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Abstract The increasing popularity of vehicular 

communication systems necessitates efficient and 

autonomous decision-making to address the challenges of 

vehicle-to-vehicle (V2V) and vehicle-to-infrastructure 

(V2I) communications. In this paper, we present a 

comprehensive study on channelization in Cellular 

Vehicle-to-Everything (C-V2X) communication and 

propose a novel two-layer multi-agent approach that 

integrates deep reinforcement learning (DRL) and 

federated learning (FL) to enhance the decision-making 

process in channel utilization. 

Our approach leverages the autonomy of each vehicle, 

treating it as an independent agent capable of making 

channel selection decisions based on its local observations 

in its own cluster. Simultaneously, a centralized 

architecture coordinates nearby vehicles to optimize 

overall system performance. The DRL-based decision-

making model considers crucial factors, such as 

instantaneous channel state information and historical link 

selections, to dynamically allocate channels and 

transmission power, leading to improved system 

efficiency. 

By incorporating federated learning, we enable 

knowledge sharing and synchronization among the 

decentralized vehicular agents. This collaborative 

approach harnesses the collective intelligence of the 

network, empowering each agent to gain insights into the 

broader network dynamics beyond its limited 

observations. The results of our extensive simulations 

demonstrate the superiority of the proposed approach over 

existing methods, as it achieves higher data rates, success 

rates, and superior interference mitigation. 

Keyword C-V2X Optimization, Multi-Agent Learning, 

DRL-based Channel Access, Federated Learning 

Integration 
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1. Introduction 

The Fifth Generation (5G) network has successfully 

transitioned into the commercial stage and is currently 

being swiftly deployed worldwide. Simultaneously, the 

proliferation of mobile devices and interactive services has 

resulted in a substantial surge in data traffic and user 

demands. Alongside human-centric communications, the 

prevalence of machine-to-machine (M2M) terminals is 

expected to escalate significantly, nearing saturation by the 

year 2030. Projections indicate that the number of cellular 

M2M terminals will reach a staggering 100 billion in 2030, 

approximately 10 times the figure in 2022, including more 

than 900 million connected cars [1]. 

In recent decades, the exponential increase in the 

number of vehicles has given rise to a range of critical 

issues, including traffic safety, urban congestion, and 

environmental pollution. In response to these challenges, 

there is a growing focus on establishing a transportation 

ecosystem that is safe, efficient, and sustainable with 

utilizing technologies such as 5G, autonomous and 

connected vehicle. 

For connected vehicle, several technical solutions have 

been put forward where Cellular-V2X or C-V2X stands 

out for its ability to provide superior coverage and quality-

of-service (QoS) compared to other alternatives [2]. 

Furthermore, by integrating advanced technologies such as 

millimeter-wave communication and nonorthogonal 

multiple access the performance of cellular V2X can be 

further enhanced [3]-[5]. Ensuring real-time and reliable 

communication for safety-critical messages poses 

challenges for existing centralized resource allocation in 

cellular networks, mainly due to diverse quality-of-service 
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(QoS) requirements such as ultra-reliability and low-

latency.  

To address these challenges, 3GPP5 has investigated 

advanced resource allocation approaches for Cellular 

Vehicle-to-Everything (C-V2X). These approaches 

involve assigning independent packet priority levels to 

vehicular applications based on their latency and reliability 

requirements. Additionally, sensing-based decentralized 

methods have been proposed to select resource blocks with 

lower interference for transmission. However, it is 

important to note that these approaches primarily focus on 

dedicated resource pools and may overlook potential 

interference between Vehicle-to-Infrastructure (V2I) and 

Vehicle-to-Vehicle (V2V) communications within shared 

resource pools [2],[6],[7]. 

Machine learning has gained attention for improving 

C-V2X by addressing resource allocation problems and 

optimizing channel utilization [8]-[11]. In this paper, we 

have introduced a novel decentralized approach with 

combining federated learning and reinforcement learning 

for channel selection in 5G NR C-V2X connected vehicle 

environments enables efficient utilization of resources, 

enhancing system performance in terms of latency, 

reliability, and spectral efficiency. Our approach addresses 

the challenge of selecting reliable and interference-free 

channels, even with a high volume of vehicles. We 

evaluate our approach in simulation and show that it 

outperforms existing approaches. 

The contributions of this paper that distinguish it from 

past works are listed below: 

 Two-layer multi-agent approach: individual vehicles as 

agents and clusters of vehicles as higher-level coordinators  

 Deep reinforcement learning (DRL) for decision-

making, considering factors like CSI, queue backlog, 

interference, and historical selections  

 Federated learning (FL) for knowledge sharing and 

synchronization among decentralized vehicular agents  

Advantages of the Proposed Approach are Real-time 

adaptation and optimization of actions, utilization of 

collective intelligence for more informed decisions and 

Efficient channel utilization, minimized interference, and 

enhanced performance and reliability. 

The subsequent sections of the paper are organized as 

follows: Section II provides an in-depth exploration of the 

background and related work, setting the foundation for 

our research. In Section III, we present the system model, 

outlining the key components and architecture of our 

proposed approach. Section IV delves into the problem 

formulation and defining the objectives of our research. 

The simulation and results are detailed in Section V, where 

we present the outcomes of our results and evaluate the 

performance of our proposed approach. Finally, in Section 

VI, we draw conclusions based on our findings, 

highlighting the significance of our approach. 

 

2. Background and Related work 

This paper focuses on the application of federated learning 

and deep reinforcement learning for channel utilization in 

5G NR C-V2X. Firstly, we will provide an overview of the 
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3GPP standard and the channel access mechanism in 5G 

NR C-V2X. Next, we will delve into the use of deep 

reinforcement learning for resource allocation. 

Additionally, we will explore a novel federated learning 

approach and its application in channel utilization. Given 

the significant interest in machine learning and its 

application across various technologies, we conducted an 

extensive background and related work research to 

identify existing gaps in the field. By thoroughly 

examining the literature, we aimed to gain a 

comprehensive understanding of the current state-of-the-

art and identify areas where further research and 

contributions are needed. 

In Release 12, 3GPP introduced direct Device-to-

Device (D2D) communications for proximity services 

(ProSe) using cellular technologies [12]. LTE V2X, based 

on the LTE air interface, was developed under Release 14 

(Rel. 14) and further enhanced in Release 15 (Rel. 15). The 

5G NR (New Radio) air interface served as the foundation 

for the development of a new cellular V2X standard under 

Release 16 (Rel. 16) [13]. 

The 5G NR standard, developed under Rel. 15, did not 

include sidelink (SL) aspects, which refer to direct 

communication between terminal nodes or User 

Equipment (UEs) without involving the network. 

However, Rel. 16 introduced V2X communications, 

including SL communications, based on the 5G NR air 

interface. This marked the availability of the first 5G NR 

V2X standard, focusing on connected and automated 

driving use cases. The goal of NR V2X SL is to support 

enhanced V2X (eV2X) use cases that have specific 

requirements not fulfilled by the LTE V2X standard. 

In Release 12, two modes were defined for UE (User 

Equipment) transmission scheduling in V2X 

communications: Mode 1 and Mode 2. In Mode 1, when 

the UE is within the coverage of the eNB (evolved 

NodeB), centralized scheduling occurs at the eNB. On the 

other hand, in Mode 2, for D2D communication 

scheduling, the UE selects a radio resource from a pool 

configured by the cellular network or pre-configured in the 

UE itself to use the PC5 interface for direct 

communication. 

Both Mode 1 and Mode 2 have a similar resource 

allocation structure. The data transmission is scheduled in 

a period called the Sidelink control period, which consists 

of two sets of sub-frames: Physical Sidelink Shared 

Channel (PSSCH) and Physical Sidelink Control Channel 

(PSCCH). The PSCCH is always transmitted before the 

PSSCH transmission to inform the receiver about the 

occupation of the PSSCH radio resources. This 

information is included in a PSCCH scheduling 

assignment called Sidelink Control Information (SCI). 

These mechanisms were designed considering the battery 

life of mobile devices. 

However, for connected vehicle communications, 

different requirements need to be considered, such as 

latency, which D2D ProSe (Proximity Services) could not 

meet. Therefore, in Release 14, 3GPP introduced two new 

modes, Mode 3 and Mode 4, for C-V2X (Cellular Vehicle-

to-Everything) to improve D2D ProSe performance. 
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In Mode 3, similar to Mode 1, provides centralized 

scheduling, ensuring efficient resource utilization, but it 

requires vehicles to be within network coverage and 

introduces cellular uplink and downlink signaling 

overhead. Mode 4, on the other hand, enables vehicles to 

operate outside network coverage and make independent 

sub-channel selections using the sensing based SPS 

scheme where vehicles utilize sensing techniques to 

identify and select suitable sub-channels for transmission 

[16]. 

However, the PSCCH and PSSCH allocation in Mode 

3 and 4 are completely different from Mode 1 and 2. In 

Mode 3 and 4, the resources are divided into sub-channels, 

and the first resource blocks are PSCCH pools, while the 

rest of the resource blocks are PSSCH for data 

transmission (Transport Blocks). 

In Mode 4, UEs can select their sub-channels using a 

new mechanism called sensing-based semi-persistent 

scheduling, which significantly improves the estimation of 

available sub-channels. 

For the access mechanism in C-V2X, it supports 10 and 

20 MHz channels with Single Carrier Frequency Division 

Multiple Access (SC-FDMA). The channels are divided 

into Resource Blocks (RBs), sub-channels, and sub-

frames. Resource blocks are 180 kHz wide in frequency 

and consist of 12 sub-carriers of 15 kHz. The sub-frames 

are defined as 1ms long, and a sub-channel is a group of 

resource blocks in the same sub-frame. In C-V2X, there 

are two sub-channelization schemes: Adjacent PSCCH + 

PSSCH and Nonadjacent PSCCH + PSSCH. In the 

adjacent scheme, the Sidelink Control Information (SCI) 

and its associated Transport Block (TB) are in adjacent 

resource blocks. The first two resource blocks of the first 

sub-channel are used for the SCI, while the transport block 

occupies several sub-channels in the next resource blocks. 

In the nonadjacent scheme, resource blocks are divided 

into pools, with a dedicated pool for transmission of the 

SCIs and other pools used for TBs transmissions. In 

Sidelink communications, each vehicle selects a 

transmission resource block without communicating with 

the Base Station (BS) and directly sends data to other 

vehicles. 

During the SPS process, a vehicle first senses the 

transmissions in its vicinity to assess the availability and 

quality of different sub-channels. Based on this 

information, the vehicle identifies candidate resources 

within a designated Selection Window (SW). The SW 

includes a range of subframes where the vehicle can find 

sub-channels that can accommodate its transmission. Once 

the candidate resources are identified, the vehicle excludes 

specific resources based on the sensed interference or other 

criteria. The remaining sub-channels within the SW are 

then considered for transmission. The vehicle reserves 

these selected sub-channels for its subsequent 

transmissions using the Resource Reservation Interval 

(RRI) included in the Sidelink Control Information (SCI). 

This approach allows for efficient utilization of available 

sub-channels and helps mitigate interference in V2X 

Sidelink communications [17].  

While SPS is a simple and effective method, it has 

several limitations including lower QoS in higher density, 

faces challenges in handling packet collisions due to 

imprecise sensing results caused by the hidden-terminal 

problem, the half-duplex constraint preventing the 

detection of other vehicles using the same resources, the 

increased likelihood of collisions in high-density 

scenarios, etc. 

In this paper, we propose a novel approach to improve 

the resource allocation process in C-V2X Mode 4, where 

we integrate the clustering technique, federated learning, 

and multi-agent deep reinforcement learning algorithm 

into SPS, enabling vehicles to intelligently select radio 

resources and avoid resource conflicts. This approach 

leverages federated learning and clustering techniques to 

enhance resource allocation performance in C-V2X 

communications.  

To overcome the SPS limitations, in recent years, novel 

resource allocation schemes in C-V2X communications 

has been explored. These schemes employ both centralized 

and decentralized approaches, with a primary focus on 

optimizing parameter configurations, enhancing the 

resource sensing process, and improving the resource 

allocation process. 

 
 

Figure 1. summarizes the channel resource management in C-

V2X standard. 

 

For centralized approach, in [15]- [18], a power control 

algorithm was developed based on spatiotemporal traffic 

patterns. This algorithm aims to satisfy the delay and 

reliability requirements of V2V services while reducing 

the overhead of periodic Channel State Information (CSI) 

reports to the Base Station (BS). Graph theory has also 

been utilized in [19]-[21] to enhance system throughput. In 

the study [19], the ergodic capacity of Vehicle-to-

Infrastructure (V2I) communications and the reliability of 

V2V communications were analyzed by considering the 

statistics of fast fading components. Based on these 

analyses, the researchers proposed centralized resource 

allocation and power control algorithms to meet diverse 

QoS requirements. 

In [22], the authors addressed the challenge of channel 

uncertainty caused by delayed Channel State Information 

(CSI) feedback to the Base Station (BS). They analyzed 

the correlation of fast-changing channels and proposed a 

joint channel allocation and power control algorithm. The 

objective was to maximize system throughput while 

meeting the delay and reliability requirements of each 

V2V link. However, these existing algorithms rely on V2V 

links reporting their local information, which can result in 

significant signaling overhead as the number of vehicles 
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increases. Moreover, resource allocation has been 

formulated as combinatorial optimization problems with 

nonlinear constraints, posing challenges for traditional 

optimization methods.  

To overcome the centralized problems, recently, 

several studied proposed decentralized approaches. The 

authors in [23] introduced a decentralized resource 

allocation approach for vehicle-to-vehicle 

communications. In this approach, each V2V transmitter 

acted as an independent agent and made decisions 

autonomously based on local observations. The system 

was able to optimize resource allocation in a decentralized 

manner, considering the unique characteristics and 

requirements of each V2V transmitter. 

In [24], the authors propose a novel semi-distributed 

transmission paradigm for NR V2X to achieve high 

reliability. It includes distributed clustering, autonomous 

inter-cluster resource selection, and centralized intra-

cluster communication. In [25], the authors focused on 

reducing transmission failures and designed a distributed 

network coding-based medium access control protocol 

(NC-MAC) for reliable V2V beacon broadcasting. By 

combining preamble-based feedback, retransmissions, and 

network coding, the NC-MAC protocol enhances 

broadcasting reliability.  

These studied have primarily focused on short-term 

optimization of resource allocation, overlooking the 

potential long-term performance gains. It is essential to 

consider a broader perspective and incorporate long-term 

strategies into resource allocation algorithms to achieve 

sustained performance improvement over time. By 

considering factors such as network dynamics, future 

traffic patterns, and system scalability, resource allocation 

approaches can be designed to optimize not only 

immediate resource allocation decisions but also their 

impact on overall network performance in the long run.  

To address this challenge, researchers have turned to 

machine learning techniques, especially deep 

reinforcement learning (DRL) and more recently federated 

learning. These approaches offer effective solutions for 

tackling sequential decision-making problems. By 

combining deep learning and reinforcement learning, DRL 

algorithms enable the learning of optimal strategies in 

complex environments with long-term consequences for 

actions. Federated learning, on the other hand, allows 

distributed devices to collaboratively learn from their local 

data without sharing it centrally. These powerful 

techniques hold promise for addressing various challenges 

and optimizing decision-making processes in complex 

environments such as connected vehicles.  

Deep Reinforcement Learning have gained significant 

traction in the field of wireless communications as they 

provide effective solutions to the challenges encountered 

by traditional optimization methods specially for resource 

allocation [26]. 

In [27], the authors introduced the C-Decision 

architecture for resource allocation in V2X networks. It 

combines centralized decision making and distributed 

resource sharing to maximize the sum rate. Vehicles 

compress their information using deep neural networks 

and send it to the centralized decision unit. The decision 

unit employs a deep Q-network for resource allocation and 

balances V2V and V2I links. To overcome the problem of 

high collision probability in conventional SPS with a fixed 

reservation process during high traffic density, [28] 

proposes a Q-learning based SPS (Q-SPS) algorithm. Q-

SPS intelligently adjusts the reservation probability using 

reward feedback, adapting to the dynamic C-V2X network 

environment. However, this approach deviates from the 

fundamental assumption of RL, which requires a 

stationary environment. In this case, a single vehicle is 

unable to update the evolving policies of other vehicles, 

thereby compromising the effectiveness of the approach 

[29][30].  

In [31], the authors employed the DRL algorithm as a 

means to allocate resource blocks (RBs) and minimize 

signal collisions during transmissions. However, this 

approach did not consider the heterogeneous nature of 

quality-of-service (QoS) requirements across different 

types of messages where various message types may have 

distinct QoS demands, such as latency, reliability, and 

priority. Ignoring these varying requirements could lead to 

suboptimal resource allocation decisions and potential 

degradation of overall network performance. 

Several studies have focused on addressing these 

challenges through the implementation of multi-agent 

DRL techniques. In [32], authors address resource 

allocation challenges in V2X communications and 

proposes two algorithms. The first algorithm uses deep 

reinforcement learning (DRL) with deep Q-network 

(DQN) and deep deterministic policy-gradient (DDPG) to 

improve performance for V2I and V2V links. The second 

algorithm, based on meta-learning, enhances adaptability 

to dynamic environments. [33] focuses on spectrum 

allocation in V2X networks using a graph representation. 

A graph neural network (GNN) is employed to extract low-

dimensional features from the graph. Multi-agent RL is 

then used to allocate spectrum based on the learned 

features and deep Q-network is utilized for optimizing the 

sum capacity of the V2X network. Several other studies 

have employed different types of DRL algorithms and 

proposing scheme utilizing multiagent deep deterministic 

policy gradient, proximal policy optimization (PPO)-

based multi-agent reinforcement, deep deterministic 

policy-gradient (DDPG), long short-term memory 

(LSTM) etc. to optimize the allocation of resources in V2X 

communications [34]-[39]. 

While DRL approaches have shown promise for 

resource allocation in vehicular networks, there are 

challenges to consider regarding training efficiency, 

particularly in highly dynamic and large-scale 

environments. The complexity and rapid changes in 

network conditions pose difficulties in achieving fast and 

accurate convergence during the training process. 

Addressing these issues is crucial to ensure the practicality 

and scalability of DRL-based resource allocation 

algorithms in real-world vehicular communication 

scenarios. 

Moreover, using a fully distributed DRL method can 

lead to convergence at local optima, while fully centralized 

DRL methods are not suitable for vehicular networks due 

to the significant delay caused by information exchange 

with central nodes, particularly for delay-sensitive 

applications. Furthermore, the computational complexity 
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of centralized DRL increases substantially with a larger 

number of vehicles. Hence, a more viable approach is to 

combine the strengths of centralized and distributed DRL 

algorithms to effectively support direct communications in 

vehicular networks. 

To address the limitations of traditional DRL 

approaches, researchers have recently turned to the 

emerging technique of federated learning [40] for resource 

allocation problems. Federated learning enables 

collaborative learning across multiple decentralized 

devices or nodes without the need to share raw data. The 

application of federated learning in resource allocation 

holds great promise in improving the performance and 

adaptability of wireless networks, as it leverages the 

collective intelligence of distributed devices to optimize 

resource allocation decisions. 

The process of federated learning consists of three 

steps: First, the FL server determines the training task and 

distributes the initial global model to selected distributed 

devices. These devices then utilize their local data to train 

their individual models, aiming to minimize the loss 

function based on the initial global model. After several 

rounds of local training, the devices upload their local 

models to the FL server. Finally, the FL server aggregates 

these local models and sends back the updated model to 

the data owner. This process is repeated until the global 

loss function converges or a desired training accuracy is 

achieved. By conducting local model training on 

decentralized devices using their own raw data and 

infrequent model aggregation at the centralized server, 

federated learning significantly enhances the performance 

of model training [41]-[43]. 

Federated learning is a promising approach that has 

gained attention in various domains. However, its 

application in C-V2X resource allocation is still relatively 

new, and there are limited studies exploring its potential in 

this context. Authors in [44] introduce federated learning 

into a MEC-assisted vehicular network framework with 

focuses on participant selection, computing resource 

allocation optimization, and a distributed computing 

resource allocation method.  

Authors in [45] propose a deep reinforcement learning 

(DRL)-based federated learning (FL) approach for 

decentralized resource allocation in an underlay mode 

D2D-enabled wireless network. The aim is to maximize 

sum capacity, minimize power consumption, and ensure 

quality of service (QoS) for both cellular and D2D users. 

Furthermore, a joint optimization problem involving 

transmission mode selection and resource allocation is 

investigated in [2], and formulated as a Markov decision 

process. The authors also proposed a DRL-based 

decentralized algorithm to maximize the sum capacity of 

V2I users while meeting latency and reliability 

requirements for V2V pairs. Also, to overcome training 

limitations, a two-timescale federated DRL algorithm is 

introduced, utilizing a graph theory-based vehicle 

clustering algorithm on a large timescale and federated 

learning on a small timescale. 

None of the mentioned studied have not taken into 

account the scenario of shared spectrum in V2V 

communication, where the cellular channels are already 

assigned, and the traffic is highly congested. Authors in 

[46] proposed approach is a federated multi-agent deep 

reinforcement learning (FedMARL) method that 

optimizes channel selection and power control for V2V 

communication. By leveraging both deep reinforcement 

learning (DRL) and federated learning (FL), the approach 

ensures reliability, delay requirements, and maximizes 

cellular link transmit rates. Individual V2V agents are 

constructed using the dueling double deep Q-network 

(D3QN) and trained collaboratively with a designed 

reward function. Federated learning is incorporated to 

address training instability in the multi-agent environment. 

An important limitation of this study is that it relied on 

static and pre-defined resources for decentralized channel 

access. The use of fixed resources may not effectively 

adapt to dynamic channel conditions or varying traffic 

demands in real-time. 

 

3. System Model  

A. Network model  

The system model we consider is a network consisting of 

various clusters of vehicles, including Vehicle-to-Vehicle 

(V2V), Vehicle-to-Infrastructure (V2I), Roadside Units 

(RSUs), and a Base Station (BS) as shown in Fig. 2. Each 

cluster is denoted as 𝐶 = 𝑐1, 𝑐2, … , 𝑐ₖ, with k representing 

the total number of clusters in the network. Within each 

cluster Cₖ, there is a set of vehicles denoted as 𝑉ₖ =
𝑣1, 𝑣2, … 𝑣𝑛𝑘 where nₖ is the total number of vehicles in 

cluster Cₖ. The set of RSUs is denoted as ℐ  =  𝑗1, 𝑗2,  …, 

𝑗𝑚   with 𝑚 representing the total number of infrastructure 

units. 

 
Figure 1. High-level System Model 

In this network model, the time is divided into slots, 

indexed by 𝑡 =  1, 2, …, where each slot has a duration of 

𝜏. This slotted communication system provides a 

structured framework for organizing and managing the 

transmission and reception of data in the system. In our 

model, each base station serves Tc number of cellular 

users, which include vehicles and RSUs. The selected 

users within each cluster communicate with the base 

station using allocated cellular channels. However, within 

the clusters, V2V and V2I communication take place by 

reusing the allocated channels. This enables efficient 

utilization of resources and facilitates direct 

communication between vehicles and infrastructure units 

within the same cluster. 
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In our network model, we consider the channel power 

gains between different links and the interference could 

cause when they use same channel. Specifically, the 

channel power gain from the transmitter of the 𝛼 − 𝑡ℎ V2I 

link to the BS over the 𝑓 − 𝑡ℎ RB outside the cluster is 

denoted as 𝑔𝛼,𝐵[𝑓].  
We can define the SINR of the 𝛼 − 𝑡ℎ V2I link at the 

BS, and 𝛽 − 𝑡ℎ V2V link at the 𝑓 − 𝑡ℎ RB and in time slot 

𝑖 as [19]: 

 

SINR𝑖,𝛼,𝑓 =
𝑃𝑖,𝛼,𝑓 ×  𝑔𝛼,𝐵[𝑓]

𝜎2 + ∑ (𝜌𝑗,𝛽,𝑓 × 𝑃𝑗,𝛽,𝑓 × 𝑔𝛽,𝐵[𝑓])𝑗 

 (1) 

 

where the 𝜌𝑗,𝛽 is is the spectrum allocation indicator where 

𝜌𝛽,𝑓  = 1  means the 𝛼 − 𝑡ℎ V2I links is transmitting over 

the 𝑓 − 𝑡ℎ RB and 𝜌𝑗,𝛽  = 0  means it does not transmit  

 

Similarly, for 𝛽 − 𝑡ℎ V2V link at the V2V receiver over 

the 𝑓 − 𝑡ℎ RB we can define: 

 

𝑆𝐼𝑁𝑅𝑗,𝛽,𝑓 =
𝑃𝑗,𝛽,𝑓 × 𝑔𝛽[𝑓]

𝜎2+∑ (𝜌𝑗,𝛽,𝑓×𝑃𝑗,𝛽,𝑓×𝑔𝑗,𝛽[𝑓]𝑗 )+∑ (𝜌𝛾,𝛽×𝑃𝛾,𝑓×𝑔𝛾,𝐵[𝑓])𝛾
  

 

(2) 

 

In these equations, 𝑃𝑖,𝛼,𝑓 and 𝑃𝑗,𝛽,𝑓 represent the 

transmit powers of the 𝛼 − 𝑡ℎ V2I and the 𝛽 − 𝑡ℎ V2V 

transmitter over the 𝑓 − 𝑡ℎ RB, respectively. The indicator 

ρ𝑐,𝑚,𝑓 ∈ {0,1} is the spectrum allocation indicator, where 

𝜌𝑖,𝛼,𝑓 = 1 implies that the 𝛼 − 𝑡ℎ V2I link is transmitting 

over the 𝑓 − 𝑡ℎ RB, and 𝜌𝑖,𝛼,𝑓 = 0 otherwise. Similarly, 

the spectrum allocation indicator for the 𝛽 − 𝑡ℎ V2V link, 

𝜌𝑗,𝛽,𝑓 is defined in a similar manner. In addition, the 𝑃𝛾,𝑓 

represent the interfering channel from the 𝛾 − 𝑡ℎ V2V 

transmitter to the 𝛽 − 𝑡ℎ V2V receiver over the 𝑓 −
𝑡ℎ RB. 

 

B. QoS Requirements 

- Delay for V2V Pairs 

In our system, each transmitter of a V2V link is equipped 

with a finite-length buffer, and safety-related packets are 

generated at a constant rate λ (bits/s). However, due to 

varying transmit rates 𝑅𝑡𝑘 = 𝑊 log2(1 + γ𝑡𝑘) at different 

time slots, there can be a mismatch between packet 

generation and instantaneous throughput. Consequently, 

queues can build up at the transmitters of V2V pairs, 

resulting in increased queuing delays. 

 

At the beginning of time slot 𝑡, the queue length of the 

𝛽 − 𝑡ℎ V2V pair, denoted by 𝑄𝑡𝛽 , is determined by the 

following equation [46]: 

 

𝑄𝑡𝛽 = max(0, 𝑄𝑡−1,𝛽 + 𝜏𝜆 − 𝜏𝑅𝑡−1,𝛽) (3) 

 

where 𝑄𝑡−1,𝛽 is the queue length at the transmitter in 

the previous time slot (𝑡 − 1), τλ represents the number of 

bits arrived at the queue per slot, and τ𝑅𝑡−1,𝛽 denotes the 

number of bits sent to the corresponding receiver in the 

previous time slot (𝑡 − 1). 

We focus on the queuing delay as it dominates the 

delay over a V2V link. Based on Little's Law, the average 

queuing delay is proportional to the queue length. Let 

𝐷𝑚𝑎𝑥  present the tolerable transmission delay for V2V 

packets, and the number of packets experiencing delays 

longer than 𝐷𝑚𝑎𝑥 given by 𝑄𝑚𝑎𝑥 = λ𝐷𝑚𝑎𝑥 . Therefore, the 

delay constraint for the 𝛽 − 𝑡ℎ V2V pair can be rewritten 

to ensure a steady-state queue length with a tolerable 

probability threshold [46]: 

 

Pr(𝐷𝑡𝛽 ≥ 𝐷𝑚𝑎𝑥) ≤ Pr(𝑄𝑡𝛽 ≥ 𝑄𝑚𝑎𝑥) ≤ 𝑝𝑜 (4) 

 

 𝑝𝑜 is the probability threshold. 

By applying Markov's inequality, which states 

that Pr(𝑋 ≥ 𝑎) ≤
𝐸[𝑋]

𝑎
 for a non-negative random variable 

(𝑋 and (𝑎 >  0, we can further strengthen the constraint 

on the queue length (4) in the following manner [46]: 

 

𝑄𝑘 = lim
𝑇→∞

1

𝑇
∑ 𝐸|𝑄𝑡𝛽|

𝑇

𝑡=1

≤ 𝑝𝑜 ⋅ 𝑄𝑚𝑎𝑥  (5) 

here 𝑄𝑘 represents the time-averaged queue length of 

the transmitter. The upper bound on the time-averaged 

queue length ensures that V2V packets can be delivered 

within the specified time constraints. 

 

- Reliability Requirements 

In order to ensure reliable transmission of V2V pairs, the 

SINR outage probability is considered as a key metric. The 

outage probability represents the likelihood of the 

instantaneous SINR falling below a specified threshold 𝛾𝑜, 

indicating a loss of signal quality due to wireless channel 

fading. Evaluating the reliability of V2V transmissions, 

the outage probability is compared against a 

predetermined threshold value. A V2V link 𝛾 is considered 

reliable if its outage probability is below a specified 

threshold 𝑝0. Mathematically, this condition can be 

expressed as: 

Pr{γ𝛽,𝑓 ≤ γ𝑜} ≤ 𝑝0 (6) 

 

To achieve reliable transmission, vehicles have the 

option to adjust their power levels or switch to less 

congested channels if their outage probability constraint 

cannot be met. By incorporating the SINR of V2V/V2I 

pairs, the constraint for outage probability can be 

expressed as: 

 

Pr {𝑃𝑗,𝛽,𝑓 ×  𝑔𝛽[𝑓]

≤ ∑(𝜌𝛾,𝛽

𝛾

× 𝑃𝛾,𝑓 × 𝑔𝛾,𝐵[𝑓])

+ γ0((𝜌𝑗,𝛼,𝑓

× 𝑃𝑖,𝛼,𝑓 ×  𝑔𝛼,𝐵[𝑓])}

≤ 𝑝𝑜  

(7) 

 



Journal of Computer and Knowledge Engineering, Vol.7, No.2. 2024. 7 

 

 

 

If 𝑥1, 𝑥2, … , 𝑥𝑛 are independent exponentially distributed 

random variables with expected values 𝐸[𝑥𝑖] =
1

λ𝑖
, 

where 𝑖 =  1, 2, … , 𝑛, then the probability that 𝑥1 is less 

than or equal to the sum of 𝑥2, 𝑥3, … , 𝑥𝑛 plus a positive 

constant 𝑐 can be expressed as [47]. 

 
Pr{𝑥1 ≤ 𝑥2 + 𝑥3 + 𝑥4+. . . +𝑥𝑛 + 𝑐}

= 1 − 𝑒−λ1𝑐 ∏
1

1 +
λ1

λ𝑖

𝑛

𝑖=2

 (8) 

 

Considering that the fast fading varies independently 

between slots, it follows an exponential distribution. Thus, 

𝑃𝑗,𝛽,𝑓  ×  𝑔𝛽[𝑓], and γ0 × (𝜌𝛾,𝛽 × 𝑃𝛾,𝑓 × 𝑔𝛾,𝐵[𝑓]), also 

follow exponential distribution and can be express as: 

 

𝐸 [𝑃𝑗,𝛽,𝑓  ×  𝑔𝛽[𝑓]] =
1

λ1

 (9) 

and 

 

𝐸[γ0 × (𝜌𝛾,𝛽 × 𝑃𝛾,𝑓 × 𝑔𝛾,𝐵[𝑓])] =
1

λ𝛾

 

𝛾 ≠ 1 

(10) 

 

Based on equation (8), we can derive the expression for the 

outage probability as follows: 

1 − exp (−
γ0 × σ2

𝑃j,β,f  × ζ
) (1

+
𝑃𝑗,β,𝑓 × γ0

𝑃γ,𝐵 × ζ
) ∏ (1

𝐾

𝑘=𝑘

+
𝑃𝑗,β,𝑓 × γ0

𝑃𝑗,β,𝑓 × ζ
) ≤ 𝑝0 

(11) 

ere 𝜁 is the frequency-independent large-scale fading 

effect, which encompasses path loss and shadowing, can 

be characterized by the path loss model defined as 

128.1 +  37.6 𝑙𝑜𝑔10 𝑑, as specified in 3GPP TR 36.885 

[48]. Here, d represents the distance between the 

transmitter and receiver. 

 

Considering the inequality [48]: 

 

𝑒𝑘 × ∏ 𝑥𝑖

𝑛

𝑖

≤ 𝑒𝑘+(𝑥1+𝑥2+⋯+𝑥𝑛) (12) 

 

upper bound of (11) can be defined and reliability 

constraint can be expressed as follows [46]: 

 
𝑃𝑗,𝛽,𝑓 × 𝑔𝛽[𝑓]

𝜎2+∑ (𝜌𝑗,𝛽,𝑓×𝑃𝑗,𝛽,𝑓×𝑔𝑗,𝛽[𝑓]𝑗 )+∑ (𝜌𝛾,𝛽×𝑃𝛾,𝑓×𝑔𝛾,𝐵[𝑓])𝛾
≥

𝛾𝑜

ln(
1

1−𝑝𝑜
)
  

 

(13), 

I. Problem Formulation  

In order to satisfy the varying QoS demands of different 

vehicular links, such as high capacity for V2I connections 

and reliable performance for V2V connections, we aim to 

maximize the total capacity of the V2I links while ensuring 

a reliability level of reliability for each V2V link. This 

leads us to formulate the spectrum and power allocation 

problems as follows: 

 

The objective is to maximize the expression: 

max
𝜌𝑖,𝛼,𝑓,𝜌𝑗,𝛽,𝑓

1

𝑇
∑ 𝜌𝑖,𝛼,𝑓

𝑚,𝑓

log2(1 + 𝛾𝑖,𝛼,𝑓) (14) 

 

subject to the following constraints: 

 

𝜌𝑗,𝛽,𝑓𝑃𝑟(𝛾𝑗,𝛽,𝑓 ≤ 𝛾0) ≤ 𝑝0 , ∀𝑘, 𝑓 (14-a) 

∑ 𝜌𝑗,𝛽,𝑓

𝛽

= 1, ∀𝑓 (14-b) 

∑ 𝜌𝑗,𝛽,𝑓

𝑓

= 1, ∀𝛽 (14-c) 

𝑄𝑡
𝛽

≤ 𝑄max, ∀𝛽 (14-d) 

∑ 𝜌𝑗,𝛽,𝑓

𝑓

= 1, ∀𝛽 (14-e) 

∑ 𝜌𝑖,𝛼,𝑓𝑃𝑖,𝛼,𝑓

𝑓

≤ 𝑃𝑖,𝑚𝑎𝑥 , ∀𝛼 (14-f) 

∑ 𝜌𝑗,𝛽,𝑓𝑃𝑗,𝛽,𝑓

𝑓

≤ 𝑃𝑓,𝑚𝑎𝑥 , ∀𝛽 (14-g) 

𝑃𝑖,𝛼,𝑓 ≥ 0, 𝑃𝑗,𝛽,𝑓 ≥ 0, ∀𝛼, 𝛽, 𝑓 

 

(14-h) 

𝜌𝑖,𝛼,𝑓 , 𝜌𝑗,𝛽,𝑓 ∈ 0,1, ∀𝛼, 𝛽, 𝑓 (14-i) 

 

This optimization problem aims to maximize the sum 

capacity of the V2I links while satisfying the reliability 

constraint for V2V links, along with various spectrum and 

power allocation constraints. Problem (14) represents a 

complex optimization problem that is challenging both 

mathematically and computationally. It involves making 

joint decisions on channel selection and power allocation 

over time, which requires considering various 

combinations and scenarios. Traditional centralized 

approaches struggle to handle this problem effectively, 

primarily due to the difficulty in acquiring accurate and up-

to-date channel state information (CSI) for all links in real-

time.  

To address these challenges, we propose a federated-

based decentralized solution leveraging the power of DRL. 

By applying DRL techniques, we transform the original 

problem into a multi-agent framework, where each V2V 

pair acts as an independent agent responsible for its own 

resource allocation strategy. 

In this decentralized approach, the communication 

pairs autonomously make decisions on channel selection 

and power allocation based on local observations and 

rewards obtained through interactions with the 

environment. Through continuous learning and policy 

updates, each agent improves its resource allocation 

strategy over time, optimizing the overall system 

performance. 
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By distributing the decision-making process among the 

individual communication links, the decentralized DRL 

approach offers several advantages. It reduces the 

computational burden by distributing the optimization task 

across multiple agents. It also mitigates the need for 

centralized coordination and real-time CSI exchange, 

which can be challenging in practical scenarios. 

Furthermore, the decentralized nature of the DRL 

approach enables scalability and adaptability to dynamic 

network conditions. Each agent can quickly adapt to 

changes in the environment and adjust its resource 

allocation strategy, accordingly, ensuring efficient and 

reliable communication. 

 

A. DRL Formula 

In order to understand the application of DRL in our 

context, let's introduce the fundamental concepts of DRL 

and its extension to a multi-agent setting. DRL involves 

training an intelligent agent to make optimal sequential 

decisions by interacting with its environment through trial 

and error. 

At each time step t, the agent observes its surrounding 

environment and receives an observation 𝑠𝑡 ∈ S. Based on 

this observation, the agent selects an action at 𝑎𝑡  ∈
 𝐴  according to a policy π: S → A, which determines the 

probability of taking a specific action given a certain state. 

The environment is influenced by the executed action, 

leading to a transition to the next state 𝑠𝑡+1  ∈  𝑆. In 

response to the action, a reward 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡) is provided 

to the agent, evaluating the impact of the chosen action and 

enabling the agent to adjust its policy accordingly. Each 

interaction between the agent and the environment creates 

an experience, represented by a tuple (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1). 

By accumulating these experiences and employing 

appropriate DRL algorithms, the agent can learn to make 

informed decisions over time. Through a series of trials 

and adjustments, the agent improves its policy, 

maximizing the cumulative rewards obtained from the 

environment. In a multi-agent setting, each agent follows 

this learning process independently, interacting with its 

own observations, actions, and rewards. 

Q-learning is a widely used DRL algorithm that aims 

to maximize the expected cumulative reward, also known 

as the Q-value, based on a given policy π. The Q-value 

denoted as 𝑄𝜋(𝑠, 𝑎), represents the expected total reward 

an agent can achieve by taking action a in state s and 

following policy π thereafter. Mathematically, the Q-value 

can be defined as the expected sum of discounted future 

rewards, as shown in Equation (15). 

 

𝑄𝜋(𝑠, 𝑎)
= 𝐸𝜋[ ∑ 𝛽𝑘𝑟𝑡+𝑘+1

∞
𝑘=0 ∣∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎 ] 

(15) 

 

where 𝐸𝜋 denotes the expectation under policy π, 𝑟𝑡 is 

the reward obtained at time step t, and  β is a discount 

factor that determines the importance of future rewards. 

Q-learning is a popular DRL algorithm that maximizes 

the expected cumulative reward (Q-value) based on a 

given policy π. The Q-value 𝑄π(𝑠, 𝑎) represents the 

expected cumulative reward when taking action 𝑎 in state 

𝑠 following policy 𝜋. The goal of Q-learning is to find the 

optimal policy that maximizes the Q-value for each state-

action pair. 

In Q-learning, an agent maintains a Q-table to store the 

Q-values for all possible state-action pairs. The Q-values 

are updated iteratively based on the observed rewards and 

the agent's learning rate. At each step, the agent selects an 

action a based on the current state s and updates the Q-

value using the following equation: 

 

𝑄(𝑠, 𝑎) ← (1 − 𝛼) ⋅ 𝑄(𝑠, 𝑎) + 𝛼

⋅ (𝑟 + 𝛾 ⋅ max
𝑎′

𝑄 (𝑠′, 𝑎′)) 
(16) 

 

where α is the learning rate, r is the immediate reward 

obtained by taking action a in state s, γ is the discount 

factor, 𝑠′ is the next state, and 𝑎′ is the next action. This 

update equation combines the current Q-value with the 

discounted future Q-value of the next state-action pair, 

scaled by the learning rate. 

To handle large-scale problems with high-dimensional 

state and action spaces, Deep Q-Network (DQN) was 

introduced. Instead of using a Q-table, DQN employs a 

deep neural network to approximate the Q-value function. 

The neural network takes the state s as input and outputs 

the Q-values for all possible actions. The parameters of the 

neural network are updated through gradient descent using 

a loss function that minimizes the difference between the 

predicted Q-values and the target Q-values. In the multi-

agent setting, each agent interacts with the environment 

and learns independently. However, their actions 

collectively influence the environment's dynamics. To 

address this, the concept of multi-agent reinforcement 

learning (MARL) is introduced. MARL allows agents to 

learn and adapt their policies by considering the joint 

actions and observations of other agents. 

One approach in MARL is Independent Q-Learning 

(IQL), where each agent maintains its own Q-values and 

learns independently. The Q-values are updated based on 

the observed rewards and the Q-values of other agents' 

actions. The update equation for agent 𝑖 can be written as: 

𝑄𝑖(𝑠, 𝑎𝑖) ← (1 − 𝛼𝑖) ⋅ 𝑄𝑖(𝑠, 𝑎𝑖) + 𝛼𝑖 ⋅

(𝑟𝑖 + 𝛾 ⋅ max
𝑎𝑖

′
𝑄𝑖 (𝑠′, 𝑎𝑖

′))  
(17) 

where 𝑎𝑖 is the action taken by agent 𝑖, 𝑟𝑖 is the 

immediate reward obtained by agent 𝑖, and 𝑠′ is the next 

state. The Q-value update is similar to the single-agent 

case, but it takes into account only the individual agent's 

actions and rewards. It is important to note that MARL 

introduces additional challenges such as coordination 

among agents and balancing exploration and exploitation. 

Various algorithms and techniques have been proposed to 

address these challenges, including centralized training 

with decentralized execution, communication among 

agents, and opponent modeling. 

In our paper, we propose a decentralized DRL 

approach that operates within a collaborative reward 

setting. The aim of our research is to enable multiple 
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agents to learn and make optimal decisions in a distributed 

manner, while striving to maximize the global cumulative 

reward. By leveraging DRL techniques, we address the 

challenges associated with large-scale problems and the 

complex interactions between agents. 

The key idea behind our approach is to train individual 

agents to independently learn their own policies based on 

local observations of the environment. Each agent selects 

actions based on its own policy, contributing to a joint 

action that impacts the overall state transition. The agents 

receive a common reward signal, encouraging them to 

coordinate their actions towards achieving a collective 

objective meeting the QoS requirements. The learning 

model consists of the following key elements: 

1) State: The global state, denoted as 𝑆𝑡 , captures the 

channel conditions of all V2V / V2I pairs, as well as 

the resource allocation actions and reusing the channel 

of the V2V pairs. Each V2V agent (or agent 𝑘) has 

access to a local state, which includes the channel 

coefficient of the V2V pair (ℎ𝑡,𝑘[𝑚]), the channel 

coefficients of the V2I (ℎ𝑡,𝑚,𝐵[𝑚]), the channel 

selection of neighboring V2V pairs in the previous slot 

(𝑁𝑚,𝑡−1,𝑘), and the current queue length at the 

transmitter (𝑄𝑡,𝑘) .  The state space size per V2V pair 

is 3𝑀 +  1, where 𝑀 represents the number of 

available channels. 

2) Action: Each V2V agent takes actions that determine 

the channel selection 𝜁𝑘,𝑚 and transmit power 𝑃𝑘 .The 

transmit power is discretized into 𝑁𝑝 + 1 levels, and 

the action space dimension is 𝑀 × (𝑁𝑝 + 1). 

3) Reward: The reward function, denoted as 𝑅𝑡, is 

designed to maximize the total capacity of the V2I 

links while ensuring a reliability level of reliability for 

each V2V link. It is defined as: 

 

𝑅𝑡 =

Γ1 ∑ 𝑈 (
𝑃𝑗,𝛽,𝑓×𝑔𝛽[𝑓]

𝜎2+∑ (𝜌𝑗,𝛽,𝑓×𝑃𝑗,𝛽,𝑓×𝑔𝑗,𝛽[𝑓])𝑗 +∑ (𝜌𝛾,𝛽×𝑃𝛾,𝑓×𝑔𝛾,𝐵[𝑓])𝛾
−𝑘∈𝐾

𝛾𝑜

ln(
1

1−𝑝𝑜
)
) + Γ2 ∑ 𝑈(𝑄𝑡,𝑘 − 𝑄max)𝑘∈𝐾 + Γ3 ∑ 𝑈(𝑅𝑡,𝑚 −𝑚∈𝑀

𝑅min,𝑚)          

(18) 

Here, (Γ1), (Γ2), 𝑎𝑛𝑑(Γ3) are parameter coefficients 

that balance the importance of different components in the 

reward function. 𝑅𝑡,𝑚 represents the achieved rate of V2I 

communication on channel (𝑚), while (𝑅min,𝑚)denotes 

the minimum required rate for V2I communication on 

channel (𝑚). (𝑄𝑡,𝑘) represents the queue length at the 

transmitter of V2V pair (𝑘), and (𝑄max)is the maximum 

tolerable queue length. 

The last term of the reward function represents the 

reward for the V2V pairs. It incorporates the SINR  

 

(
𝑃𝑗,β,𝑓×𝑔β[𝑓]

σ2+∑ (ρ𝑗,β,𝑓×𝑃𝑗,β,𝑓×𝑔𝑗,β[𝑓])𝑗 +∑ (ργ,β×𝑃γ,𝑓×𝑔γ,𝐵[𝑓])γ
)  

 

and compares it with the threshold (
γ𝑜

ln(
1

1−𝑝𝑜
)
). The 

function 𝑈(𝑥) provides a penalty if the reward condition is 

not satisfied, where x can be either positive or negative. 

The reward function aims to maximize the achieved 

rates of V2I communication, minimize the queue lengths 

of V2V pairs, and ensure satisfactory SINR levels for V2V 

links. The coefficients (Γ1), (Γ2), 𝑎𝑛𝑑(Γ3) allow for 

balancing the trade-offs between these objectives. 

In this section, we introduce the "Multi-Scale 

Federated DRL Framework," designed to address the 

challenges posed by stringent latency requirements and 

limited training data for accurate DRL models. Moreover, 

it tackles the issues of suboptimal decisions by newly 

activated V2V pairs and potential obsolescence of well-

trained DRL models due to vehicle mobility. 

The proposed framework leverages the similarities in 

channel quality and environmental observations among 

nearby V2V pairs through a multi-scale approach. It 

combines centralized clustering on a large timescale with 

federated DRL on a small scale, aiming to train robust 

DRL models and enhance the performance of newly 

activated V2V/V2I pairs. The ultimate goal is to optimize 

V2X communication in vehicular networks. 

We propose a novel multi-scale decentralized 

federated DRL which synergizes federated learning and 

DRL techniques to address the mode selection and 

resource allocation challenges in vehicular networks. Fig. 

3 illustrates the architecture of the multi-scale 

decentralized federated DRL framework, comprising two 

distinct procedures operating at different scales. 

For a centralized training and for less periodic 

timescale, the base station periodically constructs 

undirected graphs based on large-scale channel gains and 

clusters nearby with similar channel conditions. 

Additionally, each cluster's candidate resource block 

group is determined to minimize network dimension and 

mitigate resource conflicts.
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Figure 2.Proposed Federated DRL Architecture. 

 
For local agents, federated learning is employed to 

collaboratively average local models of V2V and V2I pairs 
within each cluster. V2V and V2I pairs in the same cluster 
independently select actions and train their local models in 
each subframe. Periodically, every few hundreds of 
subframes, the local models of member pairs within a 
cluster are uploaded, averaged, and then shared as a global 
network with all members. Notably, the global network 
can be efficiently downloaded by newly activated pairs to 
expedite their deployment without time-consuming 
training processes. 

The procedure for clustering is as follows. Initially, we 

create an undirected graph  𝒢(𝒱, ℰ), where each V2V/V2I 

pair represents a vertex, and edges connect pairs of 

vertices. 𝒱(𝒢) and ℰ(𝒢) denote the sets of vertices and 

edges, respectively. Given the unreliable link connections 

between nearby connections vehicular networks due to 

blockage, we use large-scale channel gains as edge weights 

instead of Euclidean distances. The weight of the edge 

between vertex α and β is defined as [2]: 

 

𝑤α,β = max(𝑔α,β, 𝑔β,α)  for all β ≠ α.                      (19) 

 

To clusters with similar channel gains, we formulate 

the clustering problem as a graph partitioning problem 

aiming to maximize the sum of weights of edges inside 

clusters. The objective function can be expressed as: 

 

max
𝐶1,…,𝐶𝐶

∑ ∑ 𝑤𝑖,𝑗

𝑖,𝑗∈𝐶𝑐

𝐶

𝑐=1

 

 

subject to the constraints: 

 

𝐶1 ∪ 𝐶2 ∪ … ∪ 𝐶𝐶 = 𝒱(𝒢) 
𝐶𝑖 ∩ 𝐶𝑗 = 0 for all 𝑖 ≠ 𝑗 

 

where 𝒱(𝒢) and ℰ(𝒢) represent the sets of vertices and 

edges of the undirected graph 𝒢, respectively. 

The above graph partitioning problem is known to be 

NP-hard, and traditional Euclidean distance-based 

clustering methods like K-means and K-medoids are not 

applicable due to the weights in the constructed undirected 

graph being based on channel gains instead of Euclidean 

distances. To address these challenges, we adopt the 

spectral clustering method, which utilizes similarity-based 

weights and finds an optimal solution through multiple 

searches [2][50]. To mitigate interference among V2V and 

V2I pairs in the same cluster, it is essential to allocate 

orthogonal resources to them. Based on the clustering 

results, we define the candidate RB group for cluster 𝐶𝑐 as: 

 

𝐹𝑐 = ℱ ∖ {𝑚 ∣ 𝑚 ∈ ℳ, 𝑚 ∈ 𝐶𝑐} 

 

This approach aims to train robust DRL models in local 

agents and improve the performance of newly activated 

V2V or V2I pairs. With the cluster sets and candidate RB 

groups obtained from the centralized clustering, we 

introduce federated learning to facilitate the training of 

robust DRL models. The federated DRL process consists 

of numerous coordination rounds. During each 

coordination round  𝑟 =  1, 2, …, the base station BS 

distributes the pretrained or averaged model to V2V/V2I 

pairs in the same clusters. Each pair then performs DRL-

Based 
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Decentralized Learning Algorithm to train their own 

local models based on local training data. After training, 

the BS selects pairs from the same cluster to upload their 

local models. Federated averaging is then performed to 

calculate the weights of the global Q network, which is 

then later redistributed to all pairs in the cluster. 

In the federated DRL process, each pair independently 

selects its action based on local observations, without any 

knowledge of actions taken by other pairs. This may limit 

the ability to characterize the entire environment, 

potentially leading to resource collisions and suboptimal 

decisions. To address this, we introduce an asynchronous 

scheme where subframes are divided into multiple 

subframe blocks. Each pair in the same cluster is allocated 

to a specific subframe and asynchronously performs action 

selection at the designated subframe. 

For newly activated pairs, they request the BS to decide 

the cluster set to which they belong. The global DRL 

model and detailed network parameters of their specific 

clusters are then downloaded to these newly activated 

pairs. By doing so, the time-consuming training process of 

local DRL models is avoided, and they can quickly 

integrate into the existing federated DRL framework. 

The core process of federated DRL is achieved through 

minibatch-based stochastic gradient descent for federated 

averaging. The global model's weights are updated based 

on the local models' weights from pairs within the same 

cluster. The update process occurs with a soft update factor 

 𝜏, which stabilizes the learning process and ensures that 

the parameters of the target network(𝜑𝑡) are slowly 

updated compared to the evaluate network (𝜑𝑒). We can 

summarize the reward function of local agents as follow: 

 

𝑅(𝑠, 𝑎) = λ1 ∑ 𝑈(𝑅𝑠,𝑚 − 𝑅min,𝑚)𝑚∈𝑀 +

λ2 ∑ 𝑈(𝑄𝑠,α − 𝑄max)α∈𝐴 +

λ3 ∑ 𝑈 (
𝑃𝑠,α×𝑔α[𝑓]

σ2+∑ (ρ𝑠,β×𝑃𝑠,β×𝑔β[𝑓])β +∑ (ργ,α×𝑃γ,𝑓×𝑔γ,𝐵[𝑓])γ
−α∈𝐴

γ0

ln(1−𝑝0)
)  

 

Where: 

-  𝑠  represents the current state. 

-  𝑎  denotes the action taken in state 𝑠 . 
-  𝑀  is the set of resource blocks RBs. 

-  𝐴 is the set of available actions. 

- 𝑅𝑠,𝑚 is the received signal-to-noise ratio SNR of 𝑅𝐵(𝑚) 

in state  𝑠 . 
- 𝑅min,𝑚 is the minimum required SNR of 𝑅𝐵(𝑚). 

- 𝑄𝑠,α is the channel quality of action α in state 𝑠 . 
- 𝑄max is the maximum allowable channel quality. 

- 𝑃𝑠,α is the transmit power for action α in state 𝑠. 
- 𝑔α[𝑓] represents the channel gain of action α at 

frequency  𝑓 . 
- σ2 denotes the total interference and noise power. 

- ρ𝑠,β and ργ,α are binary variables that indicate if a V2V 

or V2I belongs to cluster β or  γ, respectively. 

- 𝑃γ,𝑓 is the transmit power of V2I γ at frequency 𝑓 . 

- 𝑔γ,𝐵[𝑓] is the channel gain between V2I pairs  γ and the 

BS at frequency 𝑓 . 
- γ0 is a parameter representing a threshold value. 

- 𝑝0 is the target outage probability. 

- λ1, λ2, and λ3 are weighting factors for the different 

components of the reward function. 

With this new formula, the reward function captures 

the trade-offs between the signal quality, power 

consumption, and resource allocation, helping the 

federated DRL-based algorithm make more informed 

decisions during the learning process. By combining the 

centralized clustering on a large scale with federated DRL 

on a small-scale and shorter timeframe, the multi-scale 

decentralized framework, could lead to improved resource 

allocation and overall network performance. 

 

4. Simulations and Results 

In this section, we evaluate the performances of the 

proposed multi-scale decentralized federated DRL 

algorithms for cellular vehicle-to-everything (V2X) 

communications through simulations. 

For our simulation study, we chose the SUMO, a 

widely used open-source microscopic traffic simulator. 

SUMO allows us to model and simulate vehicular 

movements and traffic scenarios with high fidelity, making 

it an ideal choice for evaluating the performance of our 

proposed multi-scale decentralized federated DRL 

framework in vehicular networks. To implement our 

multi-scale decentralized federated DRL framework and 

interact with SUMO dynamically, we utilized FLOW, a 

framework that provides deep reinforcement learning-

related APIs to work seamlessly with SUMO. FLOW 

simplifies the integration of reinforcement learning 

techniques with traffic simulations, enabling us to design 

and evaluate our DRL-based algorithms efficiently. 

To facilitate the development and optimization of our 

DRL models, we relied on various libraries and tools. 

Scipy and NumPy provided us with essential 

functionalities for scientific computing and numerical 

operations, respectively. Asynchronous RL algorithms 

allowed us to efficiently train our models by leveraging 

parallelism and concurrency, speeding up the learning 

process. 

We consider a crossroads scenario in our simulation, 

where vehicles are distributed based on the spatial Poisson 

process, and a base station is located at the center of 

various clusters. Among the vehicles, ten infrastructures 

simulated transmitting and receiving signals and  𝐾 active 

V2V transmitters are randomly selected, and each V2V 

transmitter establishes a V2V link with the farthest vehicle 

in its broadcast range. We adopt the large-scale channel 

gains for the link for V2V pairs, considering their 

unreliability due to blockage. The communication 

parameters are based on the urban street scenario in 3GPP 

TR 37.885. We defined the safety-critical messages of 

1060 bytes for latency and reliability requirements of 10ms 

and 99% with an outage threshold of 5dB. The capacity 

requirement of V2I defined as 5 bps/Hz. The number of 

predefined clusters is set as 20. The specific parameters 

used in the simulations are listed in Table I. 
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Table 1. Simulation Parameters 

Parameter Value 

Carrier Freq. 5.9 GHz 

# of Channels  15 

Channel Bandwidth  1 MHz 

# of Resource Blocks 20 

# of Clusters 10 

# of V2I Pairs 20 

# V2V Pairs in each 

cluster  

5 - 45 

Path Loss Model Line of Sight: 44.23 + 

16.7log (distance) 

None-LOS: 42.52 + 30log 

(distance) 

Transmit Power 23 dBm 

Noise Power -114 dBm 

Network Update 

Frequency 

2 

Federated Averaging 

Freq. 

200 

Weights in reward 

function 

0.2, 0.8, 1, 1.2 

Discount Factor 0.7 

Learning Rate 0.001 

Initial and Final 

Exploration 

1, 0.01 

Total # of steps 2000 

 

For the simulations, we employ a fully connected 

neural network as the DRL model [2]. It consists of an 

input layer, a hidden layer with 256 neurons, and an output 

layer. ReLU (𝑓(𝑥) = max(0, 𝑥)) is used as the activation 

function, and adaptive moment estimation is the optimizer. 

The parameters related to the DRL model are provided in 

Table I. We considered various parameters to evaluate the 

performance and three algorithms are considered for 

comparison in this work including a random C-V2X 

resource selection algorithm [52], a greedy approach 

where agents always select the channel with the lowest 

interference, and DRL based algorithm [23]. We evaluate 

the performance of the proposed algorithms for data rate, 

and the reliability and latency requirements. 

First, we focus on assessing the performance of the 

proposed algorithm in terms of data rate. In Fig. 4, shows 

the data rate versus number of created V2V/V2I links and 

it obvious that the average date rate experiences a decline 

as the number of communications pairs increases. The 

increased number of pairs sharing the same channel 

intensifies interference, thereby leading to reduced 

transmit rates for the links. However, the proposed method 

outperforms other approaches in mitigating interference. 

By employing clustering, coordination among vehicles on 

different channels and selecting appropriate power levels 

based on local observations, the proposed method 

effectively alleviates interference. 

On the other hand, the random selection algorithm 

performs poorly, and the greedy method shows almost 

equally unsatisfactory results. The random selection fails 

to consider channel quality and resource allocation, while 

the greedy method compels V2V pairs to utilize maximum 

power, further degrading date rates.  The strength of the 

proposed method lies in its ability to leverage clustering 

and federated techniques. This enables the method to 

optimize resource allocation and efficiently manage 

interference. 

Figure 4 illustrates the relationship between data rate 

and the number of established V2V/V2I links. As the 

number of communication pairs increases, the average 

data rate exhibits a gradual decline. This phenomenon is 

attributed to heightened interference as more pairs share 

the same channel, resulting in reduced transmission rates 

for individual links. 

However, the proposed method demonstrates superior 

performance in mitigating interference compared to other 

approaches. By employing clustering, coordinating 

vehicles on different channels, and strategically adjusting 

power levels based on local observations, the proposed 

method effectively alleviates interference and maintains 

higher data rates. 

In contrast, the random selection algorithm and the 

greedy method exhibit suboptimal results. The random 

selection algorithm fails to consider channel quality and 

resource allocation, leading to inefficient resource 

utilization. The greedy method, by forcing V2V pairs to 

use maximum power, exacerbates interference and further 

degrades data rates. 

The proposed method's strength lies in its ability to 

leverage clustering and federated techniques. These 

approaches enable the method to optimize resource 

allocation and effectively manage interference, resulting in 

improved overall system performance. 

 

 
 

Figure 3. Average Data Rate versus Number of  

Communications (V2V/V2I) Pairs 

We further assess the system's performance by 

evaluating whether the links meet the latency and quality 

requirements (success rate). As shown in Figure 5, the 

proposed algorithm exhibits high performance. The 

effectiveness of the proposed algorithm lies in its ability to 

accurately identify unstable links and make optimal 

transmission mode selections based on local observations 

and also clustering approach. As a result, the algorithm 

demonstrates improved performance even as the number 

of V2V pairs increases. 
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Moreover, when V2V pairs selects the V2I mode, the 

algorithm efficiently manages transmit power to meet 

reliability requirements. This approach effectively reduces 

interference levels, especially in scenarios with a large 

number of communication pairs. Consequently, as the 

number of links grows, the performance gap between the 

proposed algorithm and other alternatives becomes more 

apparent. Overall, the simulation results indicate that the 

proposed algorithm is robust and capable of delivering 

satisfactory data rates, latency, and quality of service, 

making it a promising solution for enhancing vehicular 

communication systems' performance in real-world 

scenarios. 

Figure 5 illustrates the system's performance in terms 

of meeting latency and quality requirements (success rate). 

The proposed algorithm consistently demonstrates 

superior performance in this regard. 

The algorithm's effectiveness stems from its ability to 

accurately identify unstable links and select optimal 

transmission modes based on local observations and 

clustering. This approach enables the algorithm to adapt to 

changing network conditions and mitigate interference 

effectively, even as the number of V2V pairs grows. 

When V2V pairs choose the V2I mode, the algorithm 

efficiently manages transmit power to ensure reliable 

communication. This power control strategy helps to 

reduce interference levels, particularly in scenarios with a 

high density of communication pairs. 

As the number of links increases, the performance gap 

between the proposed algorithm and other alternatives 

becomes more pronounced. The simulation results clearly 

demonstrate the robustness and efficacy of the proposed 

algorithm in delivering satisfactory data rates, latency, and 

quality of service. This makes it a promising solution for 

enhancing the performance of vehicular communication 

systems in real-world scenarios. 

 
 

Figure 4. Success Rate versus Number of Communications 

Pairs 

We also conducted evaluations on both data rate and 

success rate in relation to the SINR threshold. Figures 6 

and Fig. 7 illustrates these metrics for varying thresholds, 

with the number of communications pairs fixed at 25. The 

proposed algorithm exhibits adaptability to larger 

thresholds by selecting optimal transmission modes, best 

reusable channels and adopting appropriate transmission 

powers, thereby effectively mitigating interference. This 

adaptability leads to reduced interference and higher 

reliability, contributing to its overall superior performance. 

Notably, as the thresholds increase, the average data rate 

declines. This decrease is attributed to the fact that larger 

thresholds necessitate communicating pairs to select 

higher transmission power levels to meet reliability 

requirements. Consequently, this leads to stronger 

interference for pairs sharing the same channel. In contrast, 

the greedy method and random selection schemes always 

opt for maximum transmission power without considering 

the transmit rate. As a result, the average rate remains 

unchanged across different thresholds. This lack of 

adaptability limits the performance of these two methods. 

Figure 6 and Figure 7 depict the relationship between 

data rate and success rate with varying SINR thresholds, 

while maintaining a fixed number of communication pairs 

(25). 

The proposed algorithm demonstrates remarkable 

adaptability to larger SINR thresholds. By strategically 

selecting optimal transmission modes, identifying the best 

reusable channels, and adjusting transmission powers, the 

algorithm effectively mitigates interference. This 

adaptability results in reduced interference and higher 

reliability, contributing to its overall superior performance. 

However, as the SINR threshold increases, the average 

data rate gradually declines. This is because higher 

thresholds necessitate communicating pairs to employ 

higher transmission power levels to meet reliability 

requirements. Consequently, this leads to increased 

interference among pairs sharing the same channel. 

In contrast, the greedy method and random selection 

schemes consistently operate at maximum transmission 

power, regardless of the SINR threshold. This lack of 

adaptability limits their performance, as they fail to 

optimize power usage and mitigate interference 

effectively. As a result, the average data rate remains 

relatively unchanged across different thresholds. 

Overall, the proposed algorithm's ability to adapt to 

varying SINR thresholds and optimize transmission 

parameters is a key factor in its superior performance. This 

adaptability enables it to achieve higher data rates and 

reliability, even in challenging communication 

environments. 

 
 

Figure 5. Average Data Rate versus SINR Threshold 
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Figure 6. Success Rate versus SINR Threshold 

 
5. Conclusion  

In this research, we aimed to empower vehicles with the 

autonomy to make intelligent channel selection decisions 

for their transmissions. To achieve this goal, we proposed 

a novel two-layer multi-agent approach, wherein 

individual vehicles acted as agents, making autonomous 

decisions based on their local observations, while clusters 

of nearby vehicles collaborated to improve overall system 

performance. 

Our decision-making model was built on the 

foundation of deep reinforcement learning (DRL) 

techniques, which considered multiple factors such as 

instantaneous channel state information, queue backlog at 

the transmitter, interference from different links, and 

historical selections of nearby links. This allowed the 

agents to make well-informed choices concerning channel 

selection and power allocation, optimizing communication 

efficiency. 

To further enhance the performance of our 

decentralized vehicular agents, we integrated federated 

learning (FL) into our approach. This facilitated 

knowledge sharing and synchronization among the 

individual agents, harnessing the collective intelligence of 

the network. By consolidating and synchronizing the local 

models through FL, each agent gained insights into the 

broader network dynamics beyond its limited 

observations, leading to more accurate and coordinated 

decision-making. 

The integration of DRL and FL offered several 

advantages. Firstly, it enabled real-time adaptability for 

each agent in response to the dynamic nature of the 

vehicular environment. Secondly, the collective 

intelligence of the network, harnessed through FL, 

improved decision-making efficiency, leading to better 

channel utilization and reduced interference. 

The results from our simulations demonstrated the 

effectiveness of our proposed approach, showcasing its 

ability to tackle the challenges of vehicular 

communication systems. 
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