
Journal of Computer and Knowledge Engineering, Vol. 7, No. 2, 2024. (51-64) 
 

 

 
Ferdowsi 

University of 

Mashhad  

 

 

Journal of Computer and Knowledge 

Engineering 
 

https://cke.um.ac.ir 

 

 

 

 

 

 
 

Information and 

Communication 

Technology Association of 

Iran 

  

 

 

 

Machine Learning Classifiers and Data Synthesis Techniques to Tackle with 

Highly Imbalanced COVID-19 Data 
Research Article 

Avaz Naghipour1 , Mohammad Reza Abbaszadeh Bavil Soflaei2, Mostafa Ghaderi-Zefrehei3  

DOI: 10.22067/cke.2024.88940.1121 

 

Abstract The COVID-19 pandemic has highlighted the 

urgent need for rapid and accurate diagnostic methods. In 

this study, we evaluate three machine learning models—

Random Forest (RF), Logistic Regression (LR) and 

Decision Tree (DT)—for detecting COVID-19 trained on 

preprocessed imbalanced datasets. The dataset used in this 

study is heavily imbalanced, with 5086 negative and 558 

positive cases, posing a significant challenge for effective 

model training. To this end, we demonstrate the capability 

of two advanced data synthesis algorithms, Conditional 

Tabular Generative Adversarial Network (CTGAN) and 

Tabular Variational Autoencoder (TVAE), in addressing 

the class imbalance inherent in the dataset. The classifiers 

trained on the original as well as the balanced datasets 

were evaluated for comparison. Our findings reveal that 

RF obtains the highest accuracy of 98.83% on the 

CTGAN-balanced dataset. In conclusion, our results verify 

the potential of coupling data synthesis with traditional 

machine learning for the diagnosis of COVID-19. We hope 

that we become a valuable contributor to the ongoing AI 

for pandemic. 

Keywords COVID-19 Detection, Machine Learning, 

CTGAN, TVAE, Class Imbalance. 

 
1. Introduction 
In late 2019, a pneumonia outbreak originated in Wuhan, 

China, which was subsequently identified as being caused 

by the SARS-CoV-2 virus by the World Health 

Organization (WHO) [1]. SARS-CoV-2 is an enveloped 

virus with a positive-sense, single-stranded RNA genome 

[2]. This virus primarily targets the human respiratory 

system and is highly transmissible through respiratory 

droplets from coughing, sneezing, and direct physical 

contact [3]. Additionally, it can spread via contact with 

contaminated surfaces, where the virus can persist for 

several days depending on environmental conditions [4]. 
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Common symptoms of the infection include fever, dry 

cough, loss of taste and smell, sore throat, and muscle pain 

[2]. The pandemic has had widespread impacts, leading to 

the postponement of school examinations, closure of 

offices, and widespread layoffs [5]. Estimates from the 

World Health Organization (WHO) show that the full 

death toll associated directly or indirectly with the 

COVID-19 pandemic between 1 January 2020 and 31 

December 2021 was approximately 14.9 million [6]. The 

recent surge in data science has empowered healthcare 

professionals by providing tools to analyze massive 

datasets of health information for disease detection. This 

progress is driven by various techniques like deep learning, 

data mining, and especially machine learning (ML). 

However, a key challenge remains: selecting the most 

appropriate ML algorithms that can learn effectively from 

existing data and make accurate predictions for entirely 

new cases [2]. ML is crucial in the healthcare sector, 

particularly for diagnosing diseases, detecting outbreaks, 

and preventing illnesses. ML algorithms are employed for 

numerous purposes, including predicting diabetes [7], 

forecasting the progression of Alzheimer's disease [8], 

heart disease [9], and other medical conditions. Due to the 

scarcity of tabular data on COVID-19, we tested our 

hypothesis using a dataset available on Kaggle (at this 

link), which clearly represents the clinical symptoms of 

COVID-19. This dataset, like many others in the field of 

ML, is heavily imbalanced, containing 5086 negative 

cases and 558 positive cases, resulting in a 1:9 ratio. 

Training ML models on imbalanced datasets poses several 

challenges: the models tend to be biased towards the 

majority class, leading to poor performance in detecting 

the minority class [10]. This imbalance can result in lower 

recall for the minority class, skewed accuracy metrics, and 

an overall decrease in the model's ability to generalize well 

to new, unseen data [11]. Our study seeks to improve the 

classification of COVID-19 by conducting a thorough 
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comparative analysis of three machine learning (ML) 

models: Logistic Regression (LR), Random Forest (RF), 

and Decision Tree (DT). Additionally, to mitigate the 

effects of imbalanced dataset, we investigate two advanced 

data augmentation techniques: Conditional Tabular 

Generative Adversarial Network (CTGAN) [12] and 

Tabular Variational Autoencoder (TVAE) [12], to balance 

the dataset. To boost classification accuracy and evaluate 

the effectiveness of different oversampling techniques, we 

trained each ML model on data balanced using these 

techniques. This allowed us to compare the models' 

performance based on the quality of the synthetic data 

generated by each technique. Additionally, we ensured the 

effectiveness of data balancing by comparing the 

performance of these models against models trained on 

both the original unbalanced dataset and a baseline model. 

Our results show exceptional accuracy and performance 

metrics, exceeding those reported in other studies. 

The structure of the study is outlined as follows: Section 

2 provides an overview of the relevant literature related to 

our study. In Section 3, the proposed methodology is 

detailed, with a thorough explanation of its components 

and techniques like CTGAN and other used methods. 

Section 4 presents the experimental findings, including the 

results of the proposed method. Section 5 is the discussion 

section where the findings of the study are analyzed and 

compared with other studies, along with an evaluation of 

the proposed model’s strengths and limitations. Finally, 

the article is concluded in Section 6, with a summarization 

of the key findings and discussion about implications for 

future research in the field. 

 

2.  Literature Review 
Machine learning has been extensively employed in 

various domains to address challenges posed by the 

COVID-19 pandemic. This section reviews existing 

literature in the fields of COVID-19 vaccine uptake 

prediction, COVID-19 detection through medical images, 

and techniques to address class imbalance in datasets. 

These studies are grouped based on the methodologies 

they use, highlighting the relevance of each to our 

research, and comparing the datasets and performance 

metrics where appropriate. 

 

a. Machine Learning for COVID-19 Vaccine 

Acceptance and Uptake Prediction 

Within the realm of machine learning applied to 

vaccination studies, recent research has explored 

predicting vaccine acceptance and identifying key factors 

influencing uptake. For instance, a study [13] investigates 

barriers to COVID-19 vaccine uptake in Ghana using a 

cross-sectional survey and machine learning algorithms. 

The study identifies significant factors, such as the type of 

medical facility visited and the presence of underlying 

conditions, with the random forest model emerging as the 

most effective predictor. Similarly, another study [14] 

applied machine learning algorithms to assess COVID-19 

vaccine acceptance in countries where residents had 

already been vaccinated. This study differs from [13] by 

focusing on vaccine acceptance in different regions and 

contexts, showcasing machine learning’s versatility in 

vaccine-related studies. Further, a study [15] applied 

machine learning algorithms to analyze vaccination rates 

across states in the United States. While both [14] and [15] 

utilize machine learning, [14] targets acceptance while 

[15] investigates actual vaccination rates, highlighting the 

diverse applications of machine learning in vaccine-related 

health studies. However, none of these studies address the 

issue of class imbalance in datasets, which is a crucial 

aspect of improving predictive accuracy, especially in 

health-related research. Our study seeks to extend this 

work by incorporating advanced data balancing techniques 

like CTGAN and TVAE to tackle this imbalance. 

 

b. Machine Learning and Deep Learning for COVID-

19 Detection Using X-ray Images 

A significant body of work has focused on using machine 

learning and deep learning techniques to detect COVID-19 

through medical images, particularly X-rays. One such 

study [2] employed machine learning algorithms to detect 

lung changes associated with COVID-19 from X-ray 

images. The models classified X-ray images into 

categories such as COVID-19 patients, pneumonia 

patients, and healthy individuals. Among the models 

tested, VGG-19 with augmentation achieved the best 

performance, with 99% training accuracy and 98% testing 

accuracy. This approach shows great potential for 

enhancing patient prognosis tracking and supporting 

treatment efficacy studies. Several other studies have also 

demonstrated the efficacy of deep learning techniques in 

detecting COVID-19. For instance, a study [16] utilized 

Convolutional Neural Networks (CNNs) combined with a 

filter family and the weight-sharing feature extractor 

SqueezeNet. The study achieved high detection rates using 

deep learning for COVID-19 cases, illustrating the power 

of CNN features and neural network classifiers. Similarly, 

[17] and [18] applied CNN models for COVID-19 

detection, achieving accuracies of 90% and 97%, 

respectively. In particular, [18] proposed a CNN model for 

detecting COVID-19-associated changes from X-ray 

images and demonstrated high accuracy across various 

classes. In another study [19], the authors employed 

several deep learning models, including CNNs, long short-

term memory (LSTM) networks, GANs, and residual 

neural networks (ResNets), for classifying COVID-19 

from other pneumonia causes using chest X-ray images. 

Among these, the CNN-based approach showed the 

highest accuracy of 99%. Despite their promising results, 

these studies predominantly focus on deep learning 

methods without addressing class imbalance, which can 

skew results, especially in smaller datasets with uneven 

class distributions. In contrast, our study applies data 

balancing techniques such as CTGAN and TVAE, which 

allow us to effectively balance the dataset and improve the 

robustness of machine learning models. 

 

c. Handling Class Imbalance in COVID-19 Datasets 

Class imbalance is a recurring issue in medical datasets, 

particularly in COVID-19 studies, as the number of 

positive cases is often significantly lower than the number 

of negative cases. Addressing this issue is crucial for 

improving model performance and ensuring that 

predictions are not biased toward the majority class. A 

notable study [5] tackled this challenge by employing 
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various oversampling techniques, including the Synthetic 

Minority Oversampling Technique (SMOTE). SMOTE 

generates synthetic samples of the minority class to 

balance the dataset, and this study further enhanced it by 

introducing a modified version called Outlier-SMOTE, 

which focuses on data points that are farther from others. 

The proposed method improved performance across 

several benchmark datasets, including a COVID-19 

dataset. While SMOTE and its variants are widely used, 

they may not always be sufficient to handle more complex 

data distributions, particularly in tabular data. Our study 

builds on this by implementing advanced generative 

approaches such as Conditional Tabular Generative 

Adversarial Networks (CTGAN) and Tabular Variational 

Autoencoders (TVAE) to synthesize realistic samples 

from the minority class. These techniques have shown 

superior performance in balancing datasets, and our results 

indicate that CTGAN, in particular, outperforms 

traditional methods like SMOTE. For instance, our 

CTGAN-balanced dataset, trained with the Random Forest 

model, achieved accuracy levels comparable to deep 

learning models, underscoring the effectiveness of GAN-

based approaches in handling class imbalance. 

 

d. Machine Learning for Predicting COVID-19 in 

Vulnerable Populations and Other Domains 

In addition to detection and vaccination prediction, 

machine learning has been applied to address the unique 

challenges posed by COVID-19 in vulnerable populations 

and other sectors. One study [20] evaluated a machine 

learning model’s ability to predict COVID-19 diagnosis 

among individuals with intellectual and developmental 

disabilities (IDD). The random forest model, trained on 

over 700 variables from three major IDD-specific datasets, 

achieved an accuracy of 62.5%. This demonstrates the 

challenges in applying machine learning to vulnerable 

populations where data availability and quality may be 

limited. Furthermore, machine learning has been applied 

beyond healthcare. For example, [21] developed a 

predictive model using routine clinical laboratory test data 

to forecast patient survival outcomes. The combination of 

Lasso and SVM algorithms produced an ROC curve area 

of 0.9277 using just eight clinical parameters. In a non-

health-related study [22], machine learning was applied to 

a global aviation dataset to predict financial distress. This 

study highlighted the potential of machine learning to 

provide accurate predictions in industries heavily impacted 

by the pandemic. 

 

e. Deep Learning for Automatic COVID-19 Diagnosis 

Using Chest X-rays 

Several studies have employed deep learning models to 

automatically diagnose COVID-19 from chest X-rays. A 

study [23] modified deep learning architectures such as 

VGG16, VGG19, ResNet50, and InceptionV3 to classify 

COVID-19 cases. These models, collectively termed 

"COV-DLS," achieved high classification accuracies, with 

Modified-VGG16 achieving the highest at 98.61%. 

Another study [24] applied transfer learning to 

automatically detect COVID-19 from chest X-ray images, 

with the VGG16 model achieving 98% testing accuracy. 

Finally, another deep learning study [25] explored pre-

trained CNN models for the automatic diagnosis of 

COVID-19 from chest X-rays, using a dataset of over 

1,200 CXR images from COVID-19 patients. The VGG16 

model achieved the highest accuracy of 98.28%, 

demonstrating the potential of CNN-based models for 

rapid and accurate COVID-19 detection. However, similar 

to the other deep learning approaches reviewed, these 

models did not consider class imbalance, which can lead 

to overfitting in imbalanced datasets. Our study, by 

contrast, addresses this issue by implementing CTGAN 

and TVAE techniques, providing a more robust solution 

for handling class imbalance. 

In summary, our study fills a critical gap in the literature 

by focusing on addressing class imbalance in COVID-19 

datasets using advanced data synthesis techniques such as 

CTGAN and TVAE. By comparing the performance of 

Random Forest, Logistic Regression, and Decision Tree 

models, our research offers a comprehensive evaluation of 

machine learning models trained on both balanced and 

imbalanced datasets, with results that are comparable to or 

exceed those of deep learning models. 

 

3. Methodology 
This section outlines the methodology employed in our 

study for COVID-19 detection using the COVID-19 

dataset. We began by conducting rigorous data 

preprocessing procedures to ensure data quality and 

prepare the dataset for input into machine learning models. 

Preprocessing steps included feature selection, column 

dropping, label encoding, train/test splitting, and feature 

standardization. All experiments were performed using 

Python 3.9.18 on a system running Windows 11 with 

16GB of RAM, an NVIDIA RTX3070TI graphics card, 

and an AMD Ryzen™ 9 6900HX CPU, ensuring 

computational efficiency and accuracy in our analyses. 

Detailed descriptions of each step in our methodology are 

provided in the following subsections. Figure 1 provides a 

visual diagram of the proposed ensemble classifier. 

 

a. Dataset Description 

The dataset used in this study is the COVID-19 dataset 

which is a publicly available dataset at this link, and it is 

an invaluable resource in the realm of healthcare and 

machine learning. This dataset comprises anonymized data 

from patients at Hospital Israelita Albert Einstein in São 

Paulo, Brazil, who underwent SARS-CoV-2 RT-PCR and 

additional laboratory tests during their hospital visits [5]. 

It includes 5644 test samples from various patients, 

evaluated across 111 attributes including Haemoglobin, 

Platelets, and Arterial Blood Gas Analysis. Among these 

samples, only 553 individuals tested positive for COVID-

19. This reveals a notable class imbalance, with a ratio of 

1:9 (minority to majority class).  

 

b. Preprocessing 

 In this section, we provide a comprehensive overview of 

the preprocessing techniques employed to prepare the 

dataset for machine learning analysis. Each step is 

meticulously detailed, covering approaches for feature 

selection, label encoding, train/test partitioning, and 

feature standardization. We also explain the significance 

https://www.kaggle.com/datasets/einsteindata4u/COVID19
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and reasoning behind hyperparameter tuning, using 

`GridSearchCV` to optimize the performance of our 

classifiers. 

 

c. Feature Selection  

Given the heavily imbalanced nature of our dataset, the 

dataset was also significantly influenced by null values. 

This required additional feature selection and reduction to 

ensure the quality of data and performance of our models. 

Initially, features that had a null value percentage of more 

than 90% were removed. These features are likely to have 

very few and they are too insubstantial to contribute any 

inference into the modeling procedure. It is best to remove 

them to ensure a higher overall quality of the dataset. Next, 

other features that were taken out are 'Patient ID', 'Patient 

admitted to regular ward (1=yes, 0=no)', 'Patient admitted 

to semi-intensive unit (1=yes, 0=no)' and 'Patient admitted 

to intensive care unit (1=yes, 0=no)' as these features were 

not informative and not related to our objective of 

predicting whether a patient was positive or not. 

Subsequently, features with zero variance, particularly 

feature 'Parainfluenza 2', was dropped out. This meticulous 

feature selection ensured that only the most relevant and 

informative features were retained for subsequent analysis. 

Furthermore, according to study [5], we also conducted a 

similar preprocessing step. The last 19 columns in our 

dataset were associated with the presence of antigens, 

represented as binary values (0 or 1). Due to significant 

null values in these columns, we calculated a row-wise 

sum. Subsequently, all 19 columns were merged into a 

single column named ‘other_disease’. It was determined 

by the authors of [5] that 13% of the patients tested positive 

for at least one antigen. Any remaining scattered null 

values were replaced with the mean of their respective 

non-null values. 

 

 

 

 

 
 

Figure 1. Flowchart of the Proposed Method 
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3.2.2    Data Splitting 

Data splitting is a fundamental technique in ML that 

involves dividing the dataset into separate subsets for 

training, validation, and testing. This method facilitates 

model evaluation and ensures that classifiers are assessed 

on unseen data, thereby improving their generalizability. 

In our study, we partitioned the dataset into training and 

testing sets using the `train_test_split` function from the 

Python scikit-learn [26] package. Specifically, we adopted 

an 80:20 split ratio for the classifiers in our proposed 

method. 

 

3.2.3    Feature Scaling 
Feature scaling is a crucial component in machine learning 

pipelines, ensuring that the range of features is 

standardized. This standardization reduces the impact of 

varying magnitudes and enhances the convergence of 

optimization algorithms. In our study, we utilized the 

StandardScaler module from the scikit-learn [26] library to 

perform feature scaling. The standardization process is 

mathematically expressed as (1) 

𝑍 =  
𝑥 −  𝜇

𝜎
 (1) 

In this transformation, 𝑍 represents the standardized 

value of the feature, while 𝑥 denotes its original value. The 

parameters 𝜇 and 𝜎 represent the mean and standard 

deviation of the feature, respectively. Through this 

mathematical process, the distribution of the feature is 

effectively centered around a mean of zero with a standard 

deviation of one.  

 

d. Hyperparameter Tuning 

Hyperparameter tuning is a meticulous process aimed at 

selecting the optimal hyperparameters for a machine 

learning model, enhancing its functionality and 

generalizability. This comprehensive search across 

specified parameter values refines model performance and 

tailors it to the dataset's nuances. In our research, we 

employed GridSearchCV [26] from the scikit-learn library 

to determine the best hyperparameters for all the classifiers 

used. The results of this grid search, detailing the optimal 

parameters for each model, are summarized in Table 1. 

 

e. Machine Learning Classifiers 

Machine learning (ML) algorithms represent a significant 

advancement over classical algorithms, possessing the 

ability to learn from data and improve their performance 

autonomously [27]. By leveraging machine learning 

techniques, systems can enhance their capabilities and 

adapt to various environments without explicit 

programming. ML algorithms are broadly categorized into 

supervised and unsupervised learning approaches, each 

offering unique capabilities for data analysis and 

prediction [28]. The following section introduces the ML 

algorithms used as classifiers in our methodology, 

implemented with the scikit-learn [26] Python package, 

specifically for the detection of COVID-19. The selection 

of Random Forest (RF), Logistic Regression (LR), and 

Decision Tree (DT) classifiers was driven by their 

complementary strengths, simplicity, and ease of 

implementation. RF is robust and handles imbalanced 

datasets effectively, providing high accuracy and insights 

into feature importance. LR offers simplicity and 

interpretability, serving as a solid baseline for comparison. 

DTs are not only easily interpretable but also capable of 

capturing non-linear relationships. Using these classifiers 

allows us to evaluate the impact of data synthesis 

techniques like CTGAN and TVAE comprehensively, 

ensuring a thorough analysis of COVID-19 detection 

performance. 

 

Random Forest (RF)     . Random Forest is an ensemble 

learning technique that involves training multiple decision 

trees during the training phase [29]. In this method, each 

tree within the forest independently predicts the target 

variable, and the final prediction is determined through 

majority voting among the predictions of all trees. The 

primary advantage of Random Forests lies in their ability 

to reduce classification errors compared to traditional 

classifiers, while also being less prone to overfitting [7]. 

 

 

Table 1. Best Hyperparameters Obtained through GridSearchCV 

Hyperparameters with 

Model 

Name 
Original Data CTGAN-Balanced TVAE-Balanced 

LR C:1, penalty:l2, solver:liblinear 
C:1, penalty:l2,  

solver:liblinear 

C:1, penalty:l2,  

solver:liblinear 

DT 
max_depth:10, 

min_samples_split:5  
max_depth:10, min_samples_split:5 max_depth:5, min_samples_split:2 

RF 
max_depth:None, 

min_samples_split:2, 

n_estimators:100 

max_depth:None, 

min_samples_split:5, 

n_estimators:200 

max_depth:None, 

min_samples_split:2, 

n_estimators:100 
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Decision Trees (DTs) are constructed, and their 

majority voting is calculated as follows (2) [7]: Let 𝐶𝑞(𝑝) 

represent the class prediction of the 𝑞𝑡ℎ Random Forest, 

and 𝑀𝑉 denotes the majority vote of the constructed 

Decision Trees. 

This approach combines the predictions of multiple 

decision trees to produce a final prediction that is generally 

more robust and accurate than the prediction of any 

individual tree. 

 

𝑐(𝑝) = 𝑀𝑉{𝐶𝑞(𝑝)}  (2) 

 

Logistic Regression (LR)     . Logistic Regression is a linear 

classification algorithm that models the probability of a 

binary outcome using a logistic function. It is employed to 

estimate the likelihood of an event occurring based on 

predictor variables [30,31]. The algorithm utilizes the 

sigmoid function (3), which maps the input to the range 

between 0 and 

 

𝜎(𝑧) =
1

1 +  𝑒−𝑧
 (3) 

  
Decision Tree (DT)      . Decision Tree is a versatile and 

intuitive machine learning algorithm used for both 

classification and regression tasks. It operates by 

recursively partitioning the feature space into regions, 

guided by the values of input features, in a hierarchical 

manner. At each node of the tree, a decision is made based 

on a feature's value, aiming to maximize information gain 

or minimize impurity, such as entropy or Gini impurity. 

The decision tree algorithm selects the feature and 

threshold that optimize information gain or minimize 

impurity at each node, resulting in a hierarchical structure 

that facilitates interpretation and decision-making. 

Decision trees are favored for their simplicity, 

interpretability, and capability to handle both numerical 

and categorical data. Additionally, ensemble methods like 

Random Forests and Gradient Boosting Trees extend the 

capabilities of decision trees, enhancing their predictive 

power and robustness. 

 

f. Our Approach to Balancing the Dataset 

In addressing the class imbalance in our dataset, we 

employed two advanced data synthesis techniques: 

Conditional Tabular Generative Adversarial Network 

(CTGAN) and Tabular Variational Autoencoder (TVAE). 

Our primary goal was to synthesize additional data to 

equalize the number of instances between the negative and 

positive classes. Initially, our dataset comprised 5086 

negative and 558 positive cases, creating a significant 

imbalance that posed a challenge for effective machine 

learning model training. To mitigate this issue, we adopted 

the following approach: 

I. Training on Positive Cases: We exclusively trained 

both CTGAN and TVAE on the 558 positive cases. 

This step was crucial to ensure that the models could 

accurately learn the data distribution specific to the 

positive class. 

II. Synthesizing Data: After training, both CTGAN and 

TVAE were utilized to generate synthetic data. The 

aim was to create enough synthetic positive cases to 

balance the dataset. Specifically, we synthesized 

4528 additional positive cases. This number was 

calculated to match the number of negative cases 

(5086), ensuring an equal distribution. 

III. Combining Data: The 4528 synthetic positive cases 

generated by CTGAN and TVAE were then added to 

the original dataset. This resulted in a balanced 

dataset with 5086 instances each of negative and 

positive cases. 

IV. By employing this method, we ensured that our 

machine learning models were trained on a balanced 

dataset, thereby enhancing their ability to accurately 

detect COVID-19 cases without bias towards the 

majority class. This approach demonstrates the 

effectiveness of CTGAN and TVAE in generating 

synthetic data to address class imbalances in datasets. 

Figure 2 demonstrates the class distribution of both 

balanced and imbalanced versions of the dataset. 

 

g. Utilization of CTGAN for Data Balancing 

In numerous real-world scenarios, datasets often exhibit 

significant class imbalance, where one class greatly 

outweighs the others [32]. This class imbalance poses 

challenges for machine learning models, as they typically 

struggle to perform well on the minority class due to a lack 

of sufficient examples for learning. CTGAN (Conditional 

Tabular Generative Adversarial Network) [12] emerges as 

a powerful solution for generating synthetic data that 

accurately replicates the distribution of real-world data, 

leveraging the capabilities of Generative Adversarial 

Networks (GANs) [33]. CTGAN was specifically 

developed to address various challenges encountered in 

generating synthetic tabular data in the field of Informatics 

in Medicine, including handling mixed data types, non-

Gaussian and multi-modal distributions, and highly 

imbalanced categorical columns. Additionally, the 

algorithm combines softmax (4) and tanh functions in its 

output to effectively generate a blend of discrete and 

continuous columns simultaneously [34]. 

𝑓(𝑥)𝑖 =  
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝐾
𝑗=1

 (4) 

Tanℎ activation function is shown in Eq. (5) 

𝑓(𝑥) =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (5) 

  

CTGAN workflow is listed in three steps below [10]: 

 Identification of continuous columns: 

CTGAN initially identifies each continuous column and 

determines the number of modes present within them. This 

is achieved by fitting the modes into a Gaussian mixture 

using the Variational Gaussian Mixture model (VGM) 

[35]. 
 Computing probability density: 

Then, CTGAN computes the probability density for each 

column value in every row, thereby assessing the 

likelihood of each value occurring. 

 Sampling and normalization: 
Finally, CTGAN samples a mode based on the calculated 



Journal of Computer and Knowledge Engineering, Vol. 7, No.2. 2024. 57 

 

 

 

probability density and uses this sampled mode to 

normalize the value in the new row. This process ensures 

that the generated data accurately reflects the distribution 

observed in the original dataset. 

Figure 2  visually illustrates both the imbalanced and 

balanced datasets, vividly depicting the skewed class 

distribution in the imbalanced scenario. However, after 

applying CTGAN, the balanced version emerges, ensuring 

equitable representation of both classes. This balance not 

only addresses the skewed distribution but also contributes 

to enhanced model performance by providing sufficient 

examples for learning from each class. Additionally, Table 

2 represents the hyperparameters used in CTGAN. 

 

h. Other Balancing Techniques 

In our study, instead of solely relying on CTGAN, we 

adopted another approach by evaluating a widely adopted 

data synthesis technique: Tabular Variational Autoencoder 

(TVAE) [12]. TVAE represents an established method in 

the field for addressing class imbalance within datasets. 

The same mentioned classifiers were also trained on data 

balanced by TVAE. The results of TVAE are discussed in 

the next sections. 

 

i. Tabular Variational Autoencoder 

In addition to evaluating CTGAN, we conducted thorough 

comparative analysis by testing another widely utilized 

method in balancing and oversampling techniques, namely 

Tabular Variational Autoencoder (TVAE).  Variational 

Autoencoders (VAEs) are advanced deep generative 

models widely used for generating synthetic data from real 

datasets. VAEs consist of two main components: The 

Encoder and the Decoder. The Encoder compresses the 

input data into a latent probability distribution, while the 

Decoder generates new instances based on this inferred 

latent space. This approach allows VAEs to learn and 

recreate the original input data from the learned probability 

distribution. In recent research, Xu et al. [12] introduced 

the Tabular Variational Autoencoder (TVAE), a variant of 

VAE specifically tailored for tabular data. This study 

applied TVAE to generate synthetic COVID-19 data. The 

TVAE model takes real COVID data and analyzes feature 

variables based on their statistical and probabilistic 

distributions. The sensitivity of synthetically generated 

data is crucial in biomedical domains, especially in disease 

research. The TVAE model addresses this sensitivity by 

incorporating the Evidence Lower Bound Loss (ELBO) 

[36]. To illustrate the computational process, the TVAE 

model is represented by the following Eq. (6): 

 

𝐺(𝑥) = 𝑇(𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑥))) 

 

(6) 

 

Here, 𝐺(𝑥)  represents the generated synthetic data of 

COVID-19 instances, 𝑥 represents a real data instance of 

COVID-19 instances, and 𝑇 is the function of the tabular 

variational autoencoder that takes 𝑥 as input and generates 

𝐺(𝑥) . The 𝐸𝑛𝑐𝑜𝑑𝑒𝑟() function learns the latent 

distribution from real data, while the 𝐷𝑒𝑐𝑜𝑑𝑒𝑟() function 

generates synthetic data by analyzing these latent 

distributions. The TVAE method operates in a semi-

supervised manner for the synthetic generation of COVID-

19 data. The model first learns the latent space distribution 

of real data and then replicates this data while minimizing 

the loss function. This semi-supervised nature makes the 

TVAE model well-suited for use in the biomedical 

domain, particularly for generating synthetic data that 

accurately reflects the characteristics of real-world 

datasets. In this study, TVAE was used to produce 

synthetic samples representing both negative and positive 

for the COVID-19 dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.  

CTGAN-Balanced and Imbalanced versions of the Covid-19 Dataset. 
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Table 2. Hyperparameters of CTGAN. 

Hyperparameters Values 

embedding_dim 128 

generator_lr 0.0001 

generator_decay 0.00001 

discriminator_lr 0.00001 

discriminator_decay 0.001 

discriminator_steps 3 

epochs 500 

4. Experimental Results  
This section evaluates the effectiveness of the 

oversampling method using various well-known machine 

learning metrics, including accuracy, precision, recall, F1-

score, and ROC/AUC. Subsection 4.1 provides detailed 

explanations of these metrics. Additionally, we perform a 

comparative analysis between the results obtained from 

the balanced data approach and those from standalone 

models, highlighting the improvements achieved solely 

through dataset balancing. The outcomes for the baseline 

classifiers trained on the original dataset are presented in 

subsection 4.2. Subsections 4.3 and 4.4 detail the findings 

for the classifiers trained on CTGAN-balanced data and 

TVAE-balanced data, respectively. 

 

a. Performance Metrics 

Before delving into the evaluation metrics employed in 

this study, it is imperative to understand key terms such as 

True Positive (TP), True Negative (TN), False Positive 

(FP), and False Negative (FN). These terms are 

fundamental in assessing the performance of classification 

models. In this paper, all performance metrics are 

explained alongside their corresponding formulas, 

ensuring clarity and enabling a comprehensive 

understanding of the evaluation process. 

 True Positive (TP): Instances correctly predicted as 

positive by the model. 

 True Negative (TN): Instances correctly predicted as 

negative by the model. 

 False Positive (FP): Instances incorrectly predicted as 

positive by the model. 

 False Negative (FN): Instances incorrectly predicted as 

negative by the model. 

 

b. Accuracy 

Accuracy, a crucial metric in classification tasks, 

quantifies the proportion of correctly predicted cases, 

encompassing both true positives and true negatives, out 

of all instances. The formula for Accuracy is provided in 

(7) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

(7) 

 

c. Precision 

Precision, a vital metric in classification assessment, 

emphasizes the quality of positive predictions by 

determining the proportion of correctly identified positive 

instances out of all instances predicted as positive. A 

higher precision value signifies a lower rate of false 

positives. The formula for Precision is provided in (8) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

=  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

(8) 

 

d. Recall 

Recall (9), often referred to as sensitivity or true positive 

rate, assesses the model's capability to identify positive 

cases accurately. It quantifies the proportion of actual 

positive instances that the model correctly predicts. A 

higher recall value indicates a lower rate of false negatives. 

The formula for Recall is expressed as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (9) 

 

e. F1-Score 

F1-Score (10), a harmonic mean of precision and recall, 

provides a balanced evaluation by considering both false 

positives and false negatives. This metric is especially 

valuable in scenarios where class distribution is 

imbalanced. By combining precision and recall, F1-Score 

offers a comprehensive assessment of the model's 

performance. The formula for F1-Score is defined as: 

𝐹1

= 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(10) 

 

f. ROC/AUC 

The trade-off between true positive rate (recall) and false 

positive rate is represented graphically by the ROC curve. 

It provides an overview of the model's overall performance 

across several thresholds. 

 

g. Baseline Results: Training Results on the Original 

Dataset 

In this subsection, Table 3 presents the results of the three 

classifiers trained on the original dataset. This table 

provides a comprehensive analysis of performance 

metrics, including accuracy, precision, recall, F1-score, 

and ROC/AUC, for each classifier. It's worth noting that 

these classifiers were trained on the original, pre-processed 

COVID-19 dataset. Among these models, LR emerges as 

the top performer, achieving an accuracy of 88%. 

Additionally, Figure 3 represents the baseline model 

accuracies and ROC curves, providing a comprehensive 

comparison of the models' performance before applying 

data balancing techniques. 
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Table 3. Performance of Classifiers, Trained on Original COVID-19 Dataset, with 80:20 Split Ratio. 

 

Model Label Precision Recall F1-Score Accuracy AUC 

RF 
0 0.90 0.97 0.94 

0.88 0.66 
1 0.67 0.35 0.46 

LR 
0 0.92 0.96 0.94 

0.89 0.72 
1 0.67 0.47 0.55 

DT 
0 0.93 0.93 0.93 

0.89 0.81 
1 0.59 0.59 0.59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Accuracies and ROC Curves of Models Trained on Original Data. 

 

 

Table 4. Performance of Classifiers Trained on CTGAN-Balanced Data, with 80:20 Split Ratio. 

 

Model Label Precision Recall F1-Score Accuracy AUC 

RF 
0 0.93 0.96 0.94 

0.99 0.97 
1 1.00 0.99 0.99 

LR 
0 0.81 0.33 0.47 

0.92 0.65 
1 0.93 0.99 0.96 

DT 
0 0.91 0.83 0.86 

0.97 0.90 
1 0.98 0.99 0.99 
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h. CTGAN-Balanced Dataset Results 

In this subsection, Table 4 presents the results of training 

classifiers with CTGAN-balanced data. The classifiers 

used are Random Forest (RF), Logistic Regression (LR), 

and Decision Tree (DT). The same performance metrics 

are calculated and reported to assess the classifiers' 

effectiveness. As shown in Table 4, RF trained on the 

CTGAN-balanced dataset is the top performer, achieving 

an impressive accuracy of 0.9883 and an AUC of 0.97. 

Additionally, other classifiers also showed improved 

accuracy by balancing their input data with synthetic data. 

i. TVAE-Balanced Dataset Results 

In this subsection, the performance of classifiers trained on 

TVAE-balanced data is presented in Table 5. The same set 

of metrics is used to evaluate the classifiers' performance. 

From Tables 5 and 4, it is evident that the RF trained on 

CTGAN-balanced data outperformed all other RF models 

trained on both the original data and TVAE-balanced data, 

achieving an accuracy of 98.83% 

 

 

.

 

Table 5. Performance of Classifiers Trained on TVAE-Balanced Data, with 80:20 Split Ratio. 

 

Model Label Precision Recall F1-Score Accuracy AUC 

RF 
0 0.92 1.00 0.96 

0.94 0.90 
1 1.00 0.81 0.90 

LR 
0 0.94 0.85 0.89 

0.86 0.86 
1 0.74 0.88 0.80 

DT 
0 0.94 0.88 0.91 

0.88 0.87 
1 0.78 0.88 0.82 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Accuracies and ROC Curves of Models Trained on both CTGAN and TVAE-Balanced Dataset. 
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Table 6. Comparison with Similar Methods in the Literature 

 

References Methods Accuracy  

Ahmed et al. 

[16] 
Decision Tree, Random Forest, Neural Network (NN), Naive 

Bayes, Logistic Regression, and k-nearest neighbor 
97.24% 

Hemdan 

et al. [17] 
VGG-19 90% 

Kumar et al. 

[23] 

Modified-VGG16, Modified-VGG19, Modified-ResNet50, and 

Modified-InceptionV3 
98.61% 

Hafeez et al. 

[18] 

CODISC-CNN (CNN based Coronavirus Disease Prediction 

System for Chest X-rays) 
89% 

Taresh et al. 

[25] 

Deep transfer learning algorithms including VGG16 and 
MobileNet 

98.28% 

Turlapati et 

al. [5] 
Outlier-SMOTE, SMOTE, ADASYN 89-90% 

Proposed 

 

Balancing techniques (CTGAN, TVAE) + LR, RF, DT, 

 
98.83% 

 

 

Furthermore, Figure 4 shows the accuracies and ROC 

curves of models trained on both CTGAN and TVAE-

balanced datasets. Notably, the RF classifier trained on the 

CTGAN-balanced data achieves a higher area under the 

curve (AUC) compared to the RF classifiers trained with 

other methods. 
 

5. Discussion 

The findings of this study provide significant insights that 

can enhance the field of COVID-19 detection. By 

assessing the performance of different machine learning 

models, specifically Random Forest (RF), Logistic 

Regression (LR), and Decision Tree (DT), on the Kaggle 

COVID-19 dataset, we add to the existing body of research 

and broaden the understanding of machine learning 

approaches for COVID-19 detection. Our results 

underscore the effectiveness of data synthesis and 

oversampling techniques, such as Conditional Tabular 

Generative Adversarial Network (CTGAN) and Tabular 

Variational Autoencoder (TVAE), in mitigating dataset 

imbalances. These insights are highly valuable for 

healthcare professionals and researchers aiming to 

improve the accuracy and efficiency of COVID-19 

detection and diagnosis. 

 

a. Comparative Analysis with other Studies 

In this section, a comparative analysis of our study's 

findings with those reported in previous research are 

presented in Table 6. 

 

b. Balanced Dataset Effects on Dataset 

Imbalanced datasets have a substantial effect on the 

performance of machine learning techniques. When data is 

skewed, ML algorithms tend to favor the majority classes, 

overlooking those with fewer instances. This bias can 

undermine the overall performance and quality of the ML 

model [37]. The dataset used in this study (COVID-19) is 

heavily imbalanced, with a ratio of 1:9, intensifying the 

associated challenges. In the field of machine learning, 

addressing class imbalance has led to the development of 

various data oversampling and under sampling techniques, 

such as SMOTE [38] (Synthetic Minority Oversampling 

Technique), RUS [39] (Random Under-Sampling), and 

ROS [40] (Random Over-Sampling). However, recent 

research [35] indicates that Conditional Tabular 

Generative Adversarial Network (CTGAN) [35] 

outperforms these traditional methods in data synthesis 

[12,41]. As demonstrated in our study, employing 

CTGAN-based data oversampling yields superior results. 

When utilizing the same classifiers—Random Forest (RF), 

Logistic Regression (LR), and Decision Tree (DT)—

trained on the CTGAN-balanced dataset, we observed an 

overall enhancement of 5% to 10% in the mentioned 

evaluation metrics. Studies like current research on 

pandemics like COVID-19 can be instrumental in 

enhancing future preparedness and containment strategies. 

By focusing on early detection, surveillance, and 

monitoring of potential pathogens in both animal and 

human populations, promoting wildlife and ecosystem 

protection, implementing biosecurity measures, and 

strengthening healthcare infrastructure, we can improve 

our ability to prevent, detect, and respond to future 

pandemics effectively. 

 

6. Conclusion and Future Work 

The COVID-19 pandemic ravaged the globe, and 

overwhelmed healthcare systems on a mass scale, exacting 

an enormous number of lives. Prompt and precise 

diagnostic approaches have been a critical need. In our 

study, we evaluated three machine learning models—
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Random Forest (RF), Logistic Regression (LR), and 

Decision Tree (DT)—for detecting COVID-19 using 

preprocessed datasets. The dataset used in this study is 

heavily imbalanced, with 5086 negative and 558 positive 

cases, posing a significant challenge for effective model 

training. Therefore, we demonstrated the capability of two 

advanced data synthesis algorithms, Conditional Tabular 

Generative Adversarial Network (CTGAN) and Tabular 

Variational Autoencoder (TVAE), in addressing the class 

imbalance inherent in the dataset. The performance of the 

models trained on both the original and balanced datasets 

was then compared. Our findings reveal that RF obtains 

the highest accuracy of 98.83% on the CTGAN-balanced 

dataset. We believe that exploiting data synthesis along 

with classical machine learning approaches holds promise 

for enhancing the accuracy of COVID-19 diagnosis. This 

approach could be particularly beneficial in resource-

limited settings and developing countries. Moving 

forward, we recommend the adoption of balanced datasets 

in training high-performance systems to support effective 

pandemic response.  

Scope for future research lies in incorporating multi-

modal data sources, such as merging chest X-ray images 

with demographic information, comorbidities, and 

laboratory investigations. Prediction of COVID-19 

diagnosis with diverse clinical attributes would only 

further strengthen the diagnostic model. Also, explainable 

machine learning endeavors should be initiated to 

understand the black-box AI decision. Investigation of the 

approach of model explainability techniques and feature 

importance methods may help interpret the model 

decisions in a clinical context, ensuring patient safety, 

privacy, comfort and their rights are held and protected. 

 

Data Availability 

The dataset used in this study is the COVID-19 dataset, 

which is a publicly available dataset at this link: 

https://www.kaggle.com/datasets/einsteindata4u/COVID

19. 
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