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Abstract: The goal of many tasks in the realm of sequence 

processing is to map a sequence of input data to a sequence 

of output labels. Long short-term memory (LSTM), a type of 

recurrent neural network (RNN), equipped with 

connectionist temporal classification (CTC) has been proved 

to be one of the most suitable tools for such tasks. With the 

aid of CTC, the existence of per-frame labeled sequences are 

no longer necessary and it suffices to only knowing the 

sequence of labels. However, in CTC, only a single state is 

assigned to each label and consequently, LSTM would not 

learn the intra-label relationships. In this paper, we propose 

to remedy this weakness by increasing the number of states 

assigned to each label and actively modeling such intra-label 

transitions. On the other hand, the output of a CTC network 

usually corresponds to the set of all possible labels along 

with a blank. One of the uses of blank is in the recognition 

of multiple consecutive identical labels. Assigning more than 

one state to each label, we can also decode consecutive 

identical labels without resorting to the blank. We 

investigated the effect of increasing the number of sub-labels 

with/without blank on the recognition rate of the system. We 

performed experiments on two printed and handwritten 

Arabic datasets. Our experiments showed that while on 

simple tasks a model without blank may converge faster, on 

real-world complex datasets use of blank significantly 

improves the results. 
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1. Introduction 

Labeling unsegmented sequences is one of the most 

significant and common problems in the field of artificial 

intelligence. Handwriting, speech and gesture recognition are 

examples of this problem. Some solutions to this problem 

have been given by probabilistic graphical models like 

Hidden Markov Model (HMM). However, HMMs are 

generative models whereas labeling a sequence is a 

dicriminative task.  

On the other hand, RNNs can be trained discriminatively 

and have a strong structure which learns the data and time 

dependencies. However, RNNs need pre-segmented data for 

training. A traditional solution has been to combine HMMs 

with RNNs.  As we mentioned above, HMMs are generative 

models and they are not the best choice for a discriminative 

task like sequence labeling. Another solution is CTC which is 
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a newer framework than HMMs. We can consider the output 

of RNN as a probability distribution on all the possible label 

sequences and then we get an objective function to maximize 

the true labeling probability [1].  

One of the main issues confronted by RNNs is the 

vanishing/exploding gradient problem[2,3]. LSTM [4,5] was 

designed to solve this problem. Moreover, Bidirectional 

LSTM (BLSTM) [6,7] and Multidimensional LSTM 

(MDLSTM) [8] are two other generalizations of LSTM and 

are proposed to learn bidirectional and multidimensional 

contexts, respectively. Since LSTM is a kind of RNN, it is 

possible to combine CTC with LSTM [1, 8-15].  

Woellmer [10,16] proposed to combine Dynamic Bayesian 

Network (DBNs) and CTC to learn more complex relations 

like finding keywords in speech or text. In addition, there are 

some generalizations for CTC like Extended CTC (ECTC) 

[15] which consider a consistency to evaluate frame-to-frame 

visual similarities in CTC. Another generalization is 

Hierarchical CTC (HCTC) [17] which is composed of several 

layers of CTC in which each layer has a special task to learn 

a specific context of a sequence. In addition to RNNs, CTC 

can be combined with graphical models like Latent-Dynamic 

Conditional Random Field [18]. 

One problem with CTC is that it leaves the task of learning 

the dynamics within each label to the underneath RNN. In this 

paper (This paper is the extension of our previous paper  [19] 

A. S. Lotfabadi, K. Ghiasi-Shirazi, and A. Harati, "Modeling 

intra-label dynamics in connectionist temporal 

classification," in 2017 7th International Conference on 

Computer and Knowledge Engineering (ICCKE), 2017, pp. 

367-371.), we propose to model each label as a sequence of 

hidden internal labels and show how these internal labels can 

be learned. We postulate that by splitting each label to several 

hidden sub-labels, the task of the underneath RNN will 

become simpler and the overall accuracy increases. The 

output of the underneath network consists of all possible 

labels plus blank. The blank plays two roles in the network. 

Firstly, it allows recognition of consecutive identical labels 

and secondly, it frees the network from predicting the label of 

a sub-sequence until it has gathered enough evidence. 

Nevertheless, we will show that by considering several states 

for each label, the network can recognize contingent identical 

labels without using blank. 

The organization of the paper is as follows: Section 2 

introduces CTC, its mathematical formulation and its training 

algorithm. In section 3, we introduce the Multi-state CTC  

(M-CTC) in which we propose splitting each label into 
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multiple states/sub-labels. In section 4, we investigate the role 

of blank in standard CTC and the proposed M-CTC. In 

section 5 we report our experiments on M-CTC with/without 

blank. We conclude the paper in Section 6. 

 

 

2. Connectionist Temporal Classification (CTC) 

CTC was proposed in 2006 by A. Graves [1]  to train RNNs 

on unsegmented sequences. Prior to CTC, training RNNs on 

sequential data required the label to be specified for every 

frame of the input sequence. CTC revolutionized this process 

by making training possible when only a label sequence was 

given for the whole input sequence, without knowing the 

alignment between input and label sequences [20]. 

Assume that the number of outputs in the underneath RNN 

for each frame is equal to the number of labels plus one (for 

blank, or no label). A softmax layer normalizes these outputs 

before the last hidden layer sends them to CTC:  
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the normalized output. To obtain the probability of path (
), we use equation (2): 

(2) 
1 1

( | ) ( | )
t

T T
t

t

t t

p p y  
= =

= = x x  

Paths are mapped to a label sequence by function F. This 

function removes the same consecutive labels and blank. For 

example, ( ) ( )F a ab F aa abb aab− − = − − − = in which − 

means blank. Therefore, the probability of a special labeling 

like l is the sum of the probabilities of all paths which are 

mapped by F to l as shown in (3): 
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The number of related paths to a specific labeling grows 

exponentially with respect to the length of the input sequence. 

However, it can be solved by dynamic programming and the 

algorithm is similar to the forward-backward in HMM [1]. 

Fig. 1 illustrates the CTC structure for all paths which map to 

the labeling ‘SUN’. 

Loss function L(S) in CTC is the negative log probability 

of correctly labeling of all the training examples.  
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The derivation of the loss function with respect to the 

networks parameters is done by using the backpropagation 

through time algorithm. So, it is possible to train the network 

by any gradient-based nonlinear optimization algorithm [20].  
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Fig. 1. CTC structure for ‘SUN’. Black and white units show blank 

and labels, respectively. The allowed paths which lead to ‘SUN’ 

labeling are determined by arrows. 

 
3. Multi-state CTC (M-CTC) 

Learning temporal context plays an important role in 

sequence labeling. So, the network should be able to 

maximally learn relations between frames. As we mentioned 

earlier, RNNs have the vanishing/explosion gradient 

problem. Therefore, we use LSTM which solves this 

problem. In most sequences the relations between frames are 

bidirectional. It means that future information is as important 

as past information. Thus, it is better to use networks which 

use both past and future information. Accordingly, we choose 

MDLSTM [8] which is a generalization of LSTM since 

MDLSTM can learn long-range dependencies in all spatio-

temporal dimensions. 

As we noted before, CTC was proposed to help RNNs 

(which is MDLSTM in our case) in training with 

unsegmented data. Considering Fig. 1, it is supposed that the 

MDLSTM determines the probability of each label at time t 

and the labels are given in the exact order from the left side 

which in this example are English alphabets. CTC considers 

1 state for each label. So, the error is calculated by the CTC 

for each label at time t. Therefore, MDLSTM just learns the 

extrinsic dynamics between the labels. However, if we 

consider n state for each label in the CTC, the network not 

only learns extrinsic dynamics between the labels, but also 

learns intrinsic dynamics of labels and the relations of internal 

components of each label (which from now on we refer to as 

sub-labels). This increase in the number of states leads to 

better and more detailed learning of MDLSTM. An example 

of considering 2 states for each label class is illustrated in  

Fig. 2. 

However, an equal number of sub-labels for each label may 

not be the best choice. It is better to determine the number of 

sub-labels according to the data length of that label the class. 

It means that a long data needs more sub-labels than a short 

data. Fig. 3 provides more details about this idea which 

illustrates 3 handwriting words from the IFN/ENIT [21] 

dataset. In this example, the number of sub-labels is 

determined based on average label length. By the above 

explanation, the number of sub-labels for letters ‘ث’, ‘ ار ’, ‘ ایی ’ 

and ‘ ام ’ are 5, 4, 2 and 5, respectively. 
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Fig. 2. CTC structure after considering 2 state for each label class 

 

 
 

 

 

Fig. 3. Determining number of sub-labels according to label length. 

The gaps between vertical lines correspond to the frames. 

 

 

4. Role of Blank 

The output of the network beneath CTC consists of all 

possible labels plus the blank. Blank plays two roles in the 

network. Firstly, it prevents deletion of identical consecutive 

labels. For example, without blank CTC would recognize the 

word ‘accuracy’ as ‘acuracy’, recognizing the two 

consecutive letters ‘c’ as one. Secondly, blank frees the 

network from the oblige of predicting a label at each frame. 

For example, in the task of speech recognition, silences and 

short pauses between the utterance of phonemes can be 

recognized as blank (see page 64 of [20]). In the following, 

we will investigate the role of the blank when one models 

each label by multiple states in CTC. 

According to Eq. (3), the probability of a labeling for the 

whole sequence is obtained by summing up the probabilities  

of all paths leading to that labeling. A path is an assignment 

of labels (possibly blank) to each frame. We define the 

function F from paths to sequences of labels as a mapping that 

removes blanks and repetitive labels. For example, paths ‘oo-

f-fff’, ‘--off-f---’, and ‘---o-ff--fffff-’ are mapped to the 

sequence label ‘off’. Please note that in these examples, 

frames which are labeled ‘f’ form two groups which are 

separated by one or multiple blanks. Having only a single 

group of labels ‘f’, the path would have been mapped to the 

label sequence ‘of’. In fact, one of the reasons for 

provisioning the blank in CTC was to avoid misrecognition 

of words with consecutive repetitive words. Fig. 4 shows the 

structure of a CTC for recognizing the word ‘off’. As it can 

be seen, there is no link between the two instances of label ‘f’ 

and all paths should pass through the intermediate blank label. 
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Fig. 4. CTC structure for ‘off’. There is no link between the two 

instances of label ‘f’ and all paths should pass through the 

intermediate blank label. 

 
In Fig. 4, which exemplifies the structure of standard CTC, 

each label is modeled by exactly one state (shown as nodes in 

the Figure). In this paper, we propose to model each label with 

several states/sub-labels. Having multiple states for each label 

automatically guarantees that consecutive labels would be 

correctly recognized, eliminating one of the reasons behind 

considering the special label blank. Assume that we have 

modeled each label with two states and have eliminated blank 

from CTC, arriving at the CTC structure is shown in Fig. 5. 

Now, to map a sequence of frames to a label, it is necessary 

to see both of its sub-labels in order, which guarantees correct 

recognition of consecutive repetitive labels. For example, 

paths ‘o1o1o2f1f2f2f2f1f2’ and ‘o1o1o2f1f1f2f1f2f2’ both yield the 

sequence label ‘o1o2f1f2f1f2’. Modeling each label with 

multiple sub-labels eliminated the first reason for the 

existence of the blank. But, what about the second reason 

which was to free the network from predicting a (non-blank) 

label at each frame? In the following, we perform 

experiments with/without blank to answer this question. 

 



50 A. Sadeghi Lotfabadi et al: Modeling Intra-label Dynamics and Analyzing… 

 

o1

f1

1 2 3 T-2 T-1 T

o2

f2

f1

f2

 
Fig. 5. CTC structure for ‘off’ by considering 2 state for each label 

and removing blank. 

 

5. Experiments and Results 

In this section, we explain the experiments used to evaluate 

the performance of the proposed method. The goal of these 

experiments is to investigate the role of the number of sub-

labels and inclusion/exclusion of blank in the recognition 

accuracy. To evaluate the standard CTC, we use RNNLIB 

[22] which has been developed by inventors of CTC 

themselves. The neural network at the bottom of CTC 

consists of three hidden layers each one having four parallel 

LSTM layers. Each LSTM layer consists of several LSTM 

cells, the number of which is identified by “Hidden Size” in 

the tables of our experiments. The input data of each hidden 

layer is obtained by moving a window on the output neurons 

of the preceding layer in four directions. The sizes of these 

windows are designated by “Input Block” and “Hidden 

Block” in input and hidden layers, respectively. We also use 

some subsampling hidden layers whose sizes are identified by 

“Subsampling Size”. In all cases, we use the gradient descent 

training algorithm. 

 

5-1. Printed Digits Dataset 

To evaluate the proposed method in the task of discovering 

the true sub-labels of each label, we generated an artificial 

dataset in which each label actually encompasses two sub-

labels. In this dataset, we have 10 different labels 

corresponding to digit sequences ‘01’, ‘03’, ‘11’, ‘12’, ‘21’, 

‘31’, ‘33’, ‘41’, ‘43’, and ‘52’, each label being made from 

two digits. The dataset contains 1000 samples of sequences 

of 3 labels (6 digits). Fig. 6 shows a sample image from this 

dataset. We use 800 samples for training, 100 for validation, 

and the remaining 100 for testing.  

 

Labels: "31" "52" "11"

Data:

 
Fig. 6. An example of printed digits dataset with true labels. 

 

    We performed 7 different experiments on this dataset. 

The parameters of four of these experiments which were 

performed with blank are shown in Table 1 and are titled from 

A to D. There are three other experiments which are identical 

to the experiments B, C, and D, except that now the blank is 

removed. The reason that experiment A has no counterpart 

with blank removed is that in experiment A the number of 

sub-labels is equal to one and, according to the explanations 

of Section 4, the blank is essential to the recognition of 

consecutive repetitive labels. The number of states for each 

label in the experiments B, C, and D was chosen as 2, 4, and 

10 respectively. The other fact important to note is the 

difference between the values of “Input Block” and “Hidden 

Block” in experiment D. The reason behind this difference is 

that since the number of sub-labels is very high, the length of 

the input data to CTC should be long enough to visit all the 

sub-labels. Therefore, the length of the input data to CTC in 

experiment D should be slightly more than that of the other 

three experiments. In fact, we believe that one of the reasons 

that in our experiments M-CTC has been shown to be superior 

to CTC, in contrast to the experiments reported in [23], is the 

adjustment of these parameters. 

 
Table 1. Parameters For Printed Digits Experiments 

 

D C B A Experiment 

2, 10, 50 2, 10, 50 2, 10, 50 2, 10, 50 
Hidden 

Size 

6, 20 6, 20 6, 20 6, 20 
Subsample 

Size 

2x4, 2x4 3x4, 2x4 3x4, 2x4 3x4, 2x4 
Hidden 

Block 

2x4 3x4 3x4 3x4 
Input 

Block 

1e-4 1e-4 1e-4 1e-4 Learn Rate 

0.9 0.9 0.9 0.9 momentum 

Steepest 

ascent 

Steepest 

ascent 

Steepest 

ascent 

Steepest 

ascent 
optimizer 

10 4 2 1 
Number of 

Sub-labels 

 
Because of the simplicity of this dataset, in all experiments, 

the accuracy of 100% was obtained. For this reason, we 

compare method based on their speed at reaching a solution. 

Explicitly, we compare the error of different methods at the 

end of a certain epoch. Table 2 illustrates the results of our 

experiments. This Table has been filled based on the error 

obtained at epoch 25. As stated previously, experiment A has 

no “without-blank” counterpart. The experiments show that 

increasing the number of sub-labels has decreased the error, 

obtaining the best results in the experiment D. The other 

important observation is the effect of removing blank. The 

results show that the accuracy of experiments without blank 

is superior to those with a blank. This shows that in this 

simple example (in which data for each label are artificially 

generated by concatenating data of two sub-labels), not only 

the blank label does not improve the results, but it also has 

increased the time of getting error zero. An example of the 

output of a model with 4 sub-labels and without blank is 

shown in Fig. 7. In this Figure, two consecutive instances of 

label ‘52’ are recognized without any problem. 
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Fig. 7. MDLSTM output for a data from printed digits. In this model blank is removed and each label has 4 sub-labels. Each square 

shows a frame and includes the labels and sub-labels.  

 

 

Table 2. Results For Printed Digits 

 

Experiment 

With blank Without blank 

CTC Error Label Error % CTC Error Label Error % 

Train Val Test Train Val Test Train Val Test Train Val Test 

A 7.52 7.60 7.67 87.63 88.94 87.90 - - - - - - 

B 12.15 11.75 11.79 74.57 73.72 72.65 0.29 0.30 0.31 1.79 2.12 1.68 

C 1.00 0.84 0.82 0.28 0.22 0.13 0.33 0.36 0.35 0.06 0.05 0.05 

D 0.19 0.19 0.19 0.00 0.00 0.00 0.21 0.21 0.20 0.00 0.00 0.00 

 

5-2. IFN/ENIT Dataset 

This dataset consists of 32249 samples from the handwritten 

images of 937 towns in Tunisia. Each sample in this dataset 

has a label sequence, each label being chosen from 120 

possible choices of letters of alphabet, digits, and punctuation 

signs. This dataset has five segments named ‘a’ to ‘e’. We 

perform our experiments on segment ‘a’. We first randomly 

select a subset of segment ‘a’ consisting of 1000 samples and 

perform our experiments on this subset. Then we repeat the 

experiments on the whole segment ‘a’. Some samples of data 

is shown in Fig. 8. 

 

 
 

Fig. 8. Some sample handwritten words from the INF/ENIT 

dataset. 

 

We perform four experiments on the 1000-sample data and 

the whole samples of segment ‘a’. Details of the three 

experiments A, B, and C (in which the blank label is present) 

are shown in Table 3. The first three experiments are named 

A, B, and C and the fourth experiment is similar to B with the 

difference that the blank label is removed. The reason that 

experiments A and C are not repeated without blank is that in 

these experiments some of the labels have only one state in 

CTC. In experiment C, the number of sub-labels ranges 

between 1 and 3 in proportion to the average length of data of 

that label. The values of “Input Block” and “Hidden Block” 

differ between the three experiments and is chosen in a way 

that ensures that there are enough data for all sub-labels of the 

input data. This dataset is much harder than the printed digits 

dataset and so the number of cells in LSTM, i.e. the value of  

“Hidden Size”, is chosen in a way that gives the best results 

for each experiment. Since by increasing the number of sub-

labels the network should learn more details about data, the 

number of LSTM cells should increase accordingly. In all 

experiments, we use the “early stopping” method to avoid 

overfitting. If the error rate on validation set does not decrease 

for 40 consecutive epochs, we stop training and return the 

network with the lowest validation error. 

 
Table 3. Parameters For IFN/ENIT Experiments 

 

C B A Experiment 

4, 15, 64 4, 20, 80 2, 10, 50 Hidden Size 

6, 20 6, 20 6, 20 Subsample Size 

2x3, 1x3 2x4, 2x4 3x4, 2x4 Hidden Block 

3x3 2x4 3x4 Input Block 

1e-4 1e-4 1e-4 Learn Rate 

0.9 0.9 0.9 momentum 

Steepest 

Descent 

Steepest 

Descent 

Steepest 

Descent 
optimizer 

1 or 2 or 

3 
2 1 Number of Sub labels 

 

5-2-1. 1000 samples subset of IFN/ENIT Dataset 

The 1000 samples of this dataset have been chosen randomly 

from segment ‘a’ of the IFN/ENIT dataset. We use 800 

samples for training, 100 for validation, and 100 for testing. 

The results of the experiments on this dataset are shown in 

Table 4. By comparing experiments A and B one can observe 

that increasing the number of sub-labels from one to two has 

increased recognition accuracy. In addition, by comparing 

experiments B and C one can see that the appropriate choice 

of the number of sub-labels has improved the results. Now, 
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we investigate the role of the blank label by considering 

experiment B with and without blank. It can be seen that the 

results obtained with blank are much higher than those 

obtained without it. Another important observation is that 

without blank, the training error is much higher (in addition 

to the test error). This shows that removal of blank leads to a 

learning machine with much lower capacity (possibly due to 

optimization issues). Therefore, we designed another 

experiment in which we removed the stopping condition and 

allowed the network to obtain a much lower error on the 

training set. However, the results obtained by this method did 

not differ considerably from those obtained by early stopping.

  

5-2-2 Segment ‘a’ of the IFN/ENIT Dataset 

Segment ‘a’ of the IFN/ENIT dataset consists of 6537 

samples from which 5702 are used for training, 426 for 

validation, and 409 for testing. The results are given in Table 

5. By comparing this Table with Table 4, we see that by 

increasing the number of training samples the model is much 

better optimized and much higher accuracy results have been 

obtained over the validation and test sets. In addition, similar 

to the previous experiments, we have obtained better results 

in experiment B in comparison with experiment A, because 

of using two sub-labels for each label. We have achieved the 

best results in experiment C in which the number of sub-

labels is chosen in proportion to the average length of each 

label. By comparing experiment B in the two cases with and 

without blank we see that the results with blank are much 

better than those without blank. This shows that the use of 

blank in datasets with complex data leads to improved 

recognition accuracy. 

 

5-3. Analyzing the effect of blank 

In the previous sections, we reported the results of our 

experiments on the printed digits and IFN/ENIT datasets. The 

first dataset was very simple as every sample contained three 

labels with equal lengths and widths. We observed that the 

use of blank deteriorated the speed of obtaining a solution. In 

contrast, in experiments that did not use blank, much better 

results had been obtained in early epochs. Because of the 

simplicity of this dataset, all experiments ended with 100% 

accuracy. However, the IFN/ENIT dataset was much more 

complex: having labels with different average lengths, and 12 

times more labels. For example, Fig. 3 shows different styles 

of letters which differ in length and writing style. Because of 

this complexity, the network should have a flexible structure 

which can learn all states of each label. The results showed 

that the use of blank has a huge effect on improving the 

recognition accuracy. It can be deduced that even when the 

number of states is more than one, use of blank improved the 

recognition results on real-world datasets. After doing this 

work, we found that similar observations have been done in 

[23], confirming the superiority of RNN-CTC models using 

blank over those that do not. In contrast to the results reported 

in [23], we found that the combination of increasing the 

number of states per label and using blank gives the best 

results. This difference in observations may be due to the fact 

that we have modified the structure of the beneath neural 

network appropriately to cope with the increase in the number 

of states in M-CTC. 

 

 

 

 
Table 4. Results For 1000 Data From IFN/ENIT 

 

Experiment 

With blank Without blank 

CTC Error Label Error % CTC Error Label Error % 

Train Val Test Train Val Test Train Val Test Train Val Test 

A 0.53 17.45 11.93 0.22 40.22 41.35 - - - - - - 

B 0.57 28.27 19.56 0.03 33.77 33.30 76.69 95.60 83.88 68.71 76.26 81.75 

C 0.96 25.89 18.85 0.51 31.64 30.25 - - - - - - 

 

 

 

 

Table 5. Results For set ‘a’ of IFN/ENIT 

 

Experiment 

With blank Without blank 

CTC Error Label Error % CTC Error Label Error % 

Train Val Test Train Val Test Train Val Test Train Val Test 

A 0.41 6.69 5.46 0.49 19.45 17.98 - - - - - - 

B 0.33 9.43 8.18 0.07 13.28 12.85 25.33 36.99 37.73 29.13 46.24 46.28 

C 0.32 8.36 7.53 0.15 12.66 10.86 - - - - - - 
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6. Conclusions and future works 

In this paper, we extended CTC to model and learn intra-label 

relations. We achieved this goal by increasing the number of 

states in CTC for each label. In other words, we considered 

several states/sub-labels for each label. Experimental results 

showed that the proposed extension improves the recognition 

accuracy. In addition, we studied the role of blank. We 

showed that by increasing the number of states, models 

without blank can learn repetitive consecutive labels. Our 

experiments showed that while on simple tasks a model 

without blank may converge faster, on real-world complex 

datasets use of blank significantly improves the results. 

Although we restrict the model to see the sub-labels in true 

order during training, there is not a similar obligation during 

test time. In other words, it is possible during test time that 

the model predict the second sub-label without seeing the first 

sub-label. In future, we want to analyze the impact of this 

discrepancy at training and testing time on the recognition 

accuracy.  
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