
Journal of Computer and Knowledge Engineering, VOL. 1, NO. 1

DOI: 10.22067/cke.v1i2.53554

Scheduling Data-Driven Workflows in Multi-Cloud

Environment

Nafise Sooezi, Saeid Abrishami, Majid Lotfian

Abstract. Nowadays, cloud computing and other distributed

computing systems have been developed to support various

types of workflows in applications. Due to the restrictions

onthe use ofone cloud provider, the concept of multiple

clouds as been proposed.Inmultipleclouds,

schedulingworkflowswithlarge amounts ofdata is a well-

knownNP-Hard problem. The existing scheduling

algorithms have not paid attention to the data dependency

issues and their importance in scheduling criteria such as

time and cost. In this paper, we propose a communication-

based algorithm for workflows with huge volumes of data in

a multi-cloud environment. The proposed algorithm changes

the definition of the Partial Critical Paths(PCP) to minimize

the cost of workflow executionwhile meeting a user defined

deadline.

Keywords: Cloud Computing,Multi-cloud,Workflow

Scheduling, Data Dependency, Communication.

1. Introduction

Multiple clouds have a special place in the modern-day

models we use. An important reason for this is the increased

use of clouds in recent years. One of the important features

of clouds is the illusion of unlimited resources to cloud users.

The number of users varies at different times of the day

during the weeks or on weekends. If the providers upgrade

their resources so as to meet the peak demand of users, these

resources will remain partially unused during non-peak

hours. However, providers can shut down unused nodes in

order to eliminate the cost of maintenance of the equipment

and resources; however, they still have to pay for the cost of

buying and equipping these unused resources. To offset these

costs, providers are forced to increase their prices, and this

has resulted in the poor competition between cloud service

markets. On the other hand, if the provider only supplies the

needed resources to users in the average demand time, then

it cannot provide service at peak time demands and this will

lower the reliability of the provider and it will result in a

reduction of the number of users of its services. Today, a

cloud alone cannot meet the needs of users at all times and it

is becoming more important to provide service using

multiple clouds. Sharing resources between several

providers might be the best solution to the problem.

Manuscript received February 7, 2016; revised July 18, 2016;

accepted November 24, 2016.

Nafise Sooezi and Saeid Abrishami, Department of Computer

Engineering, Engineering Faculty, Ferdowsi University of

Mashhad, Mashhad, Iran.

Majid Lotfian, Department of Computer Engineering,

Engineering Faculty, Islamic Azad University of Mashhad,

Mashhad, Iran.
The corresponding author's e-mail is: s-abrishami@um.ac.ir

In [1], more than 25 types of multiple clouds have been
introduced among which multi-cloud and cloud federation
are a few examples. In cloud federation, cloud providers will
agree to share resources, which help them improve services
to the users. However, since the cloud technology is in its
early stages and there is no overall standard, the agreement
between cloud providers is difficult due to the fact that each
provider uses their own interface and protocol. Multi-clouds
a type of multiple cloud system in which there is no
agreement between the cloud providers, and a third party is
responsible for the relationships, the dialogues, and
monitoring the providers. Scheduling in a cloud environment
has been one of the major challenges in the world of clouds.

Workflow is a collection of interconnected multiple tasks

that must be performed in a specific order. Workflow

structure indicates temporary dependencies between tasks

[2]. Workflow scheduling is the problem of mapping each

task to a suitable resource and of ordering the tasks on each

resource to satisfy some performance criterion. This is an

NP-Hard problem, so there is no known polynomial

algorithm for it. In general, Multi-Criteria scheduling

problems are very difficult to solve even in the single cloud

case. Workflow scheduling is facing more challenges in the

multi-cloud environment due to the increasing number of

complex factors. One of the major problems facing the

proposed scheduling algorithms in multiple clouds is the lack

of attention to communication in workflow and its effect on

the cost and execution time. The data transfer rate between

the samples of a cloud is very high, (e.g. bandwidth between

different samples in the Amazon EC2 is approximately

between 300 Mbps to 4 Gbps) and this transfer is free, while

the received speed of the Amazon cloud (inter-cloud speed)

is between 400 Mbps to 20 Mbps and send speed is between

20Mbps and 80 Mbps [3-5]. In the proposed solution, we

have tried to pay attention to minimize the cost and time due

to it. In the proposed approach, we use the concept of Partial

Critical Paths(PCP) introduced by Abrishami et al.[6]. In this

way, we have changed the definition of the critical path and

the amount of communication between the tasks to be

included in this definition.

The rest of the paper is organized as follows. Section 2

presents related work. In section 3, we describe the generic

application, objective, and platform models underneath our

approach. Section 4 shows the proposed algorithm and

scheduling policies. Section 5 presents and discusses the

results. Finally, in Section 6 we present our conclusions and

future work.

2. Related Work

So far, many algorithms have been proposed for workflow

scheduling in a single cloud including: [7], [8], [6], [9], [10]

and [11].The authors of most of these works have considered

execution time and cost as their objectives. Ever since the

http://dx.doi.org/10.22067/cke.v1i2.53554

34 Sooezi et. al.: Scheduling Data-Driven Workflows in Multi-Cloud Environment

concept of multi-cloud has been introduced in recent years,

there have been a few algorithms in this field.
In 2007, Sakellariou et al. [12] presented an algorithm

known as IC-LOSS. The IC-LOSS algorithm tries to
minimize the execution time under a budget constraint. This
algorithm consists of two phases: first, it tries to find an
initial schedule for the input workflow with minimum
execution time, and then it refines the initial schedule until
its budget constraint is satisfied. In the first phase, it uses a
well-known makespan minimization algorithm, called HEFT
[13]. The HEFT algorithm for each task is looking for a
version that has the earliest completion time for the task. The
second part deals with the correction of the scheduling with
the allocation of tasks to cheaper resources until the budget
constraints are fulfilled:

LossWeight (TI,J) =
Tnew — Told

Cold — Cnew

In 2010, Van den Bossche et al.[14]solved the problem of

multiple applications scheduling in several cloud providers

using linear programming. The objective function in this

algorithm is minimizing the total cost of data traffic and

computational cost over all time slots within the schedule for

all providers. The lack of consideration of the

communication time between the clouds is one of the

problems in this paper.

In 2011, Houidi et al. [15] presented an algorithm that

aims to break several requests between cloud providers such

that the user costs (total cost of each resource and the cost of

communication) are minimal. They distributed the requests

with the broker between the cloud providers. The broker is

composed of three main components:

1. Cloud Request Splitting

2. Resource Provisioning

3. Inter-Cloud Network Provisioning.

After formulating the problem, they have solved it by

using linear programming.

In 2011, Li et al. [16] presented an algorithm that aims to

maximize capacity and minimize costs in accordance with

the new conditions of the providers. They have also tried to

minimize the overhead of scheduling under the new

conditions as compared with the previous condition if some

changes are made in the environment.

In 2013, Fard et al. [17] presented a method to prevent the

selfish behavior of providers that use an auction pricing

model instead of the pay as you go model. In this way, each

task announces to the resources its workload

(communicating with other tasks and the required input-

output). The source suggests an approach to tasks. In this

way, the solution is chosen so that the product of time and its

cost is minimal. After winner resource is selected, if the time

proposed by the source is greater than or equal to real-time,

the cost of the provider is fully paid and if the time proposed

by the source is less than real time, the resource is penalized

using a given function. In this method, the Nash equilibrium

is used that is a fundamental concept of the theory of games.
In 2012, Fardet al. [18] presented an algorithm that is one

of the complete algorithms introduced in this field. The
algorithm makes use of user-defined constraints about time,
cost, power consumption, and reliability and then it estimates
the optimal solution. In this paper, all the objectives are
modeled. Then the algorithm approximates the optimum

solution during threephases. In the first phase, it estimates
the objectives’ sub-constraints for each individual task using
the user constraint vector. In the second phase, it assigns a
rank to each task of the workflow and sorts them in an
ascending order. Finally, in the third phase, the algorithm
attempts to allocate the most appropriate resource to each
activity with due consideration given to the estimated sub-
constraints. A major problem with this algorithm is that it
does nothing to improve communication. As was mentioned
earlier in this paper, inter-cloud communication is one of the
most important issues in the scheduling workflow in multi-
cloud systems. Lack of attention to this point has affected the
whole algorithm, and it is particularly inappropriate for
communication-based workflows. The assumption of
unlimited resources is another problem in this algorithm.

Duan et al. [19] offered a good algorithm in 2014. In their

paper, time and cost are considered based on the limitations

of communication bandwidth and storage space. One of the

differences between this paper and the previous one [18]is

that this paper considers two objectives and two conditions

instead of four objectives. The other difference is that this

algorithm has a lower time complexity as compared with

[18]. In this paper, the problem is modeled with game theory.

The algorithm is repeated as many times as needed by one

condition and the nearly optimal solution is found. One of

the advantages of this algorithms fasts convergence by using

the information about the environment and the competitors.

And the other advantage is that you can easily add a new

objective to the problem. One of the major problems of this

algorithm is that it is not suitable for applications with a high

level of complexity just like the algorithm presented in the

previous paper. Other problems can also be mentioned such

as the following:

1. Initialization of the weight vector is done by the algorithm
itself and this can lead to different results.

2. Tasks are broken vertically to transfer parallel tasks to one
provider that cannot be useful because there is no data to
transfer between them (The cost and time of data
transmission within a provider are not comparable to the
inter providers).

In 2014, Montes et al. [20] proposed an algorithm that

allows execution of dynamic workflows in a multi-cloud

environment. In addition, there is an ability to customize the

scheduler for the user. One of the policies that provide this

ability operates as follow: it assigns instances to each task so

that the total execution time of tasks, task data receiving time

to the desired instance, and the estimated time needed to

perform the next task, is minimized. Another policy is based

on a deadline that selects a minimum set of the resources that

are needed to complete all tasks such as deadlines are met

and the objective function is satisfied. They have considered

four objective functions: performance optimization, data

locality optimization, performance and data optimization,

and cost optimization. One of the major problems of this

algorithm is the lack of attention to the communication

problems costs. As the article mentioned, communication

has a very great impact on the cost and time and that should

be focused on. One of the other problems is considering the

workflow dynamically and separating its steps effectively.

Table 1. Comparison of different scheduling algorithms in a cloud environment

Journal of Computer and Knowledge Engineering, Vol. 1, No. 1 35

Paper Environment
Scheduling

type
Method Objectives Advantages Disadvantages

BIP

[14]

2010

Hybrid cloud

and Multi-

cloud

static

Mathematical

model

• Minimize cost -

• The lack of attention to

communication and to be

placed tasks in a single

provider

• Unsuitable for

communication-based

applications

[15]

2011

Multiple

cloud
static

Mathematical

model

• Minimize cost
•consider tasks placed in

a single provider

• The lack of attention to

communication and

execution time and user

deadline

[16]

2011
Multiple cloud dynamic

Mathematical

model

• Maximize the use of

capacity

• Minimize cost in new

conditions

• Dynamic considering the

price of instances, the

type of instances, and the

performance of the

services

• The lack of attention to be

placed tasks in a single

provider and

communication in

workflows

[17]

2013
Multi-cloud dynamic

Mathematical

Model

• Minimize cost

• Minimize execution

time

• harness the selfish behavior

of cloud providers

• The lack of attention to be

placed tasks in a single

provider and communication

in workflows

[19]

2014
Hybrid cloud static

Mathematical

Model

• Minimize cost & time

while fulfilling

network bandwidth

and storage

requirements

• fast convergence by using

competitors and

environment information

• unsuitable for applications

with the complex

dependencies between tasks

• initialize the weight vector by

the algorithm itself

• break tasks vertically

MOLS

[18]

2012

Set of

heterogeneous

resources

static Heuristic

• Minimize cost, time,

and energy

consumption

• Maximize reliability

• low time complexity

• assuming resources are

unlimited

• The lack of attention to

communication between the

clouds

[20]

2014
Multi-cloud Dynamic Heuristic

• Minimize cost to satisfy

the objective function

and user deadline

• allows users to customize

scheduling policies

• The lack of attention to

communication and cost at the

same time

• high time complexity

3. The Model

3.1. The Application Model

Workflow is described by a Directed Acyclic Graph

(DAG) in which each computational task is represented by a

node, and each data or control dependency between tasks is

represented by a directed edge between the corresponding

nodes. W=(T,E) consists of a set of n tasks: T= ⋃ Tn
i=1 i

interconnected through a set of control flow and data flow

dependencies: E={(Ti, Tj, Dataij)|(Ti, Tj)∈ T × T}As Dataij

shows the amount of data to be exchanged between Ti and Tj.

We always add two dummy tasks Tentry and Texit to the

beginning and the end of the workflow, respectively. These

dummy tasks have zero execution time and they are

connected with zero-weight dependencies to the actual entry

and exit tasks.

3.2. The Platform Model

A multi-cloud environment includes N providers: P1,

P2,…,PN. Each provider has certain characteristics that are

shown by a property vector (Bup, Bdown, Cin, Cout, Binternal, I),

which include (in order) upload/download bandwidth,

incoming/outgoing data transfer costs, internal bandwidth

and set of provider’s instances (I1i,I2i, … Imi). Each instance

mi, has certain characteristics that are shown by a property

vector Imi=(Vmi,Cmi), which include (in order) computational

speed of the instance Imi in millions of instructions per

second (MIPS) and cost of instance mi.

3.3. The Objective Model

We want to schedule workflow so that the execution costs

are minimized and user deadlines are satisfied. Time and cost

have been formulated according to [18]. The execution time

of task Tj on the instance Imican be computed as the sum of

the longest input transfer time Tj (from all inputs to Tj) and

the task computation time:

ET(Tj,Imi)= MaxⱯTP∈ pred(Tj){
datapj

Bup(mi)
 }+

work(Tj)

Vmi
 (1)

WhereBup(mi)is the bandwidth between taskTjand Tp. The

completion time or makespan of a task Tjcan be recursively

computed as follows:

ETfinal(Tj,Imi)=

{
ET(Tj, Imi) pred(Tj) = ∅

MaxⱯTp∈pred(Tj) {ETfinal (Tp, sched(Tp)) + ET(Tj, Imi)} pred(Tj) ≠ ∅

(2)

Consequently, the workflow makespan is given by the

longest completion time of its tasks:

TotalET(workflow)=Maxj∈[1…n]{ETfinal(Tj,sched(Tj))} (3)

The cost of task Tjin the instance mi is thesum of the

computation and data transfer costs:

C(Tj,Imi)

https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Mathematical_model

36 Sooezi et. al.: Scheduling Data-Driven Workflows in Multi-Cloud Environment

Algorithm 1: Finding Critical Paths

=ET(Tj,Imi)*Cmi+Input(Tj)* Cinmi
+Output(Tj)*Coutmi

(4)

where Cmiis the computational cost in instance mi, Cinmi
and

Coutmi
is the incoming and outgoing data transfer cost of

instance Imi’s cloud. Input (Tj) and Output (Tj) are the total

amount of input and output data of node Tj that are received

from tasks that have been scheduled in instances other than

cloud of instance Imi(because data transfer cost between tasks

is zero if you have two tasks on the same instance or on

instances that are available on one cloud). The execution

costs for a workflow is equal to the sum of computation and

communication costs for all tasks:

Cfinal(workflow)=∑ C(Tj, sched(Tj))n
j=1 (5)

4. The Proposed Algorithm

At first, a brief look at basic concepts is presented. In the

proposed scheduling algorithms, we have two notions of the

start times of tasks, i.e. the earliest start time computed

before scheduling the workflow, and the actual start time

which is computed after the tasks are scheduled. The Earliest

Start Time of each unscheduled taskTi, EST(Ti), is defined

as follows:

EST(Tentry) = 0

EST(Ti)=MaxTp∈pred(Ti)}EST(Tp)+MET(Tp)+TT(Tp,Ti)}(6)

where the Minimum Execution Time of a task Tp, MET(Tp),

is the execution time of task Tp on an instance Ij∈I which has

the minimum ET(Tp, Ij) between all available instances. Note

that MET(Tentry) and MET(Texit) equal zero.TT(Tp,Ti) is the

data transfer time of the dependency Datapi. Accordingly,

the Earliest Finish Time of an unscheduled task Ti, EFT (Ti),

can be defined as follows:

EFT (Ti) = EST (Ti) + MET (Ti) (7)

The latest finish time for each unscheduled task is

calculated as follows:

LFT(Texit) = D

LFT(Ti) =MinTp∈child(Ti)LFT(Tp)—MET(Tp) —TT(Tp,Ti)}

(8)

where LFT(Ti) is the latest time at which Ti can finish its

computation such that the whole workflow can finish before

the user defined deadline.

The general idea is that the proposed algorithm breaks

workflow in such a way that tasks with the most dependency

are scheduled to run on one cloud.

In the proposed algorithm, the critical paths are identified

according to the new definition. EFT,EST, and LFT are

computed for all nodes. Then we define the degree of

dependence that is calculated for all nodes and finally for all

paths. Nodes are ranked and scheduled so that the best

possible cloud is assigned to each path. In the following, we

explain the steps of the proposed algorithm.

4.1. Step One: Identify the Partial Paths with Minimal

Communications

The Critical Parent of a node Ti is the unassigned parent of

Ti that has the latest data arrival time at Ti. The partial critical

path for each workflow graph is calculated as follows: we

begin with Texit and follow back the critical parents until we

reach Tentry, and so we find the overall real critical path of the

workflow graph .The proposed algorithm has changed this

concept and the graph is broken into paths whose tasks

together are the largest data exchange. One of the conditions

of the generated paths is that all nodes have a maximum of

one parent and one child in every path. Algorithm 1 shows

how to break the workflow graph to paths with the mentioned

conditions.

4.2. Step Two: Preprocessing

At this step, the Degree of Dependence (DOD) of each path

to the other paths is calculated. Thus, because of the

limitation of free capacity of every cloud, the algorithm

specifies that the paths should be scheduled on one cloud. At

first, DOD is calculated for tasks that their critical parents

are located in another path according to Algorithm1. Thus,

the DOD of T1 to T2 is equal to the start time of T1 regarding

the arrival time of data from T2 in the other path, minus the

start time of T1 regardless of the arrival time of data from T2

in the other path:

DOD(T1,T2) = (EST(T2) + MET(T2) + TT(T1,T2))-

 (EST(T3) + MET(T3) + TT(T1,T3)) (9)

1. Input:W=(T,E),T=⋃ Tn
i=1 i,E={(Ti ,Tj, Dataij)|(Ti,Tj)∈ T × T},

Eij=(Ti,Tj,dataij);

2. Output:CriticalPaths=⋃ CPs
i=1 i, CPi=(startNodei, endNodei,E'i| E'iC E);

3. coveredPaths← ∅, coveredNodes← ∅; /*set them to empty*/

4. SE← Sort(E,Data); /*Sort all E in descending Data order */

5. forall (Eij∈ SE) do

6. if(Eij∈coveredPathsandTi∈coveredNodesandTj∈coveredNodes)then

7. add (Ti,Tj,Eij) to coveredPaths

8. add Ti,Tj to coveredNodes

9. end if

10. if(Eij∈coveredPathsandTi∈coveredNodesandTj∈coveredNodes)then

11. if(∃CPe∈coveredPaths | CPe=(Tj,Tj',Ejj')) then

12. CPe=(Ti,Tj',Eij)

13. add Tj to coveredNodes

14. end if

15. end if

16. if(Eij∈coveredPathsandTi∈coveredNodesandTj∈coveredNodes)then

17. if(∃CPe∈coveredPaths |CPe=(Ti',Ti,Ei'i)) then

18. CPe= (Ti',Tj,Eij)

19. add Ti to coveredNodes

20. end if

21. end if

22. if(Eij∈coveredPathsand Ti∈coveredNodesandTj∈coveredNodes)then

23. if((∃CPe∈coveredPaths| CPe=(Ti',Ti,Ei'i))and

(∃CPe'∈coveredPaths | CPe'=(Tj,Tj',Ejj'))) then

24. CPe← (Ti',Tj',Eij)

25. Remove CPe'fromcoveredPaths

26. end if

27. end if

28. end for

29. Return coveredPaths

whereT1 is the critical parent of T2 that has been located in a

different path with the path of T1 according to Algorithm 1,

and T3 is the parent of T1 in the path produced by Algorithm

1.It should be noted that TT(T1, T2) is calculated by using the

inter-cloud speed while TT(T1,T3) is calculated by using the

intra-cloud speed. In addition, DOD is calculated only for

Journal of Computer and Knowledge Engineering, Vol. 1, No. 1 37

two nodes such that one is the critical parent of the other, but

has been located in a different path from the path produced

by Algorithm 1, and DOD for other pairs of nodes is

considered to be zero. After calculating the DOD of all

nodes, DOD of each path to the other path is calculated, i.e.

that is equal to the sum of DOD of all nodes in the path to

nodes in the other path and vice versa:

DOD(CP1,CP2)=∑ ∑ DOD(Ti, Tj)Tj∈T′
CP2Ti∈T′

CP1

+∑ ∑ DOD(Tj, Ti)Ti∈T′
CP1Tj∈T′

CP2
 (10)

whereT′
CP1

 and T′
CP2

 respectively are the set of nodes in the

path CP1andCP2. Algorithm 2 shows how to calculate DOD

of two paths.

4.3. Step three: Allocation of Resources to the Partial Paths

At this step, a degree is assigned to each node in the

workflow. The degree is based on the estimated time

required to execute tasks. In this case, we begin with the end

of the workflow and calculate the degree of root nodes. The

degree is equal to the execution time of these tasks in the

fastest available instance. Then, we calculate the degrees of

all parent nodes. The degree of each parent is equal to the

sum of the maximum degree of the children and data

transmission time from the parent to the child. Similarly, the

degrees of all tasks in the workflow are calculated. These

degrees are arranged in ascending order. Then tasks from the

ordered list are traversed and scheduled onto the best cloud.

Algorithm 3 shows the procedure. In this algorithm, we

begin from the node with the highest degree and based on the

assigned degree, the operation is repeated for each node. The

node that is to be scheduled is now called the current node.

Among all the paths identified by Algorithm 1, the path that

includes the current node is called the current path. First, we

examine if there is a node on the current path that is

scheduled. If the response is positive, we try to find the best

instance preferably in the cloud in which the parent of the

current node is placed(First we will search for available

instances at the desired cloud, and if a good instance could

not be found we create a new instance in that cloud). If the

response is negative, we consider if there is a scheduled node

on the paths that depends on the path of the current node. If

affirmative, we try to find the best instance in the cloud on

which the path that depends on to the current node is

scheduled. If there are several options, we select a cloud that

has a greater volume of transactions (according to the

calculated DOD by using Algorithm 2) in the current path. If

the response is negative, we introduce an appropriate cloud

based on our preliminary estimates and create the best

instance on it. The preliminary estimates check that if all

workflow nodes are separately scheduled on one cloud,

which cloud would be the least expensive one (Any node of

the workflow that cannot be executed even in the fastest

instance of a cloud is not considered). So, we select a cloud

for which the ratio of the cost to the number of instructions

of executable tasks is the least. After scheduling this node,

the node with the next degree is chosen.

Algorithm 2: Computing Degree Of Dependency of

two paths(DOD)

1. Input:W=(T,E), T=⋃ Tn
i=1 i , E={(Ti ,Tj, Dataij)|(Ti,Tj)∈ T × T},

Eij=(Ti,Tj,dataij), CriticalPaths=⋃ CPs
i=1 i;

2. Output:⋃ {DOD(CPi, CPj)|CPi, CPj ∈ CriticalPaths}
s(s−1)
c=1 ;

3. for all (Ti∈T) do

4. Compute EST (Ti), EFT (Ti) and LFT (Ti);

5. end for

6. for all ((Ti , Tj)∈ (T × T)) do

7. CPTi
← FindCriticalPath(Ti); /*Path of Ti form CriticalPaths*/

8. CPTj
← FindCriticalPath(Tj); /*Path of Tj form CriticalPaths*/

9. CiriticalParentTi
← MaxTp∈pred(Ti){EFT(Tp) + TT(Tp, Ti)};

/*node that is normal critical parent of Ti according [6]*/

10. if(Tj=CiriticalParentTi
and CPTi

≠ CPTj
)

11. DOD(Ti,Tj) = (EST(Tj) + MET(Tj) + TT(Ti,Tj)) – (EST(T3) +

MET(T3) + TT(Ti,T3));

12. else

13. DOD(Ti,Tj)=0;

14. end if

15. end for

16. for all (CPi, CPj ∈ CriticalPaths)do

17. DOD(CPi,CPj)=∑ ∑ DOD(Tm, Tn)Tn∈T′
CPj

Tm∈T′
CPi

+

∑ ∑ DOD(Tn, Tm)Tm∈T′
CPi

Tn∈T′
CPj

18. end for

5. Performance Evaluation

In this section, experiments to verify the performance of the

algorithm are proposed. The proposed algorithm is examined

from two aspects:

a. Specifying the criteria for evaluating the quality of the

proposed algorithm as compared with the other existing

algorithms. For this purpose, two measures are used to

compare quality: 1) Compare the shortest execution time of

the algorithms, 2) Compare the financial cost of scheduling

and the cheapest possible scheduling of each algorithm.

b. Evaluate the performance of the algorithm about

workflows in comparison with the other existing algorithms.

For this purpose, several workflows are studied.

5.1. Experimental Setup

For each experiment, we assume 10 clouds with each cloud

having 10 separate services with different processor speeds

and different prices. The processor speeds are selected

randomly so that the fastest service is roughly five times

faster than the slowest one, and accordingly, it is roughly five

times more expensive. The average bandwidth between the

computation services is set to 1 Gbps and the average

bandwidth between clouds of 100 Mbps has been assumed.

One-hour time slots are used. In the experiments, normal cost

is calculated as follows:

NC=
total schedule cost

Cc
 (11)

where Cc is the cost of executing the same workflow with the

cheapest strategy (scheduling of all nodes on a separate

version of the cheapest available service) and normal

makespan or execution time is calculated as follow:

NM =
schedule makespan

MH
 (12)

whereMH is the time of executing the same workflow with

the fastest strategy (scheduling of all nodes on a separate

version of the fastest available service). The final deadline is

changed by a factor of α in the experiments. In this case, the

38 Sooezi et. al.: Scheduling Data-Driven Workflows in Multi-Cloud Environment

Algorithm 3: Extended PCP

deadline is calculated from the product of αat execution time

of the fastest strategy.

5.2. Experimental Results

The proposed algorithm is tested for three common

workflows presented in Table 2. We compared the proposed

algorithms with IC-LOSS scheduling algorithm described in

Section II because this algorithm has the same criteria as the

proposed algorithm. For the Sipht, CyberShake, and

Epigenomics workflows the proposed algorithm has a better

performance, as shown in (Fig. 1, 2 and3). Experiments show

that the proposed algorithm has a better performance than

others when the workflow tasks have more data dependency

and dispersal communication between them.

Table 2. Workflows Classes

Large Medium Small Workflow

1000 100 30-50 CyberShake

1000 100 30-60 Sipht

997 100 24-46 Epigenimics

19. Input:W=(T,E), T=⋃ Tn
i=1 i , E={(Ti ,Tj, Dataij)|(Ti,Tj)∈ T × T},

Eij=(Ti, Tj, dataij), CriticalPathes=⋃ CPs
i=1 i;

20. Output:⋃ {(Ti, sched(Ti)}n
i=1 ,workflow schedule;

21. ranks=ComputeRank(T);/*the ranks are calculated in a bottom-up

direction in workflow*/

22. ST ←Sort(T, ranks); /*Sort all T in descending ranks

order*/

23. for all (Ti∈ST) do

24. bestCloud ← ∅,T′ ← ∅,T′′ ← ∅; /*set them to empty*/

25. CPTi
← FindCriticalPath(Ti); /*Path of Ti form CriticalPaths*/

26. T'←FindScheduleNodes(CPTi
); /*Nodes of CPTi

 that is scheduled*/

27. for all(CP C CriticalPaths |DOD(CPTi
,CP)≠ 0) do /*T'' is

schedueledNodes in all depended on paths of CPTi
*/

28. T''←T''∪FindScheduleNodes(CP);/*add Nodes of CP that is

schedueled to T''*/

29. end for

30. if(T'≠ ∅) then

31. bestCloud←FindBestCloudInPath(Ti); /*bestCloud for Ti according

CPTi
*/

32. else if(T''≠ ∅)then

33. bestCloud←FindBestCloudInDependedPath(Ti); /*Best Cloud for Ti

According DependedPaths*/

34. else

35. bestCloud←PreCloudAssign() ;/*Estimate bestcloud */

36. end if

37. end if

38. if(bestCloud≠ ∅andbestcloud is not full)then/*if bestcloud can

accept more requests according to its strategy*/

39. AssignBestInstance(Ti ,bestCloud);/*Assign Ti to BestInstance in

bestCloud*/

40. else

41. AssignBestInstanceInFree(Ti);/*Assign Ti to BestInstance that exists

in all Clouds*/

42. end if

43. Mark Ti as scheduledNode;

44. end for

(a) (b)

(c)

Fig. 1. The Normalized Cost of scheduling workflows with Extended PCP and IC-LOSS with the time interval equal to 1 h.

(a). CyberShake. (b).Sipht. (c). Epigenomics.

0

1

2

3

4

5

1.5 2 2.5 3 3.5 4 4.5 5

N
o

rm
al

iz
ed

 C
o

st

deadline Factor

Extended PCP IC LOSS

0

2

4

6

8

10

12

1.5 2 2.5 3 3.5 4 4.5 5

N
o

rm
al

iz
ed

 C
o

st

deadline Factor

Extended PCP IC LOSS

0

2

4

6

8

10

12

14

1.5 2 2.5 3 3.5 4 4.5 5

N
o

rm
al

iz
ed

 C
o

st

deadline Factor

Extended PCP IC LOSS

Journal of Computer and Knowledge Engineering, Vol. 1, No. 1 39

 (a) (b)

(c)

Fig. 2. The Normalized Cost of scheduling workflows with Extended PCP and IC-LOSS for different workflows classes.

(a). CyberShake. (b). Sipht. (c). Epigenomics.

(a) (b)

(c)

Fig. 3. The Normalized Makespan of scheduling workflows with Extended PCP and IC-LOSS for different workflows classes.(a).

CyberShake. (b). Sipht. (c). Epigenomics.

0

2

4

6

8

10

12

small medium large

N
o

rm
al

iz
ed

 C
o

st

workflows classes

IC LOSS Extended PCP

0

1

2

3

4

5

6

small medium large

N
o

rm
al

iz
ed

 C
o

st

workflows classes

IC LOSS Extended PCP

0

2

4

6

8

10

12

14

small medium large

N
o

rm
al

iz
ed

 C
o

st

workflows classes

IC LOSS Extended PCP

0

0.5

1

1.5

2

2.5

3

small medium large

N
o

rm
al

iz
ed

 M
ak

es
p

an

workflows classes

IC LOSS Extended PCP

0

0.5

1

1.5

2

2.5

small medium large

N
o

rm
al

iz
ed

 M
ak

es
p

an

workflows classes

IC LOSS Extended PCP

0

0.5

1

1.5

2

2.5

3

small medium large

N
o

rm
al

iz
ed

 M
ak

es
p

an

workflows classes

IC LOSS Extended PCP

40 Sooezi et. al.: Scheduling Data-Driven Workflows in Multi-Cloud Environment

Fig. 4. The Normalized Cost of scheduling Epigenomics workflow for different external/internal bandwidth values

(a)

(b)

(c)

Fig. 5. Used instances (percentage of each instance type. a) CyberShake. b) Sipht. c) Epigenomics.

Fig 4 shows the Normalized Cost of scheduling

Epigenomics workflow for different external/internal

bandwidth values. As seen in Fig 4, the proposed algorithm

shows more reaction to internal bandwidth and the cost is

reduced by increasing it. Fig5. Shows the percentage of each

instance type which is used by IC-Loss and Extended PCP

algorithms. We can see from Fig.5 that the proposed

algorithm tries to use the instances from one cloud, while IC-

LOSS uses instances from different clouds. It leads to

minimize the amount of communication between different

0

5

10

15

20

25

30

35

20 Mbps / 400

Mbps

20 Mbps / 1 Gbps 20 Mbps / 4 Gbps 100 Mbps / 400

Mbps

100 Mbps / 1 Gbps100 Mbps / 4 Gbps

N
o

rm
a

li
ze

d
C

o
st

External bandwidth / Internal bandwidth

IC LOSS Extended PCP

82%

12%

6%

Extended PCP

cloud 1-xlarge

cloud 1-medium

cloud 1-small

1%

72%

27%

Extended PCP

cloud 1-xlarge

cloud 1-medium

cloud 1-small

79%

18%

3%

IC LOSS

cloud 0-large

cloud 0-medium

cloud 0-small

8%

92%

Extended PCP

cloud 4-large

cloud 4-small

20%

23%

57%

IC LOSS

Cloud 1-small

Cloud 2-large

Cloud 0

98%

2%
Cloud 0-xlarge

cloud 0-small

50%50%

IC LOSS

Cloud 0

Cloud 4-medum

60%
40%

Cloud 0-large

cloud 0-medum

Journal of Computer and Knowledge Engineering, Vol. 1, No. 1 41

clouds in our algorithm and so the cost and execution time

are minimized.

6. Conclusions and Future Work

In this paper, a scheduling algorithm for data-driven

workflows in a multi-cloud environment, called Extended

PCP is proposed. In this proposed algorithm, we break a

workflow into the paths whose tasks have the largest data

exchange together and have the minimum data exchange

between each other. A new criterion for controlling data

flow, called Degree of Dependence or DOD, which is

calculated for all nodes and paths is defined. This criterion

will help us minimize the amount of communication between

different paths by selecting the tasks that are more

appropriate to be with each other. This algorithm considers

communication as a very important factor that influences the

whole scheduling. This makes the algorithm suitable for

data-driven workflows in which a large amount of data is

transferred between their tasks. The time complexity of the

algorithms is O(n2), where n is the number of workflow

tasks. The polynomial time complexity makes it a suitable

option for the cases with large workflows. The proposed

algorithm is evaluated by comparing its performance on

scheduling three synthetic workflows that are based on real

scientific workflows with different structures and different

sizes, with IC-Loss [12]. The results show that the proposed

algorithm has a better performance in workflows with a high

amount of communication.

In the future, we intend to improve the proposed algorithm

for multi-workflows scheduling in a multi-cloud

environment and by taking into account other criteria such as

fairness between providers. The next planned future work is

extending the algorithm for dynamic environments where

there is a possibility of changing the conditions of providers

at any time in order to maximize the profits of users and

providers at the same time.

References

[1] Petcu, D.: "Consuming resources and services from

multiple clouds", Journal of Grid Computing, 12, (2), pp.

321-345, 2014.

[2] Yu, J., and Buyya, R.: "A taxonomy of scientific

workflow systems for grid computing", ACM Sigmod

Record, 34, (3), pp. 44-49,2005.

[3] Chen, R., Yang, M., Weng, X., Choi, B., He, B., and Li,

X.: "Improving large graph processing on partitioned

graphs in the cloud", in Editor (Ed.)^(Eds.): "Book

Improving large graph processing on partitioned graphs

in the cloud", (ACM, 2012, edn.), pp. 3.

[4] Li, A., Yang, X., Kandula, S., and Zhang, M.:

"CloudCmp: comparing public cloud providers", in

Editor (Ed.)^(Eds.): "Book CloudCmp: comparing

public cloud providers" (ACM, edn.), pp. 1-14, 2010.

[5] Wang, G., and Ng, T.E.: "The impact of virtualization on

network performance of amazon ec2 data center", in

Editor (Ed.)^(Eds.): "Book The impact of virtualization

on network performance of amazon ec2 data center"

(IEEE, edn.), pp. 1-9, 2010.

[6] Abrishami, S., Naghibzadeh, M., and Epema, D.H.:

"Deadline-constrained workflow scheduling algorithms

for Infrastructure as a Service Clouds", Future

Generation Computer Systems, 29, (1), pp. 158-169,

2013.

[7] Wu, Z., Ni, Z., Gu, L., and Liu, X.: "A revised discrete

particle swarm optimization for cloud workflow

scheduling", in Editor (Ed.)^(Eds.): "Book A revised

discrete particle swarm optimization for cloud workflow

scheduling" (IEEE, edn.), pp. 184-188, 2010.

[8] Pandey, S., Wu, L., Guru, S.M., and Buyya, R.: "A

particle swarm optimization-based heuristic for

scheduling workflow applications in cloud computing

environments", in Editor (Ed.)^(Eds.): "Book A particle

swarm optimization-based heuristic for scheduling

workflow applications in cloud computing

environments" (IEEE, edn.), pp. 400-407, 2010.

[9] Yu, J., and Buyya, R.: "Scheduling scientific workflow

applications with deadline and budget constraints using

genetic algorithms", Scientific Programming, 14, (3-4),

pp. 217-230, 2006.

[10] Genez, T.A., Bittencourt, L.F., and Madeira, E.R.:

"Workflow scheduling for SaaS/PaaS cloud providers

considering two SLA levels", in Editor (Ed.)^(Eds.):

"Book Workflow scheduling for SaaS/PaaS cloud

providers considering two SLA levels" (IEEE, edn.), pp.

906-912, 2012.

[11] Bittencourt, L.F., and Madeira, E.R.M.: "HCOC: a cost

optimization algorithm for workflow scheduling in

hybrid clouds", Journal of Internet Services and

Applications, 2, (3), pp. 207-227, 2011.

[12] Sakellariou, R., Zhao, H., Tsiakkouri, E., and

Dikaiakos, M.D.: "Scheduling workflows with budget

constraints","Integrated research in GRID computing",

pp. 189-202, Springer, 2007.

[13] Topcuoglu, H., Hariri, S., and Wu, M.-y.,"Performance-

effective and low-complexity task scheduling for

heterogeneous computing", Parallel and Distributed

Systems, IEEE Transactions on, 13, (3), pp. 260-274,

2002.

[14] Van den Bossche, R., Vanmechelen, K., and

Broeckhove, J.,"Cost-optimal scheduling in hybrid iaas

clouds for deadline constrained workloads", in Editor

(Ed.)^(Eds.): "Book Cost-optimal scheduling in hybrid

iaas clouds for deadline constrained workloads" (IEEE,

edn.), pp. 228-235, 2010.

[15] Houidi, I., Mechtri, M., Louati, W., and Zeghlache,

D.,"Cloud service delivery across multiple cloud

platforms", in Editor (Ed.)^(Eds.),"Book Cloud service

delivery across multiple cloud platforms" (IEEE, edn.),

pp. 741-742, 2011.

[16] Li, W., Tordsson, J., and Elmroth, E.,"Modeling for

dynamic cloud scheduling via migration of virtual

machines", in Editor (Ed.)^(Eds.),"Book Modeling for

dynamic cloud scheduling via migration of virtual

machines" (IEEE, edn.), pp. 163-171, 2011.

42 Sooezi et. al.: Scheduling Data-Driven Workflows in Multi-Cloud Environment

[17] Fard, H.M., Prodan, R., and Fahringer, T.,"A truthful

dynamic workflow scheduling mechanism for

commercial multicloud environments", Parallel and

Distributed Systems, IEEE Transactions on, 24, (6), pp.

1203-1212, 2013.

[18] Fard, H.M., Prodan, R., Barrionuevo, J.J.D., and

Fahringer, T.,"A multi-objective approach for workflow

scheduling in heterogeneous environments", in Editor

(Ed.)^(Eds.),"Book A multi-objective approach for

workflow scheduling in heterogeneous environments"

(IEEE Computer Society, edn.), pp. 300-309, 2012.

[19] Duan, R., Prodan, R., and Li, X.,"Multi-objective game

theoretic schedulingof bag-of-tasks workflows on hybrid

clouds", Cloud Computing, IEEE Transactions on, 2, (1),

pp. 29-42, 2014.

[20] Montes, J.D., Zou, M., Singh, R., Tao, S., and Parashar,

M.,"Data-driven workflows in multi-cloud

marketplaces", in Editor (Ed.)^(Eds.),"Book Data-driven

workflows in multi-cloud marketplaces" (IEEE, edn.),

pp. 168-175, 2014.

