
Journal of Computer and Knowledge Engineering, Vol. 1, No. 2, 2018.

DOI: 10.22067/cke.v1i2.61798

Particle Filter based Target Tracking in Wireless Sensor Networks

using Support Vector Machine

Ahmad Namazi Nik Abbas Ali Rezaee

Abstract: Target tracking is estimating the state of moving
targets using noisy measurements obtained at a single
observation point or node. Particle filters or sequential
Monte Carlo methods use a set of weighted state samples,
called particles, to approximate the posterior probability
distribution in a Bayesian setup. During the past few years,
Particle Filters have become very popular because of their
ability to process observations represented by nonlinear
state-space models where the noise of the model can be non-
Gaussian. There are many Particle Filter methods, and
almost all of them are based on three operations: particle
propagation, weight computation, and resampling. One of
the main limitations of the previously proposed schemes is
that their implementation in a wireless sensor network
demands prohibitive communication capability since they
assume that all the sensor observations are available to every
processing node in the weight update step. In this paper, we
use a machine learning technique called support vector
machine to overcome this drawback and improve the energy
consumption of sensors. Support Vector Machine (SVM) is
a classifier which attempts to find a hyperplane that divides
two classes with the largest margin. Given labeled training
data, SVM outputs an optimal hyperplane which categorizes
new examples. The training examples that are closest to the
hyperplane are called support vectors. Using our approach,
we could compress sensor observations and only support
vectors will be communicated between neighbor sensors
which lead to cost reduction in communication. We use
LIBSVM library in our work and use MATLAB software to
plot the results and compare the proposed protocol with CPF
and DPF algorithms. Simulation results show significant
reduction in the amount of data transmission over the
network.

Keywords: Distributed Particle Filter; Support Vector

Machines; Target Tracking; Wireless Sensor Networks.

1. Introduction
Target tracking is one of the most important applications of
wireless sensor networks. Examples include security and
surveillance [1], environmental monitoring [2] and tracking
tasks [3]. Target tracking is the estimation of the current state
and prediction of future states of a target based on
measurements received from a sensor that is observing it.
The limited on-board resources of the sensor node and the
limited wireless bandwidth are the major constraints of
performing target tracking in wireless sensor networks. In
order to save resources, target tracking should be
implemented in a distributed way. Distributed computation

Manuscript received Jaunary 14, 2017; accepted July 28, 2018.
A. Namazi Nik, Department of Information and Communication Technology, Payame Noor University, Tehran, Iran.
namazi.a@pnurazavi.ac.ir.
*A. Ali Rezaee Department of Information and Communication Technology, Payame Noor University, Tehran, Iran. a_rezaee@pnu.ac.ir.

has found very successful applications in sensor networks,
particularly when a powerful central unit is not available.

Before particle filtering methods became popular, the
Kalman filter was the standard method for solving state
space models [4]. The Kalman filter can be applied to
optimally solve a linear Gaussian state space model. When
linearity or Gaussian conditions do not hold, its variants, i.e.
the extended Kalman filter and the unscented Kalman filter,
can be used. However, for highly nonlinear and non-
Gaussian problems they fail to provide a reasonable estimate.

Particle filtering techniques offer an alternative method.
They work online to approximate the marginal distribution
of the latent process as observations become available.
Importance sampling is used at each point in time in order to
approximate the distribution with a set of discrete values,
known as particles, each with a corresponding weight. There
are several papers and books which have presented detailed
reviews of particle filters and their applications [5-12].

In this work we tackle the problem of implementing the
DPF algorithm and make use of support vector machine – a
well-known machine learning classification method – to
compress measurements collected by processing nodes and
thus reducing communication costs.

The rest of the paper is organized as follows. In Section 2,
a brief review of prior related works on target tracking is
presented. In Section 3 we introduce the problem of target
tracking in the context of Bayesian filtering and describe the
solution to the nonlinear filtering problem with a centralized
PF. In Section 4 we provide a formal description of the DPF
algorithm. Section 5 introduces support vector machines. In
Section 6 we provide details of the proposed method.
Simulation and experimental results are presented and
discussed in Section 7 and, finally, Section 8 is devoted to
conclusions.

2. Related Works

Target tracking has many real life applications such as

battlefield surveillance, detection of illegal borders crossing,

gas leakage, fire spread, and wildlife monitoring.
Various taxonomies of target tracking algorithms have

been proposed in the literature and there is no standardized
or predefined classification. Some works have studied
tracking algorithms according to the security aspect [13]
while others have considered energy efficiency [14], fault
tolerance, mobility, accuracy, and so on [15].

A comparative study of target tracking with Kalman Filter,

Extended Kalman Filter and Particle Filter using Received

Signal Strength measurements has been reported in [16] and

their simulation results show that PF has superior

http://dx.doi.org/10.22067/cke.v1i2.61798
mailto:namazi.a@pnurazavi.ac.ir

14 A. Namazi Nik. et.al: Particle Filter based Target Tracking in Wireless Sensor…

performance to the KF and EKF in terms of accuracy and

root mean square error (RMSE).

The application of PFs in WSNs is challenging due to the

limited resources of WSNs. Centralized particle filters (CPFs)

have some problems such as consuming significant energy

and vulnerability as a single point of failure. Distributed

particle filters (DPFs) were studied as a response to these

problems, in particular, to offload the computation from the

central unit [17].

Particle filtering for target tracking in WSNs has already

attracted some attention, including a body of work in

distributed methods [18]. Its relation with agent networks has

also been explored in [19].

In [20], a fully decentralized particle filtering algorithm

for cooperative blind equalization is introduced. The

technique is proper, in the sense that it does not make any

approximations in the computation of the importance

weights of the particles. However, the scheme is applicable

only when the state signal is discrete, and would be infeasible

in terms of computation and communication among nodes.

In [21], the communication load is reduced using

quantization and parametric approximations of densities. A

similar parametric approach is applied in [18] to further

simplify communications.

The work reported in [22] provides a generalized approach

for approximating global likelihood through a consensus

filter. It approximates log-likelihood by a polynomial

function, and the sensors exchange only the coefficients of

the polynomial function to compute global likelihood.

The authors in [23] proposed a distributed particle filtering
algorithm with the objective of reducing the overhead data
that is communicated among the sensors. In their algorithm,
the sensors exchange information to collaboratively compute
the global likelihood function that encompasses the
contribution of the measurements towards building the
global posterior density of the unknown location parameters.
Each sensor uses its own measurement to compute its local
likelihood function and approximates it using a Gaussian
function. The sensors then propagate only the mean and
covariance of their approximated likelihood functions to
other sensors, thereby reducing the communication overhead.
The global likelihood function is computed collaboratively
from the parameters of the local likelihood functions using
an average consensus filter or a forward-backward
propagation information exchange strategy.

In [24] a distributed particle filter is designated and it is
shown that the difference in accuracy of their proposed DPF
and a centralized filter with the same total number of
particles is less than 2 cm, while the DPF with four
processing nodes is over four times faster than an equivalent
centralized version. This equivalently means that the same
performance can be obtained on less powerful hardware. The
main limitation of that scheme is that every node performing
a subset of the computations of the PF should have access to
all the observations (i.e., all the measurements collected by
the WSN at the current time step) in order to guarantee that
the particle weights are proper and, therefore, the resulting
estimators are consistent.

3. Nonlinear Filtering in State-Space System

3-1. Bayesian Filtering

Consider the Markov state-space random model with
conditionally independent observations [25, 26] described by

the triplet:

𝑝(𝑥0), 𝑝(𝑥𝑡|𝑥𝑡−1), 𝑝(𝑦𝑡|𝑥𝑡), 𝑡 = 1, 2, … (1)

We denote the states and the observations up to time t by

x0:t ≜ {x0, … , xt} and y0:t ≜ {y0, … , yt}, respectively. p(x0)
is the prior probability density function (pdf) of the state, the
transition density p(xt|xt−1) describes the (random)

dynamics of the process xt and the conditional pdf p(yt|xt)
describes how the observations are related to the state and it
is usually referred to as the likelihood of xt. The goal of a
stochastic filtering algorithm is to recursively estimate the
posterior distribution p(xt|y1:t), t ≥ 1.

Suppose that the required pdf p(xt−1|y1:t−1) at time t − 1
is available. The prediction stage obtains the prior pdf of the
state at time t via:

𝑝(𝑥𝑡|𝑦1:𝑡−1) = ∫ 𝑝(𝑥𝑡|𝑥𝑡−1)𝑝(𝑥𝑡−1|𝑦1:𝑡−1)𝑑𝑥𝑡−1 (2)

At time step t, an observation ytbecomes available, and it

may be used to update the prior (update stage) via Bayes’

rule:

𝑝(𝑥𝑡|𝑦1:𝑡) ∝ 𝑝(𝑦𝑡|𝑥𝑡)𝑝(𝑥𝑡|𝑦1:𝑡−1) (3)

Eqs. (2) and (3) form the basis for the optimal Bayesian
solution [6]. If the system of Eq. (1) is linear and Gaussian
then p(xt|y1:t) is Gaussian and can be obtained exactly using
the Kalman filter algorithm [27]. If the state space is discrete
and finite, exact solutions can also be computed [25].
However, if any of the pdf's in (1) is non-Gaussian, or the
system is nonlinear, we have to resort to suboptimal
algorithms in order to approximate the filter pdf p(xt|y1:t).

3-2. Particle Filtering

Particle Filters, also known as sequential Monte Carlo
methods, are simulation based algorithms that yield
estimates of the state based on a random point-mass (or
"particle") representation of the probability measure with
density p(xt|y1:t) [28-30]. Table 1 shows the standard
particle filter algorithm. We refer to it as centralized in order
to make explicit that it requires a central unit that collects all
the observations together, generates all the particles and
processes them together. The resampling step randomly
eliminates samples with low importance weights and
replicates samples with high importance weights in order to
avoid the degeneracy of the importance weights over time
[26, 31].

Table 1: The Centralized Particle Filter (CPF) algorithm

Initialize: At time 𝑡 = 0

For 𝑚 = 1, … , 𝑀

 sample 𝒙0
(𝑚)

from prior 𝑝(𝒙0)

Recursive step: for 𝑡 > 0

For 𝑚 = 1, … , 𝑀

 draw 𝒙𝑡
(𝑚)

~ 𝑝(𝒙𝑡|𝒙𝑡−1
(𝑚)

) and set 𝒙0:𝑡
(𝑚)

= {𝒙𝑡
(𝑚)

, 𝒙0:𝑡−1
(𝑚) }

 compute importance weights 𝑤𝑡
(𝑚)∗

= 𝑝(𝒚𝑡|𝒙𝑡
(𝑚)

)

Normalize weights 𝑤𝑡
(𝑚)

= 𝑤𝑡
(𝑚)∗ ∑ 𝑤𝑡

(𝑗)∗𝑀
𝑗=1⁄

Resample the weighted sample {𝒙0:𝑡
(𝑚)

, 𝑤𝑡
(𝑚)}

𝑚=1

𝑀
to obtain

an unweighted sample {𝒙0:𝑡
(𝑚)}

𝑚=1

𝑀

Journal of Computer and Knowledge Engineering, Vol. 1, No. 2, 2018. 15

4. Distributed Particle Filtering

In this paper, we implement a distributed particle filter with

nodes that can operate as processing elements (PEs) on a

wireless sensor network. Each PE is a low-powered device

that has to perform sensing, computation and radio

communication tasks while running on batteries. A common

assumption in other proposed schemes is that all

observations can be readily made available to all PEs in the

system [24, 32-33]. Such capacity cannot be taken for

granted in a WSN, where the observations are collected

locally by the nodes and communications are necessarily

constrained because of energy consumption. This issue will

be addressed in subsequent sections.

Assume we have N processing nodes in the network and

each is capable of running a separate PF with K particles (we

ignore any non-processing nodes for now since they do not

run particle filters). The total number of particles distributed

over the network is M=NK. In particular, after the

completion of a full recursive step of the distributed PF at

time t-1, the n-th PE should hold the set

{xt−1
(n,k)

, wt−1
(n,k)∗, Wt−1

(n)∗}
k=1,…,K

, where xt−1
(n,k)

 is the k-th particle

at the n-th PE, wt−1
(n,k)∗

 is the corresponding non-normalized

importance weight, and Wt−1
(n)∗

 is the non-normalized

aggregated weight of PE n.

Each PF runs locally on a node involves the usual steps of

drawing samples, computing weights and resampling. The

generation of new particles, the update of the importance

weights and the resampling step are taken strictly locally,

without interaction between different nodes. To be specific,

assume that the transition pdf of model (1) is used as an

importance function and that the observation vector yt is

available at every node. Then, at the n-th PE, and for k =

1, … , K, xt
(n,k)

 is drawn from the pdf p(xt
(n,k)

|xt−1
(n,k)

), and the

corresponding nonnormalized weight is computed as

wt
(n,k)∗ = wt−1

(n,k)∗p(yt|xt
(n,k)

).

Hence, the information stored by the n-th node at this point

becomes {xt
(n,k)

, wt
(n,k)∗}

k=1,…,K
 and the aggregated weight is

Wt
(n)∗ = ∑ wt

(n,k)∗K
k=1 .

Next, a resampling step is taken locally by each PE.

Assuming a multinomial resampling algorithm, we assign,

for k = 1, … , K , xt
(n,k)

= xt
(n,j)

with probability wt
(n,j)

and

j ϵ {1, … , K} , where wt
(n,j)

=
wt

(n,j)∗

∑ wt
(n,l)∗K

l=1

 , j = 1, … , K , are

the locally normalized importance weights. After resampling,

the particles at the n-th PE are equally weighted.

In the estimation step, we obtain local estimates of target

position at any node as:

�̂�𝑡
𝑛 = 𝐸(𝑥𝑡|𝑦1:𝑡) = ∫ 𝑥𝑡𝑝(𝑥𝑡|𝑦1:𝑡) 𝑑𝑥𝑡 = ∑ 𝑤𝑡

(𝑛,𝑘)
𝑥𝑡

(𝑛,𝑘)𝐾
𝑘=1

(5)

where wt
(n,k)

= wt
(n,k)∗ Wt

(n)∗, k = 1, … , K⁄ are the

locally normalized importance weights.

Global estimates can be easily computed by a linear

combination of local estimates. In order to obtain a global

estimate of target position, each node n in the network should

transmit its local estimate �̂�𝑡
𝑛 and its aggregated weight

𝑊𝑡
(𝑛)∗

 to a prescribed node (working as a fusion center)

where global estimates can be computed as:

�̂�𝑡
𝑀𝑀𝑆𝐸 = ∑ 𝑊𝑡

(𝑛)
�̂�𝑡

(𝑛)𝐾
𝑘=1 (6)

where Wt
(n)

= Wt
(n)∗ ∑ Wt

(i)∗N
i=1⁄ is the globally

normalized aggregated weight of the n-th node.

5. Support Vector Machine

Support vector machines discriminate two classes by fitting

an optimal linear separating hyperplane to the training

samples of two classes in a multidimensional feature space.

The optimization problem being solved aims to maximize

the margins between the optimal linear separating

hyperplane and the closest training samples which are called

support vectors (Figure 1). In a linearly non-separable case,

the input data are mapped into a high-dimensional space in

which the new distribution of the samples enables the fitting

of a linear hyperplane [34].

Fig 1. An example of classification of two classes by SVM. The

support vectors are filled.

Assume some training data S which are a set of n points

of the form:

𝑆 = {(𝑥𝑖 , 𝑦𝑖)|𝑥𝑖 ∈ ℝ𝑑 , 𝑦𝑖 ∈ {+1, −1}} 𝑖 = 1, … , 𝑛 (7)

where ℝ𝑑 indicates the class to which point xi belongs

and each xi is a d-dimensional real vector. The goal of SVM

is to define a hyperplane which divides S, such that all the

points with the same label are on the same side of the

hyperplane while maximizing the distance between the two

classes +1, -1 and the hyperplane. The boundary can be

expressed as w. x + b = 0, where w is the normal vector to

the hyperplane. The parameter
b

‖w‖
 determines the

perpendicular distance from the hyperplane to the origin

along the normal vector w and ‖w‖ is the Euclidean norm of

w. The data points nearest to the boundary are used to define

the margins between the two classes and are known as

support vectors. At the margins, where the support vectors

are located, the equations for classes +1 and -1, respectively,

are:

𝑤. 𝑥 + 𝑏 = +1 , 𝑤. 𝑥 + 𝑏 = −1 (7)

http://en.wikipedia.org/wiki/Real_number

16 A. Namazi Nik. et.al: Particle Filter based Target Tracking in Wireless Sensor…

and the following decision function can be used to classify

any data point in either class +1 or -1:

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑤. 𝑥 + 𝑏) (8)

The margin between the two classes is measured

perpendicular to the hyperplane is
2

‖w‖
, so we want to

minimize ‖w‖ . In a linearly separable case, the support

vector machine looks for the separating hyperplane with the

largest margin. Suppose that all the training data satisfy these

constraints:

𝑤. 𝑥𝑖 + 𝑏 ≥ +1 ∀ 𝑥𝑖 𝑤𝑖𝑡ℎ 𝑦𝑖 = +1 (9)

𝑤. 𝑥𝑖 + 𝑏 ≤ −1 ∀ 𝑥𝑖 𝑤𝑖𝑡ℎ 𝑦𝑖 = −1 (10)

These can be combined into one inequality:

𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) ≥ 1 𝑖 = 1, 2 , … , 𝑁 (11)

where N is the number of training sets. According to [28]

it is worth to use Lagrangian formulation of the problem.

Thus, introducing Lagrange multipliers αi ≥ 0, i =
1, 2 , … , N, one for each of the constraints in Eq. (9), we get

the following Lagrangian:

𝐿(𝑤, 𝑏, 𝛼) =
1

2
‖𝑤‖2 − ∑ 𝛼𝑖𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏)𝑁

𝑖=1 + ∑ 𝛼𝑖
𝑁
𝑖=1 (12)

We must now minimize Eq. (10) with respect to w and b,

and maximize it with respect to αi. Thus:

𝜕

𝜕𝑤
𝐿(𝑤, 𝑏, 𝛼) = 0,

𝜕

𝜕𝑏
𝐿(𝑤, 𝑏, 𝛼) = 0 (13)

which leads to:

𝑤 = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖
𝑁
𝑖=1 , ∑ 𝛼𝑖𝑦𝑖 = 0𝑁

𝑖=1 (14)

Substituting Eq. (12) into Eq. (10) yields the dual

quadratic optimization problem:

Maximize

𝐿𝐷 = ∑ 𝛼𝑖
𝑁
𝑖=1 −

1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖 . 𝑥𝑗

𝑁
𝑖,𝑗=1 (15)

Subject to

𝛼𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑁, (16)

∑ 𝛼𝑖𝑦𝑖 = 0𝑁
𝑖=1 (17)

On substitution of Eq. (12) into the decision function (6)

we obtain an expression which can be evaluated in terms of

dot products between the pattern to be classified and the

Support Vectors:

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖𝑦𝑖(𝑥𝑖 . 𝑥)𝑁
𝑖=1 + 𝑏) (18)

The dot product can therefore be replaced with a nonlinear
kernel function, thereby performing large margin separation
in the feature-space of the kernel.

6. Using Support Vector Machine with Distributed

Particle Filter

We use LIBSVM [35] in our work. LIBSVM is a library for

Support Vector Machines and has gained wide popularity in

machine learning and many other areas [36].

The Web address of the package is at
http://www.csie.ntu.edu.tw/~cjlin/libsvm. Also, we use the
MATLAB software to plot the results.

A classification task usually involves separating data into

training and testing sets. Each instance in the training set

contains one “target value” (i.e. the class labels) and several

“attributes” (i.e. the features or observed variables). The goal

of SVM is to produce a model (based on the training data)

which predicts the target values of the test data given only

the test data attributes. Our idea is to make use of support

vector machine as a data classification technique in our work

to reduce communications among the nodes.
As we mentioned in section 4 in the weight update step we

assume that the observation vector yt is available at every
node which involves communications among the nodes. We
use SVM to reduce these communications. SVMs only
consider points near the margin (support vectors) instead of
whole data points. According to our assumption, the

observation coming from sensor j at time t, denoted yj,t, is

modeled as a binary observation. Then our SVM has two
classes. Each sensor has two attributes which are equal to the
coordinates of its position.

Scaling before applying SVM is very important. The main
advantage of scaling is to avoid attributes in greater numeric
ranges dominating those in smaller numeric ranges. Another
advantage is to avoid numerical difficulties during the
calculation. Because kernel values usually depend on the
inner products of feature vectors, e.g. the linear kernel and
the polynomial kernel, large attribute values might cause
numerical problems. In [37] it is recommended to linearly
scale each attribute to the range [-1, +1] or [0, 1]. We have
to use the same method to scale both training and testing data.
For example, suppose that we scaled the first attribute of
training data from [-10, +10] to [-1, +1]. If the first attribute
of testing data lies in the range [-11; +8], we must scale the
testing data to [-1.1, +0.8]. There are four basic kernel
functions in SVM, including linear, polynomial, radial basis
function (RBF) and sigmoid. In our work we have used RBF
kernel in the training step since it has fewer numerical
difficulties and has better performance in nonlinear cases.

When the training is done, support vectors are generated.
Once the support vectors are determined, the rest of the
feature set can be discarded, since the support vectors contain
all the necessary information for the classifier. We propagate
observations corresponding to these support vectors (y̅t)

rather than the whole yt in the network. Then, in the weight
update step of our distributed particle filter, every processing
element can obtain observations of other sensors by running
the final step of the SVM, namely prediction. On the other
hand, in the prediction step of SVM, we obtain observation
vector yt from vector y̅t . Table 2 summarizes the DPF
algorithm investigated in this paper.

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Journal of Computer and Knowledge Engineering, Vol. 1, No. 2, 2018. 17

Table 2. Distributed Particle Filter (DPF) algorithm

Initialize: At time 𝑡 = 0, for 𝑛 = 1, … … 𝑁

Draw 𝒙0
(𝑛,𝑘)

, for 𝑘 = 1, … , 𝐾, from prior 𝑝(𝒙0)

Assign 𝑤0
(𝑛,𝑘)∗

=
1

𝐾
 for all k, set 𝑊0

(𝑛)∗
= 1

Build the set {𝒙0
(𝑛,𝑘)

, 𝑤0
(𝑛,𝑘)∗

, 𝑊0
(𝑛)∗}

𝑘=1

𝐾

Recursive step: At time 𝑡 > 0, start from the set {𝒙𝑡−1
(𝑛,𝑘)

, 𝑤𝑡−1
(𝑛,𝑘)∗

, 𝑊𝑡−1
(𝑛)∗}

𝑘=1

𝐾
. Then, for 𝑛 = 1, … , 𝑁

Sampling: Draw 𝒙𝑡
(𝑛,𝑘)

 from 𝑝(𝒙𝑡|𝒙𝑡−1
(𝑛,𝑘)

), for 𝑘 = 1, … , 𝐾

Weight update: 𝑤𝑡
(𝑛,𝑘)∗

= 𝑤𝑡−1
(𝑛,𝑘)∗

𝑝(𝒚𝑡|𝒙𝑡
(𝑛,𝑘)

)

Estimation: compute the desired output, such as the expected value

Resampling: to obtain the set {𝒙𝑡
(𝑛,𝑘)

, 𝑤𝑡
(𝑛,𝑘)∗

, 𝑊𝑡
(𝑛)∗}

𝑘=1

𝐾
, where 𝑤𝑡

(𝑛,𝑘)∗
= 𝑊𝑡

(𝑛)∗
/𝐾 for 𝑘 = 1, … , 𝐾

7. Simulation and Experimental Results

The goal of our work is to implement a DPF for target

tracking in a wireless sensor network and use SVM to

compress measurements collected by these sensors. Our

experimental scenario is shown in Figure 2. It is a room with

10 nodes (which are equipped with a light sensor) enclosing

an area of 4×6 m2 with a single source of natural light (a

window). Modeling environment specifications and

translating the disturbances caused by the target in the sensor

readings into distance measurements are very complex. Then,

instead we emphasize on obtaining binary observations: 1 if

the target is in the detection zone and 0 otherwise.

Fig. 2 Tracking scenario of 46 m2. The thick line is the light

source. There are 10 nodes equipped with light sensors around the

edges, indicated by squares. The entry to the scenario lies at the

bottom-right corner.

Table 3 displays values of the relevant simulation and

algorithm parameters. The number of processing elements

(N) is 4 in our experiments and we use N=1 as the equivalent

to a centralized particle filter. Changing N affects other

variables, such as the number of sensing-only elements (J-N)

and the number of particles per PE (K=M/N). It does not

matter which of the nodes are PEs and which are SEs, since

we assume a fully connected network. Each node (either PE

or SE) produces one binary observation every Ts second.

Figure 3 displays the empirical distribution of errors, and

the average error, for 100 simulated paths. Figure 4 plots two

selection of these paths along with the path estimated by our

SVM-based DPF. The dissensions between true and

estimated position tend to happen when the target moves

between detection zones. Since the observations are binary

and zone-based, rather than distance-based, there are gaps

around the edges (see for example the final points in Figure

4). Accuracy also tends to be higher nearer the light source

where more detection zones overlap.

Table 3. Simulation and algorithm parameters

Variable Symbol Value (unit)

Number of PEs N 4

Number of nodes J 10

Number of SEs J-N

Total number of particles M 100

Number of particles/PE K M N⁄

Number of timesteps T 20 (s)

Sampling period 𝑇𝑠 1 (s)

18 A. Namazi Nik. et.al: Particle Filter based Target Tracking in Wireless Sensor…

Fig 3. Histogram of position error in meters for both the centralized

(up) and our distributed (down) versions of the particle filter over

100 simulated trajectories.

Fig 4. The simulated (black) path for two simulations, and the

corresponding SVM-based DPF-estimated path (red); over T=20

time steps.

Figure 5 displays the amount of saving in the volume of

propagating information for updating particle weights, using

the proposed method, for 100 simulated paths. The

horizontal axis shows the simulation run and the vertical axis

shows the amount of propagating observations (in percent)

on the network compared to the case when SVM is not used.

The results show that using the proposed scheme,

only %51.9 of sensor observations are propagated on the

network, compared to the work done in [24], that leads to

saving energy consumption of sensors.

Fig 5. The amount of saving in the volume of propagating

information for updating particle weights, using our proposed

method, for 100 simulated paths.

Journal of Computer and Knowledge Engineering, Vol. 1, No. 2, 2018. 19

8. Conclusion

In this paper, we have described the implementation of a

distributed particle filter for target tracking in a wireless

sensor network. One of the main limitations of similar works

is the need to make all sensor observations available to every

processing node. To overcome this limitation, we have used

support vector machine to compress sensor observations.

Simulation results show that the difference in accuracy of the

proposed scheme and centralized particle filter and also

distributed particle filter are insignificant, whereas by

combining SVM with DPF we have reduced

communications among the nodes around %48. Since SVMs

only consider points near the margin (support vectors)

instead of whole data points, they are suitable for data

compression. SVMs can produce accurate and robust

classification results on a sound theoretical basis, even when

input data are non-monotone and non-linearly separable. The

biggest limitation of the support vector approach lies in

choice of the kernel function. In our work, we have used RBF

kernel in the training step since it has fewer numerical

difficulties and has better performance in nonlinear cases.

References

[1] E. Cayirci, H. Tezcan, Y. Dogan, and V. Coskun,

“Wireless sensor networks for underwater survelliance

systems”, Ad Hoc Networks, vol. 4, pp. 431-446, 2006.

[2] S. Santini, B. Ostermaier, and A. Vitaletti, “First

experiences using wireless sensor networks for noise

pollution monitoring”, presented at the Proceedings of

the workshop on Real-world wireless sensor networks,

Glasgow, Scotland, 2008.

[3] H.-W. Tsai, C.-P. Chu, and T.-S. Chen, “Mobile object

tracking in wireless sensor networks”, Computer

Communications, vol. 30, pp. 1811-1825, 6/8/ 2007.

[4] A. Ribeiro, G. B. Giannakis, and S. I. Roumeliotis,

“SOI-KF: Distributed Kalman Filtering With Low-

Cost Communications Using the Sign of Innovations”,

IEEE Transactions on Signal Processing, vol. 54, pp.

4782-4795, 2006.

[5] A. Dhital, P. Closas, and C. Fernández-Prades,

“Bayesian filtering for indoor localization and tracking

in wireless sensor networks”, EURASIP Journal on

Wireless Communications and Networking, vol. 2012,

pp. 1-13, 2012.

[6] M. S. Arulampalam, S. Maskell, N. Gordon, and T.

Clapp, “A tutorial on particle filters for online

nonlinear/non-Gaussian Bayesian tracking”, IEEE

Transactions on Signal Processing, vol. 50, pp. 174-

188, 2002.

[7] P. M. Djuric, M. Vemula, and M. F. Bugallo, “Target

Tracking by Particle Filtering in Binary Sensor

Networks”, IEEE Transactions on Signal Processing,

vol. 56, pp. 2229-2238, 2008.

[8] Y. Huang, W. Liang, H.-b. Yu, and Y. Xiao, “Target

tracking based on a distributed particle filter in

underwater sensor networks”, Wireless

Communications and Mobile Computing, vol. 8, pp.

1023-1033, 2008.

[9] S. Sarkka, “Bayesian Filtering and Smoothing”,

Cambridge University Press, 2013.

[10] H. Q. Liu, H. C. So, F. K. W. Chan, and K. W. K. Lui,

“Distributed particle filter for target tracking in sensor

networks”, Progress In Electromagnetics Research C,

vol. 11, pp. 171-182, 2009.

[11] K. Achutegui, L. Martino, J. Rodas, C. J. Escudero, and

J. Miguez, “A multi-model particle filtering algorithm

for indoor tracking of mobile terminals using RSS

data”, in Control Applications, (CCA) & Intelligent

Control, (ISIC), 2009 IEEE, 2009, pp. 1702-1707.

[12] O. Hlinka, F. Hlawatsch, and P. M. Djuric, “Distributed

particle filtering in agent networks: A survey,

classification, and comparison”, IEEE Signal

Processing Magazine, vol. 30, pp. 61-81, 2013.

[13] A. Oracevic and S. Ozdemir, “A survey of secure target

tracking algorithms for wireless sensor networks”, in

Proceedings of the World Congress on Computer

Applications and Information Systems (WCCAIS ’14),

pp. 1–6, IEEE, Hammamet, Tunisia, January 2014.

[14] O. Demigha, W.-K. Hidouci, and T. Ahmed, “On

energy efficiency in collaborative target tracking in

wireless sensor network: a review”, IEEE

Communications Surveys and Tutorials, vol. 15, no. 3,

pp. 1210–1222, 2013.

[15] A. Ez-Zaidi, S. Rakrak, “A Comparative Study of

Target Tracking Approaches in Wireless Sensor

Networks”, Journal of Sensors, vol. 2016, p. 11, 2016.

[16] M. W. Khan, N. Salman, A. Ali, A. M. Khan, and A. H.

Kemp, “A comparative study of target tracking with

Kalman filter, extended Kalman filter and particle filter

using received signal strength measurements”, in

Emerging Technologies (ICET), 2015 International

Conference on. IEEE, 2015.

[17] B. Jiang, B. Ravindran, “Completely Distributed

Particle Filters for Target Tracking in Sensor

Networks”, IEEE International Parallel & Distributed

Processing Symposium (IPDPS), pp. 334-344, 2011.

[18] O. Hlinka, O. Sluciak, F. Hlawatsch, P. Djuric, M.

Rupp, “Distributed Gaussian particle filtering using

likelihood consensus”, in: International Conference on

Acoustics, Speech and Signal Processing, pp. 3756–

3759, May 2011.

[19] O. Hlinka, F. Hlawatsch, P. Djuric, “Distributed

particle filtering in agent networks”, IEEE Signal

Process. Mag. pp. 61-81 (January) (2013).

[20] Claudio J. Bordin, Marcelo G. S. Bruno, “Cooperative

bling equalization of frequency-selective channels in

sensor networks using decentralized particle filtering”,

in: 42nd Asilomar Conference on Signals, Systems and

Computers, pp. 1198–1201, October 2008.

[21] Mark Coates, “Distributed particle filters for sensor

networks”, in: The International Conference on

Information Processing in Sensor Networks, (IPSN),

20 A. Namazi Nik. et.al: Particle Filter based Target Tracking in Wireless Sensor…

pp. 99–107, April 2004.

[22] O. Hlinka, P. Djuric, F. Hlawatsch, "Consensus-based

distributed Particle Filtering with distributed proposal

adaptation", IEEE Trans. Signal Process., vol 62, pp.

3029–3041, 2014.

[23] T. Ghirmai, "Distributed Particle Filter for Target

Tracking: With Reduced Sensor Communications",

Sensors, 16, 1454, 2016.

[24] J. Read, K. Achutegui, and J. Míguez, “A distributed

particle filter for nonlinear tracking in wireless sensor

networks”, Signal Processing, vol. 98, pp. 121-134,

2014.

[25] A. Doucet, N. d. Freitas, and N. Gordon, “Sequential

Monte Carlo Methods in Practice” Springer, 2001.

[26] B. Ristic, S. Arulampalam, and N. Gordon, “Beyond

the Kalman Filter: Particle Filters for Tracking

Applications”, Artech House, 2004.

[27] R. E. Kalman, “A New Approach to Linear Filtering

and Prediction Problems”, Journal of Basic

Engineering, vol. 82, pp. 35-45, 1960.

[28] A. Bain and D. Crisan, “Fundamentals of Stochastic

Filtering”, Springer, 2009.

[29] O. Cappe, S. J. Godsill, and E. Moulines, “An

Overview of Existing Methods and Recent Advances in

Sequential Monte Carlo”, Proceedings of the IEEE,

vol. 95, pp. 899-924, 2007.

[30] Djuric, x, P. M., J. H. Kotecha, Z. Jianqui, H. Yufei, et

al., “Particle filtering”, IEEE Signal Processing

Magazine, vol. 20, pp. 19-38, 2003.

[31] L. Tiancheng, M. Bolic, and P. M. Djuric, “Resampling

Methods for Particle Filtering: Classification,

implementation, and strategies”, IEEE Signal

Processing Magazine, vol. 32, pp. 70-86, 2015.

[32] M. Bolic, P. M. Djuric, and H. Sangjin, “Resampling

algorithms and architectures for distributed particle

filters”, IEEE Transactions on Signal Processing, vol.

53, pp. 2442-2450, 2005.

[33] J. Míguez, “Analysis of parallelizable resampling

algorithms for particle filtering”, Signal Processing,

vol. 87, pp. 3155-3174, 2007.

[34] C. C. Burges, “A Tutorial on Support Vector Machines

for Pattern Recognition”, Data Mining and Knowledge

Discovery, vol. 2, pp. 121-167, 1998/06/01 1998.

[35] https://www.csie.ntu.edu.tw/~cjlin/libsvm.

[36] C.-c. Chang and C.-J. Lin, “LIBSVM: a library for

support vector machines”, ACM Transactions on

Intelligent Systems and Technology, vol. 2, 2011.

[37] C.-w. Hsu, C.-c. Chang, and C.-j. Lin, “A practical

guide to support vector classification”, 2010.

