑜𝑟𝑒(𝑥𝑖, 𝑥𝑗) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊2𝐻 + 𝑏2)                     (6) 

 

Figure 4 illustrates summarily the architecture of our 

approach. Given a sentence, we first get representation for 

each word. Word representation captures the features locally 

embedded around the word. The features used in our work 

are the word embedding and its lexical-morphological 

information. All these features are concatenated. After 

concatenation, we get the word representation feature vector 

as input of network. Then, bidirectional LSTM RNN layer is 

designed to combine the local information of a word and its 

contextual information from both directions. For each word, 

𝑥𝑖, there is an output vector, 𝑂𝑖 , the concatenation of the two 

output vectors (𝑂𝑖 , 𝑂𝑗) is fed into a hidden layer to combine 

them, and finally an output layer is deigned to get the output. 

The output of network is a vector, which each dimension is 

a score corresponding to a kind of dependency type of a pair 

of input words (𝑥𝑖 , 𝑥𝑗). The maximum value is selected as 

𝑠𝑐𝑜𝑟𝑒(𝑥𝑖 , 𝑥𝑗) used in MSTParser. 

 

4. Experiments and results 

4.1. Corpora and evaluation metrics 
Having about 110 million speakers around the world, Persian 

language is one of the poorest languages in terms of 

availability of annotated corpora. To conduct experiments on 

dependency parsing of sentences, there are only two corpora 

(Persian Dependency Treebank (PerDT) [25] and Uppsala 

Persian Dependency Treebank (UPDT) [26]) that we have 

used both. PerDT is the first Persian dependency Treebank, 

and includes about 30,000 sentences annotated with 

syntactic roles and morpho-syntactic features and the 

corresponding dependency tree. There are 44 dependency 
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relations, 17 types of coarse-grained, and 32 types of fine-

grained POS tags. In UPDT, the syntactic relation of words 

is determined by the dependency grammar. This corpus 

contains 6000 sentences from the Uppsala Persian Corpus 

with a corresponding dependency tree. In this corpus, there 

are 48 types of dependency relations, 13 types of coarse-

grained, and 18 types of fine-grained POS tags. Both corpora 

have been prepared based on the CoNll template and the 

Stanford Typed. More information about the used corpora is 

given in Table 2. 

Tense, mood, and aspect are not separately annotated in 

the PerDT treebank, so we used them as one feature. Types 

are not available in the first corpus. In the second corpus, 

morphological features are limited and represented as a 

single atomic feature. The available morphological features 

in the second corpus are tense, mood, type, and number. 

For evaluation, the Unlabeled Attachment Score and the 

Labeled Attachment Score are used and defined as Equations 

7 and 8. 

𝑈𝐴𝑆 = 
 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑡𝑤𝑜 𝑡𝑟𝑒𝑒𝑠 𝑟𝑒𝑔𝑎𝑟𝑑𝑙𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑎𝑏𝑒𝑙

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑤𝑜 𝑡𝑟𝑒𝑒 𝑒𝑑𝑔𝑒𝑠
        

(7) 
 

𝐿𝐴𝑆 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑡𝑤𝑜 𝑡𝑟𝑒𝑒𝑠 𝑤𝑖𝑡ℎ 𝑙𝑎𝑏𝑒𝑙

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑤𝑜 𝑡𝑟𝑒𝑒 𝑒𝑑𝑔𝑒𝑠
        

(8) 
 

Table 1. Description of morphological features, possible values 

and compatible POS tags 
 

Category Values 
Compatible 

PoS Tags 

Number Singular, Plural, Dual 

Noun, 

Pronoun, 

Verb 

Person 1st, 2nd, 3rd Verb 

Tense Present, Past, Future Verb 

Mood Indicative, Subjunctive,Imperative Verb 

Attachment 

Isolated word, Attached to the 

next word, Attached to the 

previous word 

All 

Type Cardinal, Ordinal, Multiple Numeral 

Polarity Positive, Negative Verb 

 

Table 2. Statistical properties of PerDT corpus and UPDT corpus  
 

Uppsala Persian 

Dependency 

Treebank 

Persian 

Dependency 

Treebank 

 

6000 29982 Number of sentences 

151671 498081 Number of words 

15692 37618 Number of distinct words 

- 9200 Number of verbs 

- 62889 Number of distinct verbs 

25.28 16.61 Average sentence length 

13 17 Coarse-grained POS tags 

                                                      
1. https://github.com/UKPLab/emnlp2017-bilstm-cnn-crf 

18 32 Fine-grained POS tags 

available in 

CoNLL format 

available in 

CoNLL format 
 

4.2. Hyper-parameter tuning 
We implemented the neural network using the UKPLab1. 

Training was performed with mini-batch stochastic gradient 

descent (SGD) with a fixed learning rate. Moreover, we 

explored AdaGrad, AdaDelta, RMSProp, Adam and Nadam 

optimization algorithms, but they did not improve upon 

SGD. 

In order to reduce overfitting, we applied the dropout 

method [27]. We applied dropout on output vector of each 

LSTM layer. In order to create word embeddings, we used 

the word2vec [28] algorithm. We tuned the hyper-

parameters on the development sets by random search and 

evaluated 300 hyper-parameters setting. Table 3 summarizes 

the chosen hyper-parameters for all experiments and Table 4 

shows the development set’s performance of the best setting 

by projective-first order setting. 
 

Table 3. Hyper-parameters values for experiments 
 

 Hyper-parameter 

50 Word embedding dimension 

20 Morphological feature dimension 

49 POS tag dimension for PerDT 

31 POS tag dimension for UPDT 

2 LSTM layers 

100 LSTM state size 

0.0005 Learning rate 

0.5 Dropout rate 

10 Mini-batch size 

100 Number of neurons 

 

Table 4. Results on development set 
 

 
PerDT UPDT 

UAS LAS UAS LAS 

Our Method with Gold 

POS tag 
86.03 83.14 80.11 76.89 

 

4.3. Results and discussion 
The data is split into standard train, development and test sets 

by the ratio of 80%-10%-10% in the CoNLL dependency 

format. 

MSTParser is used with four settings: projective-first 

order, projective-second order, non-projective-first order, 

and non-projective-second order. MIRA is used to estimate 

the weight vector. Experiments were done with Gold POS 

Tag and Predicated POS Tag. To generate POS tags of the 

words in the first corpus, Parsipardaz toolkit [29] was used, 

which has been provided by Sarabi et al. [29]. That’s 

because, the Parsipardaz-POSTagger’s tag set is the same as 

the tag set of the first corpus. The accuracy of Parsipardaz-

POSTagger has been reported to be about 98.5%. For the 

second corpus, the TagPer tool [30] provided by Seraji et al. 
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[29] was used. The accuracy of TagPer has been reported to 

be about 97.8% for the UPEC (Uppsala Persian Corpus) 

corpus. POSTaggers were applied to the test data sets.  

Tables 5, 6, 7, and 8 illustrate the results for both corpora. 

For comparisons, the tests were implemented in four modes: 

Baseline-features with Gold Pos tags, Baseline-features with 

Predicated Pos tags, our proposed method with Gold Pos tags 

and our proposed method with Predicated Pos tags. 

According to the tables, the use of Gold Pos tags outperform 

the Predicated Pos tags in both the baseline mode and our 

proposed approach.  

The results indicate that our proposed method has better 

performance. Our suggested method, although does not 

indicate any significant improvement in comparison with our 

previous research, was able to achieve some good results in 

some cases.  

By comparing Baseline-features and our proposed 

method, it can be seen that neural models are able to obtain 

precise features which are difficult to gain using manual 

feature selection methods. 

 
 

Table 5. Projective-first order 
 

 PerDT UPDT 

 UAS LAS UAS LAS 

Baseline-Features with 

Gold POS tag 
80.21 77.38 77.69 71.13 

Baseline-Features with 

Predicated POS tag 
78.85 75.89 76.46 70.01 

Our Method with Gold 

POS tag 
84.29 81.42 77.52 75.10 

Our Method with 

Predicated POS tag 
83.01 80.17 75.39 73.94 

 

Table 6. Non projective-first order 
 

 PerDT UPDT 

 UAS LAS UAS LAS 

Baseline-Features with 

Gold POS tag 
82.12 79.81 83.81 76.45 

Baseline-Features with 

Predicated POS tag 
80.63 77.02 81.03 74.11 

Our Method with Gold 

POS tag 
85.96 83.25 83.94 82.05 

Our Method with 

Predicated POS tag 
84.33 82.22 81.00 79.88 

 

 

Table 7. Projective-Second Order 
 

 PerDT UPDT 

 UAS LAS UAS LAS 

Baseline-Features with 

Gold POS tag 
80.93 78.13 79.86 74.60 

Baseline-Features with 

Predicated POS tag 
78.88 76.33 76.92 72.22 

Our Method with Gold 

POS tag 
88.03 85.11 82.21 79.39 

Our Method with 

Predicated POS tag 
86.40 84.02 79.97 77.64 

 

 

As it is evident, non-projective settings for both corpora 

have brought good results.  

Based on Tables 5, 6, 7, and 8, our improved MSTParser 

outperforms its baseline for all settings. 
 

Table 8. Non Projective-Second Order 
 

 PerDT UPDT 

 UAS LAS UAS LAS 

Baseline-Features with 

Gold POS tag 
84.79 82.06 85.02 83.26 

Baseline-Features with 

Predicated POS tag 
84.06 80.55 83.41 82.25 

Our Method with Gold POS 

tag 
90.53 88.41 87.02 85.78 

Our Method with Predicated 

POS tag 
87.74 85.36 85.10 83.99 

 

Table 9. Comparison of results  
 

 PerDT UPDT 

 UAS LAS UAS LAS 

Lazemi et al. [23] 89.17 85.83 88.96 86.25 

Our Proposed Method 92.08 89.11 91.28 87.69 

 

In our previous work [23], we faced with the sparsity 

problem, so to reduce the problem, the sentences that contain 

full-frequent words of corpora (PerDT and UPDT) were 

selected and experiments were done by them. In order to 

make a comparison, we repeated experiments with those 

data. Table 8 demonstrates the obtained results for non-

projective-second order setting. It can be seen that our 

proposed method has better results. On the other hand, the 

use of the distributive representation of words solved the 

sparsity problem. 

 

5. Conclusion 
This study introduced a deep learning based approach for 

improving MSTParser for Persian sentences. In the proposed 

method, the words were first transmitted to the vector space, 

and then by using the Bi-LSTM network, the information of 

the neighbors of the words were extracted and the contextual 

representation of the words was obtained. The extracted 

features were fed as inputs to the neural network and, for 

each pair of words, the score of each syntactic class was 

calculated. The results of the experiments reveal the 

appropriateness and efficiency of the proposed method. 

Unfortunately, in the area of dependency parsing, there is 

a huge gap between performed researches for Persian and 

other languages; the main reason for this is the lack of 

labeled corpora and tools. Since Persian belongs to the 

morphologically-rich group of languages, it is recommended 

that in future studies, large corpora of lexical and 

morphological information and created, and some tools be 

created that are able to extract more morphological data from 

words. On the other hand, since Persian is a generative 

language, it is likely that we encounter many words not 

included in the dictionary. Dealing with this issue can also 

increase the speed and accuracy of the parser. 
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