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Abstract: The Operating System (OS) is a major part of 

embedded software systems and its robustness has 

considerable influence on the robustness of the entire system. 

Thus, its robustness testing is critical for assessing the 

dependability of the system. In this paper, a state-aware 

approach is proposed to evaluate the robustness of 

components of embedded real-time OSs in the presence of 

different types of faulty inputs. This approach leads to 

identifying critical OS states, their criticality level, and the 

maximum and minimum level of the OS robustness. It also 

facilitates comparing the robustness level of OS’s 

components and helps the system developers to select the 

most appropriate fault tolerance techniques by considering 

the robustness level and timing limitations. The experimental 

results demonstrate the ability of the proposed approach in 

providing more information about the robustness 

vulnerabilities in the states of the system.  

Keywords: Robustness testing, Embedded operating 

system, Robustness level assessment, Safety-critical 

systems, Fault injection. 
 

1. Introduction 

With the increasing growth in the use of embedded systems 

in different applications, the importance of verifying the 

correct behavior of these systems under different possible 

conditions has increased. The software part of these systems 

has the responsibility of controlling the functionality of the 

system. Operating System (OS) is an important part of an 

embedded system that manages the operations of the 

embedded system and has significant impacts on its 

functionality. Thus, the guaranteed correct functionality of 

an embedded system highly depends on the correct behavior 

of its underlying OS [1]. This issue is more crucial in safety-

critical applications, since their failure results in destroying 

lives and significant properties or environmental damage [2]. 

    The principal role of embedded software systems is 

interaction with the physical world. Thus, they are reactive 

and should respond within a predefined time period specified 

by their real-time constraints [3]. The increasing complexity 

of embedded systems leads to the increase of the OS’s 

functional complexity, which increases the size of the OS’s 

source code in terms of Lines of Code (LOC). By increasing 

the source code size, the residual software defects raises as 

well [4]. The increase of software defects has become a 

major concern in software systems, especially those 
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employed in safety-critical applications. Since these OSs are 

usually used outside of their original context and interact 

with an external environment, they are prone to more faults 

[4]. Consequently, fault tolerance techniques are necessary 

to assure the correct behavior of the OS’s functionalities [1].  

    Robustness testing is used to evaluate the systems’ fault 

tolerance [5]. In particular, OS robustness testing assesses 

the OS behavior in the presence of faulty inputs to detect the 

vulnerabilities that affect the correct behavior of the OS [6]. 

Faulty inputs fall into four categories [7-9]: 1) Invalid and 

unexpected value, 2) invalid timing of an input, 3) invalid 

input sequence, and 4) incorrect input format. In robustness 

testing of an OS, the OS's interfaces are deliberately exposed 

to faulty inputs through software-implemented fault 

injection techniques (SWIFI) which are widely used for 

robustness testing [4, 5]. The OS interfaces for robustness 

testing include the application programming interface (API) 

and device drivers [10]. 

    Since the interactions of embedded OSs with the 

execution environment are not fully predictable at the 

development phase, the robustness testing of such OSs is 

challenging [5]. Embedded OSs encounter all the 

aforementioned faulty input types. The system response 

depends on the features of the faulty inputs and the state of 

the OS components, which is determined by their properties. 

A component is a part of the OS that is responsible for 

managing specific resources or providing a set of services, 

such as memory management and process scheduling [11]. 

The OS components interact with each other and their 

properties may change during their interaction. The OS state 

is obtained by analyzing the interactions between OS 

components. The robustness testing of OSs can be improved 

by taking both faulty inputs and the OS state into account 

[10]. 

    This paper proposes a state-aware approach for robustness 

testing of embedded OSs. The proposed approach takes 

different types of faulty inputs and the OS state into account 

and thus it has the potential to reveal how critical these states 

are for system dependability. In this approach, first, 

important states of the OS components are identified in the 

form of a behavioral model and then, different types of faulty 

inputs are injected into these states. Using the fault injection 

results, the criticality value of each state and then the 

robustness level of the components are determined. These 

values are used to get more information about the robust 
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behavior of the OS. The proposed approach gives helpful 

information about the OS robustness to developers, 

including the critical OS states, the criticality level of the OS 

components, and the maximum and minimum level of the 

OS robustness. With this information, developers can 

accurately select an appropriate fault tolerance technique to 

improve the system dependability. Furthermore, the 

proposed approach can be effectively used to compare the 

robustness of different OS components.  

   The organized of the rest of the paper is as follow: In 

Section 2, the most important related studies are presented. 

The proposed approach is elaborated in Section 3. In Section 

4, the results of applying the proposed approach to a case 

study are presented and discussed. Finally, the paper 

concludes in Section 5 and offers some future work. 

 

2. Related Studies 

Due to the fundamental role of OSs in computer systems, OS 

robustness testing has attracted the interest of researchers for 

many years [5]. Fuzz [12] is one of the first studies in this 

area that has used random inputs for robustness testing of 

OSs. These inputs are injected into system’s user interface 

which stochastically activate the robustness faults [6]. Four 

series of Fuzz experiments [12-15], that have been conducted 

in the years 1990-2006 on UNIX, Windows NT and MacOS 

operating systems, have shown the effectiveness of random 

inputs in OS robustness testing. These experiments have 

revealed that OSs, as a mature software, are still vulnerable 

to faulty inputs even against random ones. Using random 

inputs in robustness testing has some drawbacks. For 

example, fault activation relies on chance and the test space 

is extremely large. Robustness testing based on the type of 

interface parameters is an attempt to overcome such 

drawbacks [6]. 

    The Ballista [16, 17] uses a type-specific approach to test 

and benchmark the OS. Each robustness testing scenario 

consists of a system call invocation with a combination of 

both valid and invalid values for an input parameter. These 

values are predefined for each data type that, compared to 

the random faulty inputs, lead to a smaller test space. Ballista 

has succeeded in finding severe robustness vulnerabilities in 

several commercial OSs, but the number of test cases is still 

high. 

    Some studies have focused on the OS robustness testing 

with respect to device driver interface. In case of robustness 

testing of device drivers, a profiling framework has been 

proposed by [18] that assists in finding possible error 

propagation paths from device drivers to the applications. 

Similarly, the presented work by [19] concerns OS 

robustness testing regarding device driver interface and 

focuses on testing the Driver Programming Interface (DPI). 

DPI is a set of kernel core functions that implements the 

interactions way between device drivers and the kernel. In 

order to characterize the robustness of OSs, the faults are 

injected into the parameters of these core kernel functions. 

The results show the negative impacts of faulty drivers on 

the responsiveness of the kernel, safety of the workload and 

availability of the kernel. 

    In recent years, the OS robustness testing using OS states 

as well as invalid inputs have attracted the attention of many 

researchers. The OS state has a considerable influence on the 

OS robustness testing. The execution of a given robustness 

test case in different OS states would generate rare execution 

patterns which, as a result, increases the final coverage of 

robustness testing [10]. In this regard, Sârbu and others [20] 

have proposed a state model for testing device drivers. This 

state model has been derived from run-time communications 

among device driver interfaces. This study reports that the 

use of a state model reduces the number of test cases. 

    Johansson and others [21] have introduced the concept of 

call blocks to take into account the state of the OS in 

robustness testing. In this approach, the usage profile of a 

device driver is split into disjoint call blocks. Call blocks, 

that are recurring sequences of function calls, lead to 

injecting faults into different system states. The results have 

shown that controlling the time of fault injection has a 

significant impact on the robustness evaluation. 

    Similarly, the approach presented in [10] has the goal of 

enhancing the traditional approaches by considering the OS 

state in test case definition. By this approach, a test plan is 

expressed through two dimensions: the exceptional inputs 

and the OS states. Exceptional inputs are selected from a set 

of predefined invalid values. The states vary in S = {s1, s2 … 

sn}, where si is a set of component attribute values. In order 

to execute a test case, state setter takes component to one of 

the predefined states in S. Then, test driver injects invalid 

inputs to the component interface. This study has 

demonstrated that the robustness tests are able to reach 

corner cases with complex interactions with other 

subsystems, which cannot be covered by traditional 

robustness testing methods [10]. 

    SABRINE [11] is an extension of the approach proposed 

by [10]. The authors have claimed that SABRINE is the first 

approach that applies behavioral model mining techniques in 

order to test the robustness of the OS. In the first phase of 

SABRINE, behavioral data about OS is collected, in terms 

of interactions between OS components at run-time. At the 

next phase, the behavioral data are preprocessed and are 

divided into disjoint sequences. Identical sequences 

represent a pattern. To have an efficient set of test cases, in 

the third phase, the patterns are further grouped using a 

clustering algorithm. In the fourth phase, a behavioral model 

is generated for every cluster in the form of finite state 

automata (FSA) in which the states are interconnected by 

events. Furthermore, injectable transitions are identified. An 

injectable transition is an invocation of a function in which a 

fault can be injected. Only one test case is generated for 

every injectable transition. In order to execute test cases, in 

the fifth phase, the system is transitioned to the initial state 

of the behavioral model and a fault is injected when the OS 

reaches the intended state. 

    SABRINE approach has overcome the limitation of 

requiring knowledge about OS internals. Nevertheless, this 

approach suffers from some drawbacks like neglecting 

different types of faulty inputs. In an attempt to emulate 

realistic scenarios, the proposed methodology in [22], deals 

with four different types of programmable faults, including: 

data, protocol, time-related, and state-related faults. This 

methodology has employed model-based robustness testing 

for embedded software. The results of applying this 

methodology have indicated that the robustness testing 
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method is very effective in finding vulnerabilities. The key 

problem of this approach is that the state model of the system 

is not based on the system behavioral model, but it is 

extracted using explicit abstractions of the system and its 

environment.  

    The presented approach in [23], TrEKer, infers error 

propagation from a faulty kernel component to other parts of 

the kernel by tracing memory accesses using compile-time 

instrumentation. This approach infers error propagation from 

deviations in the injection target’s state and behavior that are 

visible to other parts of the kernel. The data that the system 

under test (SUT) operates on, has defined as SUT state. The 

evaluations have demonstrated that conventional oracles 

would misclassify up to 10 % of seemingly successful runs. 

    Whilst numerous researches have been carried out on 

embedded OS robustness testing, none of them has 

adequately covered the robustness testing with respect to 

different states and different types of faulty inputs. 

Furthermore, they have not considered specific 

characteristics of these OSs such as timeliness and 

reactiveness. In our previous work [24], a state-based 

approach for testing the robustness of embedded real-time 

OSs has been proposed which investigates the impact of 

inputs with invalid timings. In [24] the behavioral model has 

revealed the critical states in respect of timing delays and has 

not considered other types of faulty input. Some studies [22, 

25] have attempted to address robustness testing with respect 

to different types of faulty inputs, but similarly they have not 

taken into account the impact of OS state in robustness 

testing.  

    To the best of our knowledge, there is no study that has 

employed the OS behavioral model after fault injection to 

build the system's behavioral profile in confronting with 

faulty inputs in different OS states. The aim of this study is 

to overcome the aforementioned limitations by improving 

the OS behavioral model in order to handle different types of 

faulty inputs and to enrich as well the model based on the 

fault injection results.  

 

3. The Proposed Approach 

The proposed approach consists of three main steps: 

behavioral modeling, fault injection, and robustness level 

assessment. In the first step, the Component under Test 

(CuT) is monitored to obtain its behavioral model. For this 

purpose, the SABRINE approach is enriched with some 

improved features to deal with different types of faulty 

inputs. The extracted behavioral model is used in the second 

step to produce and apply the fault injection test cases. 

Finally, the test cases are executed, and the results of fault 

injection experiments are exploited to augment the 

behavioral model and provide further information about the 

component’s robustness. In following, the steps of the 

proposed approach are described. 

 

3.1. Behavioral Modeling 

In this step, the behavior of the CuT is modeled. An OS is 

composed of a set of components, each of which is 

responsible for performing one of the OS functionalities. For 

example, the memory management component is responsible 

for handling the access of different processes to the physical 

memory. An OS provides the services through its interfaces 

and the processes request these services using system calls. 

When a system call is invoked, one or more OS components 

interact with each other to provide the requested service [11]. 

Each component has an interface to be used by other 

components to invoke the component services through 

function calls. 

    In the proposed approach, in order to make the fault 

injection and robustness level assessment techniques more 

effective, first, a model of the interactions between 

components is created to identify the appropriate points 

where the faults should be injected. This step itself is divided 

into three phases: 

 

Phase 1. Behavioral Data Collection: In this phase, the 

software system is run and, using a workload, profiled under 

fault-free conditions. Workload is a graph of tasks, each of 

which invokes an OS service. Thus, a workload causes some 

kernel calls and interactions between the OS components. 

During the execution of the workload, data about the 

interactions of the target component, which its robustness is 

supposed to be assessed, are collected as behavioral data. 

This data is then used to model the behavior of the system.  

    The interactions among components along with their 

details such as the ID of the operation requested by the 

workload, the name of the kernel functions that have been 

invoked, and the values of the functions' input parameters, 

are logged. In addition, the start and finish times of 

interactions are recorded in the log file. In the experiments, 

by giving the highest priority to the workload, the execution 

time of the workload will not include interrupts execution or 

the OS scheduling time. 

    The detailed information logged during the workload 

execution can then be used to create a sequence of 

interactions. However, some factors such as different 

execution paths in kernel functions would affect the 

sequence of interactions. Thus, at this phase, the execution 

of the workload is repeated several times. Every execution 

of this phase produces an individual log file. The log files are 

then processed to extract the recurring patterns of 

interactions. 

 

Phase 2. Pattern Identification and Clustering: Since the 

functionality of the OS kernel should be assessed in general, 

independently of a particular workload, a sequence of 

interactions is defined as the set of interactions that have 

been happened during the execution of an individual kernel 

function call (not the system calls or interrupt services which 

are requested by the workload). Due to different execution 

paths in kernel functions, two executions of a particular 

kernel function call will not necessarily lead to identical 

sequences. Thus, the sequences of a kernel function would 

generate different patterns. In this phase, these patterns are 

identified, using a clustering technique. In this regard, the 

similarity of each pair of patterns is quantified using the 

spectral clustering algorithm [11]. This algorithm groups a 

set of elements based on their similarity, and hence, it can 

group more similar patterns in the clusters. Finally, 

infrequent patterns are ignored. 

 

Phase 3. Generating the Behavioral Model: The relative 

start and finish times of the interactions are recorded in the 

first phase. Thus, in this phase, for each cluster identified in 
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the second phase, a behavioral model is created in the form 

of a Timed Automata [26]. A behavioral model is a directed 

graph in which the nodes represent the states of the 

corresponding component and the edges represent the 

transitions of the component to new states. Transitions are 

caused by the interactions with other components. 

    A cluster consists of one or more recurring patterns. If a 

cluster has more than one pattern, the behavioral model is 

augmented with new edges to include all patterns. Therefore, 

when a particular cluster has different patterns, its 

corresponding behavioral model will have more than one 

edge in some states. This process is repeated to generate a 

behavioral model for each cluster. 

    For example, the behavioral model represented in Figure 

1 shows two different patterns. Each path denotes a pattern 

of interactions. The edges in the graph are labeled with the 

interaction name, which is composed of the name of the 

invoked service along with its relative time of occurrence. 

As mentioned before, the state of a component is determined 

by its properties. Thus, the properties of the component may 

change in a new state. For example, when the write system 

call is invoked, an interaction is occurred and the state of the 

memory management component (which is the amount of 

available and used memory) might be changed.  

 

3.2. Fault Injection 
Although the proposed approach has the potential of 

considering different types of faulty inputs, in this paper only 

the data and timing faults were taken into account. As 

mentioned before, the goal of robustness testing is to 

evaluate the impacts of faulty inputs on the function 

responses and to assess its robust behavior. Thus, for each 

faulty input type, injectable interactions in the behavioral 

model are identified through the analysis of the invoked 

function. Then, for each injectable interaction, a test or a set 

of test cases are generated by the procedure described below. 

Finally, the test cases are used in the fault injection 

experiments.  

Without losing generality, in this paper the test cases are 

generated from these two perspectives: 

 

A. Timing Faults: Injectable interactions for timing faults 

are those interactions whose input parameters value 

influence the execution path. For example, if an input 

parameter value affects a loop control or conditional 

statement, it will affect the execution path. Therefore, the 

lines of code that contain these statements are considered as 

candidate lines for injecting timing faults. An injected timing 

fault actually simulates the real world conditions that may 

appear due to unexpected change in the input parameter 

value. For example, a Single-Event Upset (SEU) flips a 

memory bit and would cause a data error [27]. If such faults 

appear in the injectable line, the execution path and 

consequently the execution time may change. It is 

noteworthy to remark that changing the program execution 

path does not necessarily increase the execution time. Thus, 

in this paper, just deadline misses caused by the increased 

execution time are paid attention. For this purpose, delays 

are injected in functions using the timing faults generated by 

the following method. 

 

 Test Case Generation for Timing Faults. In order to 

generate timing error test cases, a binary search-based 

method is used based on the function call deadline. The 

deadline of a function is defined as the specified time 

constraint that the function guarantees to response within. If 

x is the relative deadline value of a particular function, the 

range of possible delays is [1, x]. The first test case is 

intended to cause a delay of 
x

2
. The fault injection method 

translates this test case to a statement in the injectable line of 

the function source code that causes a delay of 
x

2
 time unit. 

Then, based on the results of this fault injection experiment, 

a new range is identified for timing fault injection. If the 

deadline is missed, a new test case is designed to impose a 

delay in the range of [1, 
x

2
). Otherwise, a test case is generated 

for injecting a delay in the range of (
x

2
, x]. This process 

continues until the maximum deadline violation threshold 

that does not miss the function deadline is found. Therefore, 

the result of timing fault injection experiments is the deadline 

violation threshold of each injectable transition. 

 

B. Value Faults. For faulty inputs with invalid value, 

injectable interactions are those interactions which use the 

input parameter. There are three error models that are usually 

employed for evaluating the OS behavior in the presence of 

invalid input parameter values: bit-flip, data type, and 

fuzzing [9, 21, 28]. In this paper, the data type error model is 

selected, because it has the shortest execution overhead 

compared to the bit-flip and fuzzing error models [28]. In 

addition, the data type error model has a fair injection 

efficiency [29] and it is the representative of the actual OS 

errors [18]. 

 

 

Fig. 1  Example of a behavioral model
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C. Test Case Generation for Value Faults. For value 

faults, test cases are generated based on a test methodology 

like Ballista [16]. One advantage of Ballista is that the result 

of fault injection is highly repeatable. In this approach, the 

CuT is transited to a given initial state and its services are 

invoked with faulty parameter values. As mentioned before, 

faulty parameter values are defined based on the data type of 

the input parameter. For example, if the type of the input 

parameter is integer, the possible test cases will be 0, -1, 

INT_MAX, and INT_MIN. The CuT response to the service 

invocation with faulty parameter value is monitored to 

identify the probable robustness failures. Robustness failures 

are measured using CRASH scale [16]. 

   Generating fault injection test cases, in order to perform a 

fault injection experiment, a workload is executed and the 

interactions of the target component are monitored like the 

first step. This monitoring is performed to track the states of 

the component. Thus, the faults are injected when the 

component reaches a specific state. The faults are then 

injected into the interactions between components by a fault 

injector. This means that the fault injector intercepts an 

interaction, replaces its parameter with faulty ones, and then 

gives the interaction back to the invoked component. When 

the faults are injected, the workload, the CuT and the OS 

status are monitored by the failure detector component to 

identify the type of any potential failure. 

 

3.3. Robustness Level Assessment 

The fault injection results are used to augment the behavioral 

model created in the first step. For this purpose, the 

robustness score of every transition is computed. The idea is 

that more robust paths should get higher scores while lower 

scores should be assigned to the less robust paths. In order to 

compute the score of each path, first the score of the 

transitions is computed. For each transition of the generated 

behavioral model, the score is computed based on the results 

of both timing and value fault injection experiments. The 

transitions are the target of fault injection, because they 

represent the function calls caused by a service request. 

Therefore, it can be investigated how a faulty transition can 

take the CuT to a faulty state. 

    In the value fault injection, the number of test cases can be 

different for each injectable transition and depends on the 

number of input parameters of the interaction. Therefore, the 

results of the value fault injection should be normalized to 

fairly compare the results. For this purpose, each class of 

failure is weighted, such that the lowest weight is assigned 

to the most severe failure, whereas the highest weight is 

assigned to the gentle failure. For example, the failure classes 

of CRASH scale are scored as shown in Table 1. 
 

Table 1. The Score of each Failure Class in CRASH Scale 
  

CRASH Failure Class Weight 

Catastrophic 0 

Restart 0.2 

Abort 0.4 

Silent 0.6 

Hindering 0.8 

No Failure (Robust) 1 

    It can be seen from Table 1 that the weight of a 

catastrophic failure, which is the most severe one, is zero (wC 

= 0) and the weight of a robust response is one (wR = 1). The 

weight of other classes is increased with a fixed rate. Once 

the value fault injection results are weighted, the average is 

calculated for each injectable transition based on the results 

of the value fault injection. 

 

    In order to compute the scores based on the results of 

timing fault injection, which are deadline violation 

thresholds, the behavioral model’s deadline is divided into 

six intervals (similar to the number of failure classes in the 

value fault injection) in such a way that each interval has one 

score. The largest deadline threshold gets the highest score 

and the smallest one gets the lowest score. Thus, the scores 

of transitions are obtained based on their deadline violation 

threshold. After obtaining the scores of timing and value 

fault injections, the robustness of the transition (Rt), is 

calculated as follows: 

 

Definition 1: For a given transition t, let TSt denote the 

robustness score of t in timing fault injection and VSt is the 

robustness score of t in value fault injection. The robustness 

score of t, denoted by Rt, is obtained as (TSt + VSt) / 2.  

Once the robustness of every transition is calculated, the 

robustness of each path of the behavioral model is computed. 

 

Definition 2: Let P denotes a given path in the behavioral 

model and f(P) represents the probability of passing P. Thus, 

the robustness of P is obtained by: 

 

RP = f(P) ∑ Rti
    (1) 

 

where Rti
denotes the robustness scores of transition i in P. 

RP quantifies the robustness score of P using the robustness 

scores of its transitions. Finally, the maximum and minimum 

robustness level of the CuT are obtained by comparing the 

robustness of different paths in its behavioral model. The 

maximum and minimum RP among all paths in the 

behavioral model of CuT represent the maximum and 

minimum robustness level of the CuT, respectively.  

 

4. Evaluation 

In order to evaluate the proposed approach, it has been 

implemented to perform robustness testing on Linux 

PREEMPT-RT v3.14.3-rt4, which is a real-time OS used in 

embedded systems [30]. In the experiments, the memory 

management component was selected as the CuT. 

Furthermore, Mibench [31], which is a representative 

benchmark for embedded programs, was employed as the 

workload. In this benchmark, automotive category of 

Mibench is intended for safety-critical applications. Qsort, 

which is in the automotive category was executed on the 

underlying OS, as the workload.  

    In order to record the interactions between the memory 

management component and other components, SystemTap 

[32] is utilized. SystemTap is also responsible for storing the 

recorded information as a log file. It uses a dynamic method 

for monitoring and tracing the operations of the running 

Linux kernel. Thus, it makes it possible to investigate the 

behavior of the kernel. SystemTap has a low overhead when 
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it monitors or instruments the kernel operations [32]. As 

mentioned in [11], there are some tools with the same 

functionality as SystemTap for most modern OSs. Hence, the 

experiments discussed in this section can be ported to other 

OSs. 

    Fig. 2 shows the behavioral model of generic_ 

file_aio_read kernel function, as a timed automata. This 

behavioral model has been created by the proposed approach 

during the experimental evaluations. The role of the 

generic_file_aio_read kernel function is to implement both 

synchronous and asynchronous read operations and it is 

invoked when a system call for reading the memory occurs. 

As Fig. 2 shows, clock c is reset at State 0. State 1 represents 

the CuT state before calling the generic_segment_checks 

kernel function. When the execution of 

generic_segment_checks finishes, the CuT is transitioned to 

State 2. 

    In this model, clock c specifies the deadline of each 

function call in microseconds. Since there is no predefined 

deadline for the Qsort benchmark, the worst execution time 

of every interaction, which is the execution time of the kernel 

function, was considered as its deadline. The deadline of 

each interaction was obtained in the first step of the proposed 

approach. Starting from State 0, clock c is increased in 

microsecond. The label (c<39us)? shows that the deadline of 

generic_segment_checks is 39us, and the label (c<86us)?, 

which belongs to the find_get_page kernel function, means 

that the deadline of this function from the initial state is 86us. 
    In Fig. 2, States 0 to 4 are connected by unique 

interactions. As this figure shows, there exist two different 

paths between States 4 to 7. Thus, it contains two patterns.  

    The paths and the injectable transitions of this behavioral 

model have been marked in Fig. 3. The injectable transitions 

of timing faults and value faults are identified based on the 

definition of an injectable transition in the second step of the 

proposed approach. For example, file_read_actor kernel 

function, which transitions the CuT from State 5 to State 6, 

has an input parameter (*desc) that affects a conditional 

statement and influences the execution path. Therefore, 

file_read_actor is an injectable interaction of timing faults. 

Because it has input parameters, file_read_actor is also an 

injectable interaction of value faults. In this experiment, 

injectable transitions of timing faults and value faults are the 

same, but they can be different for each fault type. 

    To the best of our knowledge, there is not a similar study 

which considers the stateful robustness testing in OSs in the 

presence of different types of faulty inputs. Therefore, as the 

goal of this paper is to demonstrate the effects of using fault 

injection results on increasing the robustness of components 

based on their behavioral model, the results and effects of 

timing and value fault injection experiments are presented 

and evaluated separately. 

 

4.1. Timing Fault Injection 

In order to generate timing test cases, first, the candidate 

lines for injecting delays are detected. Then, one of them is 

randomly selected and the intended delays are injected using 

the binary search-based method. The result of this 

experiment is the deadline violation threshold of injectable 

transitions. 

    Since the proposed approach considers the OS state, it is 

expected that the result of fault injection in put_page 1 

(put_page function call in path No. 1) differs from that of 

put_page 2 (put_page function call in path No. 2). The 

impacts of applying timing fault injection to put_page 1 and 

put_page 2 have been depicted in Fig. 4 and Fig. 5, 

respectively. In these figures, the horizontal axis shows the 

amount of delays injected into the function source code and 

the vertical axis shows the execution time. Fig. 4 

demonstrates the effects of timing fault injections of 

put_page 1 on deadline violation of generic_file_aio_read. 

Similarly, Fig. 5 shows the same results for put_page 2. 

    Based on the values recorded in the log file, the worst 

execution time of the generic_file_aio_read function is 

266us. This time value is considered as the deadline of the 

generic_file_aio_read function and has been shown by a red 

dashed horizontal line in Fig. 4 and 5. As it can be seen from 

these figures, the generic_file_aio_read deadline has been 

missed by injecting delays more than 213us into put_page 1 

and 61us into put_page 2. As a result, in some cases, the 

deadline violation in one of the interactions like put_page 1 

or put_page 2 does not necessarily lead to deadline violation 

of the generic_file_aio_read function, because the deadline 

of this function is sufficient to tolerate some delay imposed 

to the functions that it interacts with. Let us bear in mind that 

the deadline of put_page function is 6us. 

 

 

 
Fig. 1. Behavioral model of generic_file_aio_read 

 

 
Fig. 3. The paths and injectable transitions in the behavioral model of generic_file_aio_read 
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Fig.4. Impacts of timing fault injection on put_page 1 

 

 
 

Fig.5. Impacts of timing fault injection on put_page 2 

 
    As shown in Fig. 5, another observation of this 

experiment is that, compared to put_page 1, the fault 

injection in put_page 2 has more impact on the execution 

time of the generic_file_aio_read function. Actually, the 

tolerable delay –an injected delay which does not lead to the 

deadline violation– of put_page 2 is 61us whereas it is 213us 

for put_page 1. More transitions in path No. 2 can increase 

the execution time of generic_file_aio_read. Thus, by 

considering the deadline of generic_file_aio_read function 

(which is 266us and is independent of the passed path), 

increasing the number of transitions in path No. 2 leads to 

decreasing the tolerable delay of put_page 2. It also causes 

fault injection in put_page 2 increases the execution time of 

generic_file_aio_read with a higher rate. In contrast, as Fig. 

4 shows, the execution time of generic_file_aio_read 

increases with a constant rate with respect to the execution 

time of put_page 1. 

    The results of applying the proposed timing fault injection 

method to 5 out of 8 transitions of Fig. 3, which are injectable 

transitions, have been summarized in Table 2. This table 

shows the number of injectable lines in injectable transitions 

and their deadline violation thresholds in us. Such results 

help developers to identify the critical OS states in the 

presence of timing faults. For example, in this experiment, 

one can conclude that put_page 2 has a low robustness level, 

since it has more impact on deadline violation of 

generic_file_aio_read function. Thus, some low-cost fault 

tolerance techniques are required to increase its robustness. 

Table 2. Deadline violation thresholds obtained by the proposed 

approachand the random approach 
 

 

 
Transition 

Number 

of 

injectable 

lines 

Deadline 

violation 

threshold 

(us) 

Proposed 

approach 

generic_segment_checks 3 76 

find_get_page 5 99 

file_read_actor 2 99 

put_page 1 
2 

213 

put_page 2 61 

Random 

approach 
- 18 90 

 

    To the best of our knowledge, no study has been 

conducted to compare it with the proposed timing fault 

injection method. Hence, in order to evaluate the efficiency 

of the proposed approach in assessing the robustness level of 

the OS's components, it was compared with a random timing 

fault injection method. In the random fault injection method, 

there is not any behavioral model to identify the execution 

paths. Thus, the timing faults are injected in timing injectable 

lines of the generic_file_aio_read function and the functions 

it calls. In the random approach, one of the identified 

injectable lines is selected randomly and the delays are 

injected into it. Moreover, in order to specify the deadline 

violation threshold, the binary search-based method is used. 

In this approach, the deadline violation threshold of 

generic_file_aio_read is 90us. 

    In the experiments, six timing injectable lines have been 

identified in the source code of the generic_file_aio_read 

function and the total number of identified injectable lines in 

the functions which are called by the generic_file_aio_read 

function is 12. Thus, the random approach identified 18 

injectable lines for timing fault injection.  In our proposed 

approach, this number depends on the existing paths of the 

behavioral model and varies from 10 to 12. Thus, in this 

experiment, the number of injectable lines effectively 

decreases about 33.3% to 44.4%. This leads to a reduction in 

the number of test cases for finding the deadline violation 

threshold using the binary search-based method. 
    As this Table 2 shows, the proposed approach has a fine-

grain view and assesses the criticality of injectable 

interactions separately. Thus, developers can use lower-cost 

yet content aware fault tolerance techniques for such small 

components of the OS. On the other hand, the random 

approach does not consider interactions and just examines 

the function and its direct function calls. Thus, the 

assessment and improvement of CuT's robustness based on 

its behavior model is not possible. For example, according to 

the proposed approach, put_page 2 with 61us deadline 

threshold is the most critical transition in the presence of 

delays, whereas the random approach provides deadline 

violation threshold just for the entire generic_file_aio_read 

function.  
 

4.2. Value Fault Injection 

In the proposed approach, the test cases of value fault 

injection are generated for every value injectable transition 

by extending the Ballista test methodology which is the most 

well-known technique in OS robustness testing [33]. In our 
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approach, different states of the CuT are considered in the 

value fault injection whereas Ballista just considers a given 

initial state to execute all test cases.  Thus, in order to execute 

the test cases in our proposed approach, the CuT is transited 

to the intended state and then a value fault is injected. The 

observed failures of both approaches are presented in Table 

3. 

    In this experiment, the observed failures are different in 

our proposed approach when the CuT is in different states 

during the fault injections. For this experiment, a unique test 

case of value fault injection was used for put_page 1 and 

put_page 2. In the obtained results, there is one catastrophic 

failure in value fault injection of put_page 1 which indicates 

that put_page 1 is more exposed to a robustness failure. The 

reason is that put_page 1 and put_page 2 are in different 

execution paths. The put_page function checks some 

conditions, which depend on the state of the CuT. Thus, the 

response of this function to a unique input value can change 

based on the state of the CuT. 

In this experiment, due to the repeatability of the value 

fault injection method, the number of robustness failures of 

both approaches is the same for each injectable transition. As 

the results show, the type and the number of robustness 

failures of generic_segment_checks are the same. The reason 

is that, according to the log file, the generic_segment_checks 

function is called only when the generic_file_aio_read 

function executes. On the other hand, other functions (which 

have different type and the number of robustness failures) 

are called by some functions other than 

generic_file_aio_read. In such case, Ballisa approach 

focuses on the target function, regardless of the CuT state, 

whereas the proposed approach accurately detects when the 

target function is called by the CuT in the intended state and 

then it injects the fault. For example, the proposed approach 

discriminates between the put_page function in different 

paths of the model. In contrast, the Ballista method, tests the 

put_page function independent of the execution path. This 

makes differences in the results of fault injections in the two 

approaches. For example, as can be seen from the Table 3, 

Ballista has detected a catastrophic failure for find_get_page 

function whereas the proposed approach has been faced with 

a silent one. The proposed approach indicates that the 

execution of find_get_page in the execution path of the 

model, does not lead to a catastrophic failure. Thus, it can be 

concluded that by considering the OS state, it is possible to 

accurately identify the robustness problems of the CuT, since 

it determines the execution paths and the transitions which 

robustness failures occur in. 

    As the experimental results show, it is possible to 

determine the criticality of CuT states in the presence of 

incoming delays using the results of timing fault injections. 

In addition, the value fault injection can help to identify the 

possible class of robustness failures for each state of the CuT. 

These results can be used together to assess the robustness 

level of the CuT.  

 

 

Table 3. Results of Value Fault Injection 

 

Transition/ 

Function Name 

Number 

of Test 

Cases 

Number and Type of Failures 

Approach 

C
at

as
tr

o
p
h
ic

 

R
es

ta
rt

 

A
b
o
rt

 

S
il

en
t 

H
in

d
er

in
g
 

T
o
ta

l 

generic_segment_checks 19 
2 0 6 4 0 

12 
Proposed 

2 0 6 4 0 Ballista 

find_get_page 10 
0 0 4 4 0 

8 
Proposed 

1 0 4 3 0 Ballista 

find_read_actor 19 
2 0 4 8 0 

14 
Proposed 

1 0 4 9 0 Ballista 

put_page 1 

4 

1 0 3 0 0 

4 
Proposed 

put_page 2 0 0 3 1 0 

put_page 2 0 2 0 0 Ballista 

 

 

Table 4. The value of Rt for Injectable Transitions 

 

Transition Name 
The Score in Value 

Fault Injection (VSt) 

The Score in Timing 

Fault Injection (TSt) 
Rt 

generic_segment_checks 0.62 0.20 0.41 

find_get_page 0.60 0.40 0.50 

file_read_actor 0.60 0.40 0.50 

put_page 1 0.30 0.80 0.55 

put_page 2 0.45 0.20 0.32 
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4.3. Robustness Level Assessment  

In this step, the results of timing and value fault injections 

are used to augment the behavioral model generated in the 

first step. The augmented behavioral model will show the 

CuT states and execution paths which suffer from robustness 

vulnerabilities. As a result, the system developer can 

appropriately use this behavioral model to make the system 

more robust using some fault tolerance techniques. In this 

regard, the robustness of every injectable transition t, 

denoted as Rt, is needed to augment the behavioral model. 

Rt, can be calculated using the robustness score of t in timing 

fault injection (denoted by TSt) and the robustness score of t 

in value fault injection (denoted by VSt). Table 4 presents the 

results of this calculation based on Definition 1 in Section 

3.3.   

    As illustrated in Fig. 3, there are two paths in the 

behavioral model of the case study. By analyzing the log file, 

it was observed that the probability of passing path No. 1 

(denoted by f(P1)) is 26.6%. Similarly, the probability of 

passing path No. 2 (denoted by f(P2)), is 73.4%. 

Consequently, based on the Definition 2 in Section 3.3, RP1, 

the robustness of path No. 1, is obtained by multiplying the 

f(P1) by the average of Rt for transitions of path No. 1 (i.e. 

generic_segamet_checks, find_get_page, and put_page1 

transitions) which results in 0.1294. 

    According to the proposed approach, the minimum and 

maximum robustness level of a CuT is acquired based on the 

minimum and maximum values of RPj
 where Pj is a path in 

the behavioral model. In the behavioral model of the case 

study (Fig. 3), RP1 equals to 0.1294 and RP2 equals to 0.3174. 

Hence, the maximum robustness level of the CuT is 31.7% 

and its minimum robustness level is 12.9%, with respect to 

the fault free execution. In other words, if the CuT is called 

with a faulty input value, it is at least 12.9% and at most 

31.7% probable that the CuT will not fail. Indeed, the 

augmented behavioral model can also be used to select a 

suitable fault tolerance technique and the precise location to 

apply it. Moreover, timing fault injection results determine 

the acceptable time overhead of the selected fault tolerance 

technique. For example, the augmented behavioral model 

can specify the states that require redundancy and determine 

whether their timing limitation allows using redundancy. 

 

5. Conclusion and Future Work 

The aim of this paper was to propose a state-aware approach 

for assessing the robustness of components of embedded 

real-time OSs. This approach can be used to evaluate the OS 

behavior in the presence of different types of faulty inputs in 

different OS states. In addition to effective decrease of test 

cases, the proposed approach can specify the precise location 

of robustness vulnerabilities.  

This is the first study that suggests augmenting the 

behavioral model of the OS by using the results of fault 

injection experiments. The proposed approach employs the 

augmented behavioral model in order to extract valuable 

information about the robust behavior of the OS. Using this 

approach, it is possible to identify the critical OS states, their 

criticality level, and the maximum and minimum level of the 

OS robustness. For example, it can be shown what classes of 

robustness failure are probable to happen in specific system 

states. The proposed approach also facilitates comparing the 

robustness level of OS’s components and helps the system 

developer to assess the effectiveness of different fault 

tolerance techniques. Therefore, the OS components are 

comparable with respect to their robustness level.  

    For further work it is suggested to consider the stressful 

environmental conditions in state-based robustness testing 

and investigating their effects in different OS states. Another 

possible area of future research would be to extend this 

approach to be used on the fly. Hence, the possible 

robustness failures can be forecasted based on the execution 

path of the system to apply appropriate fault tolerance 

techniques while the system is running. 
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