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The main goal of predicting β-sheet topology from the 
protein’s amino acids is to determine the organization of β-
strands in the β-sheets. This includes identifying β-strand 
members of each β-sheet and describing β-sheets by 
specifying paired β-strands and their interaction types. 
Further, β-contact maps are determined in β-sheet structure 
prediction. Different methods have been proposed to 
address the problem of predicting β-sheet topology which 
will be described in the next section. 

In this article, we present BetaProbe1 [12] and 
BetaProbe2, ab-initio probability based methods for β-sheet 
topology prediction. The main advantage of the proposed 
methods as compared to the previous researches is that we 
make use of the fact that more frequent and more stable 
conformations should have greater chances of being 
selected. For this purpose, the score of an interaction 
between each two β-strands is computed considering both 
pairwise alignment probability and pairwise interaction 
probability. Moreover, in order to make more accurate 
alignments, the β-strand optimum pairwise alignment is 
found using a dynamic programming approach. 
Furthermore, combining integer optimization with the β-
strand pairwise interaction probability improves the 
accuracy of the predicted interactions. In addition, using β-
sheet conformation probability in the last step of 
BetaProbe1 leads to predicting more frequent and more 
stable conformations.  

In the rest of this paper, first, related studies are reviewed 
in Section 2. Then, the details of the proposed methods will 
be described in Section 3. Finally, the performances of the 
proposed methods are compared with the most recent 
integer programming-based β-sheet prediction method in 
Section 4. 

 
2. Related Work 

Most β-sheet topology prediction methods utilize contact 
maps and strands alignment. Any improvement in the 
accuracy of these fields leads to a higher accuracy in 
determining the architecture of β-sheets. In this section first 
the related works in these fields are introduced. Then, some 
β-sheet prediction methods are explained. 

Specifying the protein contact map is the first step in 
determining its final structure. Mainly, a contact map is 
expressed by a two-dimensional matrix. For two amino 
acids ri and rj, if the value of the i-th row and the j-th 
column (0≤contact Map (i, j) ≤1) is closer to one then they 
are more likely to interact with each other in the final 
structure. In other words, the likelihood of their relationship 
in the final structure of proteins is higher. NNcon [13], 
DNcon [14], SVMcon [15] and Distill [16] can be 
mentioned as contact map prediction methods. CMAPpro 
[17], PSICOV[18] and PhyCMAP [19] are the most recent 
methods which include contact map prediction. 

So far, methods with high accuracy and acceptable 
execution time have been suggested for the sequence 
alignment problem. Further, pairwise sequence alignment is 
the most common technique used in β-sheet prediction 
methods. The most usual approach to determine the best 
alignment between two strands is dynamic programming. 

Many efforts have been made to address the problem of 
predicting β-sheet topology. These works can be divided 
into two major categories: homology-based methods and 
ab-initio methods. The homology-based methods such as 
SMURF [20], SMURFLite [21], and MRFy [22] use 
homological information of proteins for recognizing their 
topologies. On the other hand, ab-initio methods only 
consider amino acids’ pairing potentials and statistical 
information. In this article, we concentrate on the ab-initio 
β-sheet topology prediction methods. They utilize different 
approaches such as statistical potentials[23], information 
theory[24], Bayesian models and exploration of entire 
search space[25], linear programming [5], [26], [27], 
hidden Markov models [28], and graph matching 
algorithms [4]. These approaches can be divided into two 
major categories[29]: in one category, all possible β-
topologies are enumerated, and a score for each complete β-
topology is computed. Then, the β-topology with the 
highest score is selected as the best one [7], [25]. In the 
other category, in order to predict the β-sheet topology of a 
protein, pseudo-energy is assigned to each pair of β-strands. 
Then the problem of determining the best β-topology is 
reduced to maximizing the strand-to-strand contact 
potentials of the protein [5], [4], [26], [27], [28], [30]. 

BetaPro [4] was the first method to take into 
consideration the global nature of β-sheet topologies. In this 
method, three stages are used to predict β-topologies. Jones 
[31] takes advantage of linear programming to predict the 
secondary structure of the protein and β-sheet topologies. In 
[27], BetaPro was combined with linear programming to 
predict β-sheet topologies. Also, Rajgaria et al. [30] 
presented a method to determine the tertiary structure of 
proteins. In this method, strand pairing scores and contact 
maps are computed using linear programming. BetaZa[25] 
is a Bayesian approach which was introduced for proteins 
up to six β-strands. The conformational features were 
modeled in a probabilistic framework. The model is a 
combination of prior knowledge about β-strand 
arrangements with pairing potentials between the strands 
amino acid. Also, to select the optimum β-sheet 
architecture, using some heuristics, the search space was 
reduced. A dynamic programming was used to determine 
the β-strands optimum pairwise alignment. In the proposed 
dynamic programing, any number of gaps were allowed. As 
a result of exploration approach of the entire search space, 
BetaZa has a high time complexity. BeST [5] and BCov 
[26] predict the β-sheet topology using integer 
programming. BCov determines the β-sheet topology in 
three steps: first, it computes the residue contact propensity 
using PSICOV[18]; then, it computes the score of each 
possible β-strand pairing. Finally, an integer programming 
optimization is used to determine the β-sheet topology by 
finding the best solution according to the constraints and 
the pairing scores. In BCov two β-strands are paired only 
according to their alignment scores and the stability of 
conformations are not considered. Ruczinski et al. [7] 
showed that the arrangement of β-strands into β-sheets is 
not random. Based on the observations, there is a distinct 
pattern for β-strands arrangements. Some of the 
arrangements are unstable. Thus, they are never seen in 
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nature. On the other hand, some particular orientations are 
more favorable than others. In addition, models for 
computing the probability of open β-topologies for proteins 
were derived. The discriminative power of these models is 
reduced significantly because the number of possible β-
strand organizations increase exponentially and there is not 
sufficient training data to reliably represent such 
conformations. Therefore, these models are limited to 
proteins that contain at most ten β-strands. In this research, 
we try to improve BCov by considering the stability and 
frequency of β-strand pairing and β-sheet conformation.  

 
3. Proposed Method 

In this article, two efforts are made to resolve the problem 
of predicting β-sheet topology: BetaProbe1 and 
BetaProbe2.These efforts can predict both β-sheet topology 
and β-contact map. As previously mentioned, in BCov[26] 
two β-strands are paired based on only their alignment 
score; but, Ruczinski et al. [7] showed that the organization 
of β-strands into β-sheets is not random and there is a 
distinct pattern. Therefore, to improve BCov, we attempt to 
give greater chances to more stable and more frequent 
conformations during the selection. In this section, first, a 
general description of each attempt is presented. Then, the 
steps of the proposed methods are described in detail. 

 
3-1. First Effort: BetaProbe1 

BetaProbe1 consists of three major steps: (i) in order to 
achieve more accurate alignments, a dynamic programming 
approach is used to compute the β-strand pairwise 
alignment probability. In addition, pairwise interaction 
probability of each pair of β-strands is computed according 
to [32]. Then, both pairwise alignment probability and 
pairwise interaction probability are utilized to compute the 
score of each interaction (ii) to determine the maximum 
total strand-to-strand contact potentials of the protein an 
integer programming optimization is used. In this step, to 
enforce more stable and more observed paired β-strands to 
be selected, pairwise interaction scores obtained in the 
previous step are utilized (iii) the best β-sheet topology is 
achieved according to paired strands determined in the 
previous step. To predict more stable conformations, β-
sheet topology probabilities are considered. The pseudo 
code of BetaProbe1 is illustrated in Pseudo code1. 

 
Computing β-strand Pairwise Interaction Score: Many 
methods have been proposed to find the best alignment 
between sequences [33], [34]. Here we concentrate on an 
alignment method which is especially proposed for β-
strands. In BetaProbe1 the alignment probability of each 
two β-strands is computed based on the proposed method in 
BetaZa[25]. In this method, the Needleman-Wunsch 
algorithm [33][34] is used to compute the optimum 
alignment between each pair of β-strands in the parallel and 
anti-parallel directions. Then, the probability of the 
optimum alignment is computed by dividing the score of 
the best alignment by the sum of all possible alignments. To 
improve the accuracy of the alignments, the amino acid 

pairing potentials are used which are computed especially 
based on the β-amino acids. 
 
 
Pseudocode 1:  Probability-based algorithm for β-sheet topology 
prediction (BetaProbe1) 

 
 Input: protein’s strands
 Output: an open β-sheet conformation with the highest 

probability 

 Step 1: Determining β-strand Pairwise Interaction Score  
 

for each pair of strands si and sj do 

compute their parallel and anti-parallel pairwise 
alignment probabilities  

compute their parallel and anti-parallel pairwise 
interaction probabilities 

scores=alignment probability × interaction 
probability  

 Step 2: Predicting  the Closed β-Sheet Topology 

  Solve the integer programming problem  

 Step 3: Determining the Best Open β-Sheet Topology 

for each closed β-topology do 

  for each interaction between two β-strands do 

 Omit the interaction temporarily 

  Compute the probability of the new open β-
sheet  

Select the open β-sheet with the highest 
conformation probability. 

 
To store the pairwise alignment probability, a matrix 

called "PAP (Pairwise Alignment Probability)" with n rows 
and 2n columns is defined. In this matrix, n is the number 
of β-strands in the protein. Matrix PAP is defined as 
follows: 

  

PAP i,j =

Sparallel si,sj                     		             if i≤n and j≤n and j≠i

Santi-parallel si,sj 																			 if i≤n, n+1≤j≤2×n and j≠n+i
0                                                                  if j=i or j=n+i

 (1) 

 

In Equation (1), Sparallel (si,sj) represents the probability of 
optimum alignment between strands si, i=1,2,…,n, and sj, 
j=1,2,…,n,  where their interaction type is parallel. Also, 
Santi-parallel (si,sj) represents the probability of optimum 
alignment between strands si, i=1,2,…,n, and sj, j=1,2,…,n, 
where their interaction type is anti-parallel. The definition 
shows that the matrix PAP is divided into two sections with 
an equal number of columns. The left section is used to 
store the parallel alignment probabilities and the right 
section is used to store the anti-parallel ones. The Score 
matrix for the protein in Fig. 1 is shown in Fig. 2-(a). It is 
important to note that the alignment probability depends on 
the spatial ordering of strands [25]. Therefore, the score of 
the optimum alignment between non-bridge strands can be 
different. This is expressed in (2) and (3): 

 
Sparallel (si,sj)≠Sparallel(sj,si) (2)
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