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Abstract. Nowadays, cloud computing and other distributed 

computing systems have been developed to support various 

types of workflows in applications. Due to the restrictions 

onthe use ofone cloud provider, the concept of multiple 

clouds as been proposed.Inmultipleclouds, 

schedulingworkflowswithlarge amounts ofdata is a well-

knownNP-Hard problem. The existing scheduling 

algorithms have not paid attention to the data dependency 

issues and their importance in scheduling criteria such as 

time and cost. In this paper, we propose a communication-

based algorithm for workflows with huge volumes of data in 

a multi-cloud environment. The proposed algorithm changes 

the definition of the Partial Critical Paths(PCP) to minimize 

the cost of workflow executionwhile meeting a user defined 

deadline. 
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1. Introduction 

Multiple clouds have a special place in the modern-day 

models we use. An important reason for this is the increased 

use of clouds in recent years. One of the important features 

of clouds is the illusion of unlimited resources to cloud users. 

The number of users varies at different times of the day 

during the weeks or on weekends. If the providers upgrade 

their resources so as to meet the peak demand of users, these 

resources will remain partially unused during non-peak 

hours. However, providers can shut down unused nodes in 

order to eliminate the cost of maintenance of the equipment 

and resources; however, they still have to pay for the cost of 

buying and equipping these unused resources. To offset these 

costs, providers are forced to increase their prices, and this 

has resulted in the poor competition between cloud service 

markets. On the other hand, if the provider only supplies the 

needed resources to users in the average demand time, then 

it cannot provide service at peak time demands and this will 

lower the reliability of the provider and it will result in a 

reduction of the number of users of its services. Today, a 

cloud alone cannot meet the needs of users at all times and it 

is becoming more important to provide service using 

multiple clouds. Sharing resources between several 

providers might be the best solution to the problem. 
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In [1], more than 25 types of multiple clouds have been 
introduced among which multi-cloud and cloud federation 
are a few examples. In cloud federation, cloud providers will 
agree to share resources, which help them improve services 
to the users. However, since the cloud technology is in its 
early stages and there is no overall standard, the agreement 
between cloud providers is difficult due to the fact that each 
provider uses their own interface and protocol. Multi-clouds 
a type of multiple cloud system in which there is no 
agreement between the cloud providers, and a third party is 
responsible for the relationships, the dialogues, and 
monitoring the providers. Scheduling in a cloud environment 
has been one of the major challenges in the world of clouds.  

Workflow is a collection of interconnected multiple tasks 

that must be performed in a specific order. Workflow 

structure indicates temporary dependencies between tasks 

[2]. Workflow scheduling is the problem of mapping each 

task to a suitable resource and of ordering the tasks on each 

resource to satisfy some performance criterion. This is an 

NP-Hard problem, so there is no known polynomial 

algorithm for it. In general, Multi-Criteria scheduling 

problems are very difficult to solve even in the single cloud 

case. Workflow scheduling is facing more challenges in the 

multi-cloud environment due to the increasing number of 

complex factors. One of the major problems facing the 

proposed scheduling algorithms in multiple clouds is the lack 

of attention to communication in workflow and its effect on 

the cost and execution time. The data transfer rate between 

the samples of a cloud is very high, (e.g. bandwidth between 

different samples in the Amazon EC2 is approximately 

between 300 Mbps to 4 Gbps) and this transfer is free, while 

the received speed of the Amazon cloud (inter-cloud speed) 

is between 400 Mbps to 20 Mbps and send speed is between 

20Mbps and 80 Mbps [3-5]. In the proposed solution, we 

have tried to pay attention to minimize the cost and time due 

to it. In the proposed approach, we use the concept of Partial 

Critical Paths(PCP) introduced by Abrishami et al.[6]. In this 

way, we have changed the definition of the critical path and 

the amount of communication between the tasks to be 

included in this definition.  

The rest of the paper is organized as follows. Section 2 

presents related work. In section 3, we describe the generic 

application, objective, and platform models underneath our 

approach. Section 4 shows the proposed algorithm and 

scheduling policies. Section 5 presents and discusses the 

results. Finally, in Section 6 we present our conclusions and 

future work. 
 

2. Related Work 

So far, many algorithms have been proposed for workflow 

scheduling in a single cloud including: [7], [8], [6], [9], [10] 

and [11].The authors of most of these works have considered 

execution time and cost as their objectives. Ever since the 
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concept of multi-cloud has been introduced in recent years, 

there have been a few algorithms in this field.   
In 2007, Sakellariou et al. [12] presented an algorithm 

known as IC-LOSS. The IC-LOSS algorithm tries to 
minimize the execution time under a budget constraint. This 
algorithm consists of two phases: first, it tries to find an 
initial schedule for the input workflow with minimum 
execution time, and then it refines the initial schedule until 
its budget constraint is satisfied. In the first phase, it uses a 
well-known makespan minimization algorithm, called HEFT 
[13]. The HEFT algorithm for each task is looking for a 
version that has the earliest completion time for the task. The 
second part deals with the correction of the scheduling with 
the allocation of tasks to cheaper resources until the budget 
constraints are fulfilled: 

LossWeight (TI,J) =
Tnew — Told 

Cold — Cnew 
 

In 2010, Van den Bossche et al.[14]solved the problem of 

multiple applications scheduling in several cloud providers 

using linear programming. The objective function in this 

algorithm is minimizing the total cost of data traffic and 

computational cost over all time slots within the schedule for 

all providers. The lack of consideration of the 

communication time between the clouds is one of the 

problems in this paper. 

In 2011, Houidi et al. [15] presented an algorithm that 

aims to break several requests between cloud providers such 

that the user costs (total cost of each resource and the cost of 

communication) are minimal. They distributed the requests 

with the broker between the cloud providers. The broker is 

composed of three main components:  

1. Cloud Request Splitting 

2. Resource Provisioning 

3. Inter-Cloud Network Provisioning. 

After formulating the problem, they have solved it by 

using linear programming. 

In 2011, Li et al. [16] presented an algorithm that aims to 

maximize capacity and minimize costs in accordance with 

the new conditions of the providers. They have also tried to 

minimize the overhead of scheduling under the new 

conditions as compared with the previous condition if some 

changes are made in the environment. 

In 2013, Fard et al. [17] presented a method to prevent the 

selfish behavior of providers that use an auction pricing 

model instead of the pay as you go model. In this way, each 

task announces to the resources its workload 

(communicating with other tasks and the required input-

output). The source suggests an approach to tasks. In this 

way, the solution is chosen so that the product of time and its 

cost is minimal. After winner resource is selected, if the time 

proposed by the source is greater than or equal to real-time, 

the cost of the provider is fully paid and if the time proposed 

by the source is less than real time, the resource is penalized 

using a given function. In this method, the Nash equilibrium 

is used that is a fundamental concept of the theory of games. 
In 2012, Fardet al. [18] presented an algorithm that is one 

of the complete algorithms introduced in this field. The 
algorithm makes use of user-defined constraints about time, 
cost, power consumption, and reliability and then it estimates 
the optimal solution. In this paper, all the objectives are 
modeled. Then the algorithm approximates the optimum 

solution during threephases. In the first phase, it estimates 
the objectives’ sub-constraints for each individual task using 
the user constraint vector. In the second phase, it assigns a 
rank to each task of the workflow and sorts them in an 
ascending order. Finally, in the third phase, the algorithm 
attempts to allocate the most appropriate resource to each 
activity with due consideration given to the estimated sub-
constraints. A major problem with this algorithm is that it 
does nothing to improve communication. As was mentioned 
earlier in this paper, inter-cloud communication is one of the 
most important issues in the scheduling workflow in multi-
cloud systems. Lack of attention to this point has affected the 
whole algorithm, and it is particularly inappropriate for 
communication-based workflows. The assumption of 
unlimited resources is another problem in this algorithm. 

Duan et al. [19] offered a good algorithm in 2014. In their 

paper, time and cost are considered based on the limitations 

of communication bandwidth and storage space. One of the 

differences between this paper and the previous one [18]is 

that this paper considers two objectives and two conditions 

instead of four objectives. The other difference is that this 

algorithm has a lower time complexity as compared with 

[18]. In this paper, the problem is modeled with game theory. 

The algorithm is repeated as many times as needed by one 

condition and the nearly optimal solution is found. One of 

the advantages of this algorithms fasts convergence by using 

the information about the environment and the competitors. 

And the other advantage is that you can easily add a new 

objective to the problem. One of the major problems of this 

algorithm is that it is not suitable for applications with a high 

level of complexity just like the algorithm presented in the 

previous paper. Other problems can also be mentioned such 

as the following: 

1. Initialization of the weight vector is done by the algorithm 
itself and this can lead to different results.  

2. Tasks are broken vertically to transfer parallel tasks to one 
provider that cannot be useful because there is no data to 
transfer between them (The cost and time of data 
transmission within a provider are not comparable to the 
inter providers).  

In 2014, Montes et al. [20] proposed an algorithm that 

allows execution of dynamic workflows in a multi-cloud 

environment. In addition, there is an ability to customize the 

scheduler for the user. One of the policies that provide this 

ability operates as follow: it assigns instances to each task so 

that the total execution time of tasks, task data receiving time 

to the desired instance, and the estimated time needed to 

perform the next task, is minimized. Another policy is based 

on a deadline that selects a minimum set of the resources that 

are needed to complete all tasks such as deadlines are met 

and the objective function is satisfied. They have considered 

four objective functions: performance optimization, data 

locality optimization, performance and data optimization, 

and cost optimization. One of the major problems of this 

algorithm is the lack of attention to the communication 

problems costs. As the article mentioned, communication 

has a very great impact on the cost and time and that should 

be focused on. One of the other problems is considering the 

workflow dynamically and separating its steps effectively. 

 

Table 1. Comparison of different scheduling algorithms in a cloud environment 
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Paper Environment 
Scheduling 

type 
Method Objectives Advantages Disadvantages 

BIP 

[14] 

2010 

Hybrid cloud 

and Multi-

cloud 

static 

Mathematical 

model 

• Minimize cost - 

• The lack of attention to 

communication and to be 

placed tasks in a single 

provider 

• Unsuitable for 

communication-based 

applications 

[15] 

2011 

Multiple 

cloud 
static 

Mathematical 

model 

• Minimize cost 
•consider tasks placed    in 

a single provider 

• The lack of attention to 

communication and 

execution time and user 

deadline 

[16] 

2011 
Multiple cloud dynamic 

Mathematical 

model 

• Maximize the use of 

capacity 

• Minimize cost in new 

conditions 

• Dynamic considering the 

price of instances, the 

type of instances, and the 

performance of the 

services 

 

• The lack of attention to be 

placed tasks in a single 

provider and 

communication in 

workflows 

[17] 

2013 
Multi-cloud dynamic 

Mathematical 

Model 

• Minimize cost 

• Minimize execution 

time 

• harness the selfish behavior 

of cloud providers 

• The lack of attention to be 

placed tasks in a single 

provider and communication 

in workflows 

[19] 

2014 
Hybrid cloud static 

Mathematical 

Model 

• Minimize cost & time 

while fulfilling 

network bandwidth 

and storage 

requirements 

• fast convergence by using 

competitors and 

environment information 

• unsuitable for applications 

with the complex 

dependencies between tasks 

• initialize the weight vector by 

the algorithm itself 

• break tasks vertically 

MOLS 

[18] 

2012 

Set of 

heterogeneous 

resources 

 

static Heuristic 

• Minimize cost, time, 

and energy 

consumption 

• Maximize reliability 

• low time complexity 

• assuming resources are 

unlimited 

• The lack of attention to 

communication between the 

clouds 

[20] 

2014 
Multi-cloud Dynamic Heuristic 

• Minimize cost to satisfy 

the objective function 

and user deadline 

• allows users to customize 

scheduling policies 

• The lack of attention to 

communication and cost at the 

same time 

• high time complexity 

 

3. The Model 

3.1. The Application Model 

Workflow is described by a Directed Acyclic Graph 

(DAG) in which each computational task is represented by a 

node, and each data or control dependency between tasks is 

represented by a directed edge between the corresponding 

nodes. W=(T,E) consists of a set of n tasks: T= ⋃ Tn
i=1 i

 

interconnected through a set of control flow and data flow 

dependencies: E={(Ti, Tj, Dataij)|(Ti, Tj)∈ T × T}As Dataij 

shows the amount of data to be exchanged between Ti and Tj. 

We always add two dummy tasks Tentry and Texit to the 

beginning and the end of the workflow, respectively. These 

dummy tasks have zero execution time and they are 

connected with zero-weight dependencies to the actual entry 

and exit tasks. 

 

3.2. The Platform Model 

A multi-cloud environment includes N providers: P1, 

P2,…,PN. Each provider has certain characteristics that are 

shown by a property vector (Bup, Bdown, Cin, Cout, Binternal, I), 

which include (in order) upload/download bandwidth, 

incoming/outgoing data transfer costs, internal bandwidth 

and set of provider’s instances (I1i,I2i, … Imi). Each instance 

mi, has certain characteristics that are shown by a property 

vector Imi=(Vmi,Cmi), which include (in order) computational 

speed of the instance Imi in millions of instructions per 

second (MIPS) and cost of instance mi. 

 

3.3. The Objective Model 

We want to schedule workflow so that the execution costs 

are minimized and user deadlines are satisfied. Time and cost 

have been formulated according to [18]. The execution time 

of task Tj on the instance Imican be computed as the sum of 

the longest input transfer time Tj (from all inputs to Tj) and 

the task computation time: 

ET(Tj,Imi)= MaxⱯTP∈ pred(Tj){
datapj

Bup(mi)
 }+ 

work(Tj)

Vmi
             (1) 

WhereBup(mi)is the bandwidth between taskTjand Tp. The 

completion time or makespan of a task Tjcan be recursively 

computed as follows: 

ETfinal(Tj,Imi)= 

{
ET(Tj, Imi)                                                                                     pred(Tj) = ∅

MaxⱯTp∈pred(Tj) {ETfinal (Tp, sched(Tp)) + ET(Tj, Imi)} pred(Tj) ≠ ∅
 

(2) 

Consequently, the workflow makespan is given by the 

longest completion time of its tasks: 

TotalET(workflow)=Maxj∈[1…n]{ETfinal(Tj,sched(Tj))}     (3) 

The cost of task Tjin the instance mi is thesum of the 

computation and data transfer costs: 

C(Tj,Imi) 

https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Mathematical_model
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Algorithm 1: Finding Critical Paths  

=ET(Tj,Imi)*Cmi+Input(Tj)* Cinmi
+Output(Tj)*Coutmi

(4) 

where Cmiis the computational cost in instance mi, Cinmi
and 

Coutmi
is the incoming and outgoing data transfer cost of 

instance Imi’s cloud.  Input (Tj) and Output (Tj) are the total 

amount of input and output data of node Tj that are received 

from tasks that have been scheduled in instances other than 

cloud of instance Imi(because data transfer cost between tasks 

is zero if you have two tasks on the same instance or on 

instances that are available on one cloud). The execution 

costs for a workflow is equal to the sum of computation and 

communication costs for all tasks: 

Cfinal(workflow)=∑ C(Tj, sched(Tj))n
j=1 (5) 

 

4. The Proposed Algorithm 

At first, a brief look at basic concepts is presented. In the 

proposed scheduling algorithms, we have two notions of the 

start times of tasks, i.e. the earliest start time computed 

before scheduling the workflow, and the actual start time 

which is computed after the tasks are scheduled. The Earliest 

Start Time of each unscheduled taskTi, EST(Ti), is defined 

as follows: 

EST(Tentry) = 0 

EST(Ti)=MaxTp∈pred(Ti)}EST(Tp)+MET(Tp)+TT(Tp,Ti)}(6) 

where the Minimum Execution Time of a task Tp, MET(Tp), 

is the execution time of task Tp on an instance Ij∈I which has 

the minimum ET(Tp, Ij) between all available instances. Note 

that MET(Tentry) and MET(Texit) equal zero.TT(Tp,Ti) is the 

data transfer time of the dependency Datapi.  Accordingly, 

the Earliest Finish Time of an unscheduled task Ti, EFT (Ti), 

can be defined as follows: 

EFT (Ti) = EST (Ti) + MET (Ti)                                        (7) 

The latest finish time for each unscheduled task is 

calculated as follows: 

LFT(Texit) = D 

LFT(Ti) =MinTp∈child(Ti)LFT(Tp)—MET(Tp) —TT(Tp,Ti)} 

(8) 

 

where LFT(Ti) is the latest time at which Ti can finish its 

computation such that the whole workflow can finish before 

the user defined deadline. 

The general idea is that the proposed algorithm breaks 

workflow in such a way that tasks with the most dependency 

are scheduled to run on one cloud. 

In the proposed algorithm, the critical paths are identified 

according to the new definition. EFT,EST, and LFT are 

computed for all nodes. Then we define the degree of 

dependence that is calculated for all nodes and finally for all 

paths. Nodes are ranked and scheduled so that the best 

possible cloud is assigned to each path. In the following, we 

explain the steps of the proposed algorithm. 

 

4.1. Step One: Identify the Partial Paths with Minimal 

Communications 

The Critical Parent of a node Ti is the unassigned parent of 

Ti that has the latest data arrival time at Ti. The partial critical 

path for each workflow graph is calculated as follows: we 

begin with Texit and follow back the critical parents until we 

reach Tentry, and so we find the overall real critical path of the 

workflow graph .The proposed algorithm has changed this 

concept and the graph is broken into paths whose tasks 

together are the largest data exchange. One of the conditions 

of the generated paths is that all nodes have a maximum of 

one parent and one child in every path. Algorithm 1 shows 

how to break the workflow graph to paths with the mentioned 

conditions. 

 

4.2. Step Two: Preprocessing 

At this step, the Degree of Dependence (DOD) of each path 

to the other paths is calculated. Thus, because of the 

limitation of free capacity of every cloud, the algorithm 

specifies that the paths should be scheduled on one cloud. At 

first, DOD is calculated for tasks that their critical parents 

are located in another path according to Algorithm1. Thus, 

the DOD of T1 to T2 is equal to the start time of T1 regarding 

the arrival time of data from T2 in the other path, minus the 

start time of T1 regardless of the arrival time of data from T2 

in the other path: 

DOD(T1,T2) = (EST(T2) + MET(T2) + TT(T1,T2))- 

 (EST(T3) + MET(T3) + TT(T1,T3))          (9) 

 

 

1. Input:W=(T,E),T=⋃ Tn
i=1 i,E={(Ti ,Tj, Dataij)|(Ti,Tj)∈ T × T}, 

Eij=(Ti,Tj,dataij); 

2. Output:CriticalPaths=⋃ CPs
i=1 i, CPi=(startNodei, endNodei,E'i| E'iC E); 

3. coveredPaths← ∅, coveredNodes← ∅;   /*set them to empty*/ 

4. SE← Sort(E,Data);  /*Sort all E in descending  Data order */ 

5. forall (Eij∈ SE) do 

6. if(Eij∈coveredPathsandTi∈coveredNodesandTj∈coveredNodes)then 

7.           add (Ti,Tj,Eij) to coveredPaths 

8.           add Ti,Tj to coveredNodes 

9. end if 

10. if(Eij∈coveredPathsandTi∈coveredNodesandTj∈coveredNodes)then 

11. if( ∃CPe∈coveredPaths | CPe=(Tj,Tj',Ejj')) then 

12. CPe=(Ti,Tj',Eij) 

13.       add Tj to coveredNodes 

14. end if 

15. end if 

16. if(Eij∈coveredPathsandTi∈coveredNodesandTj∈coveredNodes)then 

17. if(∃CPe∈coveredPaths |CPe=(Ti',Ti,Ei'i)) then 

18. CPe= (Ti',Tj,Eij)  

19.         add Ti to coveredNodes 

20. end if 

21. end if 

22. if(Eij∈coveredPathsand Ti∈coveredNodesandTj∈coveredNodes)then 

23. if((∃CPe∈coveredPaths| CPe=(Ti',Ti,Ei'i ))and                        

(∃CPe'∈coveredPaths | CPe'=(Tj,Tj',Ejj'))) then 

24. CPe← (Ti',Tj',Eij) 

25.          Remove CPe'fromcoveredPaths 

26. end if 

27. end if 

28. end for 

29. Return coveredPaths 

 

whereT1 is the critical parent of T2 that has been located in a 

different path with the path of T1 according to Algorithm 1, 

and T3 is the parent of T1 in the path produced by Algorithm 

1.It should be noted that TT(T1, T2) is calculated by using the 

inter-cloud speed while TT(T1,T3) is calculated by using the 

intra-cloud speed. In addition, DOD is calculated only for 
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two nodes such that one is the critical parent of the other, but 

has been located in a different path from the path produced 

by Algorithm 1, and DOD for other pairs of nodes is 

considered to be zero. After calculating the DOD of all 

nodes, DOD of each path to the other path is calculated, i.e. 

that is equal to the sum of DOD of all nodes in the path to 

nodes in the other path and vice versa: 

DOD(CP1,CP2)=∑ ∑ DOD(Ti, Tj)Tj∈T′
CP2Ti∈T′

CP1
 

+∑ ∑ DOD(Tj, Ti)Ti∈T′
CP1Tj∈T′

CP2
           (10) 

 

whereT′
CP1

 and T′
CP2

 respectively are the set of nodes in the 

path CP1andCP2. Algorithm 2 shows how to calculate DOD 

of two paths. 

 

4.3. Step three: Allocation of Resources to the Partial Paths 

At this step, a degree is assigned to each node in the 

workflow. The degree is based on the estimated time 

required to execute tasks. In this case, we begin with the end 

of the workflow and calculate the degree of root nodes. The 

degree is equal to the execution time of these tasks in the 

fastest available instance. Then, we calculate the degrees of 

all parent nodes. The degree of each parent is equal to the 

sum of the maximum degree of the children and data 

transmission time from the parent to the child. Similarly, the 

degrees of all tasks in the workflow are calculated. These 

degrees are arranged in ascending order. Then tasks from the 

ordered list are traversed and scheduled onto the best cloud. 

Algorithm 3 shows the procedure. In this algorithm, we 

begin from the node with the highest degree and based on the 

assigned degree, the operation is repeated for each node. The 

node that is to be scheduled is now called the current node. 

Among all the paths identified by Algorithm 1, the path that 

includes the current node is called the current path. First, we 

examine if there is a node on the current path that is 

scheduled. If the response is positive, we try to find the best 

instance preferably in the cloud in which the parent of the 

current node is placed(First we will search for available 

instances at the desired cloud, and if a good instance could 

not be found we create a new instance in that cloud). If the 

response is negative, we consider if there is a scheduled node 

on the paths that depends on the path of the current node. If 

affirmative, we try to find the best instance in the cloud on 

which the path that depends on to the current node is 

scheduled. If there are several options, we select a cloud that 

has a greater volume of transactions (according to the 

calculated DOD by using Algorithm 2) in the current path. If 

the response is negative, we introduce an appropriate cloud 

based on our preliminary estimates and create the best 

instance on it. The preliminary estimates check that if all 

workflow nodes are separately scheduled on one cloud, 

which cloud would be the least expensive one (Any node of 

the workflow that cannot be executed even in the fastest 

instance of a cloud is not considered). So, we select a cloud 

for which the ratio of the cost to the number of instructions 

of executable tasks is the least. After scheduling this node, 

the node with the next degree is chosen. 

 

Algorithm 2: Computing Degree Of Dependency of  

two paths(DOD) 

1. Input:W=(T,E), T=⋃ Tn
i=1 i , E={(Ti ,Tj, Dataij)|(Ti,Tj)∈ T × T}, 

Eij=(Ti,Tj,dataij), CriticalPaths=⋃ CPs
i=1 i; 

2. Output:⋃ {DOD(CPi, CPj)|CPi, CPj ∈  CriticalPaths}
s(s−1)
c=1 ; 

3. for all (Ti∈T) do  

4.     Compute EST (Ti), EFT (Ti) and LFT (Ti); 

5. end for 

6. for all ((Ti , Tj)∈ (T × T)) do  

7.  CPTi
← FindCriticalPath(Ti);     /*Path of Ti form CriticalPaths*/  

8. CPTj
← FindCriticalPath(Tj);     /*Path of Tj form CriticalPaths*/ 

9. CiriticalParentTi
←  MaxTp∈pred(Ti){EFT(Tp) + TT(Tp, Ti)};     

/*node that is normal critical parent of Ti according [6]*/ 

10.     if(Tj=CiriticalParentTi
and CPTi

≠ CPTj
)   

11. DOD(Ti,Tj) = (EST(Tj) + MET(Tj) + TT(Ti,Tj)) – (EST(T3) + 

MET(T3) +  TT(Ti,T3)); 

12. else 

13. DOD(Ti,Tj)=0; 

14. end if 

15. end for 

16. for all (CPi, CPj ∈ CriticalPaths)do 

17. DOD(CPi,CPj)=∑ ∑ DOD(Tm, Tn)Tn∈T′
CPj

Tm∈T′
CPi

+  

∑ ∑ DOD(Tn, Tm)Tm∈T′
CPi

Tn∈T′
CPj

 

18. end for 

 

5. Performance Evaluation 

In this section, experiments to verify the performance of the 

algorithm are proposed. The proposed algorithm is examined 

from two aspects: 

a. Specifying the criteria for evaluating the quality of the 

proposed algorithm as compared with the other existing 

algorithms. For this purpose, two measures are used to 

compare quality: 1) Compare the shortest execution time of 

the algorithms, 2) Compare the financial cost of scheduling 

and the cheapest possible scheduling of each algorithm. 

b. Evaluate the performance of the algorithm about 

workflows in comparison with the other existing algorithms. 

For this purpose, several workflows are studied. 

 
5.1. Experimental Setup 

For each experiment, we assume 10 clouds with each cloud 

having 10 separate services with different processor speeds 

and different prices. The processor speeds are selected 

randomly so that the fastest service is roughly five times 

faster than the slowest one, and accordingly, it is roughly five 

times more expensive. The average bandwidth between the 

computation services is set to 1 Gbps and the average 

bandwidth between clouds of 100 Mbps has been assumed. 

One-hour time slots are used. In the experiments, normal cost 

is calculated as follows: 

NC=
total schedule cost 

Cc
                                                      (11) 

where Cc is the cost of executing the same workflow with the 

cheapest strategy (scheduling of all nodes on a separate 

version of the cheapest available service) and normal 

makespan or execution time is calculated as follow: 

NM =
schedule makespan 

MH
                                                     (12) 

whereMH is the time of executing the same workflow with 

the fastest strategy (scheduling of all nodes on a separate 

version of the fastest available service). The final deadline is 

changed by a factor of α in the experiments. In this case, the 
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Algorithm 3:  Extended PCP 

deadline is calculated from the product of αat execution time 

of the fastest strategy. 

 

5.2. Experimental Results 

The proposed algorithm is tested for three common 

workflows presented in Table 2. We compared the proposed 

algorithms with IC-LOSS scheduling algorithm described in 

Section II because this algorithm has the same criteria as the 

proposed algorithm. For the Sipht, CyberShake, and 

Epigenomics workflows the proposed algorithm has a better 

performance, as shown in (Fig. 1, 2 and3). Experiments show 

that the proposed algorithm has a better performance than 

others when the workflow tasks have more data dependency 

and dispersal communication between them. 

 
Table 2. Workflows Classes 

 

Large Medium Small Workflow 

1000 100 30-50 CyberShake 

1000 100 30-60 Sipht 

997 100 24-46 Epigenimics 

 

 

19. Input:W=(T,E), T=⋃ Tn
i=1 i , E={(Ti ,Tj, Dataij)|(Ti,Tj)∈ T × T}, 

Eij=(Ti, Tj, dataij), CriticalPathes=⋃ CPs
i=1 i; 

20. Output:⋃ {(Ti, sched(Ti)}n
i=1 ,workflow schedule; 

21. ranks=ComputeRank(T);/*the ranks are calculated in a bottom-up 

direction in workflow*/ 

22. ST ←Sort(T, ranks);                     /*Sort all T in descending ranks 

order*/ 

23. for all (Ti∈ST) do  

24.  bestCloud ← ∅,T′ ← ∅,T′′ ← ∅;   /*set them to empty*/ 

25.     CPTi
← FindCriticalPath(Ti);    /*Path of Ti form CriticalPaths*/  

26. T'←FindScheduleNodes(CPTi
); /*Nodes of  CPTi

 that is scheduled*/ 

27.    for all(CP C CriticalPaths |DOD(CPTi
,CP)≠ 0) do /*T'' is 

schedueledNodes in all depended on paths of CPTi
*/ 

28. T''←T''∪FindScheduleNodes(CP);/*add Nodes of CP that is 

schedueled to T''*/ 

29.   end for 

30. if(T'≠ ∅) then 

31. bestCloud←FindBestCloudInPath(Ti); /*bestCloud for Ti according 

CPTi
*/ 

32. else  if(T''≠ ∅)then 

33. bestCloud←FindBestCloudInDependedPath(Ti); /*Best Cloud for Ti 

According DependedPaths*/ 

34. else 

35. bestCloud←PreCloudAssign() ;/*Estimate bestcloud  */ 

36. end if 

37.    end if 

38.    if(bestCloud≠ ∅andbestcloud is not full)then/*if bestcloud can 

accept more requests according to its strategy*/ 

39. AssignBestInstance(Ti ,bestCloud);/*Assign Ti to BestInstance in 

bestCloud*/ 

40. else 

41. AssignBestInstanceInFree(Ti);/*Assign Ti to BestInstance that exists  

in all Clouds*/ 

42. end if 

43.   Mark Ti as scheduledNode; 

44. end for 

 

 
(a)       (b) 

 
(c) 

 

Fig. 1. The Normalized Cost of scheduling workflows with Extended PCP and IC-LOSS with the time interval equal to 1 h. 

(a). CyberShake. (b).Sipht. (c). Epigenomics. 
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  (a)       (b) 

 
(c) 
 

Fig. 2. The Normalized Cost of scheduling workflows with Extended PCP and IC-LOSS for different workflows classes. 

(a). CyberShake. (b). Sipht. (c). Epigenomics. 
 

 

 
(a)       (b) 

 
(c) 

 

Fig. 3. The Normalized Makespan of scheduling workflows with Extended PCP and IC-LOSS for different workflows classes.(a). 

CyberShake. (b). Sipht. (c). Epigenomics. 
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Fig. 4.  The Normalized Cost of scheduling Epigenomics workflow for different external/internal bandwidth values 
 

 
(a)  

 

 
(b) 

 

 
(c) 

 

Fig. 5. Used instances (percentage of each instance type. a) CyberShake. b) Sipht. c) Epigenomics. 

 

Fig 4 shows the Normalized Cost of scheduling 

Epigenomics workflow for different external/internal 

bandwidth values. As seen in Fig 4, the proposed algorithm 

shows more reaction to internal bandwidth and the cost is 

reduced by increasing it. Fig5. Shows the percentage of each 

instance type which is used by IC-Loss and Extended PCP 

algorithms. We can see from Fig.5 that the proposed 

algorithm tries to use the instances from one cloud, while IC-

LOSS uses instances from different clouds. It leads to 

minimize the amount of communication between different 
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clouds in our algorithm and so the cost and execution time 

are minimized. 

 

6. Conclusions and Future Work 

In this paper, a scheduling algorithm for data-driven 

workflows in a multi-cloud environment, called Extended 

PCP is proposed. In this proposed algorithm, we break a 

workflow into the paths whose tasks have the largest data 

exchange together and have the minimum data exchange 

between each other. A new criterion for controlling data 

flow, called Degree of Dependence or DOD, which is 

calculated for all nodes and paths is defined. This criterion 

will help us minimize the amount of communication between 

different paths by selecting the tasks that are more 

appropriate to be with each other. This algorithm considers 

communication as a very important factor that influences the 

whole scheduling. This makes the algorithm suitable for 

data-driven workflows in which a large amount of data is 

transferred between their tasks. The time complexity of the 

algorithms is O(n2), where n is the number of workflow 

tasks. The polynomial time complexity makes it a suitable 

option for the cases with large workflows. The proposed 

algorithm is evaluated by comparing its performance on 

scheduling three synthetic workflows that are based on real 

scientific workflows with different structures and different 

sizes, with IC-Loss [12]. The results show that the proposed 

algorithm has a better performance in workflows with a high 

amount of communication. 

In the future, we intend to improve the proposed algorithm 

for multi-workflows scheduling in a multi-cloud 

environment and by taking into account other criteria such as 

fairness between providers. The next planned future work is 

extending the algorithm for dynamic environments where 

there is a possibility of changing the conditions of providers 

at any time in order to maximize the profits of users and 

providers at the same time. 
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