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Abstract: Business processes are subject to changes during 

their execution over time due to new legislation, seasonal 

effects, etc. Detection of process changes is alternatively 

called business process drift detection. Currently, existing 

methods unfavorably subject the accuracy of drift detection 

to the effects of window size. Furthermore, most methods 

have to struggle with the problem of selecting appropriate 

features specifying the relations between traces or events. 

This paper draws on the notion of trace embedding to 

propose a new framework for automatic detection of 

suddenly occurring process drifts. The main contributions of 

the proposed approach are: i) It is independent of windows; 

ii) Trace embedding that is used for drift detection makes it 

possible to automatically extract all features from relations 

among traces; iii) As attested by synthetic event logs, this 

approach is superior to current methods in terms of accuracy 

and drift detection delay. 

Keywords: Concept Drift, Process Changes, Process 

Mining, Word Embedding 

 
1. Introduction 

Modern business processes are handled by information 

systems. Information systems produce event logs, which are 

sources of information about the actual processes. It is 

typical for a business process to change over time, which 

may be due to factors such as substantial changes in supply 

and demand, seasonal reasons, etc. These changes have 

considerable impacts on the process costs and efficiency. 

 Detection of business process drifts can be considered as a 

variant of the general issue of concept drift detection, which 

has received much attention in data mining and machine 

learning. Experts in such areas use the term “concept drift” 

when the distribution of a variable has experienced a change 

[1]. In process mining, however, the challenge is detecting 

more complex changes, such as changes in the process 

models that describe choices, loops, cancellations, and 

concurrency. 

 Therefore, drift detection methods used in data mining 

cannot directly be applied to detect drifts in business 

processes. Based on the definition of concept drift in 

process mining, wherever the traces before and after a 

specific point differ in characteristics, a business process 

drift has occurred [2]. 

 In the area of process mining, various techniques have 
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been proposed to detect concept drift, most of which 

perform statistical comparisons between pairs of 

windows. Some methods are based on fixed windows   [3, 

4, 5, 6, 7]. During the process, these windows keep their    

size unchanged. Other methods use adaptive windows in 

which the size of windows changes during the process [2, 8, 

9, 10, 11]. Adaptive windows provide higher accuracy 

than fixed windows. However, the initial size of an 

adaptive window has to be determined log by log. 

 On the other hand, most of the current methods rely 

on selecting features that characterize traces. Features 

such as relation type count (RC), relation entropy (RE), 

window count (WC), and J measure [2, 3] are typical 

examples. The point is that good levels of accuracy 

sometimes require the user to be knowledgeable about 

the features of drifts. If the user is not knowledgeable 

enough, unsuitable features may be selected, which leads 

to a failure in identifying some kinds of features. 

 The goal of this study is to solve the aforementioned 

problems using the idea of trace embedding. This concept 

has already been introduced in [12], which is based on the 

notion of paragraph2vec. Here, we presented a new 

definition of trace2vec based on word2vec [13]. We 

extract the features from the relations between traces and 

identify sudden process changes based on similarities 

between the vectors. Thus, the main novelty of this work 

is the elimination of windows, which results in more 

accurate detection of process drifts. The main 

contributions of this study are: 

1.  The idea of trace embedding is applied for concept drift 

detection. This is exploited in the automatic 

extraction of features from traces, the straightforward 

comparison of vectors of traces and change 

detection; 

2. The Fourier transform is used to omit noise and 

outlier traces in the log; 

3. Unlike the existing methods, the proposed approach 

is window-independent;  

4. The artificial logs of [8] are used to determine the 

accuracy of our approach. 

 They show our approach to be remarkably more 

accurate than the state-of-the-art methods in terms of F-

score and drift detection delay. 

 The remainder of this paper is organized as follows. 
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Section 2 includes the literature review. In section 3, our 

proposed approach, Trace2Vec-CDD, is discussed in 

detail. Then, the proposed framework is empirically 

evaluated in Section 4. Finally, Section 5 deals with the 

conclusion and future directions. 

 
2. Related works 

In this section, the existing methods for concept drift 

detection from various aspects are reviewed. To this end, 

these aspects are introduced and the related works are then 

classified according to these dimensions. 

2.1. Detection method 

State-of-the-art methods can detect drifts in either an 

offline or online setting. In the offline setting, the whole 

log must exist, whereas in the online one, concept drifts 

will be detected by sequential monitoring of the logs of a 

system and react to t h e  changes in an online, almost real-

time way [6, 9, 14, 15]. The method [6] proposes one of 

the methods that use online setting. [9] is another   

online approach that proposes an event-based method that 

performs well with processes in which there is a high 

ratio of distinct executions to the total   number of 

executions in the log. All other existing methods work 

in a n  offline setting. [15] presented an online technique 

for detecting drifts. For that, trace distances are calculated 

by comparing them to a global model that represents the 

current state of the process. Hence, a density-based 

clustering algorithm is applied to distribute the instances 

in the feature space. Finally, the discovery of new clusters 

represents the detection of new concepts in the stream, 

i.e., concept drift. 

2.2. Type of window 

Most o f  the existing methods for business process drift 

detection use static or dynamic windows. The first group 

of methods use static windows [7, 4, 6, 3, 5]. In such 

studies, the accuracy of t h e  drift       detection method 

is dependent on the size of t h e  window. The second 

group of methods use adaptive window [2,   8, 9, 16, 10, 11, 

14, 17]. The idea of using adaptive windows is to set 

minimum and maximum values for the size of t h e  

window and increase the minimum value until a change 

is detected or the window size reaches the maximum size 

limit. Thus, if the minimum size is too small, noises may 

be detected as drifts. On the other hand, if the maximum 

size is too large, some drifts may not be detected. 

2.3. Perspective 

There are three approaches to analyzing process models 

[3]: 1. Control flow, which is concerned with behavioral 

and structural changes in a process model; 2. Data, where 

changes refer to the changes in the production and 

consumption of data and the impact of data on the 

routing of cases; and 3. Resource, which is the changes 

in resources, their roles, and organizational structure.  

Most of the previous methods have considered the 

control-flow perspective of process models. The only 

solution that considers both the control-flow and data 

perspectives is the one suggested by [5]. In order to 

identify change points, the similarity between two 

consecutive windows is compared using the Markov 

clustering algorithm. 

2.4. Type of drift 

Based on the classification presented in [18], there are 

four types of drifts: 1. Sudden drift, in which a new process 

replaces an existing one; 2. Gradual drift, in which parts 

of both new and old processes coexist for a period of time; 

3. Recurring drift, when a set of processes re-appear after 

some time; and 4. Incremental drift, i n  which a new 

process is substituted for an existing process via plenty 

of minor incremental changes.  

 Most of the previous methods can detect sudden drift, 

while few of them can detect other types of drift too. 

For example, [3, 19] addressed the detection of sudden drifts 

and certain types of gradual drifts in process mining. The 

method proposed by [2] considers windows at different 

time scales to detect recurring drifts. This method does not 

work for logs involving many process variants. The 

authors of [4] claimed that their method can detect all 

sudden, gradual, and recurring drifts using fixed windows. 

The approach clusters traces based on the distance 

between pairs of activities. [8] proposed an automatic 

approach in order to build a “run” from each trace in order 

to detect sudden drifts in two sequential adaptive 

windows.  

 In [11] the researchers extended their previous method 

[8] to   detect not only sudden drifts but also gradual drifts.   

They believe that gradual drifts will appear in the form of 

two consecutive sudden drifts. They applied a   statistical 

test to determine whether the detected sudden drifts are 

separate changes or a single gradual drift. A limitation of 

the method is the requirement to re-size the adaptive 

window to arrive at a trade-off between accuracy and drift 

detection delay. Moreover, [17] presented two new 

algorithms to detect incremental, sudden, recurring, and 

gradual drifts. The first algorithm creates the process 

history and discovers new viable models based on 

conformance and a     sliding window approach. The 

second algorithm determines concept drifts based on the 

synthesized process histories. 

 Table 1 provides a feature-based  comparison of previous 

studies based on the aforementioned aspects. As shown in 

this table, most of the methods use the window, fixed or 

adaptive. Moreover, the concept of embedding has  not been 

applied to drift detection so far. In this work, we propose 

an embedding-based approach for concept drift detection 

that is window independent. 
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Table 1. Feature-based comparison of the related works 
 

Ref. 
Detection method Type of windows Perspective Type of drifts 

Offline Online Fixed Adaptive control-flow Resource Data Sudden Gragual Recurring Incremental 

[7] *  *  *   *    

[4] *  *  *   * * *  

[6]  * *  *   *    

[3] *  *  *   * *   

[5] *  *  *  * *    

[2] *   * *   * * * * 

[8] *   * *   *    

[9]  *  * *   *    

[20] *  *  *   *    

[16] *   * *   * *   

[10] *   * *   * *   

[11] *   * *   * *   

[17] *   * *   * * * * 

[14]  *  * *   *    

[21] *  *  *  *  * *  

[15]  * *  *   * *   

Proposed 

method 
*  

window 

-independent 
*   *    

 

 

 
3. Proposed approach 

In order to detect concept drifts in business process logs 

and overcome the limitations of the previous approaches, 

we use trace embedding in the detection of process drifts. 

The general architecture of our proposed approach is 

illustrated in Figure 1, which consists of four main phases. 

Below, the phases are separately discussed in detail. 

3.1. Modeling trace to vector 

In this step, we use trace embedding to automatically 

extract features from the relations between traces. 

 By interpreting process event logs as texts and process 

traces as words, we can apply the idea of trace 

embedding to this step. Algorithm 1, which is used  in 

this step, receives a list of traces LT as its input and 

outputs a set of traces vectors TV. 

At the beginning of the algorithm, we need to consider 

traces as words and change each trace to a single word 

by omitting any spaces, underlines, and so on. LWT =  

ConvertTrace2Word(t) t  LT , where Convert Trace2 Word 

is a function that changes a trace t to a single word, and 

LT is a list of traces, which is ordered on the basis of 

the timestamp of the first event (Line 2 in Algorithm 

1). 

The TraceEmbedding function is trained by the list of 

traces, which results in the representation of each trace in 

the log as a vector of numerical values in a latent feature 

space (Line 6 in Algorithm 1). In other words, we 

transform LWT to a set of trace vectors TV = Trace 

Embedding (t′) t′  LWT , where Trace Embedding is a 

function that computes the vector of trace t′ in the set 

LWT using CBOW model. 

 As mentioned earlier, the idea of trace2vec as presented 

in [12] is based on the notion of paragraph2vec introduced 

by [22], which involves numbers denoting the order of 

paragraphs. Applying this method in our study causes 

identical traces that occur in differing positions in the log 

to have different vectors. This is not desirable in our study. 

As a result, we presented a new notion of trace embedding. 

3.2. Detecting non-co-occurring traces 

The objective of this phase is to detect non-co-occurring 

traces in two steps: Calculating trace similarity and 

clustering co-occurring traces. 

 Calculating trace similarity: As mentioned above, the 

traces are represented through their vector models from the 

embedding space. Therefore, it is possible to directly 

calculate the similarity between all pair-wise combinations 

of trace vectors. 

 To calculate trace similarity, we use the set of trace vectors 

TV and the set of traces in the event log to produce the similarity 

matrix SM and a list of traces with a minimum co-occurrence. 

Then, by using the values of similarity, we are able to separate 

the pairs of traces with the minimum co-occurrence or the 

maximum distance in the vector space. Such pairs may lead to 

the occurrence of drifts. The principal assumption is that if the 

substitution of a process B for a process A has produced a case 

of drift, there has been a large distance (or a small number of co-

occurrence relations) between the set of traces of process A and 

those of process B. In other words, the trace vectors before the 

change point differ from the ones after the change point. 

https://cke.um.ac.ir/
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Figure 1.  Architecture of the proposed approach 
  

 Clustering co-occurring traces: After identifying the set of 

traces with the minimum co-occurrence, we will use maximum 

co-occurrence to cluster them. The clustering leads to a situation 

in which all members of the same cluster are in a similar feature 

space. 

 This step receives the similarity matrix created in the previous 

step as its input and produces a set of clusters as the output. We 

apply hierarchical clustering with single linkage in which traces 

cannot be placed in multiple clusters. The threshold of clustering 

is empirically set to 0.99. 
 

Algorithm 1. Modeling trace to vector 
 

Input : LT : a list of traces ordered on the basis of the 

timestamp of the first event 

Output: TV : a set of trace vectors 

1  for each ti LT do 

2 t′i = ConvertTrace2Word(ti); 

3 ADD t′i to LWT ; 

4 end 

5 for each t′i ∈ LWT do 

6 TV.add TraceEmbedding(ti) ; 

7 end 

8 return TV 
 

Algorithm 2. Calculating trace similarity 
 

Input : TV = v1, v2, ..., vn}: a set of trace vectors, T 

=  t1, t2, ..., tn} : a set of traces in L 

Output: SM : a similarity matrix, NCT : a list of 

traces with the minimum co-occurrence 

1 SET NCT to null; 

2  for each vi  ∈ TV do 

3 for each vj ∈ TV do 

4 dij =Similarity(vi,vj ); 
5  if CheckNoCoOccurrance( dij) 

then 
6   ADD Tvi to NCT ; 
7   ADD Tvj to NCT ; 
8   ADD dij to SMij; 

9 end 

10 end 

11 end 

12 return SM 

3.2. Drift detection 

In this phase, some special techniques are employed to reduce 

delays in detecting changes as much as possible. The phase 

consists of two steps: Clustered trace analysis and determining 

main changes. 

 Analyzing clustered traces: This step aims to determine how 

the members of each cluster are distributed in a log, which leads 

to the creation of a distribution vector for each cluster. The step 

receives the output of the former step, i.e., the set of clusters CL, 

as its input and outputs a set of distribution vectors. 

 In this step, for each cluster, where a member of the cluster 

appears in the log, we represent it by 1 in the distribution vector 

associated with the cluster; otherwise, we represent the member 

by 0. 

 Figure 2 illustrates how the two clusters (C1 and C2) are 

distributed in a log that has 2500 cases. Dense areas in Figure 2 

indicate the positions of the traces of each cluster in the log. 

 Determining the main changes: The main objective of this 

step that uses Algorithm 3 is to determine the change points in 

the distribution vectors. The set of distribution vectors DV 

produced in the previous step is input into the algorithm of this 

step and, as the output, we will have a set of indices of the traces 

in which drifts have occurred. 

 In order to determine the frequency regions, the Fourier 

transform is applied to the distribution vectors (Line 3 in 

Algorithm 3). The Fourier transform breaks up a signal into its 

frequency components [23]. In this study, to distinguish the 

main changes, we need to preserve high frequencies and 

eliminate low ones. To fulfill this, low-pass filtering is applied 

(Line 4 in Algorithm 1). In other words, the traces that have 

been incorrectly detected as co-occurring traces will be 

eliminated by applying low-pass filtering. Then, the distribution 

vectors are transferred back to the time domain (Line 5 in 

Algorithm 3). Afterwards, the rate of changes is determined 

through differentiation (Line 6 in Algorithm 3). The positions 

associated with the highest rate of changes or notably 

distinguishable peaks are specified as indices of the traces in 

which a drift has occurred (Line 7 in Algorithm 3). For instance, 

in Figure 3, 9 drifts will be detected at the indices of 250, 500, 

750, 1000, 1250, 1500, 1750, 2000, and 2250, all of which are 

positions of notably distinguishable peaks. 
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 In summary, by applying trace embedding and also various 

techniques such as hierarchical clustering and Fourier 

transform, we managed to propose an approach marked by the 

following innovative characteristics: It automatically extracts 

features from traces and events. Besides, since it uses no 

windows for detecting drifts, it is not sensitive to window size. 

 

 
 

 
 

Figure 2.  Distribution of each cluster in a log 

 
Algorithm 3. Determining main changes 

 

Input: DV =  dv1, dv2, ..., dvn}: a set of distribution 

vectors 

Output: D: a set of indexes of the traces in which drifts 

have occurred 

1  SET drifts to null; 

2  for each dvi  ∈ DV  do 

3 fft = fft (dvi); 

4 lpf =LowPassFilter (fft); 

5 ifft=  ifft (LPF); 

6 diff =  Differentiate (ifft); 

7 di   =ReportDrift (diff ); 

8 ADD di to D; 

9 end 

10 return D; 

 
 

 
 

Figure 3. (a) The rate of changes in the distribution vector of 

cluster C1; (b) The rate of changes in the distribution vector of 

cluster C2. Remarkable peaks are change points. 

 

4. Evaluation 

In this section, the evaluation metrics are discussed, and the 

evaluation of the proposed approach is presented. Then, the 

performance of our method is evaluated in comparison with two 

different categories of state-of-the-art methods.  

In order to implement the proposed approach, Deeplearning4j 

(https://deeplearning4j.org) was used to model traces and 

activities as vectors. We use the CBOW model with the 

following parameters: Window size = 20 (based on the mean 

length of the traces); number of iterations = 10; and vector 

dimension = 100. The remaining parameters have the default 

values as proposed in [24]. 

 Hierarchical clustering algorithm was implemented in Java. 

Moreover, Matlab tool was used for Fourier transform 

computing and applying low-pass filtering. 

4.1. Evaluation metrics 

In terms of evaluation metrics, we compare the performance of 

our work with the state-of-the-art methods using two measures: 

F-score and mean delay. 

 In the case of our study, True Positive is the number of drifts 

that were correctly detected, False Positive specifies the number 

of drifts that the method incorrectly detected, and False 

Negative is the number of drifts that the method was not able to 

detect. 

 In other words, F-score specifies whether our approach has 

correctly identified drifts in an event log or not. Besides, we 

calculate the mean delay, which is the distance between 

actual drift points and detected drifts. 

 

https://cke.um.ac.ir/
https://deeplearning4j.org/
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4.2. Data set 

We initially describe the data set used in the experiment and 

then the results of our method are compared with the methods 

proposed in [3], [8], and [10]. 

 To evaluate our approach, the synthetic logs published by [8] 

were used. The base model of these logs, which has 15 

activities, involves various control-flow structures. Its BPMN 

representation, which is about assessing loan applications, is 

illustrated in Figure 4. The base model was systematically 

modified to generate drifts. These modifications included 12 

simple change patterns organized into three categories: Insertion 

(I), Resequentialization (R) and Optionalization (O) as shown 

in Table 2. Moreover, the categories were combined to produce 

more complex patterns including IOR, IRO, ORI, OIR, RIO, 

and ROI. Four logs of 2500, 5000, 7500, 10000 traces were 

produced for each of the 18 simple and complex change 

patterns. Drifts were injected by switching the drift toggle on 

and off every 10% of the log. Therefore, any instance of the 

produced logs included 9 drifts. 

4.3. Accuracy evaluation 

The accuracy of the proposed approach is evaluated as follows. 

First, the 18 change patterns discussed in 4.2 were applied to the 

four log sizes. Then, considering each of the 18 change patterns, 

the proposed approach was compared against the methods put 

forward by [8] (called run), [10] (called process-graph), and [3] 

(called Bose) in terms of the measures of F-score and mean 

delay. The values resulting for the two measures, averaged over 

the four log sizes are demonstrated in Figures 5 and 6. Our 

approach secured the F-score of exactly 1 for all patterns, except 

for the OIR pattern (0.99), far better than what the methods 

achieved. Moreover, in terms of mean delay, our method 

outperforms the Bose, process-graph, and run approaches, 

except for two change patterns. 

 On average, our method, run, process-graph, and Bose 

approaches achieved an F-score of approximately 0.9998, 

0.97, 0.94, and 0.701, respectively. Furthermore, in terms 

of delay, our method managed to achieve a mean delay of 

about 13 traces, while the run, process-graph, and Bose 

approaches achieved mean delays of approximately 32, 24, and 

47 traces, respectively. Table 3 includes the exact values of F-

score and mean delay for each individual change pattern as well 

as the total average made by each of the four methods. 

 

 
 

Figure 4. Base BPMN model of loan application process 

 

 

 
Table 2. Simple control-flow change patterns 

 

Code Simple change pattern Category 

re Add/remove fragment I 

cf Make two fragments conditional/sequential R 

lp Make fragment loopable/non-loopable O 

pl Make tow fragments parallel/sequential R 

cb Move fragment into/out of conditional branch O 

cm Move fragment into/out of conditional branch I 

cd Synchronize two fragments R 

cp Duplicate fragment I 

pm Move, fragment into/out of parallel branch I 

rp Substitute, fragment I 

sw Swap two fragments I 

fr Change branching frequency O 
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 Table 4 shows the results of the statistical tests, i.e., t-

tests, on the proposed approaches, run, process-graph, 

and Bose in terms of F-score and mean delay. In each of 

the tests, the proposed approach served as the first group. 

The p-value in all the tests (for both F-score and mean 

delay) is less than 0.05, except in the case of F-score in 

the test between trace2vec and run. This demonstrates 

that the difference in means is statistically significant at 

the 0.05 level.  

 Moreover, the positive upper and lower F-score values 

and negative higher and lower mean delay values, with 

the exception of the test between trace2vec and run, 

indicate that the suggested methodology produce better 

average F-score and mean delay values than previous 

approaches.

 

   
 

Figure 5. The  comparison of F-score values per change pattern   Figure 6. The  comparison of mean delay  

values per change pattern 
 

Table 3. The comparison of average F-score and mean delay values 

 

Change pattern 
trace2vec run [8] process-graph [10] Bose [3] 

F-score Mean delay F-score Mean delay F-score Mean delay F-score Mean delay 

re 1 21.83 1 44.03 0.9036 33.02 1 17 

cf 1 5.08 0.9824 21 0.9853 34.62 0.8950 36 

lp 1 21.69 1 40.29 0.7618 48.03 0.6484 41 

pl 1 13.8 1 35.74 0.9575 26.33 1 20 

cb 1 9.1 0.9387 58.55 0.9722 18.94 0 0 

cm 1 8.52 1 39.85 0.9722 19.24 0 0 

cp 1 4.58 1 19.66 0.9853 17.59 0.6394 36 

cd 1 46.44 0.8799 34.62 0.9546 28.62 1 20 

pm 1 11.97 1 12.88 0.9869 24.78 0.7804 69 

rp 1 4.86 0.9666 19.18 0.9722 12.67 0.75 40 

sw 1 6.02 1 21.67 1 29.61 0.7804 39 

fr 1 20.5 0.7569 49.92 0.9853 19.92 0.4420 165 

IOR 1 36.66 1 19.11 0.9606 13.00 0.7804 38 

IRO 1 6.8 1 43.96 0.9487 27.22 0.5611 82 

OIR 0.9967 12.11 0.9803 47.89 0.7331 28.06 1 20 

ORI 1 11.38 1 14.51 0.9869 14.25 0.7804 38 

RIO 1 9.08 0.9824 23.81 0.9722 20.77 0.5611 60 

ROI 1 7.66 1 22.51 1 7.31 1 20 

Average 0.9998 12.15 0.9715 31.62 0.9466 23.56 0.7010 46.31 
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Table 4. The results of the t-tests. The first group is the trace2vec approach  and the second group is either run, process-graph, or 

Bose approach 

 

 Mean 
Std. 

Deviation 

Std. Error 

Mean 

confidence 
t df 

Sig. 

(2-tailed) Lower Upper 

trace2vec-run 
F-score 0.03000 0.06444 0.01519 -0.00205 0.06205 1.975 17 0.065 

Mean delay -17.28333 16.66887 3.92889 -25.57257 -8.99410 -4.399 17 0.000 

trace2vec-

processGraph 

F-score 0.05889 0.07324 0.01726 0.02247 0.09531 3.412 17 0.003 

Mean delay -9.20833 13.66684 3.2213 -16.00469 -2.41197 -2.859 17 0.011 

trace2vec-Bose 
F-score 0.30000 0.30828 0.07266 0.14670 0.45330 4.129 17 0.001 

Mean delay -31.28375 39.19712 9.799928 -52.17042 -10.39708 -3.192 15 0.006 

 

5. Conclusion 

This study proposed a new method for the detection of 

process drifts in business process logs. We introduced the 

new notions of trace embedding, which enabled us to 

surpass the state-of-the-art methods in the identification 

of predictable process drifts as well as unpredictable ones. 

Trace embedding can be used for automatic extracting of 

all features from the relations that exist between traces 

and for producing vector representations of traces. Thus, 

the relations that exist between traces in the log are 

represented by the relations that exist between vectors in 

the vector space. The experiments demonstrated that 

considering both F-score and mean delay, our approach is 

superior to the current methods. Moreover, these 

achievements have been made without using any types of 

windows. 

In the future, we expect our study advance in the 

following ways: 

1. This paper h a s  dealt with process changes only 

from control-flow perspective. We plan to 

include changes from data and resource 

perspectives too; 

2. The detection of sudden drift was addressed in 

this study. Likewise, detection of gradual and 

recurring drifts will be done; 

3. This study plans to implement the approach as 

a ProM plug-in. 
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