
Journal of Computer and Knowledge Engineering, Vol. , No.. 2023. 

DOI:  

 

 

A Difficulty-aware Approach to Fair Classification 

on Imbalanced Datasets 
Niloufar Kashefi1,  Javad Hamidzadeh2 , and Mona Moradi3 

 

Abstract-- Class imbalance in real-world datasets often biases 

standard classifiers toward the majority class, degrading 

performance on the minority class. While existing methods like 

sample re-weighting can mitigate this, they may increase overall 

misclassification errors or fail to consider the difficulty of training 

instances. To address these shortcomings, we introduce a 

difficulty-aware classification framework based on multi-objective 

evolutionary optimization. Our approach uses a specialized fitness 

function to simultaneously optimize for minority-class recall and 

overall accuracy, guiding the selection of the most informative 

training samples. We quantify sample difficulty using a fuzzy 

approach, which then modulate class-specific weights to refine the 

classifier's decision boundary. Furthermore, we incorporate 

chaotic dynamic maps into the evolutionary operators to 

accelerate convergence and maintain population diversity. 

Evaluated on various UCI benchmark datasets with 10-fold cross-

validation, our method improves minority-class performance on 

imbalanced data without compromising accuracy on balanced 

data. Comparative analysis using AUC, G-mean, and F-measure 

confirms our approach achieves a superior trade-off between 

minority-class detection and overall accuracy compared to state-

of-the-art methods. 

 
Index Terms-- Instance reduction; Fuzzy weighted average 

distance-based decision surface; Chaotic imperialist competitive 

algorithm; Reduction rate. 

INTRODUCTION 

lass imbalance is a pervasive challenge in machine 

learning, significantly impairing model performance 

across diverse domains such as medical diagnosis [1], 

streaming data mining [2], fraud detection [3], natural language 

processing [4], and image analysis [5]. In these applications, the 

training data contains a skewed class distribution, which biases 

classifiers toward the majority class. As a result, instances from 

the minority class—which often carry the most critical 

information—are frequently misclassified. Existing solutions to 

mitigate class imbalance can be broadly categorized into three 

paradigms: 

1. Data-level approaches: These techniques modify the training 

data distribution to create a more balanced class representation. 

The primary methods are oversampling and undersampling. 

Oversampling methods increase the number of minority class 

instances, ranging from simple duplication to synthetic 

generation of new samples with techniques like SMOTE. 

Conversely, undersampling methods reduce the size of the 
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majority class by discarding redundant or noisy samples. 

However, these risks losing valuable information. 

The core challenge in these approaches lies in sample selection. 

Effective methods must distinguish informative instances from 

noisy or redundant ones to avoid overfitting while preserving 

data diversity. To achieve this, neighborhood-based algorithms 

like k-Nearest Neighbors (k-NN) can identify redundant 

samples based on feature space proximity. In contrast, 

clustering-based methods (e.g., k-means) can sample 

representative centroids. More advanced techniques, such as the 

adaptive clustering proposed in [6], reduce computational 

overhead by dynamically tuning the cluster count and using 

alternative distance metrics for sample selection. 

2. Algorithm-level approaches: These approaches modify the 

learning algorithm without changing the distribution of the 

training data. This is often achieved through cost-sensitive 

learning [7, 8], where higher misclassification costs are 

assigned to minority class instances, directly embedding class-

specific penalties into the objective function. While effective at 

improving minority recall, this can increase model complexity. 

Other algorithmic strategies include one-class classification and 

modifications to specific algorithms like Support Vector 

Machines (SVMs) [12–14], though these can require 

specialized tuning. 

3. Hybrid Approaches: This category combines data-level and 

algorithm-level techniques to leverage the strengths of both. 

The goal is to create a more robust solution where a modified 

data distribution is fed into a specially adapted learning 

algorithm. These methods are often highly effective because 

they address the problem from two angles simultaneously. 

Popular examples include ensemble methods combined with 

sampling, such as SMOTEBoost [15], which integrates the 

SMOTE oversampling technique into the AdaBoost 

framework, and RUSBoost [11], which combines random 

undersampling with Boosting. By synergistically applying both 

strategies, hybrid methods can often achieve superior 

performance, particularly in cases of severe imbalance where a 

single approach is insufficient. 

Over the past decade, research on class imbalance has 

advanced significantly. The focus has broadened from binary 

classification to multi-class long-tail (skewed) distributions, 

spurring the development of hybrid augmentation methods like 

GAN-based synthetic sample generation [15]. In parallel, 

uncertainty-aware frameworks, such as Bayesian inference 

[16–18] and fuzzy logic [19], have been integrated to refine 
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both data augmentation and hyperparameter optimization [20, 

21]. These advancements culminate in state-of-the-art strategies 

like evolutionary bagging with data augmentation [22], which 

aim to enhance model fairness and robustness. 

Despite this progress, a pervasive limitation persists in many 

rebalancing techniques: they either indiscriminately remove 

majority instances or apply static, higher weights to minority 

classes. Such strategies often overlook the crucial concept of 

instance difficulty, which affects instances in all classes, 

including the majority. Instance difficulty refers to the inherent 

difficulty of a sample that can negatively affect a model's 

learning process. This difficulty can arise from several factors: 

Noise: Irrelevant data within the sample. 

Ambiguity: The sample's features make it hard to clearly assign 

to one class. 

Proximity to a decision boundary: The sample is located very 

close to the line or surface that separates different classes, 

making it a challenging case for the classifier. 

Neglecting these difficult instances can compromise classifier 

performance and discard information critical for robust 

decision-making. 

To bridge this gap, we propose a difficulty-aware decision 

surface derived via a chaotic-evolutionary optimization 

process. This decision surface integrates the designed instance 

difficulty metric to simultaneously perform instance selection 

and adaptive weighting, enabling nuanced rebalancing sensitive 

to sample difficulty. The main contributions of the paper are: 

 A hybrid rebalancing strategy that combines subset 

selection and fuzzy-based weight modulation, 

providing a more granular and context-sensitive 

mechanism than traditional methods. 

 

 Explicit consideration of sample-level difficulty—

including ambiguous, noisy, or boundary samples—

within the decision-making framework. 

The remainder of this paper is organized as follows: Section  2 

reviews relevant literature; Section  3 outlines theoretical 

backgrounds; Section  4 details the proposed method; 

Section  5 presents the experimental evaluation; and 

Section  6 concludes with insights and potential future 

directions. 

RELATED WORK 

This section reviews key literature related to the proposed 

methodology, structured into two subsections: Imbalance Ratio 

and Overlapping as problem, and Kernel-based Density 

Estimation Strategy as solution. 

A.  Problems: Imbalance Ratio and Overlapping 

Imbalanced datasets are characterized by a significantly 

higher count of majority-class instances relative to minority-

class instances. The Imbalance Ratio (IR), defined in 

Equation  (1), is widely used to quantify this skew. 

sizeof themajorityclass

sizeof the minorityclass
IR   (1) 

In multi-label settings, IR must be computed per label since 

individual labels may exhibit distinct positive-negative class 

distributions; moreover, instances may simultaneously belong 

to both majority and minority labels, complicating imbalance 

assessment [23]. 

TABLE I summarizes different types of problems that may 

arise when encountering class imbalance. 
 

TABLE I 

Different Types of Problems in Class Imbalance 

Problem Description Consequence Ref. 

Class 

Overlap 

Regions in feature 

space where instances 

of multiple classes 
coexist. 

Degraded classifier 

performance, even in 
balanced datasets; 

misclassification at class 

boundaries. 

[24-27] 

Label Noise 
Incorrectly labeled 

instances in the 

dataset. 

Complicates training; can 

lead to poor generalization. 
[26, 5] 

Aggressive 

Reduction 

Indiscriminate 
removal of majority 

instances by 

rebalancing methods. 

Undermining of model 

fairness and stability; 
creation of new imbalances. 

Proposed 

method 

 

B.  A good solution: Kernel-based Density estimation strategy 

Comprehending the local sample density is pivotal in 

addressing both class imbalance and overlap. By modeling 

separate probability density functions (PDFs) for majority and 

minority classes, the density ratio indicates how far a sample 

lies from the overlapping zone: values near unity suggest equal 

class density, whereas higher ratios denote proximity to 

minority high-density regions. Kernel Density Estimation 

(KDE) has been adopted to estimate these PDFs and guide 

density-aware sampling. KDE-based sampling can outperform 

conventional oversampling methods by generating synthetic 

instances in dense minority-class regions, reducing overfitting 

and improving metrics such as F-score and G-mean, even under 

severe IR conditions. While density-based under-sampling 

methods offer effective mitigation of class imbalance, they 

frequently falter in scenarios involving nonlinearly separable 

class distributions. To address this limitation, one can employ 

nonlinear mappings—such as kernel transformations or feature-

space embeddings—that project the original input data into a 

high-dimensional feature space, thereby converting inherently 

nonlinear decision boundaries into linearly separable 

representations suitable for density estimation and sampling 

[25,  28]. Several recent KDE-related methodologies are 

introduced in [29-38]. To facilitate a comparative 

understanding of existing KDE-based approaches and their 

limitations, Table II provides a concise summary of 

representative methods recently proposed in the literature. This 

comparison helps to clarify the conceptual differences and 

performance gaps that our proposed difficulty-aware 

framework aims to address. 
 

TABLE II 

Overview of Recent KDE-Based Methods for Imbalanced Data 

Classification 

Methodology Key Contribution Limitation 
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Adaptive KDE [29] 

Adjusts bandwidths based 

on local sparsity, 
preserving informative 

instances. 

Lacks sensitivity to 

sample hardness and local 

ambiguity. 

Localized Density 
Ratio Sampling 

(LDRS) [30] 

Identifies overlap-prone 
regions and applies 

selective resampling. 

Uniformly treats boundary 
instances, disregarding 

instance-level difficulty. 

Density-Aware 

SMOTE (DA-
SMOTE) 

[31] 

Restricts synthetic sample 

generation to high-density 

areas. 

Lacks adaptive 

mechanisms for instance 
difficulty or class overlap 

beyond density. 

KDE with Graph 

Embedding [32] 

Uses graph-based 

embeddings for nonlinear-
aware sampling. 

Does not incorporate 
instance-level selection or 

adaptive weighting based 

on difficulty. 

KMM-HR [33] 
Aligns inter-class 

distributions and reweights 

boundary/noisy instances. 

Its nature limits fine-
grained control over local 

structures. 

 

In addition, several complementary strategies—including 

rebalancing [39], ensemble learning [40], transfer learning [41], 

and architecture decoupling [42]—have been introduced to 

tackle the previously outlined challenges from different 

methodological perspectives. 

Another challenge arises where the number of samples in 

different categories follows a long-tailed distribution. Recent 

research can be broadly categorized into the following four 

groups, as shown in TABLE III: 
 

TABLE III 

Representative Studies Addressing Long-Tailed Distributions 

Category Strategy Advantages Disadvantages 

Resampling & 

Reweighting 

[43-45] 

Adjusts class 

distributions or 
assigns weights 

to instances. 

Foundational; can 

highlight 
challenging 

samples. 

Risks overfitting 

minority classes and 
underfitting majority 

classes. 

Transfer 

Learning [46] 

Leverages 

knowledge from 

data-rich (head) 
classes. 

Improves 

performance on 

data-scarce (tail) 
classes. 

Challenging to 

construct effective 
transfer modules and 

manage training 

dynamics. 

Two-stage 

Training [47] 

Decouples the 

feature extractor 

from the 
classifier. 

Learns robust 
feature 

representations. 

Can interfere with 

feature learning. 

Grouping & 

Ensemble 

Methods [48-

50] 

Divides data into 

subsets for 

independent 

model training 

and aggregates 

outputs. 

Preserves head-

class performance; 

reduces prediction 

variance and bias. 

Can be complex to 

implement and 

coordinate multiple 

models. 

BACKGROUND: IMPERIALIST COMPETITIVE 

ALGORITHM 

Imperialist Competitive Algorithm (ICA) [51] is a population-

based metaheuristic within the evolutionary optimization 

paradigm, where candidate solutions are modeled as countries. 

The algorithm is structured into the following stages: 

(A) Initialization and role assignment: Initially, a population 

of countries is generated randomly in the solution space. Each 

country’s quality (or power) is evaluated using a cost (fitness) 

function. Based on these cost values, countries are divided into 

two groups: imperialists (the stronger countries with lower cost 

values) and colonies (the weaker countries). The role 

assignment of colonies to imperialists are based on their relative 

powers: the better countries become imperialists and own a 

number of colonies proportional to their strength. The cost 

value (fitness) of each country is computed by 

Error! Reference source not found.. 

    , ,

cost cost
max

imp n imp i

n
i

C f f   (2) 

where  ,

cos

imp n

tf  is the cost of nth imperialist and 
nC  is its 

normalized cost. The normalized power of each imperialist is 

evaluated by Error! Reference source not found.. 

1

imp

n

n N

i

i

C
P

C





 (3) 

where 
nP  is the normalized power value of nth imperialist. The 

imperialists are the more powerful countries (have higher 

values for 
iP  variables). To evaluate the number of colonies of 

an empire, Error! Reference source not found. must be used. 
 

 .n n colNC Round P N  (4) 

where 
nNC  is the number of initial colonies of nth imperialist 

which is chosen from empiricists randomly. Besides, Round {.} 

assigns an integer value to 
nNC . 

(B) Assimilation mechanism and position update: In ICA, a 

colony moves toward the imperialist by a random value that is 

between 0 and .d   The new location of colonies is evaluated 

by Error! Reference source not found.. 

       10,
new old

z z U d V     (5) 

 

where   is an adjustable parameter and d  is the distance 

between colony and imperialist.  1V  is a vector which its start 

point is  
old

z  and its direction is toward  
new

.z  The length of 

this vector is set to unity [42]. One way to increase the searching 

around the imperialist is by adding a random amount of 

deviation   to the direction of movement. The moving model 

is shown in Fig. 1. 

 



 

 

 
Fig. 1. Movement of colonies to its new location in the original ICA. 

(C) Leadership transition based on fitness superiority: In the 

course of the optimization process, a colony may discover a 

solution with a lower cost (i.e., higher fitness) than that of its 

associated imperialist. When such an improvement occurs, a 

position exchange mechanism is triggered: the colony and the 

imperialist swap roles, and the colony is promoted to the status 

of imperialist by occupying the superior position in the search 

space. This dynamic update strategy ensures that the search 

process is continuously guided by the most promising 

candidates and facilitates convergence toward optimal or near-

optimal solutions. 

(D) Imperialistic competition and empire collapse 

mechanism: During the evolution of the ICA, less dominant 

imperialists gradually lose control over their colonies due to 

their relatively inferior fitness. In contrast, more powerful 

imperialists competitively absorb these orphaned colonies, 

thereby expanding their influence. When an empire loses all of 

its colonies, it is considered collapsed and is eliminated from 

the search process. A probabilistic mechanism governs the 

acquisition of the collapsed empire’s remaining resources, 

allowing competing empires to assimilate its remnants. The 

total cost of the nth empire is evaluated by 

Error! Reference source not found.. 

 
 ,

cos, 1

cos

nNC col i

timp n i

n t

n

f
TC f

NC
  


 (6) 

where   is an adjustable positive number [52]. 

(E) Convergence Criterion and Termination Condition: The 

iterative process of the Imperialist Competitive Algorithm 

continues until a single empire successfully dominates all 

others by assimilating every remaining colony within the 

population. At this convergence point, the prevailing empire is 

identified as the optimal solution or instance selection pattern. 

If such a global domination is not achieved, the algorithm 

returns to step (B), and the competition among empires 

resumes, ensuring ongoing exploration and exploitation within 

the solution space. 

Talatahari, et al. [47] presented an improved ICA that uses a 

point out of vector which its start point is  
old

z  and its 

direction is toward   ,
new

z  as indicated in Fig. 2. This 

improved algorithm is generated by changing 

Error! Reference source not found. into 

Error! Reference source not found.. 

       

   

   

 

1

2

1 2

2

tan ,

. 0,

1

new old
Z Z d CM V

CM d V

V V

V





    
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



 (7) 

where CM and   are the random parameters and  2V  is 

perpendicular to  1V . 

 

Fig. 2. Movement of colonies to their new location in the improved ICA. 

PROPOSED METHOD 

To address the class imbalance problem in binary classification 

tasks, the proposed method comprises two phases, as illustrated 

in Fig. 3: 

1. Generation of candidate sample subsets: Candidate 

subsets are produced via a global search strategy based on 

the Chaotic Imperialist Competitive Algorithm (CICA). By 

leveraging chaos theory within the ICA, this approach 

enhances both the diversity of the candidate population and 

the algorithm’s convergence behavior, promoting 

exploration and reducing the risk of premature 

convergence. 

2. Assessment via a fuzzy weighted average distance-

based decision surface: The evaluation phase employs a 

fuzzy weighted average distance-based decision surface. 

This method is designed to deliver robust class boundary 

modeling. By integrating uncertainty handling and 

instance-level difficulty metric, it ensures that the 

constructed decision boundaries are sensitive to the 

distinctive characteristics of imbalanced datasets and can 

better distinguish between minority and majority classes. 
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Fig. 3. Flowchart of the proposed method. 

A.  Exploring the Solution Space 

Instance selection can be formulated as a multi-objective 

optimization problem, where multiple candidate solutions— 

each representing a reduced dataset—are explored within a 

defined solution space. In the proposed approach, the 

conflicting objectives include maximizing the F-measure, G-

mean, and accuracy, while simultaneously minimizing the 

reduction rate of the minority class. Equation (8) formalizes this 

unconstrained optimization problem aimed at selecting 

instances from an imbalanced dataset. 

 
cost 1 2

3 4 min maj

4

1

. .

. .

1,

1 2

i 1 2

i

f w Fmeasure w Gmean

w Accuracy w p .Red p .Red

w p p


 

  

 

 
(8) 

where 

2

2

(1 ). .

. .

precision recall
Fmeasure

precision recall






  (9) 

Gmean TP TN   (10) 

TP TN
Accuracy

TP TN FP FN




  
 (11) 

Total instances Retained instances
=

Total instances
Reduction


 (12) 

where TP, FP, FN, and TN denote true positives, false positives, 

false negatives, and true negatives, respectively. A TP 

corresponds to a target instance correctly classified as target. A 

FP occurs when a non-target instance is erroneously classified 

as target. Conversely, a FN arises when a target instance is 

incorrectly identified as non-target. Finally, a TN indicates the 

correct classification of a non-target instance as non-target. 

In Error! Reference source not found., 
1 2 3, ,w w w  and 

4w  

are adaptive weighting parameters of each metric and 1p  , 2p  

are the penalty parameters. Regarding the minimization 

problem, 1p  and 2p , i.e., reduction rate of the minority class 

should be lower than the reduction rate of the majority class. 

The Chaotic Imperialist Competitive Algorithm (CICA), 

facilitates exploration across both minority and majority 

classes. It initializes with a random population represented as a 

binary array, where each element corresponds to a country. The 

presence or absence of a country is encoded as 1 or 0, 

respectively, with varying configurations representing different 

candidate solutions. The solution exhibiting the highest fitness 

value is selected, corresponding to the optimal instance 

selection state. By leveraging CICA, a solution pool is 

generated, each optimized for one of four distinct objectives, 

from which an appropriate reduced dataset can be chosen. Here, 

10 percent of the countries are considered as empires (

10%impN  ) and 90 percent of them are used as colonies (

90%colN  ). Besides, the cost function represented in 

Error! Reference source not found. evaluates the 

corresponding cost value of each country presented in 

Error! Reference source not found.. Since utilizing random 

values for   presented in Error! Reference source not found. 

may get stuck in a local solution and speed down the 

convergence, the proposed method uses some chaotic maps 

listed in Table IV for finding globally optimal solutions. 

 

 
TABLE IV 

Chaotic Functions 

Name Function 

Logistic map  
1

1
k k k

az zz

   

Tent map 
 1

 

 

2 0. 5

2 1 , 0. 5

,
k

k k

k k

z
z

z

z z






 
 

Sinusoidal map  2

1
sin

k k k
az zz 


  

Gauss map 
 k 1

k

0 0

1
1

z

z

mod otherwise
z










 

 

B.  Difficulty-aware Decision Surface 

Now, a classification method is introduced that integrates 

difficulty awareness into the decision-making process by 

employing a fuzzy membership function. This function assigns 

weights to training data points (candidate solutions) according 

to their assessed difficulty level. Initially, each training sample 

is evaluated using a difficulty metric that quantifies the 

ambiguity or uncertainty associated with that sample. The fuzzy 

membership function then converts these difficulty scores into 

corresponding weights, effectively emphasizing the influence 

of more challenging instances. 

When classifying a new data point, the proposed decision 

surface assigns its label based on the proximity to the nearest 



 

 

class boundary. Importantly, the distance calculation 

incorporates the fuzzy membership weights, allowing the 

classification to factor in not only the feature similarity but also 

the difficulty of comparable training samples. This approach 

enhances robustness by recognizing that harder-to-classify 

instances contribute differently to shaping the decision 

boundary. 

Consider N points  1,..., NX  x x  where  1,...,i i idx xx  

distributed within a d-dimensional feature space. A label iy  

assigns each point to one of l  distinct classes. The distance 

between two points iz  and 
jz  in a high dimensional feature 

space given by Error! Reference source not found. [53]: 

2

( , ) 2 ( , ) ( , )

( ( ), ( )) ( ) ( )

( ( ) ( )).( ( ) ( ))
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D z z z zi j i j

z z z zi j i j

z z z z z zi i i j j j
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   
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  

 

 
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 (13) 

where   is a mapping function transferred training instances 

into high-dimensional feature space, and ( , )i jk z z  is a kernel 

function. Regarding a binary classification task, the class 

centers of positive and negative classes in a high-dimensional 

feature space are given by Eq. 

Error! Reference source not found.. 
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 (14) 

where l  and l  are the size of positive and negative class, 

respectively.  

The normalized distance between point iz  and the center of 

its class is determined by Error! Reference source not found.

: 
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By taking the median of all k-NN around instance iz , the 

normalized density for iz  is computed as follows.  
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 (15) 

Finally, the membership degree of instance iz  is given by: 

. ( )
( )

( )

i

i

i

z
z

z

 
 


 (16) 

where , (0,1]    is a positive parameter which determines the 

importance of density. Clearly, the membership degree of each 

sample follows  ( ) 0,1iz  .  

A notable challenge emerges when data points exhibit 

comparable membership degrees across multiple classes. As 

illustrated in Fig. 4, instances located near the decision 

boundary (denoted by "+") may possess identical membership 

values, yet their contributions to each class can differ 

significantly. To enhance the modeling of such ambiguous and 

difficult instances, the framework is extended by incorporating 

non-membership and hesitation degrees, enabling a more 

nuanced representation of uncertainty. 
 
 
 
 

 
Fig. 4. Illustration two instances (+) with equal distance to the center of the 

class. 

Consider k-NN for instance iz  . Let 
mz  be the mth nearest 

neighbor of instance iz . The hesitation degree for instance iz  

is defined by Error! Reference source not found.. 
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(17) 

where  ( ) 0,1ih z  . Fig. 5 shows an example for computing the 

hesitation degree. The non-membership degree of instance iz  

is defined by Error! Reference source not found.. 

( )
( )

( )

h zi
z
i zi




  (18) 

According to Error! Reference source not found., if 

( ) 0iz   then ( )iz  . Also, the non-membership degree 

becomes zero if ( ) 0ih z  ; So,  ( ) 0,iz   .  
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Fig. 5. Computing the hesitation degree for instance zi with different 

position. For k=3, the hesitation degree of zi in (A) is zero whilst in (B) is 
2/3. 

 

According to Error! Reference source not found., if ( ) 0iz   

then ( )iz  . Also, the non-membership degree becomes 

zero if ( ) 0ih z  ; So,  ( ) 0,iz    

Now, the weight of each instance is computed by the degree 

of membership and the degree of non-membership in 

Error! Reference source not found.: 

0.3i i

i i

i i

h

otherwise



 

 




 
 

 (19) 

Thus, the weighted average of each class is computed by 

Error! Reference source not found.. 
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 (20) 

where l  and l  are the size of the positive and negative 

classes, respectively. Then, instance iz  is classified by 

Error! Reference source not found..  

    sgn ( ), ( ),i iiy D z C D z C      (21) 

EXPERIMENTS 

The experiments were conducted in a Jupyter Notebook 

environment using an Intel Core i5 processor and 16 GB of 

RAM. To assess the performance of the proposed method, 

classifiers including SVM, Convolutional Neural Network 

(CNN), and k-Nearest Neighbors with k=10 were employed. 

The experimental evaluation involved multiple kernel 

functions, such as Radial Basis Function (RBF) and polynomial 

kernels, alongside various chaotic maps including logistic, tent, 

sinusoidal, and Gaussian maps. Table V summarizes the 

optimal parameter settings utilized throughout the experiments. 

TABLE V 

Values of the Parameters 

Parameter Val. Parameter Val. Parameter Val. 

  0.6 w1 0.2 Imperialist size 10 

  0.8 w2 0.2 1p  0.9 

  0.3 w3 0.2 2p  0.1 

Population size 100 w4 0.3   
 

A. Experiments on benchmark datasets 

In this section, experimental evaluations are performed on 

datasets of moderate scale. The experiments are carried out on 

a diverse set of UCI datasets. The detailed statistics of these 

datasets are summarized in Table VI. As shown in the last 

column of the table, which reports the IR, some datasets are 

relatively balanced (IR < 5), while most exhibit varying degrees 

of class imbalance. This distribution enables a thorough 

evaluation of the proposed method across both balanced and 

imbalanced settings. These datasets provide a representative 

testbed for validating the effectiveness and generalizability of 

the proposed approach. 

The initial phase of the experiments involves examining 

various kernel functions and chaotic maps within the proposed 

framework to identify the optimal configuration. Performance 

metrics—including Accuracy, Reduction Rate, Fmeasure, and 

Effectiveness—are reported using 10-fold cross-validation 

across both balanced and imbalanced datasets, employing 

SVM, k-NN, and CNN classifiers. Figures 6 through 8 illustrate 

these evaluation metrics corresponding to the SVM, k-NN, and 

CNN classifiers, respectively. Notably, to jointly assess 

reduction rate and Fmeasure, the Effectiveness metric is defined 

as the Reduction rate × Fmeasure. 

 
TABLE VI 

Dataset Statistics 

Dataset #samples #features 
Class1 

(%) 

Class2 

(%) 

IR 

(%) 

Yeast-6 1484 8 2.36 97.64 41.38 

Yeast-5 1484 8 2.70 97.30 36.03 

Yeast-1289vs7 947 8 3.17 96.83 30.55 

Yeast-4 1484 8 3.44 96.56 28.07 

Yeast-3 1484 8 10.98 89.02 8.11 

Yeast-2vs8 483 8 4.14 95.86 23.15 

Yeast-1 1484 8 28.90 71.10 2.46 

Yeast-1458vs7 693 8 4.33 95.67 22.09 

Yeast-1vs7 459 8 6.54 93.46 14.29 

Ecoli-4 336 7 5.95 94.05 15.80 

Ecoli-3 336 7 10.42 89.58 8.60 

Ecoli-2 336 7 15.48 84.52 5.46 

Ecoli-1 336 7 22.92 77.08 3.36 

Ecoli-0vs1 220 7 35 65 1.86 

Ecoli-0137vs26 282 7 2.48 97.52 39.32 

Glass-6 214 9 6.07 93.93 15.50 

Glass-5 214 9 4.20 95.80 22.80 

Glass-016vs5 184 9 4.89 95.11 19.45 

Glass-5vs12 159 9 8.18 91.82 11.26 

Glass-2 214 9 13.55 86.45 6.38 

Glass-123vs567 214 9 23.83 76.17 3.20 

Glass-1 214 9 35.51 64.49 1.82 

Glass-0 214 9 32.71 67.29 2.09 

 



 

 

 
 

Fig 6. A. Accuracy of the proposed method on different kinds of kernel 

functions and chaotic maps using SVM classifier. 

 

 
 

Fig 6. B. Reduction rate of the proposed method on different kinds of 
kernel functions and chaotic maps using SVM classifier. 

 

 
 

Fig 6. C. Fmeasure of the proposed method on different kinds of kernel 

functions and chaotic maps using SVM classifier. 

 

 
 

Fig 6. D. Effectiveness of the proposed method on different kinds of kernel 
functions and chaotic maps using SVM classifier. 

 
 

Fig 7. A. Accuracy of the proposed method on different kinds of kernel 

functions and chaotic maps using k-NN classifier. 

 

 
 

Fig 7. B. Reduction rate of the proposed method on different kinds of 

kernel functions and chaotic maps using k-NN classifier. 

 

 
 

Fig 7. C. Fmeasure of the proposed method on different kinds of kernel 

functions and chaotic maps using k-NN classifier. 
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Fig 7. D. Effectiveness of the proposed method on different kinds of kernel 
functions and chaotic maps using k-NN classifier. 

 
 

Fig 8. A. Accuracy of the proposed method on different kinds of kernel 
functions and chaotic maps using CNN classifier. 

 

 
 

Fig 8. B. Reduction rate of the proposed method on different kinds of 

kernel functions and chaotic maps using CNN classifier. 

 

 
 

Fig 8. C. Fmeasure of the proposed method on different kinds of kernel 
functions and chaotic maps using CNN classifier. 

 

 
 

Fig 8. D. Effectiveness of the proposed method on different kinds of kernel 

functions and chaotic maps using CNN classifier. 

 

According to Figures 6–8, the experimental results 

demonstrate that the RBF kernel consistently outperforms the 

polynomial kernel across all evaluation metrics. Although the 

polynomial kernel occasionally achieves competitive 

performance, it lacks stability and fails to deliver consistently 

acceptable results across all criteria. In contrast, the RBF kernel 

exhibits greater robustness and reliability, making it the 

preferred choice within the proposed framework. 

Additionally, the figures highlight that the sinusoidal and 

logistic chaotic maps outperform other chaotic functions. The 

choice of chaotic map has a significant impact on both the 

reduction rate and classification performance metrics, such as 

accuracy and F-measure. These results emphasize the 

sensitivity of the method to the underlying chaotic dynamics. 

Based on the observations, the logistic map is recommended 

when minimizing classification error is the primary objective, 

while the sinusoidal map is more suitable when prioritizing 

dimensionality reduction. Both functions perform consistently 

well across most metrics; however, selecting the appropriate 

chaotic function based on the application’s goals can further 

enhance overall effectiveness. 

The class distribution before and after applying the proposed 

method is illustrated in Figure 9. As discussed earlier, two 

major challenges in instance selection are: 

 Preserving inter-class balance in originally balanced 

datasets, avoiding the introduction of skew during 

reduction;  

 Retaining sufficient minority-class instances in 

imbalanced datasets to prevent information loss. 

 

To evaluate the impact of the proposed method on class 

distribution, Figure 9 presents a comparative analysis of the IR, 

as well as the proportions of minority and majority instances, 

before and after instance selection. The results clearly show an 

increase in the proportion of minority-class instances and a 

decrease in majority-class instances. This indicates that the 

method selectively removes more majority instances, 

effectively emphasizing the preservation of minority-class 

information. 



 

 

 

 
Fig 9. Class distribution (%) before and after using the proposed method. 

 

Moreover, the results confirm that the method maintains 

inter-class balance in balanced datasets and improves class 

representation in imbalanced settings. This section has 

presented strong empirical evidence supporting the 

framework’s validity and effectiveness. The next section builds 

on these findings with further experiments. 

A. Experimental results in comparison with other methods on 

benchmark datasets 

This section presents a comparative analysis between the 

proposed method and several competing methods. The 

evaluation uses the logistic chaotic map and the RBF kernel 

within our framework. To ensure a fair comparison, all methods 

employ a common SVM classifier. 

The competing methods are selected based on their 

conceptual alignment with our approach, incorporating at least 

one of the following principles: evolutionary optimization, 

fuzzy modeling, difficulty estimation, or density-aware 

evaluation. This deliberate selection ensures a meaningful 

benchmark by attributing performance differences to the 

innovations of our design rather than fundamental 

methodological disparities. 

The results are presented in Tables VII, VIII, and IX, on the 

Yeast, Ecoli, and Glass datasets. Each table reports the average 

values of three key metrics—F-measure, G-mean, and AUC—

along with their corresponding ranks. The Average Rank (AR) 

is provided in the final row of each table. Metric abbreviations 

include F1 (F-measure), Gm (Geometric Mean), AUC, and AR 

(Average Rank), consistently applied throughout. 

According to the reported ranks, the proposed method 

consistently outperforms all competing approaches. Figures 

10–12 complement the tables by graphically depicting the 

outcomes for F-measure, G-mean, and AUC, offering an 

intuitive visual comparison. 

 
 

TABLE VII 

Evaluation Metrics for the Proposed Method and the State-of-the-art 
Methods on Yeast Dataset (Average) 
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F1 
49.12 73.03 74.12 69.34 70.66 78.16  

(6) (3) (2) (5) (4) (1) 

Gm 
51.20 79.32 79.19 70.82 80.08 85.65  

(6) (3) (4) (5) (2) (1) 

AUC 
57.05 82.64 86.98 71.41 81.68 85.98  

(6) (3) (1) (5) (4) (2) 

AR 
6 3 2.33 5 3.33 1.33 

6 3 2 5 4 (1) 

 

 

TABLE VIII 

Evaluation Metrics for the Proposed Method and the State-of-the-art 
Methods on Echoli Dataset (Average) 
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F1 
79.78 80.64 82.34 84.84 80.83 83.51 

(6) (5) (3) (1) (4) (2) 

Gm 
87.18 85.34 87.91 88.87 89.63 92.45 

(5) (6) (4) (3) (2) (1) 

AUC 
87.71 89.12 91.03 88.90 91.66 93.25 

(6) (4) (3) (5) (2) (1) 

AR 
5.6 5 3.33 3 3.33 1.33 

(5) (4) (3) (2) (3) (1) 

 

TABLE IX 

Evaluation Metrics for the Proposed Method and the State-of-the-art 

Methods on Glass Dataset (Average) 
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F1 
75.22 82.05 76.02 78.37 80.8 94.64 

(6) (2) (5) (4) (3) (1) 

Gm 
75.50 88.33 81.85 85.54 87.5 96.42 

(6) (2) (5) (4) (3) (1) 

AUC 
87.47 89.12 86.81 87.43 89.25 96.8 

(4) (3) (6) (5) (2) (1) 

AR 
5.33 2.33 5.33 4.33 2.66 1 

(5) (2) (5) (4) (3) (1) 
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Fig 10. Fmeasure metric for the proposed method and other methods - all 
datasets.  

 

 
Fig 11. Gmean metric for the proposed method and other methods - all 

datasets. 

 

 

 
Fig 12. AUC metric for the proposed method and other methods - all 

datasets. 

 

A. Discussion 

The comparative results in Tables VII–IX and Figures 10–12 

confirm the superiority of the proposed method across all key 

evaluation metrics. Several factors contribute to this 

performance advantage over techniques such as SGO, GE-

IFRVFL-CIL, KDEBO, KDENDS_SMOTE, and 

SVDDSMOTE: 

                                                           
4 https://imbalanced-ensemble.readthedocs.io/en/latest/api/datasets 

 Instance Selection over Generation: Unlike most 

methods that focus on generating synthetic data, our 

approach emphasizes informed instance selection. This 

preserves data integrity and improves classifier 

generalization by avoiding synthetic noise and overlap. 

 Fuzzy Awareness and Adaptive Penalties: Unlike 

SVDD-based oversampling methods with fixed 

parameters, our method leverages fuzzy membership 

weighting to dynamically adapt penalties, allowing better 

boundary modeling in sparse regions. 

 Fine-Grained Fitness Evaluation: Our integration of 

fuzzy difficulty-awareness into the multi-objective 

evolutionary process allows instance contribution to be 

evaluated more precisely, outperforming approaches like 

GE-IFRVFL-CIL, which use fuzzy logic in a more coarse-

grained fashion. 

 Chaotic Evolutionary Dynamics: The use of chaotic 

maps in the evolutionary algorithm (unlike conventional 

mechanisms used in SGO or KDEBO) improves search-

space exploration and convergence stability, particularly in 

noisy or high-dimensional scenarios. 

 Preservation of Class Distribution: Our method 

maintains balance in originally balanced datasets and 

improves minority representation in imbalanced datasets 

without generating artificial data—a capability evidenced 

by Figure 9 and the superior ranks across evaluation tables. 

 

B. Real-world datasets with high class imbalance across 

diverse domains 

To evaluate the scalability and robustness of the proposed 

method under realistic, data-intensive conditions, we conduct 

extensive experiments on the large-scale dataset regarding 

CLIMB benchmark suite [58]. This benchmark is specifically 

designed to reflect the core challenges of industrial-scale 

imbalanced learning, including extreme class imbalance, high-

dimensional feature spaces, noisy distributions, and structural 

irregularities4. The CLIMB includes six datasets with IR>50. 

Table X summarizes the key characteristics of these datasets. 

The proposed method is compared against the methods 

summarized in Table XI. 
 

TABLE X 

Summary of Real-World Datasets with Severe Class Imbalance 

Dataset Name #samples #features IR Domain 

Dis 3772 29 64.03 Biology 

Satellite 5100 36 67.0 
Remote 
sensing 

Employee-

Turnover-at-

TECHCO 

34452 2 68.74 
Human 

resources 

Page-blocks 5473 10 175.46 
Document 

processing 

allbp 3772 29 257.79 Biology 

Credit Card Fraud 

Detection 
284807 30 577.88 Finance 

 

49/12

73/03

74/12

69/34

70/66

78/16

79/78

80/64

82/34

84/84

80/83

83/51

75/22

82/05

76/02

78/37

80/8

94/64

S G O

G E - I F R V F L - C I L

K D E B O

K D E N D S _ S M O T E

S V D D S M O T E

P R O P O S E D  M E T H O D

FMEASURE

Yeast Echoli Glass

51/2

79/32

79/19

70/82

80/08

85/65

87/18

85/34

87/91

88/87

89/63

92/45

75/5

88/33

81/85

85/54

87/5

96/42

S G O

G E - I F R V F L - C I L

K D E B O

K D E N D S _ S M O T E

S V D D S M O T E

P R O P O S E D  M E T H O D

GMEAN

Yeast Echoli Glass

57/05

82/64

86/98

71/41

81/68

85/98

87/71

89/12

91/03

88/9

91/66

93/25

87/47

89/12

86/81

87/43

89/25

96/8

S G O

G E - I F R V F L - C I L

K D E B O

K D E N D S _ S M O T E

S V D D S M O T E

P R O P O S E D  M E T H O D

AUC

Yeast Echoli Glass



 

 

 To guarantee methodological alignment with CLIMB and 

ensure reproducibility, we replicate their entire evaluation 

pipeline: 

 Preprocessing: Numerical features are standardized 

to zero mean and unit variance; categorical features are 

one-hot encoded; no imputation is required due to 

dataset completeness. 

 Validation Protocol: A stratified 5-fold cross-

validation scheme is adopted to preserve class ratios in 

each fold. Within each training fold, we perform a 

nested 3-fold tuning of hyperparameters using Optuna 

[59], with 100 trials per method and all random seeds 

fixed to 42. Optuna is an open-source hyperparameter 

optimization framework designed to automate the 

process of searching for the best hyperparameters for 

machine learning models. It provides an efficient, 

flexible way to handle optimization tasks by using 

algorithms such as Tree-structured Parzen Estimator 

(TPE) and integrates seamlessly with existing machine 

learning pipelines. Optuna is particularly noted for its 

ability to optimize hyperparameters dynamically, 

using a "define-by-run" approach, where users specify 

the optimization logic in a flexible and modular way. 

 Base Classifier: SVM classifiers were used to 

evaluate the effect of instance reduction and sampling 

strategies, allowing a fair and interpretable 

comparison across all baselines. 

 Implementation Details: All algorithms are 

implemented in a unified Python codebase, 

parallelized across folds, and executed on a server with 

64 GB RAM. Large-scale encoding leverages sparse 

matrix representations to accommodate large scale 

datasets. 

 

Table XI 

Baseline Methods Selected for Evaluation 

Selected 

Method 
Category Description Ref. 

Edited 

Nearest 

Neighbors 
(ENN) 

Cleaning 

Removes 

mislabeled/noisy majority 

samples by local 
disagreement filtering 

[60] 

Instance 

Hardness 

Threshold 
(IHT) 

Simple 

Undersampling 

Eliminates hard-to-

classify majority 

examples via local 
hardness estimation 

[61] 

Easy 

Ensemble 

Ensemble 

Undersampling 

Trains multiple classifiers 

on balanced subsets with 
aggregated prediction 

[62] 

ADASYN Oversampling 

Adaptive oversampling 
focused on sparse and 

borderline minority 

regions 

[63] 

SMBA 
Ensemble 

Oversampling 

Applies bagging with 
local density-aware 

synthetic sampling per 

ensemble member 

[64] 

Cost-

sensitive 

SVM 

Cost-sensitive 

Learning 

Adjusts misclassification 

costs to penalize majority-

class errors less 

[65] 

KDEBO 
Kernel density-

based methods 

Density-guided 

differential evolution 

oversampling in high-
density minority regions 

to avoid noise 

[35] 

  

Table XII reports the experimental results in terms of AUC, G-

Mean, F-measure, and accuracy. The proposed method 

consistently outperforms all baseline approaches across these 

metrics. While ENN and IHT help clarify decision boundaries, 

they often fail to retain the most informative minority instances 

that our method preserves. EasyEnsemble and KDEBO 

partially address class imbalance but introduce high variance or 

synthetic noise. Similarly, AsymBoost improves minority recall 

but struggles to maintain overall accuracy, unlike the proposed 

method’s multi-objective selection strategy. In contrast to 

synthetic methods such as ADASYN and SMBA, which expand 

the dataset, the proposed method selectively retains high-

impact minority instances based on their difficulty and 

discriminative value. Several key factors contribute to the 

superior performance of the proposed method: 

 Overlap Reduction: By integrating a fuzzy hardness 

metric with a chaotic multi-objective evolutionary 

process, the method avoids selecting noisy or 

overlapping samples—an issue that commonly 

degrades oversampling methods. 

 Scalability and Stability: Experimental results 

demonstrate that the method scales well with data size, 

maintaining stable convergence and computational 

efficiency even on datasets exceeding 500,000 

instances. 

 Granular Difficulty Modeling: Fuzzy hardness enables 

more precise estimation of instance importance 

compared to binary selection rules or density-based 

heuristics. 

 Chaotic Multi-objective Optimization: The use of the 

Imperialist Competitive Algorithm enhanced with 

chaotic maps promotes both rapid convergence and 

diverse solutions within a large search space. 

 

These findings confirm that strategically guided instance 

selection—grounded in difficulty-awareness and optimized 

through chaotic evolutionary dynamics—provides a robust and 

scalable solution to extreme class imbalance in large-scale 

tabular learning. 
 

 
Table XII 

Performance Comparison on Real-World Datasets with Severe Class 

Imbalance 

Method AUC G-Mean Fmeasure 
Balanced 

Acc. 

ENN [60] 45.0 75.4 75.1 75.8 

IHT [61] 33.0 74.6 68.0 79.9 

EasyEnsemble [62] 35.5 83.0 89.8 87.3 

ADASYN [63] 34.3 76.2 70.3 76.3 

SMBA [64] 56.0 74.9 76.6 74.4 



Journal of Computer and Knowledge Engineering, Vol. , No.. 2019. 13 

 

 

Cost-sensitive SVM [65] 41.7 73.9 74.9 74.8 

KEDBO[35] 53.4 76.08 71.92 79.17 

Proposed method 58.33 77.24 91.65 78.32 

 

CONCLUSION AND FUTURE WORK 

This paper introduced a difficulty-aware instance reduction 

method that combines chaotic evolutionary optimization with 

fuzzy-informed instance selection to enhance classification. 

The method uses a chaotic Imperialist Competitive Algorithm 

(ICA) guided by a multi-objective fitness function balancing 

accuracy and fairness. A distance-weighted decision surface 

further ensures structural class separation. Comprehensive 

experiments on datasets with different intensities of imbalance 

demonstrated the method’s superiority over competing 

methods. We also investigated the effect of kernel functions and 

chaotic maps. The RBF kernel with the logistic map yielded the 

best performance when accuracy was prioritized, while the 

sinusoidal map was more effective for dimensionality 

reduction. The chaotic components accelerated convergence 

and enhanced diversity in the solution space. 

Key strengths of the proposed method include: 

 Robust handling of class imbalance without synthetic 

data 

 Flexibility for different optimization goals (e.g., 

accuracy vs. reduction rate) 

 Consistent generalization across small and large 

datasets 

Future work will explore the following directions: extending 

the method to multi-class scenarios with overlapping 

distributions, enhancing scalability through dimensionality-

aware optimization and sparse instance modeling, integrating 

instance selection with graph-based learning or self-supervised 

representations, and applying the method to real-time or 

streaming environments with incremental instance selection 

and dynamic class balancing. 
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