
Journal of Computer and Knowledge Engineering, Vol. 1, No. 1
DOI: 10.22067/cke.v1i2.58792

Safety Verification of Rate-Monotonic Least-Splitting
Real-Time Scheduler on Multiprocessor System

Amin Rezaeian, Abolfazl Ghavidel, Yasser Sedaghat

Abstract. In real-time task scheduling on multiprocessor
systems, partitioning approach has received the attention of
many researchers because of its higher least upper bound
utilization of safe systems. Semi-partitioning allows some
tasks to be split into subtasks and each subtask to be
assigned to a different processor. Though task splitting
improves the performance of systems, by counting each
subtask as a separate task, it increases the effective number
of tasks to be scheduled, which in turn, raises the execution
overhead. This research is on semi-partitioning of tasks and
assigning each partition to a separate processor to be
scheduled by the well-known scheduler Rate-Monotonic
(RM). Using our algorithm, we do not need to define
release time for subtasks of a task to assure their non-
concurrent execution and the number of effective tasks, in
turn, is reduced. It is theoretically proven that with the
proposed semi-partitioning and RM scheduling algorithm,
all processors may safely run their tasks according to their
deadlines. Further, experimental results on 3000 randomly
generated task-sets indicates that not only is utilization
factor boosted, but the number of broken tasks also is
decreased.

keywords: Rate-Monotonic Least Splitting, Semi-
Partitioning, Hard real-time, Multiprocessor Scheduling.

1. Introduction

Recently, the importance of utilizing embedded
multicore and multiprocessor system-on-a-chip (MPSoC)
has begun to appear as a sensible solution for both power
efficiency and high-performance computing in diverse
application areas including telecommunications,
multimedia systems, computer games, space systems, and
process control to name but a few. The importance of the
issue becomes more noteworthy when we know that
traditional computer-based control systems as well as high
technology systems, require high-performance computers
for their computations which are usually possible with
multiprocessor or multicore systems. A multiprocessor
system is composed of several processing elements, called
processors, in which all processors can do their processing
in parallel. If all processors have the same architecture with
one processor repeated design in the processor, the
architecture is called homogenous. They all share the same
main memory, but each can have their own private cache
memory. With this structure, a sequential computation

Manuscript received September 11, 2016; revised October 17,
2016; accepted November 29, 2016.
Amin Rezaeian, Abolfazl Ghavidel and Yasser Sedaghat,
Department of Computer Engineering, Ferdowsi University of
Mashhad, Mashhad, Iran.
The corresponding author's e-mail is: y_sedaghat@um.ac.ir

can be shared among many processors if not more than one
processor is executing the computation, simultaneously [1].
While manufacturers tend to use multiprocessors in new
devices, the development of software facilities which use
all available power of multiprocessors [2] is required. In
this context, scheduling algorithms play a prominent role in
safeness verification of hard real-time systems, i.e., making
sure that every request is executed before its deadline. The
problem becomes more challenging when there is more
than one processor involved so that
multiprocessor/multicore systems adds a new dimension to
the analysis: how to assign tasks or their requests for
different processors. Therefore, there are, overall, two key
issues which are still open in multiprocessor scheduling as
follows:
1. Task assignment to processors: Finding a target

processor to run every selected task;
2. Identifying tasks priority: Making an appropriate order of

priority to run tasks.
In this article, the problem of scheduling periodic hard

real-time task sets with implicit deadlines on
multiprocessors is investigated. What we mean by the
implicit deadline is that the deadline of a request is the
exact time when the next request arrives from the same
task. Many other researchers have studied the same
problem but new ideas have kept this practical area
dynamic, attractive, and improving.

From the perspective of task migration, task assignment
issue on a multiprocessor, generally, fall into two main
categories:
1. Global: These algorithms are employed where tasks are

allowed to migrate from one processor/core to another.
2. Partitioned: These algorithms are employed where tasks

are not allowed to migrate from one processor/core to
another.
Moreover, there is another important category which is

the hybrid of the above methods called semi-partitioned.
In global scheduling, there is only one queue (or pool) of

real-time requests and each processor takes its next
execution request from this queue. Regardless of its
advantages, in complex and large systems, the overheads of
employing a single global queue would become too
excessive. In partitioned approach, on the other hand, the
set of tasks are divided and each partition is assigned to a
separate processor. Finally, in semi-partitioned, some tasks
are solely assigned to one processor and some tasks are
shared among two or more processors, with the restriction
that not more than one processor can work on a request for
the shared task, simultaneously. Although the scheduler
may be different for each of the three categories of, in
almost all cases, the scheduler of all processors is
considered to be the same.

44 Sedaghat et. al.: Safety Verification of Rate-Monotonic Least-Splitting Real-Time …

While global scheduling techniques, depending on the
hardware architecture, potentially could have very high
overheads owing to the fact that the task migration from
one processor to another usually yields communication and
cache missing cost; however, in fully partitioned techniques
this does not occur. Nonetheless, non-migration techniques
often do not use all available processor capacity. Moreover,
it is a widely occurring situation where the total unused
capacity may be more than task utilization but no single
processor has enough capacity to schedule the task. To
solve those problems, a hybrid technique (called semi-
partitioned) is used which combines elements of global and
partitioned techniques.

It is usually the case that semi-partitioned scheduling
leads to a higher overall utilization of the whole system as
compared to either of partitioned and global scheduling, for
both fixed-priority and dynamic priority. Further,
partitioning is a time-consuming task which is
computationally equivalent to bin-packing problem that is
known to be an NP-hard problem [3]. On the positive side,
partitioning is done off-line. Therefore, for a small number
of tasks, the time utilized for partitioning is tolerable but,
for a large number of tasks efficient heuristics are used.
Although an optimal semi-partitioned method has not yet
been developed, many heuristic algorithms are presented by
researchers. A semi-partitioned approach binds a disjoint
set of whole tasks to each processor and allows the
remaining tasks to be executed on multiple processors
while all shared qualities are defined. In one of the
researches on semi-partitioned methods in which
Rate-Monotonic (RM) scheduler is used in each processor,
worst-case utilization is reported to be ln	ሺ2ሻ ൎ 0.693 [4].

In this article, a novel semi-partitioned scheduling
algorithm called Rate-Monotonic Least Splitting (RMLS) is
proposed for multiprocessors. The scheduler of each
processor is RM with provisions to avoid simultaneous
execution of a shared task by more than one processor.
Using this algorithm, we see that the number of split tasks
at most is equal to the number of used processors minus
one. However, the actual number of split tasks might even
be lower. Besides, no task is split into more than two
subtasks. Splitting into fewer numbers of tasks has two
benefits:
1. Effective number of tasks in the Liu and Leyland’s

bound is reduced: Ѳሺnሻ ൌ nሺ2
భ
౤ െ 1ሻ

2. It increases overall system utilization.
The remainder of this article is divided into seven

sections: We firstly present our system model and notations
in Section 2. In Section 3, related works are briefly
reviewed. Section 4, describes the proposed RMLS semi-
partitioned scheduling. Section 5, is the theoretical
foundations and safeness proof of the algorithm; in Section
6, the algorithm is simulated and results are documented,
and finally a summary and future work are presented in
Section 7.

2. System Model and Notations

We consider a system with m symmetric processors and
the main aim of this article is to schedule a bag-of-tasks
containing periodic hard real-time tasks with an implicit

deadline in such a system. A very important assumption is
that all tasks are synchronous. That is, the deadline of any
arbitrary task request is the exact time when the next
request of that task arrives. We have also further assumed
that all tasks are preemptive. From now on, in order to
avoid potential difficulty in naming, we simplify call it task
in this article.

The following notations are used throughout the article:
1. n: total number of tasks
2. n1: total number of tasks and subtasks
3. m: total number of available or processors
4. m1: total number of used processors
5. τi: i

th task
6. Ti: minimum time between any two consecutive requests

of task τi, i.e. minimum request interval of τi
7. Ci: worst case computation time needed by every request

of task τi. It is clear that Ci ≤ Ti
8. },...,,{ n21  : set of all tasks (bag-of-task)

9. }P,...,P,P{ m21 : set of all processors

10. u୧: the utilization of task τi which is equal to u୧ ൌ
େ౟
୘౟

11.)(U  : total utilization of task-set  and subtasks

To evaluate the performance of scheduling heuristics,
there are many theoretical factors such as utilization bound,
speedup factor and many others. In addition to those
factors, there are many articles which have used empirical
methods to show and compare the relative performance of
different algorithms. The most widely accepted are the
number of randomly generated task-sets. Many different
algorithms are now available to generate random task-sets
and evaluate performance, but they are almost similar to
one other in using parameters such as the number of total
processors, task-set utilization, the number of all tasks in
the task set, the distribution of task deadlines, the range of
task periods, and the distribution of every task utilization.
More details about the used performance evaluation
algorithm in the present article and the number of randomly
generated task-sets are provided in Section 6.

3. Related Works

Many studies have been conducted in the domain of
homogeneous multiprocessor and multicore systems since
the 1960s. Among those, semi-partitioned approaches,
which try to merge and employ the best attributes of global
and fully partitioned approaches, have a prominent role
because of solving the task allocation problem which is
analogous to the bin-packing problem. Anderson and Tovar
[5], in one of the first studies in this respect, proposed an
approach for scheduling hard real-time periodic tasks with
implicit deadlines called EKG. In this approach, the
parameter k has been used to control the splitting of tasks
into the light and heavy sets. This suggestion is to set k=2
which yields the utilization bound of 66% and, on average,
at most four preemptions per every task over the hyper
period; yet, k=m gives the utilization bound of 100% and
2k preemption for each task. In this context, many
researchers have proposed the semi-partitioned problem
with Earliest Deadline First (EDF) scheduling [6], [7]. The
best known worst-case utilization bound known using semi-
partitioned EDF scheduling on multicores is 65% for

Journal of Computer and Knowledge Engineering, Vol. 1, No. 1 45

Earliest Deadline Deferrable Portion (EDDP) algorithm [8].
EDDP distinguishes between heavy tasks (those whose
utilization are greater than 65%) and light tasks (other tasks
with utilization < 65%) in such a way that the algorithm
firstly assigns every heavy task to its own processor and
then light tasks are placed on the remaining processors.
They showed that 65% is a safe utilization bound for EDDP
provided tasks which are periodic with implicit deadlines.
Later, in 2009, they proposed EDF with Window-
constraint Migration (EDF-WM) which has less context
switching overhead [9].

On the other hand, relatively fewer algorithms are
proposed for fixed-priority algorithms [10]. Rate
Monotonic Deferrable Portion (RMDP) and Deadline
Monotonic with Priority Migration (DM-PM) fixed-priority
algorithms are proposed by Kato et al. [11, 12]. The worst-
case utilization bound of those algorithms is shown to be
50%. RMDP consists of two phases: task assigning and task
scheduling. The first phase is very simple: Sort all tasks in
ascending order of Ti. Then, assign tasks to processors and
if assigning a task causes the processor utilization bound to
exceed, split the task into two subtasks. Sub-task 1 is placed
on the current processor and sub-task 2 is assigned to the
next processor. Task scheduling phase utilizes RM
scheduler algorithm in every processor considering the fact
that the second portion of a ready task in a processor cannot
start to run until its first portion finishes execution.

PDMS_HPTS_DS is proposed by Lakshmanan et al. [2]
which achieves the utilization bound of at least 60%
providing tasks have an implicit deadline. It can,
nevertheless, increase up to 65% if tasks are assigned to
processors in order of decreasing utilization. Moreover, this
bound can be extended to 69.3% for light tasks, i.e., tasks
with utilizations less than 0.41. Guan et al. have proposed
two algorithms which they called SPA1 and SPA2 [4], [10].
SPA2 has a pre-assignment phase in which special heavy
tasks are first assigned to a separate processor. The
advantages of this method are that the number of split tasks
is m-1 and SPA2 reaches the worst-case utilization bound
of 0.693. This is equal to Liu and Leyland’s bound [13] for
single processor systems The disadvantage includes, the
worst-case bound in SPA2 is calculated using n which is
the cardinality of the whole task-set, and every processor’s
utilization must be less than or equal to that. For example,
although Liu and Leyland’s least upper bound utilization
for a two-task processor is approximately 0.83, but with
SPA2 its utilization should not exceed 0.693. With this
explanation, the claim that SPA2 has reached Liu and
Leyland’s utilization bound, does not seem to be entirely
correct.

For supplementary information on hard real-time task
scheduling algorithms and related issues, the reader is
invited to refer to [14].

4. Rate Monotonic Least Splitting

The basic idea of the semi-partitioned method, which is
being presented here, has been published in an in-progress
research workshop [15]. In that paper, the fundamental
theorem which shows the safeness of system was not
proven. In addition, none of the other theoretical results

provided by this article have appeared in that paper. Now, a
brief introduction of the method is given here and new
findings and performance evaluations follow. The method
is called Rate-Monotonic Least Splitting (RMLS) because it
is a semi-partitioned method in which at most m1-1 tasks
are split and at the same time, to the best of our knowledge,
the method of partitioning and task splitting presented here
is very simple, comprehensible and it is shown to be
efficient.

Our experiments show that the achieved processor
utilization is approximately 9.6% higher than the best-
known results for general real-time systems, i.e., no
restrictions on utilization of individual tasks, up to now.

Having taken all the above explanations into account, in
the following sub-section, we first propose our novel idea
to demonstrate how tasks are placed on processors. Then, in
the next sub-sections, we will have a fairly good discussion
on the computational complexity of the RMLS algorithm.

4.1. Task Assignment

The proposed assignment algorithm is precisely outlined
in Fig. 1 and we elaborate on it in the two super steps as
follows:
Step 1: Selection of single tasks and pairs of tasks to assign
each one to a separate processor (lines 4 to 25).
Step 2: Assignment of remaining tasks to remaining
processors (lines 28 to 47).

In the first step, tasks are sorted in descending order of
their utilizations and the result is saved as a sorted task-set.
A greedy approach is followed to find single tasks or pairs
of tasks which can be assigned to separate processors to
which other tasks will not be assigned to. To such
processors, no subtasks will be assigned. In this phase, two
pointers, i and j, are set to the beginning and the end of the
set, respectively. If  (3) ≤ ui + uj ≤ 1 then these two tasks
make a pair (lines 7 to 11) which is assigned to a separate
processor; otherwise, one of these tasks is removed from
the set (lines 18 to 22) and the process continues until the
two pointers pass each other. The removed task will be
scheduled in the second step. Step 1, continues by
recognizing heavy tasks, i.e., a task τl with ul ≥  (2), and
such task is assigned to a separate processor (lines 13 to
16.) No subtasks will be assigned to these processors.

To get the highest possible utilization, the scheduler of
each processor with two tasks is a modified version of RM
named Delayed Rate Monotonic (DRM) [16]. Suppose the
two tasks τi = (Ci, Ti) and τj = (Cj, Tj), are solely assigned to
processor pk which has no other tasks. The delay time of
each request of task τi, whose priority is higher than τj with
respect to RM, is taken to be equal to Ti-Ci while there is no
delay for requests of task τj. Here, you can consider that the
delay is similar to (but not exactly the same as) ready time.

If the ready time of a request by τi is Ti-Ci and the request
arrives at time t, then it would not be possible to start
executing this request until time t+Ti-Ci. On the other hand,
the delay of task τi is terminated at any time there is no
pending request from task τj, and it will not re-enter delay
state even if a new request arrives from τj. In addition, the
delay of any request from this task can also end when Ti-Ci

46 Sedaghat et. al.: Safety Verification of Rate-Monotonic Least-Splitting Real-Time …

time units have elapsed from the time that request is
generated.

This modification will guarantee that if the total
utilization of the two tasks τi and τj, assigned to a separate
processor is less than or equal to one, then the processor
will always run safely [17].

 Data: Task-set  //Includes Ti , Ci for each task i
 Result: Packing 
1 ←{}
2 k←0
3 ′←
4 Sort ′ in descending order of tasks’ utilization
5 i←1, j←length()
6 while i<j do
7 if (3)≤uத౟ᇲ ൅ uதౠᇲ≤1 then

8 k←k+1
9 Add Pk to 
10 Move τ୧

ᇱ and τ୨
ᇱ from  to Pk

11 i←i+1 ; j←j-1
12 else
13 if (2)≤uத౟ᇲ then

14 k←k+1
15 Add Pk to 
16 Move τ୧

ᇱ from  to Pk
17 else
18 if (3)≤uத౟ᇲ ൅ uதౠᇲ then

19 i←i+1
20 else
21 j←j-1
22 end
23 end
24 end
25 end
26 k←k+1
27 Add Pk to 
28 while ≠ do
29 τ୧←the task with the highest priority in 
30 if Uሺp୩ሻ ൌ Θሺ|p୩|ሻ then
31 k←k+1
32 Add Pk to 
33 end
34 if Uሺp୩ሻ ൅ u୧ ൑ Θሺ|p୩| ൅ 1ሻ then
35 Move τ୧ from  to Pk
36 else
37 if Uሺp୩ሻ ൏ Θሺ|p୩| ൅ 1ሻ then
38 Select τ୨ from  where

uதౠ ൅ Uሺp୩ሻ ൏ 								 				Θሺ|p୩| ൅ 2ሻ
39 Move τ୨ from  to Pk
40 Split τ୧ into τ୧ଵ and τ୧ଶ such that
41 uத౟భ ൌ Θሺ|p୩| ൅ 1ሻ െ Uሺp୩ሻ
42 Replace τ୧ in  by τ୧ଶ with uத౟మ ൌ

େౠమ

୘ౠିେౠభ

43 Move τ୧ଵ to Pk
44 k←k+1
45 Add Pk to 
46 end
47 end
48 end
49 m1←k //number of used processors

Fig. 1. The packing algorithm

The scheduler of all processors, except those which has

two tasks, is the traditional RM without any delay or ready
time for requests.

Step 1, serves two sole purposes: (1) It increases the
number of processors with higher utilization than those
processors which are assigned tasks in Step 2, and (2) It
increases the number of processors with no split task and

hence, it decreases the total number of tasks which will be
split in Step 2. Thus, by reducing the effective number of
tasks (the total number of tasks and subtasks) the intuition
is that there would be less number of tasks preemptions
during run time.

In Step 2, all unassigned tasks will be sorted in
decreasing order of RM priorities, i.e., the non-descending
order of their request interval lengths. An empty processor
is selected and then an unassigned task is selected from the
sorted list to assign to the selected empty processor. This
scenario will continue to repeat itself until the current task,
say task τi, will overload the processor (lines 29 to 35).
Then a search amongst the remaining unassigned tasks
must be done to find a task with maximum utilization
which can be assigned to this processor without
overloading it. If one is found, it will be assigned to the
processor. If this processor is not filled, task τi is then split
into two subtasks so that the first subtask is assigned to the
current processor and makes it full with respect to Liu and
Layland’s bound for the respective number of tasks and
subtasks in this processor (lines 37 to 44).

To clarify, suppose that the current processor is pk and
task τi is the task which is split into two subtasks τi1 and τi2

with execution times Ci1 and Ci2, respectively. The

utilization of τi1 is u୧ଵ ൌ 	
େ౟భ
୘౟

 for processor pk. A new

processor, pk+1, is picked up and the second part of task τi

which was split, i.e., τi2, is assigned to this processor.

Although the actual utilization of this subtask is
େ౟మ
୘౟

, its

effective utilization on processor pk+1 is taken to be:

1ii

2i
2i

CT

C
u


 (1)

The effective utilization of this subtask is greater than its

actual utilization, i.e.
େ౟మ

୘౟ିେ౟భ
൐ େ౟మ

୘౟
. Therefore, the difference

of these two values is what we have to sacrifice because
there may be some situations in which both processors that
share task τi want to execute this task but the only processor
that can run it at this time, is the processor whose index is
the lower. In Lemma 3, we will prove that, in the worst
case, the second part of a request from task τi will have a
time length of Ti-Ci1, not Ti, to be executed. As mentioned
earlier, this is due to the interference between the two
processors that share task τi.

For example, suppose tasks τ1= (1.1, 4), τ2= (3, 17), and
τ3= (3.2, 18) are completely assigned to processor p1 and
task τ4 = (6.55, 20) is broken into two subtasks τ4-1 = (2.55,
20) and τ4_2 = (4, 20) which are assigned to processors p1
and p2, respectively. Besides, tasks τ5 = (5, 25) and τ6 = (6,
30) are completely assigned to processor p2 and from task
τ7 = (7, 42) the subtask τ7_1 = (5.65, 42) is assigned to
processor p2. The rest of task τ7, i.e., τ7_2 = (1.35, 42) and
task τ8 = (47.4, 60) are assigned to processor p3. The total
utilization of these three processors are computed as follow:

Uଵ ൌ 	
1.1
4
൅
3
17

൅
3.2
18

൅
2.55
20

ൌ 0.7567.	

Uଶ ൌ 	
4

20 െ 2.55
൅

5
25

൅
6
30

൅	
5.65
42

ൌ 0.7637.	

Uଷ ൌ 	
ଵ.ଷହ

ସଶିହ.଺ହ
൅ ସ଻.ସ

଺଴
ൌ 0.8271

Journal of Computer and Knowledge Engineering, Vol. 1, No. 1 47

In RMLS algorithm outlined in Fig. 1, the process of
assigning tasks to the processors continues until all tasks
are assigned. If processors are exhausted but some
unassigned tasks still remained, the assignment is
unsuccessful; otherwise, it is successful.

Suppose the assignment is successful, RMLS splits at the
most m1-1 tasks, where m1 is the actual number of used
processors. There is no release time or delay time for the
tasks that are assigned in Step 2 and thus, the scheduler is
the traditional RM with a minor amendment. Obviously, it
is clear that only one processor can execute a sequential
task at any given time. In order to make sure this vital
condition is observed, whenever there is a conflict, the
processor with the lower index must have the precedence in
executing the shared request. That is, under RMLS, the
execution of that portion of the split task which is assigned
to the lower indexed processor is not affected by the
execution of that portion of the split task which is assigned
to the higher index processor. However, the execution of
that portion of the split task which is assigned to the higher
indexed processor may be delayed because the lower
indexed processor is running the split task. In other words,
the lower indexed processor can run its own portion of the
split task whenever it desires to, but the higher indexed
processor can only run its own portion if the lowered
indexed processor is not running its portion of the split task.

Using Equation (1) in computing the total utilization of
processor pk+1 will reduce the actual sum of the task
utilization on processor pk+1 to less than Liu & Layland’s
bound. However, this is an unavoidable cost that we have to
pay for all processors to run safely.

On the positive side, by using RMLS, there is no need to
restrict the sum of utilizations of all processors to be less
than or equal to θ(n1) (where n1 is the total number of tasks
and subtasks of the whole system after partitioning and
complete assignment). That is, the total utilization could be
more than 69.3% and the system is still in a safe state for
any arbitrary number of processors (e.g. for a large number
of processors).

4.2. Computational Complexity

To calculate computational complexity, we divide the
scheduler into three steps. The task-set is sorted in the first
step; thus, for a task-set of size n, the computational
complexity of the first step would be O(nlog n). In the
second step, a search for large tasks and pairs of tasks is
done. This step is preceded by a loop. This loop continues
until i and j variables, which respectively started from the
beginning and the end of the tasks list, become equal. Since
at least one of those variables is changed during each
iteration, this loop iterates at most n times. Thus time
complexity of the second step is to O(n). The third step
assigns the remaining tasks (at most n tasks) to processors.
This step contains a loop, which iterates one time for each
task (either it is split or not). However, before every task
splitting, a search must be conducted among unscheduled
tasks. This search might find a small task to put in the
current processor. As this procedure is done for every
processor, the total time complexity of the third step would
be O(mn), in which m is the number of processors used.

The total time complexity of the scheduling algorithm
can be calculated by sum of complexities of steps 1 to 3,
which is
O(max(n log n, mn)).

5. Safeness Verification of RMLS

The great advantage of RMLS is that Liu & Layland’s
bound is only computed based on the total number of tasks
and subtasks assigned to every processor separately and
that is why well-known similar previous researches could
not reach such a high degree of freedom. As a fine example,
Guan et al. [4] proposed a semi-partitioned algorithm with
this additional constraint that the total utilization of all tasks
coupled with subtasks must not exceed Liu & Layland’s
bound, whereas we successfully removed this restriction in
our algorithm RMLS. We first present three lemmas and
then prove the claimed statement.

In the rest of this article, it is assumed that two
processors pk and pk+1 share a task τi = (Ti, Ci) and for each
request of the common task Ci1 is executed by pk and Ci2 is
executed by pk+1 so that Ci=Ci1+Ci2. In addition, effective
utilization of the second part of a shared task is used as its
utilization in the corresponding processor.

Lemma 1.

If Liu & Layland’s bound, is satisfied by all processors,
the second part of a request from a shared task, τi, between
two processors, pk and pk+1, never overruns.

Proof.

The preference of executing a request from the shared
task τi between processors pk and pk+1 is given to pk.
Furthermore, the second part of a request from task τi has
the highest priority within all tasks in pk+1. Therefore, as
soon as a request from task τi is generated, its execution
starts by either pk or pk+1 and continues executing
(migrating between the processors, if necessary) until the
second part of the task is completed. Therefore, in the worst
case scenario, the execution of the second part of the task
will be completed after a time length of Ci is passed from
its request (Ci≤ Ti).

Definition 1.

A conflict-idle period is a time interval in which both
processors, pk and pk+1, that share the shared task τi, want to
run a request from the task, but because pk is given a higher
precedence, it will proceed with its execution; and at the
same time, there is no other pending requests for processor
pk+1 within this period and it will be idle. Note that, not all
conflict periods of processors pk and pk+1 are necessarily
conflict-idle because if there are other requests for pk+1 then
it will proceed with their execution and hence, it will
therefore not be idle.

Consider a situation in which the task τi is split into
subtasks τi1 and τi2, and they are assigned to processors pk
and pk+1, respectively. Subtask τi1 is the task with the lowest
priority (or in some cases the second lowest priority) within
processor pk while task τi2 is always the task with the
highest priority among all tasks and subtasks assigned to
processor pk+1. This decreases the chance of encountering a

48 Sedaghat et. al.: Safety Verification of Rate-Monotonic Least-Splitting Real-Time …

situation in which both processors that want to
simultaneously run the task τi; however, it is not zero.
Therefore, conflict periods are very rare and as a result,
seldom will conflict-idle periods to take place.

Lemma 2.

Suppose two processors pk and pk+1 share a task τi and
run nk and nk+1 tasks while their total utilization is not
greater than Ө(nk) and Ө(nk+1), respectively. If there will
not be any conflict-idle period with respect to τi, then both
processors will always run overrun-free.

Proof.

Since processor pk has a higher precedence to run τi than
pk+1, this processor will always run overrun-free. On the
other hand, the only effect that pk can have on the execution
of tasks of processor pk+1 is that it may postpone the
execution of the second part of a request from the shared
task. This may harm the overrun-freeness of the shared task
in pk+1 but it can be beneficial to the other tasks of this
processor. However, in Lemma 1, it was proven that the
second part of a request from a shared task never overruns.
Therefore, this processor runs overrun-free as well.

Lemmas 1 and 2, will hold even if actual utilization of

subtask τi2, i.e.,
େ౟మ
୰౟

 , is used for computing the utilization of

pk+1. It is for compensation of possible conflict-idle periods
that, in general, effective utilization of the shared task on

processor pk+1 is computed as
େ౟మ

୘౟ି	େ౟భ
.

Definition 2.

The remaining utilization of a request (not a task or
subtask) at a given time is defined to be its remaining
execution time divided by its remaining time to reach the
deadline. At the exact time when a request is generated its
remaining utilization is equal to its actual utilization.
However, as time passes, its remaining utilization may
fluctuate depending on how much time has been passed
from its request time and how much it has been executed
until the time that the remaining utilization is computed.

For example, suppose task τ = (10, 4) has generated a
request at time 20 and the current time is 26 and up to now,
this request has received 1.5 unit of CPU time. The
remaining utilization of the request at time 26 is 	
ሺ4 െ 1.5ሻ/ሺ30 െ 26ሻ ൌ 0.625.

Fig. 2. A Sample execution of parts of a split task

Lemma 3.

Suppose two processors pk and pk+1 share a task τi. The
remaining utilization of a request from τi for processor pk+1
is maximal at the exact time when the execution of
processor pk’s share of this request is completed when pk
starts this request immediately after it is generated and
continues running it until its share is completed.

Proof.

Suppose as soon as a request from τi is generated at a
time t0, processor pk starts to execute it until its share is
finished at time t0+Ci1. At this time, effective utilization of

the subtask τi2 on pk+1 is equal to
େ౟మ

୘౟ିେ౟భ
. We show that this

is, in fact, the maximal effective utilization of τi2, which
means subtask τi2’s effective utilization never becomes
greater than this value. It is worth mentioning to recall that
requests of task τi have the highest priority in processor
pk+1. This implies that any request for this task will be
immediately picked up for execution by pk+1 if pk is not
executing it.

On the other hand, if the execution of the second part of a
request of task τi is completed by processor pk+1 then its
remaining utilization becomes zero and remains zero until a
new request is generated from the same task.

With these points in mind, consider a situation where at
any time t1 (t0 ≤ t1 ≤ t0+Ci), processor pk has executed this
request for the duration of length an (a ≤ Ci1), and processor
pk+1 has executed the same request for duration b (b < Ci2
and a+b = t1-t0). This example is illustrated graphically in
Fig. 2.

At time t1 effective utilization of τi2 is:
C୧ଶ െ b

T୧ െ ሺa ൅ bሻ

Since a ≤ Ci1,
େ౟మିୠ

୘౟ିሺୟାୠሻ
 ≤

େ౟మିୠ

୘౟ିሺେ౟భାୠሻ
 =

େ౟మିୠ

୘౟ିେ౟భିୠ

To show that the maximal effective utilization of τi2 is
େ౟మ

୘౟ିେ౟భ
. it has to be shown that:

େ౟మିୠ

୘౟ିେ౟భିୠ
 ≤

େ౟మ
୘౟ିେ౟భ

That is, 	
ሺC୧ଶ െ bሻሺT୧ െ C୧ଵሻ ൑ C୧ଶሺT୧ െ C୧ଵ െ bሻ

Or,
െbT୧ ൅ bC୧ଵ ൑ 	െbC୧ଶ

Or,
bሺC୧ଵ ൅ C୧ଶሻ ൑ 	bT୧

Which is always true because b is positive andC୧ଵ ൅

C୧ଶ ൑ T୧.
We have now provided a solid foundation of what must

be considered to prove the safeness of multiprocessor
systems to satisfy the requirements verbalized by RMLS
scheduling algorithm.

Theorem 1.

If effective utilization of each of two processors pk and
pk+1 which share a task τi, is not greater than Liu and

τi1 in pk

τi2 in pk+1

 t0 t1
time

a

b

Journal of Computer and Knowledge Engineering, Vol. 1, No. 1 49

Layland’s bound, then both processors will always safely
run their corresponding tasks and subtasks.

Proof.

This theorem is similar to Lemma 2 in which it is
assumed that there will be no conflict-idle period. However,
here, this restriction is removed. In Lemma 2, it is
mentioned that processor pk+1 does not have any influence
on the execution of tasks and subtasks assigned to processor
pk. Since Liu and Layland’s bound is satisfied for pk it will
always safely run its assigned tasks and subtask. In the
packing algorithm (Fig. 1), the utilization of the shared task

on processor pk+1 is computed as
େ౟మ

୘౟ି	େ౟భ
 which, based on

Lemma 3 and is the maximum utilization that τi2 can always
impose on the processor pk+1.

On the other hand, the utilization of processor is taken to
be less than or equal Liu and Layland’s bound. Therefore,
this processor will always safely run its assigned tasks and
subtask, as well.

In each processor pk (k=1,2,3,.., m1), at most, there is
only one task which is shared with the processor pk-1 (if
k>2) and one task which is shared with processor pk+1 (if
k<m1). Using Theorem 1 twice, once for pk-1 and pk and
once for pk and pk+1, we can conclude that all processors
would be safe with RMLS.

6. Simulations

Despite the fact that theoretical results such as speedup
factors, play a prominent role to verify the schedulability
performance, over the last years, many different empirical
studies have also aimed to investigate the relative
schedulability test performance amongst many different
scheduling algorithms in the domain of real-time systems.
Empirical studies also provide more general schedulability
tests by focusing more on individual tasks parameters
which yield to take into account non-specific task-sets.
Task parameters such as the number of processors and
tasks, the total utilization of the task-set, task deadline
distribution and period and many others, would be very
important especially for those techniques that will be
employed in safety-critical industrial environments.

In the current section, the proposed method is compared
with SPA2 [10]. We used UUnifast algorithm, a de facto
standard proposed by Bini and Buttazo [18], to produce
random task-sets without any bias. It is given that the n
tasks' utilization (as random variables) are uniformly
distributed between 0 and 1, and the sum of them is a
specific value which is the total utilization of the system.
The UUnifast algorithm uses the cumulative distribution
function and generates task-sets with uniform distribution
in O(n) time order. For further reading please refer to [18],
[19].

6.1. Comparisons

To compare the results of packing, we used the method
used by Burns et al [7]. In this method, task-sets are divided
into some categories. For each category of task-sets, the
result mean of that category is selected for comparison
purposes. Task-sets in each category have the same overall

utilizations and the same number of tasks. For example,
there are 200 task-sets in the first category, with their
overall utilization is equal to 4, and for this category, there
are 16 tasks in each task-set.

Experiments were performed on 3000 randomly
generated task-sets with a different number of tasks and
different overall utilizations. Overall utilizations used are 4,
8 and 16. The number of tasks tested with each utilization is
shown in Figures 3 to 5. For example, we compared the
three methods SPA2, RMLS, and RMLS+DRM with task-
sets and with the overall utilization of 8 so that task-sets
contain 16, 20, 28, 44, and 76 tasks.

We allow RMLS algorithm to assign processors as
needed and, for the SPA2 algorithm, we initially start with
a high number of processors with which we are assured of
the safety of the system. Then, we gradually reduce the
number of processors one at a time until reaching the
lowest number of processors in which the system is still in a
safe mode. When the minimum number of processors
needed for each method is found, the average utilization of
all processors is calculated by dividing the overall
utilization of each task set by the number of processors
simply.

The primitive version of RMLS (represented by PRMLS
in Figures 3 to 5) uses RM scheduler in all processors.
Thus, the utilization of systems containing two processors
must not exceed the higher bound of  (2). Moreover, in
that version, single tasks whose utilizations are greater than
or equal to 0.83, were not separated to schedule each one on
a single processor. The partitioning algorithm of PRMLS is
a simplified version of the algorithm outlined in Fig. 1, in
which all activities concerning Step 1 is removed. We
would now like to compare primitive RMLS with SPA2
and RMDP.

The median utilization of SPA2 is either the same or
lower than PRMLS. However, for equal medians, error bars
indicate that the efficiency of PRMLS partitioning is better
than SPA2. The average utilizations achieved for whole
task-sets are 0.680 and 0.735 for SPA2 and RMLS
respectively. This shows that the overall performance of
Primitive RMLS (PRMLS) is more than 8% higher than
that of SPA2.

Fig. 3. Median of performance, by each method, for U=4

50 Sedaghat et. al.: Safety Verification of Rate-Monotonic Least-Splitting Real-Time …

Fig. 4. Median of performance, by each method, for U=8

Fig. 5. Median of performance, by each method, for U=16

Fig. 6. Success rate for each method, for 3000 task sets

6.2. Discussion

Our experiments reveal that using DRM for two-task
processors, greatly improvement the overall utilization of
processors. The average utilization for RMLS on the
randomly generated 3000 task-sets was 0.776. Medians, 25
and 75 percentiles are shown in Figures 3 to 5. An overall
improvement of more than 14% as compared to SPA2 is a
remarkable achievement for RMLS.

By comparing RMLS and PRMLS, one gets the
impression that a little change can have a great performance
improvement (i.e. close to 6%). Experiments, however,
show better performance for RMDP method, which is
caused by its scheduler. The scheduler of the RMDP
method differs from rate-monotonic and, in actual fact, it is

really more complex and involved; thus, its better
performance is expected.

Although one can infer from Figures 3 to 5, that SPA2
usually should use a higher number of processors to safely
schedule the same set of tasks as compared to both of
PRMLS and RMLS, some complement charts are provided
for visual comparisons (see Figures 7 to 9).

In addition, another experiment was conducted to test the
schedulability of RMLS, PRMLS, SPA2, and RMDP on
total 3000 randomly generated task-sets (see Fig. 6). In this
experiment, we set different system utilizations and
measure the ratio of task-sets that are schedulable. Taking a
quick look at Figure 6, we clearly see that for all task-set
with total utilization UሺΓሻ ൏ൌ 0.66, all four algorithms can
schedule every task-set with success ratio 1; however, for
task-sets with total utilization greater than 0.66, SPA2 and
PRMLS show their downside so that system total utilization
of below 0.7, for instance, only 9% of randomly generated
task-sets are schedulable using SPA2 whereas RMLS
schedules about 79% of task-sets safely.

As was mentioned before, the high ability of RMDP to
schedule task-sets is owing to its complicated algorithm.
Additionally, please note that RMDP scheduler policy does
not rate-monotonic.

Fig. 7. Number of used processors for each method, for U=4

Fig. 8. Number of processors used for each method, for U=8

Journal of Computer and Knowledge Engineering, Vol. 1, No. 1 51

Fig. 9. Number of processors used for each method, for U=16

7. Summary and Future Work

Significant advances which have been made in many
industrial areas are good evidence to support this claim that
the importance of utilizing embedded multiprocessor
system-on-a-chip (MPSoC) is an undeniable fact. In this
context, regardless of many problems that must be
considered, task management is a key issue which we
focused on in the current article. Out of different
approaches for hard real-time task scheduling, semi-
partitioning of periodic tasks on multiprocessors was
studied here in which the scheduler of each processor is rate
monotonic, with the exception that the scheduler of
processors with exactly two whole tasks is delayed rate
monotonic (DRM) [16]. It was proven that when a task is
split between two processors, if the utilization of the second
part of the task is considered a little higher than its actual
utilization, and RM scheduling policy is used on both
processors while Liu and Layland’s bound is satisfied, both
processors run safely and all tasks meet their deadlines.

With this method, there is no need to define a release
time for the second subtask. The Rate-Monotonic Least
Splitting (RMLS) algorithm was developed and its
performance was compared with the SPA2 algorithm as
well as RMDP. It was concluded that the performance of
PRMLS (Primitive RMLS) is more than 8% higher than
SPA2 and the performance of RMLS is more than 14%
higher than that of SPA2. This means that both PRMLS and
RMLS usually need a fewer number of processors to safely
schedule the same set of real-time tasks than SPA2, using a
semi-rate-monotonic scheduler.

Although many types of research in the domain of semi-
partitioned scheduling are being conducted, the use of new
methods seems to be very important to improve real-time
scheduling performance on multiprocessors. For example,
authors in [20] did employ the equation of the line to
dynamically assign priority to the tasks (called LTS) which
appear to be an interestingly novel method in global
multiprocessor scheduling. They claimed that their
algorithm schedules all periodic task sets with total
utilization up to 100% safely. One can be to modify (and
improve) the LTS algorithm so that it is possible to use in

semi-partitioned multiprocessor scheduling (e.g. the policy
of each processor scheduler).

8. Acknowledgment

The authors wish to sincerely acknowledge the advice
and support that they have received from Professor
Mahmoud Naghibzadeh, the director of Knowledge
Engineering Research Group (KERG) at Ferdowsi
University of Mashhad. He generously provided insight and
expertise that greatly assisted the research, even though he
did not completely agree with all of the conclusions and
interpretations of the current article.

References

[1] C.L. Liu, "Scheduling algorithms for multiprocessors
in a hard real-time environment". JPL Space Programs
Summary, vol. 37-60, 1969, pp. 28–31.

[2] K. Lakshmanan, R. Rajkumar and J. Lehoczky,
"Partitioned fixed-priority preemptive scheduling for
multi-core processors", in Real-Time Systems, 2009.
ECRTS’09. 21st Euromicro Conference on. IEEE, pp.
239–248, 2009.

[3] M.R . Gary and D.S . Johnson: "Computers and
Intractability; A Guide to the Theory of NP-
Completeness" (W. H. Freeman & Co.), 1979.

[4] N. Guan , M. Stigge , W. Yi and G. Yu , "Fixed-priority
multiprocessor scheduling with liu and layland's
utilization bound", in Real-Time and Embedded
Technology and Applications Symposium (RTAS) , 2010
16th IEEE. IEEE , pp . 165–174, 2010 .

[5] B. Andersson and E. Tovar , "Multiprocessor
scheduling with few preemptions", in Embedded and
Real-Time Computing Systems and Applications ,
2006. Proceedings. 12th IEEE International Conference
on. IEEE, pp. 322–334, 2006.

[6] J. Anderson , V. Bud and U. Devi , "An edf-based
scheduling algorithm for multiprocessor soft real-time
systems", in Real-Time Systems . (ECRTS
2005) . Proceedings . 17th Euromicro Conference on,
2005, pp. 199–208, 2005.

[7] Burns, R. I. Davis, P. Wang and F. Zhang, "Partitioned
edf scheduling for multiprocessors using a c=d task
splitting scheme", Real-Time Systems, vol. 48, no. 1,
pp. 3–33, 2012.

[8] S. Kato and N. Yamasaki, "Portioned edf-based
scheduling on multiprocessors", in Proceedings of the
8th ACM international conference on Embedded
software. ACM, 2008, pp. 139–148.

[9] S. Kato, N. Yamasaki and Y. Ishikawa, "Semi-
partitioned scheduling of sporadic task systems on
multiprocessors", in Real-Time Systems, 2009.
ECRTS’09. 21st Euromicro Conference on. IEEE, pp.
249–258, 2009.

[10] N. Guan and W. Yi, "Fixed-priority multiprocessor
scheduling: Critical instant, response time and
utilization bound", in Parallel and Distributed
Processing Symposium Workshops & PhD Forum
(IPDPSW), 2012 IEEE 26th International. IEEE, pp.
2470–2473, 2012.

[11] S. Kato and N. Yamasaki, "Portioned static-priority
scheduling on multiprocessors", in Parallel and

52 Sedaghat et. al.: Safety Verification of Rate-Monotonic Least-Splitting Real-Time …

Distributed Processing, 2008. IPDPS 2008. IEEE
International Symposium on. IEEE, pp. 1–12, 2008.

[12] S. Kato and N. Yamasaki, "Semi-partitioned fixed-
priority scheduling on multiprocessors", in Real-Time
and Embedded Technology and Applications
Symposium, 2009. RTAS 2009. 15th IEEE. IEEE, pp.
23–32, 2009.

[13] L. Liu and J. W. Layland, "Scheduling algorithms for
multiprogramming in a hard-real-time environment",
Journal of the ACM (JACM), vol. 20, no. 1, 1973, pp.
46–61.

[14] R. I. Davis and A. Burns, "A survey of hard real-time
scheduling for multiprocessor systems", ACM
Computing Surveys (CSUR), vol. 43, no. 4, p. 35, 2011.

[15] M. Naghibzadeh, P. Neamatollahi, R. Ramezani, A.
Rezaeian and T. Dehghani, "Efficient semi-partitioning
and rate-monotonic scheduling hard real-time tasks on
multi-core systems", in Industrial Embedded Systems
(SIES), 2018 8th IEEE International Symposium on.
IEEE, 2013, pp. 85–88.

[16] M. Naghibzadeh, "A modified version of rate-
monotonic scheduling algorithm and its' efficiency
assessment", in Object-Oriented Real-Time
Dependable Systems, 2002. (WORDS 2002).
Proceedings of the Seventh International Workshop on,
2002, pp. 289-294.

[17] M. Naghibzadeh and K.H. Kim "The yielding-first
rate-monotonic scheduling approach and its efficiency
assessment", International Journal of Computer System
Science & Engineering, pp. 173-180, 2003.

[18] E. Bini and G. C. Buttazzo, "Measuring the
performance of schedulability tests", Real-Time
Systems, vol. 30, no. 1-2, pp. 129–154, 2005.

[19] R. I. Davis and A. Burns, "Improved priority
assignment for global fixed priority pre-emptive
scheduling in multiprocessor real-time systems", Real-
Time Systems, vol. 47, pp. 1-40, 2011.

[20] Ghavidel, M. Hajibegloo, A. Savadi and Y. Sedaghat,
"LTS: Linear task scheduling on multiprocessor
through equation of the line", in Computer Architecture
and Digital Systems (CADS), 2015 18th CSI
International Symposium on, pp. 1-6, 2015.

