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Abstract: The problem of influence maximization is 

selecting the most influential individuals in a social network. 

With the popularity of social network sites and the 

development of viral marketing, the importance of the 

problem has increased. The influence maximization problem 

is NP-hard, and therefore, there will not exist any 

polynomial-time algorithm to solve the problem unless P = 

NP. Many heuristics are proposed for finding a nearly good 

solution in a shorter time. This study proposes two heuristic 

algorithms for finding good solutions. The heuristics are 

based on two ideas: 1) vertices of high degree have more 

influence in the network, and 2) nearby vertices influence on 

almost analogous sets of vertices. We evaluate our 

algorithms on several well-known data sets and show that 

our heuristics achieve better results (up to 15% in the 

influence spread) for this problem in a shorter time (up to 

85% improvement in the running time). 
Keywords: Degree Centrality, Heuristic Algorithm, 

Independent Cascade Model, Influence Maximization 

 

1. Introduction 

Interactions of people in a social network provides a lot of 

information about their behavior and the structure of the 

social graph. It has also made the social network a good 

platform for spreading information, beliefs, innovations, and 

so on. One of the most important applications of the spread 

of influence in social networks is viral marketing. 

Consider a company that wants to market its product in a 

social network. A simple and low-cost approach is to select 

a subset of individuals to offer the product, so they will 

encourage their friends to buy it. This behavior is like 

spreading a virus in a society. The important part of this type 

of marketing is the initial selection of the most influential 

individuals. This problem is known as influence 

maximization problem. 

Influence maximization problem was first introduced by 

Domingos and Richardson [1, 2]. Kempe et al. [3] formally 

defined the problem and proved that it is NP-hard. They also 

introduced two monotone and submodular diffusion models 

for the spread of influence, namely independent cascade 

model and linear threshold model. An immediate result 

proved by Kempe et al. [3] was that a greedy hill climbing 

algorithm approximates the solution within 63% of the 

optimal solution for these models. 

Because the greedy algorithm runs a simulation several 

thousand times to find the marginal influence of each vertex, 

which is a time-consuming process, many heuristics are 

proposed to improve its performance. Although the 
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heuristics have reduced the running time, they are still time-

consuming for large-scale networks, which is the case for 

most social networks. On the other hand, degree-based 

heuristics are very fast even on large-scale networks. 

Although they do not guarantee the quality of the solution, 

they still find good solutions for the problem. 

This study proposes two degree-based heuristics with 

very short running time which improve the results of 

previous degree-based heuristics. As it will be illustrated by 

the experiments, the quality of the results produced by our 

algorithms are very close to the quality of the results 

produced by the greedy algorithm, while their running time 

is very small and close to other degree-based heuristics. 

This paper is an extended version of the paper [4] 

presented at the 8th International Conference on Computer 

and Knowledge Engineering (ICCKE 2018). The current 

version contains mathematical foundations of our techniques 

and rigorous descriptions of the algorithms. Furthermore, in 

this version we conduct a thorough evaluation and 

comparison of our algorithms with the best and state of the 

art algorithms for the problem. 

The remainder of this paper is organized as follows. In 

Section 2, related works are reviewed. A formal definition of 

the problem is described in Section 3. Section 4 proposes 

heuristics and presents the experimental results. Finally, we 

conclude the paper in Section 6. 

 

2. Review of related works 

Influence maximization problem was formally defined by 

Kempe et al. [3] and proved to be NP-hard. They proposed a 

greedy hill climbing algorithm that yields a solution within 

1−1/e−ε factor of the optimal solution for two models they 

introduced for influence propagation. In the above 

approximation ratio, e is the base of the natural logarithm, 

and ε, which can be any positive real number, is the error of 

the Monte Carlo simulations. Picking a small value for ε 
increases the running time, while taking a large value for it 

reduces the quality of the result. In the algorithm by Kempe 

et al., the most influential vertices are selected by their 

estimated marginal influence. Since estimated marginal 

influence is computed by a large number of simulations, the 

algorithm is not efficient. 

In order to improve the efficiency of the computations, 

many studies have been conducted. Leskovec et al. [5] 

proposed Cost-Effective Lazy Forward (CELF) optimization 

that reduces the computation cost of the influence spread 

using the sub-modularity property of the objective function. 

https://cke.um.ac.ir/
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Chen et al. [6] proposed new greedy algorithms for 

independent cascade and weighted cascade models. They 

made the greedy algorithm faster by combining their 

algorithms with CELF. They also proposed a new heuristic, 

named degree discount, which produces results of quality 

close to the greedy algorithm while being much faster than 

that and performing better than the traditional degree and 

distance centrality heuristics. 

In order to avoid running repeated influence propagation 

simulations, Borgs et al. [7] generated a random hypergraph 

according to the reverse reachability probability of vertices 

in the original graph and selected k vertices that cover the 

largest number of vertices in the hypergraph. They guarantee 

1−1/e−ε approximation ratio of the solution with probability 

at least 1 − 1/nl. Later, Tang et al. [8, 9] proposed TIM and 

IMM to cover the drawbacks of Borgs et al.’s [7] algorithm 

and improved its running time. 

Bucur and Iacca [10] and Krömer and Nowaková [11] 

used genetic algorithms for the influence maximization 

problem. Weskida and Michalski [12] used GPU 

acceleration in their genetic algorithm to improve its 

efficiency. 

There are some community-based algorithms for the 

influence maximization problem that partition the graph into 

small subgraphs and select the most influential vertices from 

each subgraph. Chen et al. [13] used H-clustering algorithm 

and Manaskasemsak et al. [14] used Markov clustering 

algorithm for community detection. Song et al. [15] divided 

the graph into communities, then selected the most 

influential vertices using a dynamic programming algorithm. 

 

3. Problem definition 

In this section we formally define influence maximization 

problem and the independent cascade diffusion model. 

We consider a social network as an undirected graph G = 
(V,E) where V is the set of individuals of size n, and E is the 

set of relationships of size m. In this study we describe the 

algorithms for undirected graphs, but it is trivial to extend 

the results to directed graphs. We also assume that G is 

unweighted, even though we can easily generalize the 

methods to the weighted case, where the weight of an edge 

(u,v) denotes the probability of the influence propagation 

from u to v. Clearly, the edge weights must be a value in the 

range [0,1]. 
For each vertex u and an integer h > 0, let N≼h(u) denote 

the set of vertices of distance at most h from u in G. We call 

N≼h(u) the set of multi-hop neighbors of u. 

For a set S ⊆ V of vertices selected as the seed set to 

initiate the influence prorogation, let I(S) denote the 

influence spread by S, i.e., the expected number of the 

influenced vertices, given S the initial seed set. 

 

3.1. Diffusion Model 

There are many diffusion models for the influence 

propagation process [16]. In this paper we focus on the 

Independent Cascade Model (ICM). In the independent 

cascade model, for each edge (u,v), a newly activated vertex 

u can activate v with probability pu,v ∈ [0,1]. 
The diffusion process is as follows. Let Si be the set of 

newly activated vertices in timestamp i. In timestamp i + 1 

each vertex u ∈ Si has a chance to activate each of its inactive 

neighbors. Once u tried to activate its neighbor v, whether it 

succeeds or not, u will not try to activate v in later steps. 

Furthermore, each activated vertex remains active in all 

subsequent timestamps. This process terminates when no 

more activation is possible. 

 

3.2. Influence maximization problem 

In influence maximization problem, given a graph G, a 

constant k and a diffusion model M, we are asked for a set S 
of k vertices with the maximum influence spread, I(S). In this 

paper, we focus on the independent cascade model as M, and 

leave extending the algorithms to other models in future 

studies. 

 

4. Proposed algorithms 

In this section we describe our heuristics for influence 

maximization problem under the independent cascade 

model. 

As mentioned above, although the greedy algorithm and 

its variants guarantee the solution in terms of the influence 

spread, they are very time consuming, especially for large 

scale social networks. On the other hand, degree centrality 

heuristics do not guarantee the quality of the solution, but 

may produce solutions of high quality in much smaller time. 

As a result, we propose two novel heuristics based on degree 

centrality which demonstrate more influence spread in 

comparison to similar algorithms. 

 

 
 

Degree centrality heuristics select k vertices with the 

highest degrees as the most influential vertices, because 

individuals with more relationships may have more influence 

spread in the network. The pseudo code of the maximum 

degree method is given in Algorithm 1. 

A variant of this method, which is called single discount 

and was proposed by Chen et al. [6], decreases the degree of 

neighbors of each selected seed. For example, when u is 

selected as a seed, the degree of each neighbor v is decreased 

according to the number of edges they have in common. 

Although these heuristics usually find suitable candidates as 

seeds, they are not good enough. The reason is that in social 

networks normally high degree vertices are close to each 

other and influence on almost similar sets of vertices. 

To select better seed sets, Chen et al. [6] proposed degree 

discount which decreases degrees of vertices according to 

the expected number of adjacent active vertices and the 

amount of influence propagation probabilities they have. 

Although the influence spread of degree discount is 

improved, it does not work well since it considers only direct 
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neighbors and multi-hop influence spreads are not 

considered at all. 

The main reason that degree centrality heuristics cannot 

keep up with greedy algorithms is that in social networks, 

vertices with high degrees are usually close to each other. 

Suppose that two adjacent vertices u, v have the maximum 

degrees in the input graph. When we select u as the first seed, 

with a high probability v will also be activated by u. 

Therefore, there will not be much benefit from selecting v as 

another seed. This will be amplified when the propagation 

probability, pu,v, is higher. A similar case can be explained 

for multi-hop neighbors. In the following sections, we 

propose two heuristics to handle these situations properly. 

 

4.1. Removing neighbors 

In the first heuristic, called NeighborsRemove, we iteratively 

select k vertices with the highest degrees. But to avoid 

selecting vertices with rather similar influence spread, in 

each step, we remove multi-hop neighbors of the selected 

seed from the list of candidates for subsequent steps. More 

precisely, in the first iteration, we select the vertex u with the 

maximum degree as the first seed. Since the multi-hop 

neighbors of u will be directly influenced by u, even though 

they may have high degrees, we remove them from the list 

of candidates and select next seeds from the remaining 

vertices. This process terminates when k seeds are selected. 

In each step, when u is selected as a seed, we remove its 

multi-hop neighbors at distance of most h, N≼h(u), with a 

breadth-first search starting from u. An important parameter 

here is h, the maximum level at which the visited vertices in 

the breadth-first search is removed. 

It is easy to see that when the distance between a seed 

vertex u and another vertex v increases, the probability that 

v is activated by u decreases dramatically. This amount is 

equivalent to the product of the activation probabilities of the 

edges in the path from u to v. 

In our experiments, like most of the works in the 

literature, we assume the activation probability of each edge 

constant, and equal to p. Based on this assumption, the value 

of h is dependent only on p. According to our experiments 

on several data-set, which are reported in Appendix A, the 

appropriate value for h is computed by ⌊ 12√𝑝⌉ . The 

notation ⌊ x⌉  here means rounding x to the nearest integer. 

The pseudocode of the method is given in Algorithm 2. 
 

 
 

4.2. Decreasing degree 

The second heuristic for the influence maximization problem 

is called DegreeDecrease. Similar to the NeighborsRemove 

heuristic, the main idea here is to select vertices with the 

highest degrees. But to avoid selecting vertices with rather 

similar sets of influenced vertices, in each step, we reduce 

the priority of selecting vertices close to the selected seed. In 

each step, when a vertex u is selected as the seed, the amount 

of the reduction in the priority of each vertex v is calculated 

according to the number of different paths from u to v, and 

their lengths. In the following, a more detailed description of 

the algorithm is given. 

In the beginning, the priority of selecting each vertex u, 

denoted by u.priority is equal to the degree of u. As the first 

seed, we therefore select the vertex s0 with the maximum 

degree. Then for each vertex v ∈ N≼h(s0), we decrease the 

v.priority to reduce the chance of v being selected as 

subsequent seeds. In the second step, the vertex with the 

highest u.priority is selected as the second seed. This process 

continues until k vertices are selected as the seed set. 

The probability of activating v by u is decreased as the 

length of the path from u to v increases. In addition, this 

probability increases as the number of paths from u to v 
increases. Therefore, the larger the number of paths or the 

smaller the path length from a vertex u to a multi-hop 

neighbor v, the more reduction is applied on v.priority when 

u is selected as a seed. This is to reduce the chance of 

selecting vertices close to u as subsequent seeds. 

Figure 1 shows two different paths from u to v. In each 

path, there is a possibility of v being activated by u. The 

probability of activation of v from the lower path u → v1 → v 
is greater than the upper path u → v2 → v3 → v. In the lower 

path, v will be activated when both edges (u,v1) and (v1,v) 
propagate the influence, which happens with probability p2, 

while in the upper path, the probability is p3, since three 

edges need to cooperate to propagate the influence. 

 

 
 

 

Figure 1. Two different activation paths from u to v 

 

Suppose when a vertex u is selected as a seed, for each 

neighbor v of u, we decrease v.priority by a value that 

depends on f(p), which is a function of p, the propagation 

probability of edges. We call f(p) the path reduction 

coefficient. In Figure 1. v may be activated by the lower path 

only if both edges (u,v1) and (v1,v) propagate the influence. 

Thus, we decrease v.priority for this path by a value that 

depends on f2(p). Similarly for the upper path, we decrease 

v.priority by a value that depends on f3(p), because the 

length of the path is 3. 

The influence propagation through the two paths in 

Figure 1 are independent, so if we denote by A (respectively 

u v 

v 2 v 3 

v 1 
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B) the event of the influence propagation through the lower 

(resp. upper) path, the probability of the influence 

propagation through either of paths is equal to 

 

P(A ∪ B) = P(A) + P(B) − P(A ∩ B). 

Events A and B are independents, so for the probability of 

the influence propagation through both paths we have P(A ∩ 
B) = p5. Given that p<1 is a small value, P(A∩B) is negligible 

compared to P(A) and P(B). Therefore, to make 

computations simple, we can find the required reduction 

amount in v.priority for each path independently, and then 

simply sum up those values. 
 

 
 

Figure 2. There are 3·2·3 different paths from u to v. 

 

In Figure 2 there are 3·2·3 different paths from u to v. The 

length of each path is 3, and based on the above arguments, 

each path reduces a value from v.priority that depends on 

f3(p), which totally sum up to 3·2·3·f3(p). For ease of 

processing, we introduce a recurrence relation. Let 

v.decrease denote the value to be reduced from v.priority for 

vertex v. The value of v.decrease for vertex v in Figure 2 can 

be written as 

 

v.decrease = v2.decrease · c(v2,v) · f(p). 

 

In the above recurrence relation, c(v2,v) denotes the 

number of edges in G from v2 to v. The intuition is that in 

v2.decrease we take into account both the number of 

different paths from u to v2 and the path reduction coefficient 

for those paths, f2(p). Therefore, it is enough to multiply 

v2.decrease to the number of edges from v2 to v and the path 

reduction coefficient to determine v.decrease. 

We need to characterize f(p) and the base case of the 

recurrence relation to be able to update v.priority for each 

vertex v. We choose two constant values α and β, whose 

exact value will be determined by further experiments, and 

define the functions based on these values. For the function 

f(·), we opt a linear function as f(p) = β · p, and for the base 

case of the recurrence relation, we write u.decrease = α, 

where u is the current seed vertex. 

Since the value of v.decrease reduces as the distance of 

u to v grows, after enough hops, v.decrease gets close to 0 

and we can stop further reduction process from v.priority. 

Based on our experiments, which are reported in Appendix 

A, we selected ε = 0.1 as the threshold value for priority 

reduction. When the value of v.decrease falls below ε, we 

stop further priority reduction propagation through v. If we 

select a small value as the threshold, the number of levels at 

which the breath-first search is performed is increased, and 

then the running time. On the other hand, choosing a large 

value reduces the number of levels of the breadth-first 

search, degrades the algorithm to normal maximum degree 

heuristic, and decreases the accuracy. 

Since the vertices with high influence in social networks 

usually have high degrees, choosing ε = 0.1 results in both 

high accuracy and low running time. In addition, based on 

the experiments which are reported in Appendix A, the 

suitable value selected for α and β are 50 and 10, 

respectively. The pseudocode of the method is given in 

Algorithm 3. 

 

 
 

5. Experiments 

In this section, we analyze and report the results of the 

experiments performed on the proposed heuristic algorithms 

and some previous algorithms using several real-life data-

sets to evaluate the effectiveness of the new methods. We 

show that our maximum degree heuristics outperform 

previous degree-based heuristics in terms of the spread of the 

influence, while output a solution of quality close to the 

approximation algorithms. 

  

5.1. Experimental settings 

We evaluate our implementation on three data-sets which are 

commonly used in related researches, including [6]. The first 

data-set is NetHEPT with the number of vertices n = 15233 

and the number of edges m = 58891. The second data-set is 

u v v 2 v 1 
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NetPHY with n = 37154 and m = 231584. These two 

networks are collaboration graphs crawled from arXiv1 

website, in High Energy Physics – Theory section and 

Physics section, respectively. The third data-set is Epinions 

from Stanford Large Network Dataset Collection website 

[17], which is a who-trust-whom online social network of a 

general consumer review site with n = 75879 and m = 

508837. All the above data-sets can be downloaded from the 

code repository of this paper2. 

We compare our algorithms represented by 

NeighborsRemove and DegreeDecrease with four 

algorithms named SingleDiscount [6], DegreeDiscount [6], 

TIM [8] and IMM [9] that are available by their authors. All 

algorithms are implemented in C++ and compiled with GCC 

6.2.1 and are run on a system with an Intel Core i7–3820 @ 

3.60GHz and 32GB memory. 

 

5.2. Running times and influence spread analysis 

Figure 3 and 4 show running times and influence spreads of 

different algorithms under independent cascade model on 

NetHEPT data-set for p = 0.01 and p = 0.1, respectively. 

Similar results are shown for NetPHY and Epinions data-sets 

in Figures 5, 6, 7, 8. 

 
 

 
 

Figure 3. Running times (a) and influence spreads (b) of algorithms on NetHEPT 

 under independent cascade model (p = 0.01, k = 50) 

 

 

 

 

 
 

Figure 4. Running times (a) and influence spreads (b) of algorithms on NetHEPT  

under independent cascade model (p = 0.1, k = 50) 

                                                           
1 https://arxiv.org 
2 https://github.com/Maryam-Adineh/InfluenceMaximization 
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Figure 5. Running times (a) and influence spreads (b) of algorithms on NetPHY  

under independent cascade model (p = 0.01, k = 50) 

 

As stated before, we see from the running times charts 

that the degree centrality heuristics are much faster than TIM 

and IMM. The running time of DegreeDecrease is usually 

close to DegreeDiscount and SingleDiscount, while 

NeighborsRemove is usually faster than all other algorithms. 

Sometimes the running time of NeighborsRemove is about 

15% of the running time of the next fastest algorithm. 

It can be seen from the influence spread charts that 

although the proposed algorithms show their superiority for 

large values of p, compared to DegreeDiscount and 

SingleDiscount heuristics, they still work well even for p = 
0.01 and return solutions of quality close to the quality of 

solutions of TIM and IMM. 

The effectiveness of our algorithms especially for larger 

values of p is because in those cases the influence of a seed 

vertex increases on its multi-hop neighbors. Therefore, there 

will be less advantage from selecting vertices close to the 

previous seeds. This is exactly one of the main ideas we 

follow in our proposed algorithms. Our strategy is to avoid 

selecting vertices with high probability of being influenced. 

As it can be seen from the charts, for example Figure 

6(b), the influence propagated by the results of our 

algorithms is sometimes about 15% more than the influence 

propagated by the results of DegreeDiscount and 

SingleDiscount, while the running times are less than or 

almost equal to their running times. 

Figure 9 shows the influence spreads of different 

algorithms under independent cascade model for different 

values of p. As it can be seen, from p = 0.12 on, the influence 

spread of our algorithms significantly increases, compared to 

all other algorithms, both degree centrality heuristics and 

greedy algorithms.

 
 

 
 

 

Figure 6. Running times (a) and influence spreads (b) of algorithms on NetPHY  

under independent cascade model (p = 0.1, k = 50) 
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Figure 7. Running times (a) and influence spreads (b) of algorithms on Epinions  

under independent cascade model (p = 0.01, k = 50) 

 

 
 

Figure 8. Running times (a) and influence spreads (b) of algorithms on Epinions under independent cascade model (p = 0.1, k = 50) 

 
 

Figure 9. Comparison of influence spreads of different algorithms on NetHEPT under independent cascade model for different  

values of p 
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5.3. Ranking Similarity Analysis 

In this section, we evaluate different influence maximization 

algorithms in terms of the similarity of the results to the 

results of the algorithm in Kempe et al. [3]. The similarity 

between two ranking methods, denoted by F(k), represents 

the amount of similarity between the results of the methods 

and is defined as 

 

𝑓(𝑘) =
𝐿(𝑘) ∩ 𝐿′(𝑘)

𝑘
 

 
where L(k) and L′(k) are the set of top-k nodes in the two 

ranking methods. 

For the method of Kempe et al. [3], which we use as the 

true ranking, we consider the result of 20,000 times Monte 

Carlo simulations and compare the results of other 

algorithms with this ranking based on the ranking similarity. 

In Figure 10, we see the comparison of ranking 

similarities on NetHEPT. Figure 10(a) shows that for p = 
0.01, IMM and DegreeDiscount have the most ranking 

similarity to the true ranking. It can also be seen that the 

results of NeighborsRemove and DegreeDecrease have high 

similarity to the true ranking in the beginning but as the value 

of k increases the similarity decreases compared to other 

methods. On the other hand, for p = 0.1, Figure 10(b) shows 

that DegreeDecrease and especially NeighborsRemove have 

greater ranking similarity to the true ranking than 

SingleDiscount and DegreeDiscount, which proves the 

effectiveness of our methods for larger values of p. 

Figure 11 shows the comparison of ranking similarities 

on NetPHY. In Figure 11(a) and 11(b), IMM has the closest 

ranking to the true one among all methods in the beginning, 

but as the result size increases, the difference between its 

ranking and the true ranking tends to increase. However, 

other methods show a different behavior. The ranking 

similarities of all methods are zero at first, and then with the 

growth in the result size the values tends to increase. As 

Figure 11(b) shows, DegreeDecrease and NeighborsRemove 

have better ranking in comparison with SingleDiscount and 

DegreeDiscount for larger values of p.
 

 
 

 

Figure 10. Rank similarity comparison on NetHEPT for p = 0.01 (a) and p = 0.1 (b) 

 

 

 
 

 

Figure 11. Rank similarity comparison on NetPHy for p = 0.01 (a) and p = 0.1 (b) 
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6. Conclusion 

In this study we proposed two maximum degrees based 

heuristics for influence maximization problem under the 

independent cascade model. These heuristics take into 

account the idea that the vertices of high degree are close to 

each other in social networks. Experiments show that our 

heuristics outperform previous degree centrality heuristics in 

terms of the spread of influence in the network. 

Since the algorithms that guarantee the quality of the 

outputs are very time-consuming on large-scale networks, 

finding heuristics which have small running time and 

producing solutions of good quality is so desirable. While the 

influence spread of the results produced by our proposed 

algorithms are close to the outputs generated by the 

approximation algorithms, the algorithms run in a much 

shorter time. 

In future work, we will examine the maximum-degree 

based heuristics for other cascade models. Moreover, we are 

looking for more accurate strategies to improve the spread of 

influence with small running time. 
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Appendices 

Appendix A: Parameter Selection 

In this section, we show the results of our experiments to choose the value of parameters of the algorithms. All the experiments 

are performed to select 50 seeds in the selected network. Three parameters in Degree Decrease are needed to be determined: 

α, β and ε. We have run several experiments on NetPHY data-sets for p = 0.01 and p = 0.1 with different values for α and β 
to find the best combination of values. The influence spreads are shown in Table 1 and 2. Based on the results of the 

experiments, we find the best selection as α = 50 and β = 10. 

The next parameter in Degree Decrease is ε. In Table 3 and 4 the influence spreads and the running time of Degree 

Decrease for different values of ε are reported. From the results and taking into consideration the fact that selecting a large 

value for ε may decrease the accuracy of the algorithm on other data-sets, we select the threshold value as ε = 0.1. 

Table 5 represents the influence spread of NeighborsRemove for different values of h and p. The most influence in each 

row, which has been written in bold, shows the best value for h. According to the results we suggest h = ⌊ 12√p⌉ , as stated 

before. 

 
Table 1. The inluence spread of Degree Decrease for different 

values of α and β on NetPHY for p= 0.01 
 

Table 2. The inluence spread of Degree Decrease for different 

values of α and β on NetPHY for p= 0.01 

  
 

Table 3. The inluence spread of Degree Decrease for different 

values of ε 
 

Table 4. The running time of Degree Decrease for different 

values of ε. 

  
 

Table 5. The influence spread of Neighbors Remove for different values of h and p 
 

 


