
Journal of Computer and Knowledge Engineering, Vol. 6, No. 1, 2023. (71-79) 71

DOI: 10.22067/cke.2023.79099.1070

Trace2Vec-CDD: A Framework for Concept Drift Detection in

Business Process Logs using Trace Embedding*
Research Article

Fatemeh Khojasteh1 Behshid Behkamal2 Mohsen Kahani3 Mahsa Khorasani4

Abstract: Business processes are subject to changes during

their execution over time due to new legislation, seasonal

effects, etc. Detection of process changes is alternatively

called business process drift detection. Currently, existing

methods unfavorably subject the accuracy of drift detection

to the effects of window size. Furthermore, most methods

have to struggle with the problem of selecting appropriate

features specifying the relations between traces or events.

This paper draws on the notion of trace embedding to

propose a new framework for automatic detection of

suddenly occurring process drifts. The main contributions of

the proposed approach are: i) It is independent of windows;

ii) Trace embedding that is used for drift detection makes it

possible to automatically extract all features from relations

among traces; iii) As attested by synthetic event logs, this

approach is superior to current methods in terms of accuracy

and drift detection delay.

Keywords: Concept Drift, Process Changes, Process

Mining, Word Embedding

1. Introduction

Modern business processes are handled by information

systems. Information systems produce event logs, which are

sources of information about the actual processes. It is

typical for a business process to change over time, which

may be due to factors such as substantial changes in supply

and demand, seasonal reasons, etc. These changes have

considerable impacts on the process costs and efficiency.

 Detection of business process drifts can be considered as a

variant of the general issue of concept drift detection, which

has received much attention in data mining and machine

learning. Experts in such areas use the term “concept drift”

when the distribution of a variable has experienced a change

[1]. In process mining, however, the challenge is detecting

more complex changes, such as changes in the process

models that describe choices, loops, cancellations, and

concurrency.

 Therefore, drift detection methods used in data mining

cannot directly be applied to detect drifts in business

processes. Based on the definition of concept drift in

process mining, wherever the traces before and after a

specific point differ in characteristics, a business process

drift has occurred [2].

 In the area of process mining, various techniques have

* Manuscript received: 2022 October 8, Revised, 2023 April 15, Accepted, 2023May 24.
1, Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.

2 Corresponding author. Assistant Professor, Department of Computer Engineering, Ferdowsi University of Mashhad, Iran,

Email: behkamal@um.ac.ir.
3 Professor, Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.

4 Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.

been proposed to detect concept drift, most of which

perform statistical comparisons between pairs of

windows. Some methods are based on fixed windows [3,

4, 5, 6, 7]. During the process, these windows keep their

size unchanged. Other methods use adaptive windows in

which the size of windows changes during the process [2, 8,

9, 10, 11]. Adaptive windows provide higher accuracy

than fixed windows. However, the initial size of an

adaptive window has to be determined log by log.

 On the other hand, most of the current methods rely

on selecting features that characterize traces. Features

such as relation type count (RC), relation entropy (RE),

window count (WC), and J measure [2, 3] are typical

examples. The point is that good levels of accuracy

sometimes require the user to be knowledgeable about

the features of drifts. If the user is not knowledgeable

enough, unsuitable features may be selected, which leads

to a failure in identifying some kinds of features.

 The goal of this study is to solve the aforementioned

problems using the idea of trace embedding. This concept

has already been introduced in [12], which is based on the

notion of paragraph2vec. Here, we presented a new

definition of trace2vec based on word2vec [13]. We

extract the features from the relations between traces and

identify sudden process changes based on similarities

between the vectors. Thus, the main novelty of this work

is the elimination of windows, which results in more

accurate detection of process drifts. The main

contributions of this study are:

1. The idea of trace embedding is applied for concept drift

detection. This is exploited in the automatic

extraction of features from traces, the straightforward

comparison of vectors of traces and change

detection;

2. The Fourier transform is used to omit noise and

outlier traces in the log;

3. Unlike the existing methods, the proposed approach

is window-independent;

4. The artificial logs of [8] are used to determine the

accuracy of our approach.

 They show our approach to be remarkably more

accurate than the state-of-the-art methods in terms of F-

score and drift detection delay.

 The remainder of this paper is organized as follows.

https://cke.um.ac.ir/
https://cke.um.ac.ir/article_43738.html
https://cke.um.ac.ir/article_43738.html
mailto:behkamal@um.ac.ir
https://orcid.org/0000-0003-3151-1885

72 Behshid Behkamal et. al.: Trace2Vec-CDD: A Framework for …

Section 2 includes the literature review. In section 3, our

proposed approach, Trace2Vec-CDD, is discussed in

detail. Then, the proposed framework is empirically

evaluated in Section 4. Finally, Section 5 deals with the

conclusion and future directions.

2. Related works

In this section, the existing methods for concept drift

detection from various aspects are reviewed. To this end,

these aspects are introduced and the related works are then

classified according to these dimensions.

2.1. Detection method

State-of-the-art methods can detect drifts in either an

offline or online setting. In the offline setting, the whole

log must exist, whereas in the online one, concept drifts

will be detected by sequential monitoring of the logs of a

system and react to t h e changes in an online, almost real-

time way [6, 9, 14, 15]. The method [6] proposes one of

the methods that use online setting. [9] is another

online approach that proposes an event-based method that

performs well with processes in which there is a high

ratio of distinct executions to the total number of

executions in the log. All other existing methods work

in a n offline setting. [15] presented an online technique

for detecting drifts. For that, trace distances are calculated

by comparing them to a global model that represents the

current state of the process. Hence, a density-based

clustering algorithm is applied to distribute the instances

in the feature space. Finally, the discovery of new clusters

represents the detection of new concepts in the stream,

i.e., concept drift.

2.2. Type of window

Most o f the existing methods for business process drift

detection use static or dynamic windows. The first group

of methods use static windows [7, 4, 6, 3, 5]. In such

studies, the accuracy of t h e drift detection method

is dependent on the size of t h e window. The second

group of methods use adaptive window [2, 8, 9, 16, 10, 11,

14, 17]. The idea of using adaptive windows is to set

minimum and maximum values for the size of t h e

window and increase the minimum value until a change

is detected or the window size reaches the maximum size

limit. Thus, if the minimum size is too small, noises may

be detected as drifts. On the other hand, if the maximum

size is too large, some drifts may not be detected.

2.3. Perspective

There are three approaches to analyzing process models

[3]: 1. Control flow, which is concerned with behavioral

and structural changes in a process model; 2. Data, where

changes refer to the changes in the production and

consumption of data and the impact of data on the

routing of cases; and 3. Resource, which is the changes

in resources, their roles, and organizational structure.

Most of the previous methods have considered the

control-flow perspective of process models. The only

solution that considers both the control-flow and data

perspectives is the one suggested by [5]. In order to

identify change points, the similarity between two

consecutive windows is compared using the Markov

clustering algorithm.

2.4. Type of drift

Based on the classification presented in [18], there are

four types of drifts: 1. Sudden drift, in which a new process

replaces an existing one; 2. Gradual drift, in which parts

of both new and old processes coexist for a period of time;

3. Recurring drift, when a set of processes re-appear after

some time; and 4. Incremental drift, i n which a new

process is substituted for an existing process via plenty

of minor incremental changes.

 Most of the previous methods can detect sudden drift,

while few of them can detect other types of drift too.

For example, [3, 19] addressed the detection of sudden drifts

and certain types of gradual drifts in process mining. The

method proposed by [2] considers windows at different

time scales to detect recurring drifts. This method does not

work for logs involving many process variants. The

authors of [4] claimed that their method can detect all

sudden, gradual, and recurring drifts using fixed windows.

The approach clusters traces based on the distance

between pairs of activities. [8] proposed an automatic

approach in order to build a “run” from each trace in order

to detect sudden drifts in two sequential adaptive

windows.

 In [11] the researchers extended their previous method

[8] to detect not only sudden drifts but also gradual drifts.

They believe that gradual drifts will appear in the form of

two consecutive sudden drifts. They applied a statistical

test to determine whether the detected sudden drifts are

separate changes or a single gradual drift. A limitation of

the method is the requirement to re-size the adaptive

window to arrive at a trade-off between accuracy and drift

detection delay. Moreover, [17] presented two new

algorithms to detect incremental, sudden, recurring, and

gradual drifts. The first algorithm creates the process

history and discovers new viable models based on

conformance and a sliding window approach. The

second algorithm determines concept drifts based on the

synthesized process histories.

 Table 1 provides a feature-based comparison of previous

studies based on the aforementioned aspects. As shown in

this table, most of the methods use the window, fixed or

adaptive. Moreover, the concept of embedding has not been

applied to drift detection so far. In this work, we propose

an embedding-based approach for concept drift detection

that is window independent.

Journal of Computer and Knowledge Engineering, Vol. 6, No. 1, 2023. 73

Table 1. Feature-based comparison of the related works

Ref.
Detection method Type of windows Perspective Type of drifts

Offline Online Fixed Adaptive control-flow Resource Data Sudden Gragual Recurring Incremental

[7] * * * *

[4] * * * * * *

[6] * * * *

[3] * * * * *

[5] * * * * *

[2] * * * * * * *

[8] * * * *

[9] * * * *

[20] * * * *

[16] * * * * *

[10] * * * * *

[11] * * * * *

[17] * * * * * * *

[14] * * * *

[21] * * * * * *

[15] * * * * *

Proposed

method
*

window

-independent
* *

3. Proposed approach

In order to detect concept drifts in business process logs

and overcome the limitations of the previous approaches,

we use trace embedding in the detection of process drifts.

The general architecture of our proposed approach is

illustrated in Figure 1, which consists of four main phases.

Below, the phases are separately discussed in detail.

3.1. Modeling trace to vector

In this step, we use trace embedding to automatically

extract features from the relations between traces.

 By interpreting process event logs as texts and process

traces as words, we can apply the idea of trace

embedding to this step. Algorithm 1, which is used in

this step, receives a list of traces LT as its input and

outputs a set of traces vectors TV.

At the beginning of the algorithm, we need to consider

traces as words and change each trace to a single word

by omitting any spaces, underlines, and so on. LWT =

ConvertTrace2Word(t) t LT , where Convert Trace2 Word

is a function that changes a trace t to a single word, and

LT is a list of traces, which is ordered on the basis of

the timestamp of the first event (Line 2 in Algorithm

1).

The TraceEmbedding function is trained by the list of

traces, which results in the representation of each trace in

the log as a vector of numerical values in a latent feature

space (Line 6 in Algorithm 1). In other words, we

transform LWT to a set of trace vectors TV = Trace

Embedding (t′) t′ LWT , where Trace Embedding is a

function that computes the vector of trace t′ in the set

LWT using CBOW model.

 As mentioned earlier, the idea of trace2vec as presented

in [12] is based on the notion of paragraph2vec introduced

by [22], which involves numbers denoting the order of

paragraphs. Applying this method in our study causes

identical traces that occur in differing positions in the log

to have different vectors. This is not desirable in our study.

As a result, we presented a new notion of trace embedding.

3.2. Detecting non-co-occurring traces

The objective of this phase is to detect non-co-occurring

traces in two steps: Calculating trace similarity and

clustering co-occurring traces.

 Calculating trace similarity: As mentioned above, the

traces are represented through their vector models from the

embedding space. Therefore, it is possible to directly

calculate the similarity between all pair-wise combinations

of trace vectors.

 To calculate trace similarity, we use the set of trace vectors

TV and the set of traces in the event log to produce the similarity

matrix SM and a list of traces with a minimum co-occurrence.

Then, by using the values of similarity, we are able to separate

the pairs of traces with the minimum co-occurrence or the

maximum distance in the vector space. Such pairs may lead to

the occurrence of drifts. The principal assumption is that if the

substitution of a process B for a process A has produced a case

of drift, there has been a large distance (or a small number of co-

occurrence relations) between the set of traces of process A and

those of process B. In other words, the trace vectors before the

change point differ from the ones after the change point.

https://cke.um.ac.ir/

74 Behshid Behkamal et. al.: Trace2Vec-CDD: A Framework for …

∈

Figure 1. Architecture of the proposed approach

 Clustering co-occurring traces: After identifying the set of

traces with the minimum co-occurrence, we will use maximum

co-occurrence to cluster them. The clustering leads to a situation

in which all members of the same cluster are in a similar feature

space.

 This step receives the similarity matrix created in the previous

step as its input and produces a set of clusters as the output. We

apply hierarchical clustering with single linkage in which traces

cannot be placed in multiple clusters. The threshold of clustering

is empirically set to 0.99.

Algorithm 1. Modeling trace to vector

Input : LT : a list of traces ordered on the basis of the

timestamp of the first event

Output: TV : a set of trace vectors

1 for each ti LT do

2 t′i = ConvertTrace2Word(ti);

3 ADD t′i to LWT ;

4 end

5 for each t′i ∈ LWT do

6 TV.add TraceEmbedding(ti) ;

7 end

8 return TV

Algorithm 2. Calculating trace similarity

Input : TV = v1, v2, ..., vn}: a set of trace vectors, T

= t1, t2, ..., tn} : a set of traces in L

Output: SM : a similarity matrix, NCT : a list of

traces with the minimum co-occurrence

1 SET NCT to null;

2 for each vi ∈ TV do

3 for each vj ∈ TV do

4 dij =Similarity(vi,vj);
5 if CheckNoCoOccurrance(dij)

then
6 ADD Tvi to NCT ;
7 ADD Tvj to NCT ;
8 ADD dij to SMij;

9 end

10 end

11 end

12 return SM

3.2. Drift detection

In this phase, some special techniques are employed to reduce

delays in detecting changes as much as possible. The phase

consists of two steps: Clustered trace analysis and determining

main changes.

 Analyzing clustered traces: This step aims to determine how

the members of each cluster are distributed in a log, which leads

to the creation of a distribution vector for each cluster. The step

receives the output of the former step, i.e., the set of clusters CL,

as its input and outputs a set of distribution vectors.

 In this step, for each cluster, where a member of the cluster

appears in the log, we represent it by 1 in the distribution vector

associated with the cluster; otherwise, we represent the member

by 0.

 Figure 2 illustrates how the two clusters (C1 and C2) are

distributed in a log that has 2500 cases. Dense areas in Figure 2

indicate the positions of the traces of each cluster in the log.

 Determining the main changes: The main objective of this

step that uses Algorithm 3 is to determine the change points in

the distribution vectors. The set of distribution vectors DV

produced in the previous step is input into the algorithm of this

step and, as the output, we will have a set of indices of the traces

in which drifts have occurred.

 In order to determine the frequency regions, the Fourier

transform is applied to the distribution vectors (Line 3 in

Algorithm 3). The Fourier transform breaks up a signal into its

frequency components [23]. In this study, to distinguish the

main changes, we need to preserve high frequencies and

eliminate low ones. To fulfill this, low-pass filtering is applied

(Line 4 in Algorithm 1). In other words, the traces that have

been incorrectly detected as co-occurring traces will be

eliminated by applying low-pass filtering. Then, the distribution

vectors are transferred back to the time domain (Line 5 in

Algorithm 3). Afterwards, the rate of changes is determined

through differentiation (Line 6 in Algorithm 3). The positions

associated with the highest rate of changes or notably

distinguishable peaks are specified as indices of the traces in

which a drift has occurred (Line 7 in Algorithm 3). For instance,

in Figure 3, 9 drifts will be detected at the indices of 250, 500,

750, 1000, 1250, 1500, 1750, 2000, and 2250, all of which are

positions of notably distinguishable peaks.

Journal of Computer and Knowledge Engineering, Vol. 6, No. 1, 2023. 75

 In summary, by applying trace embedding and also various

techniques such as hierarchical clustering and Fourier

transform, we managed to propose an approach marked by the

following innovative characteristics: It automatically extracts

features from traces and events. Besides, since it uses no

windows for detecting drifts, it is not sensitive to window size.

Figure 2. Distribution of each cluster in a log

Algorithm 3. Determining main changes

Input: DV = dv1, dv2, ..., dvn}: a set of distribution

vectors

Output: D: a set of indexes of the traces in which drifts

have occurred

1 SET drifts to null;

2 for each dvi ∈ DV do

3 fft = fft (dvi);

4 lpf =LowPassFilter (fft);

5 ifft= ifft (LPF);

6 diff = Differentiate (ifft);

7 di =ReportDrift (diff);

8 ADD di to D;

9 end

10 return D;

Figure 3. (a) The rate of changes in the distribution vector of

cluster C1; (b) The rate of changes in the distribution vector of

cluster C2. Remarkable peaks are change points.

4. Evaluation

In this section, the evaluation metrics are discussed, and the

evaluation of the proposed approach is presented. Then, the

performance of our method is evaluated in comparison with two

different categories of state-of-the-art methods.

In order to implement the proposed approach, Deeplearning4j

(https://deeplearning4j.org) was used to model traces and

activities as vectors. We use the CBOW model with the

following parameters: Window size = 20 (based on the mean

length of the traces); number of iterations = 10; and vector

dimension = 100. The remaining parameters have the default

values as proposed in [24].

 Hierarchical clustering algorithm was implemented in Java.

Moreover, Matlab tool was used for Fourier transform

computing and applying low-pass filtering.

4.1. Evaluation metrics

In terms of evaluation metrics, we compare the performance of

our work with the state-of-the-art methods using two measures:

F-score and mean delay.

 In the case of our study, True Positive is the number of drifts

that were correctly detected, False Positive specifies the number

of drifts that the method incorrectly detected, and False

Negative is the number of drifts that the method was not able to

detect.

 In other words, F-score specifies whether our approach has

correctly identified drifts in an event log or not. Besides, we

calculate the mean delay, which is the distance between

actual drift points and detected drifts.

https://cke.um.ac.ir/
https://deeplearning4j.org/

76 Behshid Behkamal et. al.: Trace2Vec-CDD: A Framework for …

4.2. Data set

We initially describe the data set used in the experiment and

then the results of our method are compared with the methods

proposed in [3], [8], and [10].

 To evaluate our approach, the synthetic logs published by [8]

were used. The base model of these logs, which has 15

activities, involves various control-flow structures. Its BPMN

representation, which is about assessing loan applications, is

illustrated in Figure 4. The base model was systematically

modified to generate drifts. These modifications included 12

simple change patterns organized into three categories: Insertion

(I), Resequentialization (R) and Optionalization (O) as shown

in Table 2. Moreover, the categories were combined to produce

more complex patterns including IOR, IRO, ORI, OIR, RIO,

and ROI. Four logs of 2500, 5000, 7500, 10000 traces were

produced for each of the 18 simple and complex change

patterns. Drifts were injected by switching the drift toggle on

and off every 10% of the log. Therefore, any instance of the

produced logs included 9 drifts.

4.3. Accuracy evaluation

The accuracy of the proposed approach is evaluated as follows.

First, the 18 change patterns discussed in 4.2 were applied to the

four log sizes. Then, considering each of the 18 change patterns,

the proposed approach was compared against the methods put

forward by [8] (called run), [10] (called process-graph), and [3]

(called Bose) in terms of the measures of F-score and mean

delay. The values resulting for the two measures, averaged over

the four log sizes are demonstrated in Figures 5 and 6. Our

approach secured the F-score of exactly 1 for all patterns, except

for the OIR pattern (0.99), far better than what the methods

achieved. Moreover, in terms of mean delay, our method

outperforms the Bose, process-graph, and run approaches,

except for two change patterns.

 On average, our method, run, process-graph, and Bose

approaches achieved an F-score of approximately 0.9998,

0.97, 0.94, and 0.701, respectively. Furthermore, in terms

of delay, our method managed to achieve a mean delay of

about 13 traces, while the run, process-graph, and Bose

approaches achieved mean delays of approximately 32, 24, and

47 traces, respectively. Table 3 includes the exact values of F-

score and mean delay for each individual change pattern as well

as the total average made by each of the four methods.

Figure 4. Base BPMN model of loan application process

Table 2. Simple control-flow change patterns

Code Simple change pattern Category

re Add/remove fragment I

cf Make two fragments conditional/sequential R

lp Make fragment loopable/non-loopable O

pl Make tow fragments parallel/sequential R

cb Move fragment into/out of conditional branch O

cm Move fragment into/out of conditional branch I

cd Synchronize two fragments R

cp Duplicate fragment I

pm Move, fragment into/out of parallel branch I

rp Substitute, fragment I

sw Swap two fragments I

fr Change branching frequency O

Journal of Computer and Knowledge Engineering, Vol. 6, No. 1, 2023. 77

 Table 4 shows the results of the statistical tests, i.e., t-

tests, on the proposed approaches, run, process-graph,

and Bose in terms of F-score and mean delay. In each of

the tests, the proposed approach served as the first group.

The p-value in all the tests (for both F-score and mean

delay) is less than 0.05, except in the case of F-score in

the test between trace2vec and run. This demonstrates

that the difference in means is statistically significant at

the 0.05 level.

 Moreover, the positive upper and lower F-score values

and negative higher and lower mean delay values, with

the exception of the test between trace2vec and run,

indicate that the suggested methodology produce better

average F-score and mean delay values than previous

approaches.

Figure 5. The comparison of F-score values per change pattern Figure 6. The comparison of mean delay

values per change pattern

Table 3. The comparison of average F-score and mean delay values

Change pattern
trace2vec run [8] process-graph [10] Bose [3]

F-score Mean delay F-score Mean delay F-score Mean delay F-score Mean delay

re 1 21.83 1 44.03 0.9036 33.02 1 17

cf 1 5.08 0.9824 21 0.9853 34.62 0.8950 36

lp 1 21.69 1 40.29 0.7618 48.03 0.6484 41

pl 1 13.8 1 35.74 0.9575 26.33 1 20

cb 1 9.1 0.9387 58.55 0.9722 18.94 0 0

cm 1 8.52 1 39.85 0.9722 19.24 0 0

cp 1 4.58 1 19.66 0.9853 17.59 0.6394 36

cd 1 46.44 0.8799 34.62 0.9546 28.62 1 20

pm 1 11.97 1 12.88 0.9869 24.78 0.7804 69

rp 1 4.86 0.9666 19.18 0.9722 12.67 0.75 40

sw 1 6.02 1 21.67 1 29.61 0.7804 39

fr 1 20.5 0.7569 49.92 0.9853 19.92 0.4420 165

IOR 1 36.66 1 19.11 0.9606 13.00 0.7804 38

IRO 1 6.8 1 43.96 0.9487 27.22 0.5611 82

OIR 0.9967 12.11 0.9803 47.89 0.7331 28.06 1 20

ORI 1 11.38 1 14.51 0.9869 14.25 0.7804 38

RIO 1 9.08 0.9824 23.81 0.9722 20.77 0.5611 60

ROI 1 7.66 1 22.51 1 7.31 1 20

Average 0.9998 12.15 0.9715 31.62 0.9466 23.56 0.7010 46.31

https://cke.um.ac.ir/

78 Behshid Behkamal et. al.: Trace2Vec-CDD: A Framework for …

Table 4. The results of the t-tests. The first group is the trace2vec approach and the second group is either run, process-graph, or

Bose approach

 Mean
Std.

Deviation

Std. Error

Mean

confidence
t df

Sig.

(2-tailed) Lower Upper

trace2vec-run
F-score 0.03000 0.06444 0.01519 -0.00205 0.06205 1.975 17 0.065

Mean delay -17.28333 16.66887 3.92889 -25.57257 -8.99410 -4.399 17 0.000

trace2vec-

processGraph

F-score 0.05889 0.07324 0.01726 0.02247 0.09531 3.412 17 0.003

Mean delay -9.20833 13.66684 3.2213 -16.00469 -2.41197 -2.859 17 0.011

trace2vec-Bose
F-score 0.30000 0.30828 0.07266 0.14670 0.45330 4.129 17 0.001

Mean delay -31.28375 39.19712 9.799928 -52.17042 -10.39708 -3.192 15 0.006

5. Conclusion

This study proposed a new method for the detection of

process drifts in business process logs. We introduced the

new notions of trace embedding, which enabled us to

surpass the state-of-the-art methods in the identification

of predictable process drifts as well as unpredictable ones.

Trace embedding can be used for automatic extracting of

all features from the relations that exist between traces

and for producing vector representations of traces. Thus,

the relations that exist between traces in the log are

represented by the relations that exist between vectors in

the vector space. The experiments demonstrated that

considering both F-score and mean delay, our approach is

superior to the current methods. Moreover, these

achievements have been made without using any types of

windows.

In the future, we expect our study advance in the

following ways:

1. This paper h a s dealt with process changes only

from control-flow perspective. We plan to

include changes from data and resource

perspectives too;

2. The detection of sudden drift was addressed in

this study. Likewise, detection of gradual and

recurring drifts will be done;

3. This study plans to implement the approach as

a ProM plug-in.

6. References

[1] J. C. Schlimmer and R. H. Granger, “Beyond

incremental processing: Tracking concept drift.,” in

AAAI, pp. 502–507, 1986.

[2] J. Martjushev, R. J. C. Bose, and W. M. Van Der Aalst,

“Change point detection and dealing with gradual and

multi-order dynamics in process mining,” in In-

ternational Conference on Business Informatics

Research, pp. 161–178, Springer, 2015.

[3] R. J. C. Bose, W. M. Van Der Aalst, I. Zliobaite, and M.

Pechenizkiy, “Dealing with concept drifts in process

mining,” IEEE transactions on neural networks and

learning systems, vol. 25, no. 1, pp. 154–171, 2014.

[4] R. A. T. Stocker, “Discovering workflow changes with

time-based trace clustering,”

[5] Lecture Notes in Business Information Processing, pp.

154–168, 2011.

[6] B. Hompes, J. C. Buijs, W. M. Van Der Aalst, P. Dixit,

and H. Buurman, “Detect- ing change in processes using

comparative trace clustering.,” in SIMPDA, pp. 95–

108, 2015.

[7] J. Carmona and R. Gavalda, “Online techniques for

dealing with concept drift in process mining,” in

Proceedings of the 11th International Conference on

Advances in Intelligent Data Analysis, IDA’12, pp. 90–

102, Springer-Verlag, 2012.

[8] P. Weber, B. Bordbar, and P. Tino, “Real-time detection

of process change using process mining.,” in ICCSW,

pp. 108–114, 2011.

[9] A. Maaradji, M. Dumas, M. La Rosa, and A. Ostovar,

“Fast and accurate business process drift detection,” in

International Conference on Business Process Manage-

ment, pp. 406–422, Springer, 2015.

[10] A. Ostovar, A. Maaradji, M. La Rosa, A. H. ter

Hofstede, and B. F. van Don- gen, “Detecting drift from

event streams of unpredictable business processes,” in

Conceptual Modeling: ER 2016, pp. 330–346, Springer,

2016.

[11] A. Seeliger, T. Nolle, and M. Mu¨hlh¨auser,

“Detecting concept drift in processes using graph

metrics on process graphs,” in Proceedings of the 9th

Conference on Subject-oriented Business Process

Management, p. 6, ACM, 2017.

[12] A. Maaradji, M. Dumas, M. La Rosa, and A. Ostovar,

“Detecting sudden and gradual drifts in business

processes from execution traces,” IEEE Transactions on

Knowledge and Data Engineering, vol. 29, no. 10, pp.

2140–2154, 2017.

[13] P. De Koninck, S. vanden Broucke, and J. De Weerdt,

“act2vec, trace2vec, log2vec, and model2vec:

Representation learning for business processes,” in

Business Pro- cess Management, pp. 305–321, Springer

International Publishing, 2018.

[14] T. Mikolov, K. Chen, G. Corrado, and J. Dean,

“Efficient estimation of word representations in vector

space,” arXiv preprint arXiv:1301.3781, 2013.

Journal of Computer and Knowledge Engineering, Vol. 6, No. 1, 2023. 79

[15] M. Hassani, “Concept drift detection of event streams

using an adaptive window.,” pp. 230–239, 2019.

[16] G. M. Tavares, P. Ceravolo, V. G. T. Da Costa, E.

Damiani, and S. B. Junior, “Overlapping analytic stages

in online process mining,” pp. 167–175, 2019.

[17] T. Li, T. He, Z. Wang, Y. Zhang, and D. Chu,

“Unraveling process evolution by handling concept

drifts in process mining,” in SCC, pp. 442–449, 2017.

[18] F. Stertz and S. Rinderle-Ma, “Process histories -

detecting and representing con- cept drifts based on

event streams,” in On the Move to Meaningful Internet

Sys- tems. OTM 2018 Conferences (H. Panetto, C.

Debruyne, H. A. Proper, C. A. Ardagna, D. Roman, and

R. Meersman, eds.), pp. 318–335, Springer International

Publishing, 2018.

[19] T. Mikolov, W.-t. Yih, and G. Zweig, “Linguistic

regularities in continuous space word representations.,”

in hlt-Naacl, vol. 13, pp. 746–751, 2013.

[20] R. J. C. Bose, W. M. Van der Aalst, I. Zˇliobaite˙,

and M. Pechenizkiy, “Handling concept drift in

process mining,” in International Conference on

Advanced Infor- mation Systems Engineering, pp. 391–

405, Springer, 2011.

[21] C. Zheng, L. Wen, and J. Wang, “Detecting process

concept drifts from event logs,” pp. 524–542, 2017.

[22] Y. Spenrath and M. Hassani, “Ensemble-based

prediction of business processes bottlenecks with

recurrent concept drifts.,” 2019.

[23] Q. Le and T. Mikolov, “Distributed representations of

sentences and documents,” in ICML, pp. 1188–1196,

2014.

[24] M. Rahman, Applications of Fourier transforms to

generalized functions. WIT Press, 2011.

[25] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J.

Dean, “Distributed repre- sentations of words and

phrases and their compositionality,” in Advances in

neural information processing systems, pp. 3111–3119,

2013.

[26] V. D. Aalst, Process Mining - Discovery, Conformance

and Enhancement of Busi- ness Processes. Springer,

2011.

[27] W. Van Der Aalst, A. Adriansyah, A. K. A. De

Medeiros, F. Arcieri, T. Baier, T. Blickle, J. C. Bose, P.

van den Brand, R. Brandtjen, J. Buijs, et al., “Process

mining manifesto,” in International Conference on

Business Process Management, pp. 169–194, Springer,

2011.

[28] V. D. Aalst, M. L. Rosa, and F. M. Santoro, “Business

process management - don’t forget to improve the

process!,” Business & Information Systems

Engineering, vol. 58, no. 1, pp. 1–6, 2016.

[29] M. Baroni, G. Dinu, and G. Kruszewski, “Don’t count,

predict! a systematic com- parison of context-counting

vs. context-predicting semantic vectors.,” in ACL (1),

pp. 238–247, 2014.

[30] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K.

Landauer, and R. Harshman, “Indexing by latent

semantic analysis,” JOURNAL OF THE AMERICAN

SOCI- ETY FOR INFORMATION SCIENCE, vol. 41,

no. 6, pp. 391–407, 1990.

[31] A. Mandelbaum and A. Shalev, “Word embeddings and

their use in sentence clas- sification tasks,” arXiv

preprint arXiv:1610.08229, 2016.

[32] X. Rong, “word2vec parameter learning explained,”

arXiv preprint arXiv:1411.2738, 2014.

[33] P. Ristoski and H. Paulheim, “Rdf2vec: Rdf graph

embeddings for data mining,” in International Semantic

Web Conference, pp. 498–514, Springer, 2016.

[34] R. J. C. Bose and W. M. Van der Aalst, “Context aware

trace clustering: Towards improving process mining

results,” in Proceedings of the 2009 SIAM International

Conference on Data Mining, pp. 401–412, SIAM, 2009.

[35] R. J. C. Bose and W. M. Van der Aalst, “Trace clustering

based on conserved pat- terns: Towards achieving better

process models.,” in Business Process Management

Workshops, vol. 43, pp. 170–181, Springer, 2009.

[36] G. Greco, A. Guzzo, L. Pontieri, and D. Sacca,

“Discovering expressive process models by clustering

log traces,” IEEE Transactions on Knowledge and Data

En- gineering, vol. 18, no. 8, pp. 1010–1027, 2006.

[37] J. Demˇsar and Z. Bosni´c, “Detecting concept drift

in data streams using model explanation,” Expert

Systems with Applications, vol. 92, pp. 546–559, 2018.

[38] J. Evermann, J.-R. Rehse, and P. Fettke, “Predicting

process behaviour using deep learning,” Decision

Support Systems, 2017.

[39] T. S. Sethi and M. Kantardzic, “On the reliable detection

of concept drift from streaming unlabeled data,” Expert

Systems with Applications, vol. 82, pp. 77–99, 2017.

[40] T. Escovedo, A. Koshiyama, A. A. da Cruz, and M.

Vellasco, “Detecta: abrupt concept drift detection in

non-stationary environments,” Applied Soft

Computing, vol. 62, pp. 119–133, 2018.

[41] A. Alves de Medeiros, B. Van Dongen, W. Van Der

Aalst, and A. Weijters, “Process mining: Extending the

alpha-algorithm to mine short loops,” tech. rep., BETA

Working Paper Series, 2004.

[42] K. Fatemeh, “Concept drift detection in business

process logs using deep learning,” Master’s thesis,

Ferdowsi University of Mashhad, Iran, 2016.

https://cke.um.ac.ir/

80 Behshid Behkamal et. al.: Trace2Vec-CDD: A Framework for …

