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Abstract: Secret sharing schemes are ideally suited to save 

highly sensitive information in distributed systems. On the 

other hand, Zigzag-Decodable (ZD) codes are employed in 

wireless distributed platforms for encoding data using only 

bit-wise shift and XOR operations. Recently, Vandermonde-

based ZD codes have been utilized in secret sharing schemes 

to achieve high computational efficiency such that sharing 

and recovering of secrets can be realized by lightweight 

operations. However, the storage overhead of using these ZD 

codes remains a problem which is addressed in the present 

paper. Here, a ramp secret sharing scheme is proposed based 

on an efficient ZD code with less storage overhead in 

comparison with existing literature. The novelty of the 

proposed scheme lies in the careful selection of the number 

of positions to shift the bits of the secret such that security 

and zigzag decodability are guaranteed simultaneously. In 

addition to prove gaining these features, we show that the 

scheme improves speed of recovery. 

Keywords: Boolean operation, Efficiency, Ramp secret 

sharing scheme, Zigzag decodable codes.  

 

1. Introduction 

Security is a vital necessity in distributed systems and cloud 

environments. With the rise in cloud computing 

environments and Internet of things systems, secret sharing 

(SS) schemes have become increasingly important 

cryptographic primitives. In an SS scheme, a secret is 

distributed to some shares such that any qualified subset of 

shareholders can reconstruct the secret while no unqualified 

subset can gain any information about it. SS schemes are 

used as the key element of numerous security protocols, most 

notably in distributed storage systems, threshold 

cryptography and secure multi-party computation. However, 

in many of these  

applications, lightweight schemes are a requirement. In 

this context, there have been efforts to present the schemes 

that can be implemented using only Boolean operations, 

namely Shift and XOR.  

(𝑡, 𝑛)-threshold SS schemes constitute an important type 

of secret sharing schemes. During these schemes, a secret is 
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distributed among 𝑛 participants in a way that any 𝑡 or more 

participants be able to reconstruct the secret [1]. A large 

number of methods have been applied to improve the 

efficiency of threshold schemes in which using the boolean 

operations in the schemes establish a considerable part of it 

[2].   

In [3], Shiina et al. presented a (𝑡, 𝑛)-threshold SS scheme 

to improve Shamir's threshold SS scheme. In spite of the 

improvement in terms of computational time, their method 

imposes a large storage overhead for the shares. Kurihara et 

al. [4] presented a (3, 𝑛)-threshold SS scheme using XOR 

that was ideal (i.e., the domain of the shares and the secret 

are equal). Then, they generalized their method in [5] to any 

arbitrary threshold value by presenting an ideal (𝑡, 𝑛)-

threshold SS scheme using boolean operations. They also 

extended the (𝑡, 𝑛)-threshold SS and provided the concept of 

a (𝑡, 𝑤, 𝑛)-Ramp Secret Sharing (RSS) scheme [6] where 𝑤 

determines a boundary for the minimum number of 

participants who have to form a coalition to achieve some 

information about the secret [7].  

In Kurihara et al.'s schemes, the shares are computed by 

applying XOR operation to the secret pieces and the 

sequences of random bits. In their schemes, after collecting 

the required number of shares, they are saved in a vector. 

Then, the secret can be reconstructed through multiplying 

this vector and a matrix calculated according to Gaussian 

elimination. Although Gaussian elimination imposes high 

computational complexity in practice, for some parameters, 

it is experimentally shown that this elimination is faster than 

Shamir's scheme. [8] discusses the subject of the scheme of 

Kurihara et al.'s using the properties of circular matrices. The 

authors achieve a new security analysis for these secret 

sharing schemes. Afterward, Wang and Desmedt [9] 

presented a (𝑡, 𝑛)-threshold scheme which needed just XOR 

and cyclic shift operations. Additionally, Chen et al. [10] 

who recommended a boolean-based (𝑡, 𝑛)-threshold scheme, 

claimed that it is more efficient than Kurihara et. al's and also 

Wang and Desmedt's schemes. However, their scheme has a 

limitation and cannot be used in general case, i.e. it works 
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only for 𝑛 = 𝑡, 𝑡 + 1. Shima et al. [11] suggested a way to 

fix this problem and then extended the improved method to 

a hierarchical scheme. In another work [12], a 

(𝑛, 𝑛) −threshold secret sharing scheme based on binary 

trees and XOR operation has been proposed. Some studies 

applied boolean operations to optimize common SS schemes 

such as Shamir’s method [13].  

Boolean-based methods have also been considered for 

large secrets such as images [14]–[16]. The threshold 

schemes employed by lightweight operations such as shift 

and XOR benefit from high computational efficiency, 

lossless image recovery, ability of multiple images sharing, 

supporting any image formats, fast recovery, etc [17]- [20]. 

 Lately, zigzag-decodable (ZD) erasure codes have been 

employed in conjunction with ramp secret sharing schemes. 

ZD codes are the first XOR-based Maximum Distance 

Separable (MDS) codes proposed for distributed storage 

systems [21] that can correct node failures. In ZD codes, both 

encoding and decoding processes are carried out exclusively 

by the operators of bitwise shift and XOR, without the need 

for finite field multiplication. Also, it is possible to perform 

decoding process easily via physical layer network coding 

[22]. These advantages imply that in a wide variety of 

applications where efficiency is important (such as big-data 

storage, wireless distributed storage systems and resource-

constrained devices), ZD-based schemes can be 

conveniently employed [23], [24].  

However, this efficiency is at the expense of some storage 

overhead. In [25], Gong et al. proposed a (𝑡, 𝑤, 𝑛)-RSS 

scheme which has been adapted from ZD codes based on 

Vandermonde matrix, abbreviated as VZD-RSS. Their 

scheme inherited the features of ZD codes, i.e., it has less 

computational complexity compared to the schemes in the 

literature and also has some storage overhead. 

In [21], the authors presented a sufficient condition, so-

called "increasing difference'' property, for enabling zigzag 

decodability . Based on this condition, two constructions 

based on the Vandermonde and the Hankel matrices were 

proposed [26]. Afterwards, Dai et al. [27] presented another 

ZD code using circular matrices with less storage overhead. 

Their method does not provide the sufficient condition and 

they demonstrate a new proof for constructing feasible ZD 

code. 

 

1.1. Our Contributions 

The main contribution of the present paper is proposing a 

secure (𝑡, 𝑛)-RSS scheme based on ZD codes with less 

storage overhead than VZD-RSS. That is, we introduce a 

new generator matrix that reduces size of shares compared to 

the Vandermonde-based schemes while maintaining 

security. Here, our contributions in comparison with the 

existing literature are briefly listed: 

1. Our proposed scheme supports arbitrary values of 𝑛 and 

𝑡, has low computational complexity, and provides 

zigzag decodability. 

2. Our proposed scheme reduces storage overhead by 

almost half compared to Vandermonde-based scheme. 

The overhead can be neglected for large secrets or cases 

where 𝑛 and 𝑡 are close. 

3. Our proposed scheme is proven to achieve zigzag 

decodability property according to new conditions. 

4. Our proposed scheme satisfies security requirements. 

 

1.2. Paper Organization 

The organization of the rest of the paper is as follows: 

Section II reviews some definitions of RSS schemes. Section 

III introduces ZD codes. The proposed scheme is presented 

in Section IV. Section V describes security analysis and 

conditions of zigzag decodability. In Section VI, the 

efficiency of the proposed scheme is analyzed and compared 

with boolean-based methods in the literature. Conclusions 

are presented in Section VII and finally, we provide the 

details of parts of our proofs in the Appendix section. 

 

2. C Preliminaries 

In this section, we review required definitions and provide 

necessary notations for ramp secret sharing (RSS) schemes. 

Let 𝑋 and 𝑌 be two jointly distributed random variables. 

Let 𝐻(𝑋) denote the 𝑆ℎ𝑎𝑛𝑛𝑜𝑛 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 of 𝑋 and let 𝐻(𝑋|𝑌) 

be the 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 of 𝑋 given 𝑌. 

According to Shannon entropy, 𝐻(𝑋|𝑌)  =  0 indicates 

that 𝑋 is a deterministic function of 𝑌. However, 𝐻(𝑋|𝑌 =

𝑦) = 𝐻(𝑋) indicates that in case {𝑌 = 𝑦}, no information 

about 𝑋 is leaked. 

Definition: Assume 𝑡, 𝑤 and 𝑛 are integers where 0 <

 𝑤 ≤  𝑡 ≤  𝑛. A (𝑡, 𝑤, 𝑛)-RSS scheme distributes a secret 

message K among 𝑛 participants such that two conditions 

hold: 

1. Decodability. Any subset 𝐴 of 𝑡 or more participants, 

can uniquely recover 𝐾, i.e., 𝐻(𝐾|𝐴) = 0. 

2.  Secrecy. Any set 𝐴′ of at most (𝑡 − 𝑤) participants, 

obtains no information about 𝐾, i.e., 𝐻(𝐾|𝐴′) = 𝐻(𝐾). 

By definition, a (𝑡, 1, 𝑛)-RSS scheme is a (𝑡, 𝑛)-threshold 

secret sharing scheme. In fact, RSS schemes are solutions to 

reduce the size of shares while losing secrecy to some extent. 

Definition: A (𝑡, 𝑤, 𝑛)-ramp secret sharing scheme is 

linear if for any subset of participants 𝐴 that |𝐴| = 𝑟 and 𝑡 −

𝑤 <  𝑟 < 𝑡, we have 𝐻(𝐾|𝐴) =
𝑤−𝑟

𝑤
𝐻(𝐾). 

It means that, after pooling (𝑡 − 𝑤) shares, every further 

share reveals 
1

𝑤
 bits of information about the secret 𝐾 [27]. 

 

3. Review of ZD Codes 

The encoding and decoding processes of ZD codes are based 

solely on boolean operations, including shift and XOR. 

Zigzag decodability is the ability of recovering the 

original data by zigzag decoding [28]. In this section, the 

coding and decoding processes of ZD codes are reviewed in 

general. 

 

3.1. Coding 

Given a message 𝐾 with length 𝜆 = 𝑡𝐿 bits, we split it into 𝑡 
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pieces 𝐾1, 𝐾2, … , 𝐾𝑡. 

The bit-length of each piece of message 𝐾𝑖 is 𝐿 bits. 

Furthermore, polynomial representation of 𝐾𝑖 is: 

 

𝐾𝑖(𝑧) = 𝐾𝑖,0 + 𝐾𝑖,1 𝑧 + ⋯+ 𝐾𝑖,(𝐿−1) 𝑧
𝐿−1      (1) 

 

where 𝐾𝑖,𝑗 is an element in 𝐺𝐹(2). 

By linear combination of the 𝑡 pieces of the message, 𝑛 

encoded packets 𝐶1(𝑧), 𝐶2 (𝑧),… , 𝐶𝑛(𝑧) are generated. 

Each 𝐶𝑖(𝑍), 𝑖 = 1,2, … , 𝑛 is 𝐿′ = 𝐿 + 𝑙 bits long, where 𝑙 

denotes the storage overhead, i.e., the encoded packets are 𝑙 

bits longer than the pieces of message. Then, the polynomial 

representation of 𝐶𝑖(𝑧) is given by: 

 

𝐶𝑖(𝑧) = 𝐶𝑖,0 + 𝐶𝑖,1 𝑧 + ⋯+ 𝐶𝑖,(𝐿′−1) 𝑧
𝐿′−1     (2) 

 

Each 𝐶𝑖(𝑧) is generated in two phases: 1) shifting pieces 

of message and 2) adding them. Hence, the i-th encoded 

packet is obtained as follows: 

 

𝐶𝑖(𝑧) = 𝑧
𝑒𝑖,1  𝐾1 + 𝑧

𝑒𝑖,2  𝐾2 +⋯+ 𝑧𝑒𝑖,𝑡  𝐾𝑡          (3) 

 

where 𝑒𝑖,𝑗 ∈  𝑍. Note that multiplying by 𝑧𝑗 means 

shifting by 𝑗 positions while add operation (performed in 

𝐺𝐹(2)) means XOR.  

According to (3), storage overhead of each encoded packet 

will be 𝑙 = 𝑚𝑎𝑥𝑖,𝑗{𝑒𝑖,𝑗  }. Considering the source and 

encoded data, the corresponding matrix form is: 

𝐶(𝑧) = 𝐺(𝑧) ×  𝐾(𝑧)                            (4) 

 

where 𝐶(𝑧) is a vector of length 𝑛 and its 𝑖-th element is 

𝐶𝑖(𝑧). Additionally, 𝐾(𝑧) is a 𝑡-dimensional vector 

containing pieces of message. 

𝐺(𝑧) is called the generator matrix and is an 𝑛 ×  𝑡 matrix 

with 𝑧𝑒𝑖,𝑗 as (𝑖, 𝑗)-th element. Note that matrix 𝐺(𝑧) is 𝑡-

reliable, this implies that any 𝑡 × 𝑡 submatrix of 𝐺(𝑧) can be 

used to recover the pieces of message. 

So far, there are some suggestions for matrix 𝐺(𝑧) in the 

literature, such as Vandermonde, Hankel, etc. In VZD-RSS 

[25], choosing Vandermonde matrix has fulfilled the security 

requirements and the storage overhead equals (𝑛 − 1)(𝑡 −

1). In Section IV, we propose a generator matrix such that 

the storage overhead is reduced by half compared to VZD-

RSS.  

 

3.2. Zigzag Decoding 

Suppose that 𝑡 arbitrary coded packets are available. We now 

describe how the source packets are recovered by zigzag 

decoding algorithm. 

First, a 𝑡 × 𝑡 submatrix 𝑀(𝑧) = [𝑧𝑔𝑖,𝑗] of 𝐺(𝑧) is 

constructed using the corresponding indices of the available 

encoded packets. Consider a 𝑡 × 𝑡 integer matrix 𝐸 = [𝑒𝑖,𝑗] 

in which its elements are exponents of the corresponding 

elements in 𝑀(𝑧). The main idea of zigzag decoding 

algorithm is to find an encoded packet that has a bit which 

can be directly extracted. Such a bit is called an "exposed'' 

bit. 

Afterwards, the bit is deduced from other encoded 

packets. This process is done repeatedly until recovering all 

source bits. In Figure 1, an example of zigzag decoding 

procedure with two encoded packets is shown. The 

computational complexity of zigzag decoding is 𝑂(𝑡2𝐿). 

In the following, we review the details of zigzag decoding 

algorithm as stated in [21]. 

Let 𝑖 be the index of an encoded packet and similarly, 𝑗 be 

the index of a source packet. Also, let m and 𝑚′ be the set of 

indexes of the encoded packets and set of indexes of 

unrecovered source packets. The polynomials �̂�𝑗(𝑧) and 

𝑦𝑖(𝑧) are the decoded portion of 𝑗-th source packet and also 

the not decoded part of 𝑖-th packet. 

Furthermore, for a polynomial 𝑓(𝑧), consider Ω(𝑓(𝑧)) 

and 𝜔(𝑓(𝑧)) as the term with the smallest order and the order 

of that term, respectively. 

 

Zigzag Decoding Algorithm: 

Step 1: (Initialization) Let 𝑚′ ∶= 𝑚 and �̂�(𝑧) ∶=  0. Let 

 

𝜂𝑗(𝑧): = 1 + 𝑧 + ⋯+ 𝑧𝐿+𝑙−1, ~for all 𝑗 ∈  𝑚′    (5) 

Step 2: (Searching for an exposed bit) Find an 𝑖∗ ∈ 𝑚 and 

some 𝑗∗ ∈  𝑚 such that 
 

𝜔(𝑧𝑡𝑖∗,𝑗∗𝜂𝑗∗(𝑧))  < 𝜔(𝑧𝑖
∗,𝑗𝜂𝑗(𝑧)) for all 𝑗 ∈ 𝑚′ \ {𝑗∗} (6) 

 

Step 3: (Updating variables) 

1. Let �̂�𝑗∗(𝑧) ∶= �̂�𝑗∗(𝑧)  + Ω(𝑦𝑖∗(𝑧)). 

2. Let 𝑦𝑖(𝑧) ∶=  𝑦𝑖(𝑧) − 𝑧
𝑖,𝑗∗Ω(𝑥𝑗∗(𝑧)) for all 𝑖 ∈ 𝑚. 

3. Remove the term of 𝜂𝑗∗(𝑧) which has the smallest order. 

If there is no more term in 𝜂𝑗∗(𝑧), }delete 𝑗∗ from 𝑚′. 

Step 4: If 𝑚′ ≠ 0 go to Step 2, else exit and output �̂�𝑗(𝑧) 

for all 𝑗 ∈ 𝑚. 

 

 
 

Figure 1.  Illustration of zigzag decoding for two coded packets. 

 

4. The Proposed (t,w,n)-RSS Scheme 

In this section, we first explain our ZD code that decreases 

storage overhead in the recovery phase. This is achieved by 

substituting the ZD code's Vandermonde matrix by another 

modified matrix. Then, we propose a (𝑡, 𝑤, 𝑛)-RSS scheme 

using this ZD code. Our proposed generator matrix 𝐺 is 

defined as (7). 
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(7) 

 

In this matrix, the first ⌈
𝑛

2
⌉ rows constitute a Vandermonde 

matrix and the last ⌊
𝑛

2
⌋ rows are obtained by using the upper 

half of 𝐺. 

In another representation, we can define 𝐺 as four 

submatrices as (4). 
 

𝐺 = 

(
V ([z, … , z

⌈
n
2
 ⌉
], [0, … , t − w − 1]) V ([z, … , z

⌈
n
2
 ⌉
], [t − w,… , t − 1])

V ([z, … , z
⌊
n
2 
⌋
], [t − w − 1,… ,0]) V ([z, … , z

⌊
n
2
⌋
], [t, t − 2, … , t − w])

) 

 (8) 

Where 𝑉(𝑥, 𝑏) is an 𝑟 × 𝑐 matrix, 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑟) is 

an 𝑟-tuple of indeterminates and 𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑐) is an 𝑐-

tuple of non-negative integers. The elements of matrix are 

obtained as 𝑉(𝑥, 𝑏)  =  [𝑥
𝑖

𝑏𝑗
]. 

As can be seen 𝑚𝑎𝑥𝑖,𝑗{ 𝑔𝑖,𝑗} = 𝑧
⌊
𝑛

2
 ⌋(𝑡−1)+1

 which is 

approximately 1/2 of that of Vandermonde matrix, this 

reduces the storage overhead by half. 

 

4.1. Sharing Phase: 

Consider a secret 𝐾 with 𝑤𝐿 bits. First, 𝐾 is divided into 𝑤 

segments 𝐾𝑖 , 𝑖 = 1,2, … , 𝑤, in which 𝐾𝑖 is 𝐿 bits long. Then, 

each segment is considered as the coefficients of a 

polynomial of order at most 𝐿 − 1. Next, the following steps 

are performed to generate 𝑛 shares: 

1. Generator matrix 𝐺 with dimension 𝑛 ×  𝑡 is produced 

as in (7). 

2. (𝑡 − 𝑤) random strings, 𝑅𝑖 , 𝑖 = 1,2, … , 𝑡 − 𝑤 with 𝐿′ 

bits are generated. Each string 𝑅𝑖 is represented by the 

coefficients of a polynomial: 

 

𝑅𝑖(𝑧) = 𝑅𝑖,0 + 𝑅𝑖,1(𝑧) + ⋯+ 𝑅𝑖,𝐿′−1 𝑧
𝐿′−1                   (9) 

 

3. Each share 𝑆𝑖 , 𝑖 = 1,2, … , 𝑛 is calculated as follows:  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑆𝑖(𝑧) = 

{
 
 
 
 
 

 
 
 
 
  ∑(𝑅𝑟(𝑧)𝑧

(𝑖−1)(𝑟−1))

𝑡−𝑤

𝑟=1

                             

  + ∑(𝐾𝑚(𝑧)𝑧
(𝑖−1)(𝑡−𝑤+𝑚−1)) 𝑚𝑜𝑑 𝑧𝐿

′
       if 𝑖 < ⌊

𝑛

2
⌋

𝑤

𝑚=1

    ∑(𝑅𝑟(𝑧)𝑧
(𝑖−1)(𝑡−𝑤−𝑟)) + 𝐾1(𝑧)𝑧

𝑖(𝑡−1)+1

𝑡−𝑤

𝑟=1

          

+ ∑(𝐾𝑚(𝑧)𝑧
(𝑖−1)(𝑚−1))

𝑤

𝑚=2

 𝑚𝑜𝑑 𝑧𝐿
′
             otherwise

 

(10) 

where 𝑚𝑜𝑑 𝑧𝐿
′
 denotes the truncation at degree 𝐿′. 

Alternatively, the encoding can be illustrated by the 

following notation. At first, multiplication of a matrix-vector 

is calculated by: 
 

𝑆′(𝑧) =  𝐺 ×

(

 
 
 
 
 

𝑅1
𝑅2
⋮

𝑅𝑡−𝑤
𝐾1
𝐾2
⋮
𝐾𝑤 )

 
 
 
 
 

    (11) 

 

Then, each share 𝑆𝑖 is obtained by truncating 𝑆𝑖 ′(𝑧) at 

degree 𝐿′. 

 

4.2. Recovery Phase: 

With having 𝑡 shares 𝑆𝑖1 , 𝑆𝑖2 , … , 𝑆𝑖𝑡  the secret can accurately 

be recovered. Let set 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑡} contain indices of the 

available shares. The recovery steps can be performed by 

zigzag decoding algorithm explained in Section III-B.  

 

5. Security Analysis 

In this section we prove that the decodability and secrecy 

requirements are guaranteed in our proposed scheme. 

Theorem 2 shows that we can recover the secret by 𝑡 shares, 

and additionally, by (𝑡 − 𝑤) or fewer shares no information 

of the secret is gained. Theorem 4 provides proof for zigzag 

decodability. For the sake of simplicity, we make use of 

some lemmas as well.  

Lemma 1. Any 𝑡 × 𝑡 square submatrix of the matrix 𝐺 

(defined in Section IV) is invertible, or equivalently, any 𝑡 

rows of 𝐺 are linearly independent. 

Proof: The proof of this lemma can be found in the 

Appendix section of the paper.   

Theorem 2. Let 𝑉𝐴 denotes the set of shares corresponding 

to a random subset of participants 𝐴. So, we have: 
 

𝐻(𝐾|𝑉𝐴)  =  {
𝐻(𝐾) 𝑚 ≤  𝑡 − 𝑤

0 𝑚 ≥  𝑡
                          (12) 

 

Where 𝑚 = |𝐴|, i.e. number of participants of 𝐴. 

Proof: Let 𝐴 = {𝑃𝑡0 , 𝑃𝑡1 , … , 𝑃𝑡𝑚−1}. The generator matrix 

G=[U V] is defined such that we have: 
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𝑆′ =  𝐺 × [
𝑅
𝐾
] = (U ×  R) ⊕ (V ×  K) =

           [S1
′ , S2

′ , … , Sn
′ ]T   (13) 

 

where 𝑅 = [𝑅1, 𝑅2, … , 𝑅𝑡−𝑤]
𝑇 and 𝐾 = [𝐾1, 𝐾2, … , 𝐾𝑤]

𝑇. 

According to Step 3 of Sharing phase, each share 𝑆𝑖 is 

directly obtained by truncation of 𝑆𝑖
′. 

Suppose that 𝑅 is selected uniformly and that 𝐾 and 𝑅 are 

mutually independent. According to Lemma 1, any 𝑡 rows of 

𝐺 are linearly independent. Also, any (𝑡 − 𝑤) rows of 𝑈 and 

any 𝑤 rows of V are linearly independent, i.e. for 𝑚 ≤ (𝑡 −

𝑤): 𝑟𝑎𝑛𝑘(𝐺)  =  𝑟𝑎𝑛𝑘(𝑈) = 𝑚. Hence all elements 

obtained by 𝑈 × 𝑅 are random and mutually independent. 

Then, we suppose that 𝑆′ is a certain subset of the shares that 

can be obtained with uniform probability from any chosen 

𝑉 × 𝐾. Therefore, 𝐾 is independent of 𝑆′ and 𝐻(𝐾|𝑉𝐴)  =

 𝐻(𝐾) is satisfied if 𝑚 ≤ (𝑡 − 𝑤). This means that no 

information about 𝐾 can be extracted. 

If 𝑚 ≥  𝑡, then 𝑟𝑎𝑛𝑘(𝐺) = 𝑡. Therefore, solving the 

system of linear equation 13 specifies the elements of 𝑅 and 

𝐾 uniquely. This means that any 𝑡 shares are able to recover 

the secret.  

In the following, we prove that the zigzag decoding 

algorithm can be applied on shares produced by the proposed 

scheme. Since the proposed generator matrix does not satisfy 

the sufficient condition for zigzag decodability (i.e. 

increasing difference property), a new proof is required. 

In [22], new conditions are presented for ZD codes which 

can reduce storage overhead provided that the matrix is 

selected correctly. The following results give necessary 

conditions for zigzag decodablity. 

First for 𝑝 ∈ {1,2, … , 𝑛} and 𝑚, 𝑟 ∈  {1,2, …  𝑡}, define 

Δ𝑚,𝑟
𝑝

= 𝑔𝑝𝑚 − 𝑔𝑝𝑟. 

Lemma 3. Assume that 𝐺 is a generator matrix of a ZD 

code such that for any row indices 𝑖 and 𝑗, and for any 

column indices 𝑚 and 𝑟 of 𝐺, where 𝑖 ≠ 𝑗 and 𝑚 ≠ 𝑟, we 

have: 

1) 𝛥𝑚,𝑟
𝑖 ≠ 0; 

2) 𝛥𝑚,𝑟
𝑖 ≠ 𝛥𝑚,𝑟

𝑗
; 

3) If 𝑔𝑖𝑚  > 𝑔𝑗𝑚 and 𝛥𝑚,𝑟
𝑖 > 0, then 𝛥𝑚,𝑟

𝑖 > 𝛥𝑚,𝑟
𝑗

. 

 

Then, the original message can be reconstructed by the 

zigzag decoding algorithm. 

Proof: This lemma is proved in Theorems 1 and 2 of [22].

 Theorem 4. Assume that t > 2 zigzag decoding algorithm 

can be applied in our (t, w, n)-RSS scheme, i.e. the existence 

of a share (encoded packet) containing an exposed bit is 

always guaranteed. 

Proof: For better observation, we write the difference 

value between consecutive components of matrix 𝐺 (defined 

by (7)) as follows: 

 
(14) 

Note that 𝑑𝑖,𝑚 = Δ𝑚,(𝑚+1)
𝑖 . 

It can be easily seen that the first condition of Lemma 3 

holds. 

Now we check condition 3. There are four cases for 

indices of rows 𝑖 and 𝑗. In the two first cases, rows 𝑖 and 𝑗 

both are in the upper half or the lower half 𝐺. In these cases, 

condition 3 is satisfied. 

For the third case, consider 𝑖-th row in the upper half of 

matrix 𝐺 and 𝑗-th row in the lower half. Without loss of 

generality consider 𝑚 = 𝑡 − 𝑤 − 1 and 𝑟 < 𝑚 (i.e. the left 

part of the matrix). For these values of 𝑚, 𝑟, we have 𝑔𝑖𝑚 >

𝑔𝑗𝑚, Δ𝑚,𝑟
𝑖 > 0 and Δ𝑚,𝑟

𝑗
< 0 and therefore Δ𝑚,𝑟

𝑖 > Δ𝑚,𝑟
𝑗

. 

Similarly, for 𝑚 = 𝑡 − 1 and 𝑟 < 𝑚 (i.e. the right part of the 

matrix), we have 𝑔𝑖𝑚 > 𝑔𝑗𝑚, Δ𝑚,𝑟
𝑖 > 0 and Δ𝑚,𝑟

𝑗
< 0 and 

therefore Δ𝑚,𝑟
𝑖 > Δ𝑚,𝑟

𝑗
. 

 For the last case, i.e. 𝑖-th row in the lower half of matrix 

𝐺 and 𝑗-th row in the upper half, it can be easily seen that the 

condition holds. As for condition 2, in matrix 𝑑, rows 

𝑖, 𝑗 (𝑖 ≠ 𝑗) in upper half of 𝐺 have different differences 

Δ𝑚,𝑟
𝑖 = 𝑖(𝑟 −𝑚) and Δ𝑚,𝑟

𝑗
= 𝑗(𝑟 − 𝑚). 

Similarly, we see this for rows 𝑖, 𝑗 in lower half of 𝐺. 

Another case is that 𝑖, 𝑗 are in different parts, for example 𝑖 

in upper half of matrix 𝐺 and 𝑗 in the lower half. If 𝑚, 𝑟 both 

are in the left part or the right part, Δ𝑚,𝑟
𝑖 > 0 and 

\𝐷𝑒𝑙𝑡𝑎𝑚,𝑟
𝑗

< 0 and therefore the condition holds. However, 

condition 2 may not hold when 𝑖, 𝑗 are in different parts (the 

top and down part of 𝐺) and 𝑚, 𝑟 are in different parts (the 

left and right part of 𝐺). But, we show that it cannot prevent 

the progress of ZD algorithm. 

 Consider we have two rows 𝑖, 𝑗 and two columns 𝑚, 𝑟 

with Δ𝑚,𝑟
𝑖  = Δ𝑚,𝑟

𝑗
. Without loss of generality, consider 𝑖, 𝑗 in 

the upper and lower half of 𝐺 and 𝑚 = 1, 𝑟 = 𝑡 − 𝑤 + 1 (in 

the left and the right part of 𝐺). According to the sharing 

algorithm, 𝑅1 and 𝐾1 are multiplied by 1-th and (𝑡 − 𝑤 +
1)-th column of 𝐺, respectively. Now, suppose that the 

zigzag decoding algorithm runs on 𝑡 shares including 𝑆𝑖  , 𝑆𝑗. 

Since Δ𝑚,𝑟
𝑖 = Δ𝑚,𝑟

𝑗
, both 𝑖-th and 𝑗-th shares include 𝑅1⊕

 𝐾1. It means that bits of 𝑅1 and 𝐾1 can not decode only by 

𝑆𝑖 and 𝑆𝑗 and should use another row 𝑝 where Δ𝑚,𝑟
𝑝

≠ Δ𝑚,𝑟
𝑖 𝑜𝑟 𝑗

. 

In the following, we show that all other rows have different 

differences from 𝑖, 𝑗. 
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Figure 2.  Recovering the secret from the proposed (4, 2, 6)-RSS scheme via zigzag decoding algorithm 

 

  

Table 1. Comparison of some Boolean-based SS and RSS schemes.

 

Schemes 
No. of computations 

Support for all n , t 
Only Boolean 

operation 
Storage overhead 

Sharing phase Recovery phase 

Kurihara et al. 𝑡𝑛𝑝𝐿 𝑡𝑛𝑝𝐿 + 𝑡
3𝑛𝑝

3  Yes Yes 𝑙 < 𝑤(𝑛𝑝 − 1) 

Wang-Desmedt 𝑡𝑛𝐿 𝑛𝐿3 Yes No 𝑙 ≤ (𝑛 − 1) 

Chen et al. 𝑡𝑛𝐿 𝑡𝑛𝐿 No No No 

Deshmukh et al. (2ℎ − 2)𝐿 (2ℎ−1)𝐿 No Yes No 

Chattopadhyay et al. (𝑛)ℎ𝑎𝑠ℎ + 2𝑛𝐿 (𝑛)ℎ𝑎𝑠ℎ + 2𝑛𝐿 No No No 

Shima-Doi 𝑡𝑛𝑝𝐿 𝑡𝑛𝑝𝐿 + 𝑡
3𝑛𝑝

3  Yes Yes 𝑙 < 𝑤(𝑛𝑝 − 1) 

VZD-RSS 𝑡𝑛(𝐿 + 𝑡𝑛) 𝑡2𝑛(𝐿 + 𝑡𝑛) Yes Yes (𝑛 − 1)(𝑡 − 1) 

Our scheme 𝑡𝑛(𝐿 +
𝑡𝑛

2
) 𝑡2𝑛(𝐿 +

𝑡𝑛

2
) Yes Yes 

𝑛(𝑡 − 1)

2
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All rows of upper half of 𝐺 have distinct differences, then 

no 𝑝(≠  𝑖) has the same difference as Δ𝑚,𝑟
𝑖 . Similarly, all 

rows of lower half of 𝐺 have distinct differences, then no 

𝑝(≠  𝑗) has the same difference as Δ𝑚,𝑟
𝑗

. Therefore, for any 

row 𝑝(≠  𝑖, 𝑗), we have Δ𝑚,𝑟
𝑝

≠ Δ𝑚,𝑟
𝑖 𝑜𝑟 𝑗

.  

Example. Consider (4,2,6)-RSS scheme. The generator 

matrix is: 
 

  
                                                                                                    (15) 

Suppose that the shares corresponding to rows 1,4,5,7, are 

provided. In Figure 2, we show how the zigzag decoding 

algorithm runs.  

As can be seen in (15), Δ1,4
1  = Δ1,4

7 , i.e. the difference 

between elements of columns 1 and 4 in rows 1 and 7 are 

equal. According to the proof of Theorem 4, bits of 𝑅1 and 

𝐾2, multiplied by columns 1 and 4, should be decoded by 

other available shares, i.e. 𝑆4 and 𝑆5. 

Also, Δ2,3
4  = Δ2,3

5  and bits of 𝑅2 and 𝐾1 should be encoded 

by shares 𝑆1 and 𝑆7. In Figure 2, we draw a circle around the 

exposed bits in the current round. 
 

6. Comparison 

In this section, we compare our scheme with some similar 

schemes proposed by Kurihara et al. [6], Wang-Desmedt [9], 

Chen et al. [10], Deshmukh et al. [12], Chattopadhyay et al. 

[20], Shima-Doi [8], and Gong et al. [25] denoted as VZD-

RSS and summarize the results in Table 1. The comparison 

is based on computational efficiency as well as whether there 

exist some limitations on the values of 𝑛 and 𝑡 that the 

schemes support. The results indicate that our scheme is the 

only scheme that has improved computational complexity in 

both sharing and recovery phases, while it has no limitation 

on 𝑛, 𝑡. Also, its storage overhead is almost half of the VZD-

RSS. 

Based on Table 1, in the sharing phase, computational 

complexity of our scheme is superior to VZD-RSS. In 

Kurihara et al.'s scheme, number of computations is 𝑡𝑛𝑝𝐿, 

where 𝑛𝑝 ≥  𝑛 is a prime number. In the best case, 𝑛𝑝 = 𝑛, 

but there are cases that 𝑛𝑝 is much larger than 𝑛 and therefore 

our scheme is more efficient than Kurihara et al.'s scheme. 

Chen et al.'s scheme has low computational complexity but 

it has a limitation and can be used only for 𝑛 = 𝑡, 𝑡 + 1. 

Shima-Doi also achieves the same computational complexity 

as Kurihara et al.  Deshmukh et al.’s scheme has efficient 

computation complexity, but it is limited to the special case 

of (𝑛, 𝑛) where 𝑛 = 2ℎ−1.  In Chattopadhyay et al.’s scheme, 

in addition to XOR operation, it is necessary to calculate the 

hash function 𝑛 times which imposes high computational 

overhead on the system. For large secret, i.e. when 𝐿 grows 

faster than 𝑡𝑛, the complexity of ZD-based schemes reduces 

to 𝑂(𝑡𝑛𝐿). 
In the recovery phase, computational complexity of the 

proposed scheme is 𝑡2 (𝐿 + 𝑡𝑛/2) and therefore has higher 

efficiency than other schemes. For large secret, i.e. with 

increasing 𝐿, complexity of Wang and Desmedt's scheme 

(𝑛𝐿3) has the worst efficiency compared to all other 

schemes. Also, computational complexity of the ZD-based 

schemes are 𝑂(𝑡2𝐿) and outperform the remaining three 

schemes with complexity 𝑂(𝑡𝑛𝐿). 
We now discuss storage overhead of the compared 

schemes. Kurihara et al., Deshmukh et al., Chattopadhyay et 

al. and Wang-Desmedt's schemes do not increase the share 

size during sharing phase, however they may pad some bits 

to the secret before running this phase. That is, ultimately, 

their generated shares have some overhead compared to the 

original secret. In Kurihara et al., the secret is padded if its 

length is not a multiple of 𝑤(𝑛𝑝 − 1). Wang-Desmedt's 

scheme pads the secret to a string of length 𝑛, which it is 

negligible. 

The proposed scheme and VZD-RSS have also storage 

overhead. In VZD-RSS, the size of each share is 𝐿 + (𝑛 −
1)(𝑡 − 1). This means that the size of the overhead is (𝑛 −
1)(𝑡 − 1). While, the proposed scheme generates the shares 

with the length of 𝐿 + (𝑛)(𝑡 − 1)/2 which reduces the 

overhead almost by half. 

Another advantage of our method is that sometimes more 

than one bit is exposed in each iteration of the zigzag 

decoding algorithm. But in the VZD-RSS method, exactly 

one bit is exposed in each round. This can increase speed of 

decoding. 

 

7. Conclusion 

This paper presents a (𝑡, 𝑤, 𝑛)-ramp secret sharing scheme 

based on ZD codes. The secret recovery phase as well as 

sharing phase are done using only Boolean operations. 

Storage overhead of the proposed scheme is almost half of 

the overhead in existing literature. We prove that while the 

overhead is decreased, the scheme preserves its security. We 

further prove that the proposed algorithm achieves zigzag 

decodability, i.e. the recovery phase involves only the shift 

and XOR operations. 

 

8. Appendix 

This section is devoted to the proof of Lemma 1. We prove 

the lemma in three steps: 

1. We show that it is possible to split G into two 

submatrices whose rows are linearly independent. 

2. We show that if we replace any rows of one of these 

submatrices with a row of the {other submatrix}, then 

the rows of the resulting matrix are still linearly 

independent.  

3. We show that the claim stated in step II is valid for any 

number of rows. 

Step I. For simplicity, we consider 𝑛/2 = 𝑡. First, we 

partition 𝐺 into two non-overlapping submatrices 𝐴 and 𝐵 as 

follows. 
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To prove that the rows of these submatrices are linearly 

independent, we show that 𝐴 and 𝐵 are invertible.  

1. 𝐴 is a Vandermonde matrix which is known to be 

invertible iff the values of its second column are non-

repetitive [29]. 

2. The submatrix 𝐵 is a special columnar permuted form 

of Vandermonde matrix. We know that the columnar 

elementary operations do not change the rank of a 

matrix, accordingly, 𝐵 is invertible [30].  

 Step II. We first show that if we replace an arbitrary row 

of 𝐴 with any row of B, the resulting matrix has 𝑡 
independent rows. To do so, we show that the new row is 

independent of other remaining rows of 𝐴. 

To prove this, we make 𝐴 upper triangular and call it 𝐴′ as 

(16).  

 

 
(16) 

 

Afterwards, consider the matrix 𝐴′′ obtained by replacing 

the 𝑖-th row of 𝐴′ with the 𝑗-th row of 𝐵 as (17). 

 

 
(17) 

Note that since we choose the coefficients based on the 

value of (𝑖 − 1)-th cell of 𝑖-th row to make it 0, 𝐴′′[𝑖][𝑖] will 

never be zero. 

We can convert the first (𝑖 − 1) values of the 𝑖-th row to 

0 by the leading coefficient of its previous rows. But we 

cannot make the 𝑖-th value 0 at the same time, since there is 

no row in which its 𝑖-th value is the leading coefficient, and 

the sum of previous rows cannot make (𝑖 − 1)-th and 𝑖-th 

value 0, simultaneously, in the light of the fact that there is 

no repetitive value in none of the 𝐺's columns. So, at least 

we will have 𝑧𝑗(𝑡−𝑖−1)+1 left in the new 𝑖-th term. 

Step III. Finally, giving an incremental construction 

algorithm, we explain that we can generalize the result of 

previous step for any number (≤  𝑡) of rows. Instead of 

replacing all new rows simultaneously, we are able to do that 

one by one. Using the same argument as step II, after altering 

one of the rows we have again a submatrix in its previous 

state, meaning that it has still 𝑡 linearly independent rows and 

it is still upper-triangularizable such that all of its diagonal 

elements are non-zero. So, for the second row, we can 

continue as in the first one and so on. 

This completes the proof, by virtue of the fact that the 

same happens when replacing a row of 𝐵 with a row of 𝐴. 
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