
Journal of Computer and Knowledge Engineering, Vol. 3, No. 1, 2020.(25-37) 25

DOI: 10.22067/cke.2020.39287

Uncertainty-aware Path Planning using Reinforcement Learning and

Deep Learning Methods*
Research Article

Nematollah Ab Azar1 Aref Shahmansoorian2 Mohsen Davoudi3

Abstract: This paper proposes new algorithms to improve

Reinforcement Learning (RL) and Deep Q-Network (DQN)

methods for path planning considering uncertainty in the

perception of environment. The study aimed to formulate

and solve the path planning optimization problem by

optimizing the path, avoiding obstacles, and minimizing the

related uncertainty. In this regard, a reward function is

constructed based on the weighted features of the

environment images. In this study, Deep Learning (DL) is

used for two purposes. First, for perceiving a real

environment to find the state transition matrix of the mobile

robot path planning problem, and second, for extracting the

features of state directly from an image of the environment

to select the appropriate actions. To solve the path planning

problem, it is formed in the context of an RL problem, and a

Convolutional Neural Network (CNN) is used to

approximate Q-values as a linear parameterized function.

Implementing this approach improves the Q-learning,

SARSA, and DQN algorithms as the new versions, called

POQL, POSARSA, and PODQN. The learning process

results show that using newly improved algorithms increases

path planning performance by more than 20%, 21%, and 5%

compared to the Q-learning, SARSA, and DQN,

respectively.

Keywords: Reinforcement Learning, Deep Learning, Q-

learning, Path Planning, Deep Q-Network (DQN).

1. Introduction

The main goal of path planning is to find the optimal path

between the initial and final states in the shortest possible

time[1]. This task becomes challenging when the

environment has obstacles, risky areas, and uncertainties.

Reinforcement Learning is a useful and applicable tool for

learning path planning, considering the safety aspects of

robot path, obstacle avoidance, and path optimality.

Environment perception is an essential issue in path

planning. The traditional learning methods use handcrafted

features of the environment to recognize states-space

specifications, while in the real world, the features should be

used directly as the learning process input. Mnih et al.

introduced the first Deep Q-network (DQN) algorithm to

learn ATARI games directly from the perception of pixels

[2-4]. Van Hasselt et al. [5] proposed Double DQN as a

modified version of deep Q-Network. Since the introduction

of deep learning, many researches have been conducted on

deep learning in path planning [6-10]. Panov et al. [11] used

deep learning to improve robot path planning. Pfeiffer et al.

* Manuscript received May, 5 ,2019; accepted. November, 22 , .2020.
1 Correspoding Author, Ph.D student, Department of Electrical Engineering, Imam Khomeini International University (IKIU), Qazvin,

Iran, Email: n.abazar@edu.ikiu.ac.ir .
2 Associate professor, Department of Electrical Engineering, Imam Khomeini International University (IKIU), Qazvin, Iran.
3 Associate professor, Department of Electrical Engineering, Imam Khomeini International University (IKIU), Qazvin, Iran.

[12] presented a case study of a learning-based approach for

target-driven and mapless path planning using the neural

network, which is trained by a combination of expert

demonstrations, imitation learning (IL), and reinforcement

learning (RL). Xin et al.[7] used deep reinforcement learning

in mobile robot path planning using the original visual

perception with the original RGB image (image pixels) as

the input without any handcrafted features and feature

matching. Zhou et al. [13] implemented a Deep Q-Network

(DQN) for path planning of mobile robots using the original

RGB of an image representing the environmental structure.

Lv et al. [14] proposed an improved learning policy DQN in

a dense network framework. Concerning uncertainty-aware

reinforcement learning, Kahn et al. [15] presented an

algorithm for learning navigation and avoiding obstacles of

a mobile robot in an unknown environment by providing an

uncertainty-based cost function to estimate the probability of

collision. Da Silva et al. [16] provided an action-advising

framework where the agent requests for advising when its

epistemic uncertainty is high in a certain state.

Using the so-called DQN concept provided by Mnih et

al. [3] makes the state perception in images, as well as bulk

data, learning, controlling, and making processes, actions,

and decisions possible in a complex environment. Moreover,

in association with RL, deep learning can approximate Q-

values as a parameterized function. Using this idea increases

the accuracy of Q-values by minimizing a loss function

based on the gradient descent approach in the framework of

neural networks containing a big hidden layer. Although

reinforcement learning methods [17] such as QL and

SARSA, which recently combined with DL-Q-learning

called DQN [3], are reliable and stable methods for path

planning, they should be improved when used for special

needs such as path planning tasks. In the traditional approach

of these methods, a reward function is considered as a

positive integer value for reaching a goal state and is negative

for others. Now, the new method proposes a new reward

based on the path length, uncertainty, and constraints for

every state-action pair. Thus, an optimality criterion is

defined to determine how much a path is optimized and used

in the path planning problem. By solving this problem in

Markov Decision Process (MDP) framework, its solution is

found using the learning process.

In this research, the contribution of authors is to solve the

uncertain path planning optimization problem by translating

it into a learning problem based on a mathematical approach,

which is more complete than the works presented recently

for similar purposes [14], [18- 20], and also presenting the

mailto:n.abazar@edu.ikiu.ac.ir

26 Nematollah Ab Azar et. al.: Uncertainty-aware Path Planning using …

new methods called POQL, POSARSA, and PODQN to

improve the learning process of the path planning methods

considering the uncertainty in the DL results of the

environment perception. In addition to those mentioned

above, this article can also can be used as detailed guidance

for implementing feature-based rewards and deep learning

methods in path planning with visual input data [21], taking

into account the practical study in a real and uncertain

environment instead of the grid world approach.

The remainder of this paper is organized as follows. Section

2 discusses the related works, section 3 describes the

problem statement and solution by presenting the proposed

methods, algorithms, and formulations. Experimental studies

are provided in section 4. Section 5 presents the simulation

and results and section 6 discusses the challenges of the

implementation of the proposed methods, and finally, the

conclusion overview of the paper is presented in section 7.

2. Review of Related Works
This paper uses the reinforcement learning methods of Q-

learning, and SARSA to implement the algorithm presented

by [17], and the Q-network (DQN) algorithm developed by

[3]. In these methods, state-action pairs' reward is received

immediately after doing the action in the current states. The

new method proposes re-evaluating the learning reward after

predefined steps and building a path, including the state-

action pairs of the previous steps. To describe the problem

mathematically, the Lagrangian function provided by [22] is

developed based on the new aspects of the problem

introduced in this research to convert the path planning

problem into a learning problem with the value function

approach. To perceive the environment, the state transition

matrix is approximated using image features by

implementing the formulation presented by [23] to

approximate a reward function as R(st,at)=wTϕ(st,at) that is

shaped by the weighting vector 𝑤 and the basis function 𝜙

constructed as a matrix containing the logical elements

representing the constraints positivity.

3. Statement of the Problem and Solution

Assume that t∈[0 T], x∈X and u∈U denote time, state, and

control variables of the dynamic system ẋ=f(x(t), u(t)),

respectively. Where T is terminal time, X, and U are the sets

of feasible states and control inputs. Suppose that the

variable x is measured as x̂, and the measurement uncertainty

is calculated as the mean-variance of several measurements

of x as σ2(x). Also, it is assumed that we have some

constraints. Now the path planning problem's goal is to find

a trajectory P={x1, x2, …,xn}, x1=x0 , xn=xT optimally,

including minimizing an objective function, length, and

uncertainty of the path. This optimization problem can be

formulated as:

Part A of equation (1) minimizes the objective function

over the states and control variables. For example, it can be

considered as l(x(t),u(t)) = (x − xg)
T
p(x − xg) + u

Tqu.

where, xg is the robot goal position. Where q and p are the

weighting matrices on state and control variables,

respectively. Parts B and C minimize the functions dP(x) and

ψ
P
(x) which are the summation of the length and uncertainty

of the states of the path P, respectively. Part D is the system

dynamics and g
i
(x(t)) and hi(x(t)) in part E are the

constraint inequalities and equalities, respectively. Part F

also represents the values of initial and terminal states.

min
x,u
J(xt,ut)=∑γt−kl(xt,ut)

t=k

 A

 minx dP(x)=∑‖xi+1-xi‖

i

, xi∈P, i=1,..,np-1 B

min
x
ψP(x)=∑σ2

i

(xi), xi∈P, i=1,..,np C

s. t. ẋ=f(x(t), u(t)) , x∈X, u∈U D

 gj(x(t))≤0, hi(x(t)) = 0, j=1,2,…,m E

 x(0)=x0, x(T)=xT F

(1)

The optimization problem (1) suffers from uncertainty,

non-convexity, and non-linearity. Therefore, solving this

problem is impossible or difficult using conventional and

analytical methods. Thus, this paper reformulates this

problem in the Markov Decision Process (MDP) context to

solve it. To solve the path planning problem (1), it is assumed

that the environment and the system work in a Markov

Decision Process framework. In an MDP, the dynamic of the

continuous system ẋ=f(x(t), u(t)) or the related discrete

form xt+1=f(xt,ut) is stated as

ρ
π
(s')=∑ ρ

π
(s)π(s, a)T(s, a,s')s, a , where ρ

π
(s) and

ρ
π
(s') are the state probability distribution under the policy

π for the current and next states, respectively. By defining

the reward function as r(s, a) ≈ −l(xt,ut) in the MDP

framework, the optimization problem (1) is formed as

s. t.

max
π
V(s)=∑ρπ(s)π(s, a)𝒓(𝒔, 𝒂)

s, a

minx dP=∑‖x(s')-x(s)‖

s∈SP

, s∈SP

min
x
ψP=∑ σ2

s∈SP

(x(s)), s∈SP

ρπ(s
')=∑ρπ(s)π(s, a)T(s, a,s

')

s, a

1=∑ρπ(s)π(s, a)

s, a

π(s, a)≥0
st0=s0, stf=sT

 (2)

SP={s0,s2,…,sT} is the set of states building the Path from

the initial state to the terminal state. For simplicity, let

Π(s, a)=ρ
π
(s)π(s, a) and ξ

P
=dP+ψ

P
. By developing the

method proposed by [22], the Lagrangian function of the

above problem is formed as

Journal of Computer and Knowledge Engineering, Vol.3, No.1.2020. 27

L=∑𝚷(𝐬, 𝐚)𝒓(𝒔, 𝒂)

s, a

-λξP-γ∑Vπ(s')

s'

(ρπ(s
')-

∑Π(s, a)T(s, a,s')

s, a

) -r0 (∑Π(s, a)

s, a

-1)

 (3)

Where γVπ(s') and r0 are Lagrange multipliers, γ is the

discount factor. The equation (3) can be rewritten as

L=∑Π(s, a) (r(s, a)+γ∑Vπ(s')T(s, a,s')

s'

-

s, a

r0) -γ∑Vπ(s')

s'

ρπ(s
')+r0-λξP

(4)

On the other hand,

∑Vπ(s')

s'

ρπ(s
')=∑Vπ(s')

s'

ρπ(s
')∑π(s',a')

a'⏟
1

=

∑Vπ(s')

s',a'

ρπ(s
')π(s',a')=∑Vπ(s')

s',a'

Π(s',a')

(5)

Then the function L is formed as

L=∑Π(s, a) (r(s, a)-

s, a

r0+γ∑Vπ(s')T(s, a,s')

s'

) -γ∑Vπ(s')

s',𝒂′

Π(s',a')+r0-λξP

(6)

 Let Vπ(s0)=0, using the property

∑ Vπ(s)s, a Π(s, a)=∑ Vπ(s')s',a' Π(s',a'), the function L

results in

L=∑Π(s, a) (r(s, a)-

s, a

r0+γ∑Vπ(s')T(s, a,s')

s'

) -γ∑Vπ(s)

s, a

Π(s, a)+r0-λξP

 (7)

The so-called Karush-Kuhn-Tucker (KKT) optimality

conditions are implemented by differentiating w.r.t Π(s, a)

as
∂L

∂Π
=r(s, a)-r0+γ∑Vπ(s')T(s, a, s')

s'

-Vπ(s)=0

(8)

Therefore, the optimal value function is obtained as

V*(s)= max
a*
[r(s, a)-r0+γ∑ V*(s’)T(s, a,s')s']. Letting

R(s, a)=r(s, a)-r0 and then the value function Vπ(s) results

in Vπ(s)=∑ π(s, a)a (R(s, a)+γ∑ Vπ(s')T(s, a,s')s').

Equivalently, the state-action value function is defined as

Q(s, a)=R(s, a)+γ∑ Vπ(s')T(s, a, s')s' , where the transition

probability function T(s, a, s’) should be identified. If the

transition matrix is unknown, it can be obtained through

environment perception. For example, in a path planning

map image, a transition matrix shows how to move to the

next state from the current state. One of our contributions in

this paper is providing the transition matrix by extracting

features of images using deep learning methods, including

convolution neural networks (CNN). According to this

approach, the transition matrix T is stated as

T(s, a,s')=WT∅(s, a, s'), where ∅ is called the state transition

feature vector, and W is the corresponding weighting vector.

Also, we need to obtain r0. By substituting Vπ(s)=r(s, a)-

r0+γ∑ Vπ(s')T(s, a, s')s' , the term L is obtained as

L=∑Π(s, a) (r(s, a)-

s, a

r0+γ∑Vπ(s')T(s, a,s')

s'

) -γ∑Vπ(s)

s, a

Π(s, a)+r0-λξ
P

 L=∑ Π(s, a)Vπ(s)s, a -γ∑ Vπ(s)s, a Π(s, a)+r0-λξ
P
=r0-λξ

P
.

Then, to minimize L, we need to consider

r0=λξ
P
=λ(dP+ψ

P
). Then, the new reward function is reached

as

rnew(s, a)=r(s, a)-λ(dP+ψP)
 (9)

According to the above mathematical primary results, the

new method is proposed to learn path planning based on the

newly defined path optimality. This method is stated as the

following algorithms:

Algorithm 1. Path Optimal Q-Learning (POQL)

Initialization: set m=number of states, n=number of

actions, Q=randn (m, n), set s
s
=Starting state, 𝐬𝐠 =goal

state, MaxIt=Maximum number of Iterations

For it=1 to MaxIt

Initialize s= s
0

While s≠s
g

Select actions a in the state s using policy generated by Q

using ϵ-greedy approach

Take the action a, get reward r, and go to state s’

Update Q-value as

Q(s, a)=Q(s, a)+α (r(s, a)+γ maxaQ(s
’, a)-Q(s, a))

Store s as the path SP and update s←s'

End while

End while

For i=1 to np , where np is the length of the path P with

the state set SP={s0,s𝟏,…,snp}

Update the rule

Q(si,ai)=Q(si,ai)+α(r(si,ai)-λ(dP+ψP)+γ maxaQ(si+1, a)-Q(si,ai))

Where action aI is connecting si∈S
P to si+1∈S

P.

End For

End For

28 Nematollah Ab Azar et. al.: Uncertainty-aware Path Planning using …

Algorithm 2. Path Optimal SARSA(POSARSA)

Initialization: set m=number of states, n=number of

actions, Q=randn (m, n), set s
s
=Starting state, s

g
=goal

state, MaxIt=Maximum number of Iterations

For it=1 to MaxIt

Initialize s= s
0

Select actions a in the state s using policy generated by Q

using ϵ-greedy approach

While s≠s
g

Take the action a, get reward r, and go to state s’

Select actions a' in the state s' using policy generated by

Q using the ϵ-greedy approach

Update Q-value as

Q(s, a)=Q(s, a)+α (r(s, a)+γ Q(s', a)-Q(s, a))

Store s as the path SP and update s←s'

End while

For i=1 to np , where np is the length of the path P with

the state set SP={s0,s1,…,snp}

Update the rule

Q(si,ai)=Q(si,ai)+α(r(si,ai)-λ(dP+ψP)+γ Q(si+1,ai+1)-Q(si,ai))

Action ai and ai+1 connect si∈S
P to si+1∈S

Pand si+1∈S
P

to si+2∈S
P, respectively.

End For

End For

Algorithm 1 and Algorithm 2 present the path planning

instruction using modified versions of Q-learning and

SARSA methods [17], respectively, and Algorithm 3 is the

modified version of the DQN method [3]. The proposed path

planning methods presented in the above algorithms include

two levels: the first level improves the path 𝑆𝑃 by evaluating

Q-values, and the second level improves the Q-values by

evaluatingpath SP.

4. Experimental Studies
To study the theoretical method mentioned above, it should

be justified and validated through practical experiments.

Therefore, we examine our solution in a real environment

shown in Figure 1, including a feasible path state, goal states,

and Gbstacle states sets. This is a picture of the environment

selected for the path planning task. In this environment, an

agent can start from every feasible state to go to the Goal

states (Plate Objects) by avoiding the collision states

(Obstacle Objects).

Algorithm 3. Path Optimal DQN (PODQN)

Initialization: set m=number of states, n=number of

actions, Q=randn (m, n), set s
s
=Starting state, s

g
=goal

state, set replay memory D to capacity N, set Q with the

initial weights θ, set MaxIt=maximum number of

Iterations

For it=1 to MaxIt
Initialize s= s

0

Calculate feature ϕ(s)
While s≠s

g

Select actions a in the state s using policy generated by Q

using ϵ-greedy approach

Take the action a, get reward r, and go to state s’

Calculate feature ϕ'=ϕ(s')

Store transition (ϕ(s),a,ϕ(s')) in D

Sample random (ϕj,aj,ϕj
') from D

Set the target value as

yj={
rj(s, a) if s

'≠s
g

rj(s, a)+γ maxaQ̂(ϕj, aj
'; θ) otherwise

Update the weights θ by minimizing loss function

L=
1

2
(yj-Q(ϕj,ai;θ))

2

 using a gradient descent approach.

Store s as the path SP and Update Q=Q̂, s←s'
End while

For i=1 to np , where np is the length of the path P with

the state set SP={s0,s1,…,snp}

Set the target value as

yi={
r(si,ai)-λ(dP+ψP) if si+1≠sg

r(si,ai)-λ(dP+ψP)+γ maxaQ̂(ϕ(si), a;θ) otherwise

Update the weights θ by minimizing loss function

L=
1

2
(yi-Q(ϕ(si), a;θ))

2
. Where action ai is connecting

si∈S
P to si+1∈S

P

Update Q=Q̂

End For

End For

Figure 1. An experimental environment for testing the new method(Path Optimal RL(PORL) and Path Optimal DQN(PODQN))

Journal of Computer and Knowledge Engineering, Vol. 3, No. 1, 2020.(25-37) 29

DOI: 10.22067/cke.2020.39287

 To learn the path planning task, the following procedures

are proposed:

4.1. Convert real environment to a grid world
In most cases, a real environment must be converted to the

discrete-time domain because the dynamic system or the

problem's solution is presented in a discretized form. For this

purpose, the environment is mapped to a two- or three-

dimensional grid network (x-y or x-y-z cartesian space). If

the problem's variables are fixed, or their changes are

negligible in the third coordinate (that is, z), it is better to

consider the environment as a two-dimensional space. In this

research, the picture of environment is analyzed in a 2-d grid

world space with n×m nodes. Where 𝑛 and 𝑚 are the length

and width of the picture, respectively. In this framework, the

states represent the agent positions. Moreover, the actions

are the velocity and angular velocity of the robot and can be

stated as the movement of the agent form the current state

(cell i and j) to the next state (cell i
'
 and j

'
) (with

∆i, ∆j=±1, ±√2) in a unique grid world. Then, the actions can

be described as moving to the right, left, up, and down. So,

for the dynamic environment, the sets of states and actions

are presented as S={s1,s2…,sm×n} and

A={right, right-top, top, left-top, left, left-down, down, right-down}
where, sk is the agent state. Figure 2 shows the grid world

environment and an example of the action set.

Figure 2. Path planning environment, including feasible, goal, and

collision states. The arrows show the actions set 1. R: right, 2. TR:

top-right, 3. T: top, 4. TL: top-left, 5. L: left, 6. DL: down-left, 7.

D: down, 8. DR: down-right.

As Figure 2 shows, an agent can go to the next state from

the current state by taking appropriate action. In this study,

the next states are neighbors of the current state with one

neighborhood radius unit. In Q-learning, SARSA, and DQN

methods, the next action is selected by evaluating a

probability distribution of the actions set connecting the

current state to the next states. After selecting the action, a

reward is also assigned to the corresponding state-action

pair, and a discounted Q-value accumulates this reward. This

Q-value used to build the probability distribution mentioned

above must be predicted and updated for the new step-time.

A learning process is satisfactory when the cumulative

discounted value, called target value from now on,

approaches to the predicted Q-value of the current state-

action pair. In other words, the error between the target and

the predicted values of Q must be decreased step by step. The

average accumulated rewards obtained in the learning time

must also converge to the two values in every time step.

4.2. Identification of state transition matrix
A state transition matrix, often used in the Markov decision

process, is a stochastic or probability matrix representing the

transition between two states (describing how to go to the next

state from the current state). For example, the corresponding

transition matrix of the system xk+1 = f(xk,uk) is stated as

T(s, a, s')=p(st, at|st+1=s'). In the visual scheme, as shown in the

red box in Figure 2, it can be obtained for the state 𝑠56 by

taking actions from the arranged set (R, TR, T, TL, L, DL,

D, DR) as T(s56,:,:)= [
1

5

1

5
0

1

5
0

1

5
0

1

5
] where the

denominator of 5 represents the number of feasible states

that do not contain collisions. A pure probability matrix can

also represent it as T(s56,:,:)=[ξ1
ξ

2
… ξ

8] where ξ is

the probability measure of the state feasibility. To find the

transition matrix, one can employ the handcrafted feature

extraction and states' classification (into three classes:

feasible, goal, and obstacle sets or the number of all objects

in the image) using deep learning methods.

Figure 3. The environment, including feasible states, obstacle

states, and goal states, are identified.

When the environment is identified, as shown in Figure 3,

the transition matrix can be built. Knowing the transition

matrix, a reward matrix is designed by assigning +5, -5, and

-1 to the actions leading to the goal, obstacle, and feasible

states from the feasible states.

4.3. Calculating uncertainty
As mentioned in the previous section, to perceive the

environment, objects in the environment are classified using

the Deep Learning and Convolutional Neural Network

(CNN) concept, and the probability that an object is placed

in a class is calculated using a vector of SoftMax values.

Here, uncertainty means inaccuracy in identifying objects in

the environment using classification theory. For example, if

the probability of a pixel belonging to the obstalce class is

obtained equalt to 0.95, then the uncertainty will be 0.05.

That is, we will have 0.05% uncertainty in identifying the

class related to this pixel by deep learning. Figure 5 shows

the uncertainty measures for all the environment states

related to Figure 3.

30 Nematollah Ab Azar et. al.: Uncertainty-aware Path Planning using …

4.4. Path Planning using RL
After identifying the transition matrix and assigning rewards

to every state-action pair, path planning learning starts based

on the related algorithms of RL; Q-learning, and SARSA,

which are referred to by [17]. Figure 5 shows the schematic

of the interconnection between the reinforcement learning

methods (QL and SARSA), system, and the value function.

4.5. Path Planning using DQN
To implement path planning in a DQN framework, the Q-

values must be predicted using image pixels as a

Convolutional Neural Network input. In this context, the

images of the current state and the next states (the neighbors

of current states) are used as the input of the convolution

layers to provide a feature vector as the additional neural

network input. The proposed CNN is shown in the

following:

Suppose selecting any action from the actions set a=a1,…,a8

in the current state 𝑠𝑡 leads to the corresponding next states

s'={s1
' , s2

' , …, s8
' }, a feature vector can be defined as the

feature of image pixels outlined in the states 𝑠. As shown in

Figure 6, the image pixels of the states of the environment

are the input of the convolution layer, and its output is a

feature vector for every state. To better understand, Figure 7

presents an example of a feature vector arrangement for the

current state s56 and next states s’={s57, s47, s46, s45, s55, s65,

s66,s67}. Since every action from the current state leads to a

different state, an action can be predicted by knowing the

current and next states. For this purpose, the Q-value is

approximated by the linear combination of features of the

current and next states as

Q(s, a)=W1 F(s)+W2F(s')+b=[W1

W2] [
F(s)

F(s')
]+b=Wϕ(s, a)+b. Where, ϕ(s, a)= [

F(s)

F(s')
] is

called feature vector of state-action pair (s, a). After

providing the feature vectors, the DQN algorithm is

implemented by referring to [3]. The schematic of the

interconnection between the DQN, system, and environment

is shown in Figure 8.

.

Figure 4. Interconnection between the reinforcement learning(QL), system, and value function

Figure 5. Uncertainty measures for all the states of the environment

Journal of Computer and Knowledge Engineering, Vol.3, No.1.2020. 31

Figure 6. The proposed Convolutional Neural Network (CNN)

Figure 7. Feature vector arrangement for current state s and next states s’

Figure 8. The reinforcement learning (RL), system, value function, and

deep learning (DL) in the proposed method

5. Simulation and results
In the first phase, the mentioned learning methods (Q-

learning, SARSA, and DQN) were implemented on the path

planning task in the environment simulated in MATLAB.

The program is run in 10000 Episodes(iterations) and 200

maximum step (MaxStep) with a learning rate of α=0.5 for

Q-learning and SARSA, and η=
η0

1+
Episode

MaxEpisodes

, η
0
=0.02 for

DQN, a discount factor of γ=0.9, and ε =0.3 for the ɛ -greedy

approach. In the second phase, the new proposed method is

implemented in the mentioned learning method. The

Convolutional Neural Network (CNN), described in section

4.5, is used with 7 layers including 3 Convolution-Batch

Normalization-Relu layers arranged with each other, 1 fully

connected layer for creating the feature vector as Conv1-

BN1-Relu1--Conv2-BN2-Relu2--Conv3-BN3-Relu3--fc4,

and 2 fully connected and 2 Relu layers for building the

neural network as fc5-Relu5--fc6-Relu6--fc7. Figure 9

shows the averages of rewards, steps, time steps, and errors

obtained from implementing the old and newly proposed

methods. Excluding the average of time steps, the

performance of new method has improved in terms of other

factors. By implementing the newly proposed method, the

number of steps per episode, and the learning error have

decreased, and the average reward has increased. These are

the advantages of the new methods, but the run time of

learning in the new methods is longer than the old methods,

which is a disadvantage of our new methods.

32 Nematollah Ab Azar et. al.: Uncertainty-aware Path Planning using …

Figure 9. Comparison of learning methods on Averages of Rewards, Steps, Steps time, and Error.

Figure 10. Left: the everage of rewards, target, and predicted Q-values for the new methods (i.e., POQL, POSARSA, PODQN) and the

old methods (i.e., QL, SARSA, DQN). Right: Averages of Path length, angles and optimal rates for both new and old methods.

Journal of Computer and Knowledge Engineering, Vol.3, No.1.2020. 33

Figure 11. Compairison the proposed method with new method for path plaing by starting from several scenarios

In Figure 10, the image on the left shows that the average

rewards, target, and predicted Q values converge in

descending order, resulting in a steadily decreasing learning

error. The new methods (POQL, POSARSA, PODQN) have

received fewer negative rewards rather than the old methods

(QL, SARSA, DQN). In other words, the negative zone is

narrower than for the new methods compared to old

methods. Moreover, in the right image, the averages of path

length and the averages of the sum of path angles for the new

methods are less than that of the old methods.

Figure 11 shows the test results of four initial states (start

points) s128,s331,s242,s644, and the predefined goal states

(plate shape remarked by green color). As shown in all tests,

the path length obtained by the new methods (POQL,

POSARSA, and PODQN) is shorter or equal to that of the

old methods (QL, SARSA, and DQN). It means that the path

optimality of the new method is more than the old methods.

 Figure 12 shows the average of the sum of uncertainty

measures for all the states of every path in the iterations. The

results indicate that the uncertainty is gradually decreasing

by increasing the iterations for all methods. Besides, the

newly proposed method minimizes the path uncertainty

much better than the old methods.

Journal of Computer and Knowledge Engineering, Vol. 3, No. 1, 2020.(25-37) 34

DOI: 10.22067/cke.2020.39287

Figure 12. The average of the sum of uncertainties for every path obtained in the iterations

6. Discussion
While implementing RL and DQN and the new method, one

may encounter some challenges, including data availability,

dimensionality, visual perception by feature extraction,

learning stability, and butterfly effects. Regarding data

availability, learning problems need massive datasets for

training. Fortunately, the required data can be provided for

the path planning problem. One can obtain this data from the

real environment and events in our daily life, from the

personal houses to roads and highways, and by taking

pictures and videos. Dimensionality is the most critical

challenge because, as mentioned above, learning problems

are valid by using massive datasets. However, to solve this

problem, one needs to use a well-equipped computer with

high CPU and GPU performance. Although we need to run

the program for a few hours or days in many cases of deep

learning, in this study, we apply some assumptions and

provisions to reduce dimensionality. For example, by

selecting images just from states required for evaluation in a

specific state, the computations are decreased. Moreover,

using toolboxes may increase the run time. So, one can code

the required algorithm by himself to remove the irrelevant

scripts and functions.

Visual perception and feature extraction are other issues

in deep learning. Selecting appropriate features plays a

crucial role in the perception of the environment. In the this

study, we needed to approximate Q-values using image

features. Finding the proper features requires examining the

inputs by changing CNN, layers, parameters, and

hyperparameters. Moreover, overfitting data is hazardous

when the number of parameters dramatically exceeds the

number of independent observations. One can use

regularization, normalization, and limitation on learning

weights and required parameters to avoid such problems.

Finally, the learning process is strongly sensitive to the

butterfly effects as small variations in the input data might

lead to extremely different results and thus learning

instability. For example, selecting image features and also

the learning rate is essential for deep learning. As a piece of

good news, learning results are achieved by averaging the

outputs in a long time or significant steps, and it can reduce

the effect of small local disturbances in the whole process.

However, for stochastic gradient descent algorithms such as

DQN, the inputs and parameters must be selected reliably. In

this way, it might be needed to monitor outputs changes after

selecting or changing the inputs to find the best parameters

by trial and error if necessary.

7. Conclusion and future works
In this paper, a new method was proposed to improve the

learning algorithms, including Q-learning, SARSA, and

DQN, for path planning tasks to minimize the path length

and uncertainty. The results illustrate that the new method

can improve path planning optimality at least 21%, 21.5 %,

and 5-8% for POQL, POSARSA, and PODQN compared to

QL, SARSA, and DQN, respectively. Moreover, the

challenges of applying the new method were discussed. In

future studies, this method can be applied to other

benchmarks in reinforcement learning and deep learning

methods and problems such as highway and traffic issues.

References

[1] M.Samadi and M. F. Othman, “Global path planning for

autonomous mobile robot using genetic algorithm”, In

Signal-Image Technology & Internet-Based Systems

(SITIS), 2013 International Conference on “, pp. 726-

730, IEEE, 2013.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I.

Antonoglou, D. Wierstra, and M. Riedmiller, “Playing

Journal of Computer and Knowledge Engineering, Vol.3, No.1.2020. 35

atari with deep reinforcement learning”, arXiv preprint

arXiv:1312.5602, 2013.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J.

Veness, M. G. Bellemare, andS. Petersen, “Human-

level control through deep reinforcement learning”,

Nature, 518(7540), 529, 2015.

[4] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap,

T. Harley, and K. Kavukcuoglu, “Asynchronous

methods for deep reinforcement learning”, In

International Conference on Machine Learning, pp.

1928-1937, 2016.

[5] H. Van Hasselt, A. Guez, A., and D. Silver, “Deep

reinforcement learning with double q-learning”, In

Thirtieth AAAI Conference on Artificial Intelligence,

22016.

[6] M. Wulfmeier, D. Rao, D. Z. Wang, P. Ondruska, and I.

Posner, I. “Large-scale cost function learning for path

planning using deep inverse reinforcement learning”,

The International Journal of Robotics Research,

3936(10), 1073-1087, 2017.

[7] J. Xin, H. Zhao, D. Liu, and M. Li, “Application of deep

reinforcement learning in mobile robot path planning”,

In 2017 Chinese Automation Congress (CAC), pp. 7112-

7116, IEEE, 2017.

[8] Y. F. Chen, M. Everett, M. Liu, and J.P. How, “Socially

aware motion planning with deep reinforcement

learning”, arXiv preprint arXiv:1703.08862, 2017.

[9] U. Challita, W. Saad, and C. Bettstetter, “Deep

reinforcement learning for interference-aware path

planning of cellular-connected UAVs”, In Proc. of

International Conference on Communications (ICC),

Kansas 20 City, MO, USA, 2018.

[10] Y.H. Kim, J. I. Jang, and S. Yun,” End-to-end deep

learning for autonomous navigation of mobile robot”, In

Consumer Electronics (ICCE), 2018 IEEE International

Conference on, pp. 1-6, IEEE, 2018.

[11] A. I. Panov, K. S. Yakovlev, R. Suvorov, “Grid path

planning with deep reinforcement learning: Preliminary

results”, Procedia computer science, 123, 347-353.

2018.

[12] M. Pfeiffer, S. Shukla, M. Turchetta, C. Cadena, A.

Krause, R. Siegwart, J. Nieto, “Reinforced Imitation:

Sample Efficient Deep Reinforcement Learning for

Mapless Navigation by Leveraging Prior

Demonstrations”, IEEE Robotics and Automation

Letters, 3(4), 4423-4430, 2018.

[13] S. Zhou, X. Liu, Y. Xu, J. Guo, “A Deep Q-network

(DQN) Based Path Planning Method for Mobile

Robots”, In 2018 IEEE International Conference on

Information and Automation (ICIA), pp. 366-371, IEEE,

2018.

[14] L. Lv, S. Zhang, D. Ding, Y. Wang, “Path planning via

an improved DQN-based learning policy”, IEEE Access,

7, 67319-67330, 2019.

[15] G. Kahn, A. Villaflor, V. Pong, P. Abbeel, S. Levine,

“Uncertainty-aware reinforcement learning for collision

avoidance”, arXiv preprint arXiv:1702.01182, 2017.

[16] F. L. Da Silva, P. Hernandez-Leal, B. Kartal, and M. E.

Taylor, “Uncertainty-Aware Action Advising for Deep

Reinforcement Learning Agents”, Proceedings of the

AAAI Conference on Artificial Intelligence, 34(04),

5792-5799, 2020.

[17] R. S. Sutton, and A.G. Barto, “Introduction to

reinforcement learning, Vol. 135, Cambridge: MIT

press, 1998.

[18] M. W. Otte, “A survey of machine learning approaches

to robotic path-planning”, University of Colorado at

Boulder, Boulder, 2015.

[19] X. Lei, Z. Zhang, and P. Dong, “Dynamic path planning

of unknown environment based on deep reinforcement

learning”, Journal of Robotics, 2018.

[20] T. Blum, W. Jones, and K. Yoshida, “Deep Learned

Path Planning via Randomized Reward-Linked-Goals

and Potential Space Applications”, arXiv preprint

arXiv:1909.06034, 2019.

[21] S. Lange, M. Riedmiller, and A. Voigtländer,

“Autonomous reinforcement learning on raw visual

input data in a real world application”, In The 2012

international joint conference on neural networks

(IJCNN), pp. 1-8, IEEE, 2012.

[22] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement

learning in robotics: A survey”, The International

Journal of Robotics Research, 32(11), 1238-1274, 2013.

 [23] P. Abbeel, and A.Y. Ng, “Apprenticeship learning via

inverse reinforcement learning”, In Proceedings of the

twenty-first international conference on Machine

learning, p. 1, 2004.

36 Nematollah Ab Azar et. al.: Uncertainty-aware Path Planning using …

