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Abstract: In recent years, several algorithms with different 

time complexities have been proposed for the construction 

of greedy spanners. However, a not so apparently suitable 

algorithm with running time complexity 𝑂(𝑛3 log 𝑛), 

namely the FG algorithm, is proved to be practically the 

fastest algorithm known for this task. One of the common 

bottlenecks in the greedy spanner construction algorithms is 

their use of the shortest path search operation (usually using 

Dijkstra’s algorithm). In this paper, we propose some 

improvements to the FG algorithm in order to reduce the 

imposed costs of the shortest path search operation, and 

therefore to reduce the time required for the construction of 

greedy spanners. In the first improvement, we reduce the 

number of this operation calls and in the second one, we 

reduce the cost of each run of the operation. Experimental 

results show these improvements are able to significantly 

accelerate the construction of greedy spanners, compared to 

the other existing algorithms, especially when the stretch 

factor gets close to 1. 
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1. Introduction 

In most applications, designing a suitable network requires a 

short path between each pair of the network vertices. The 

simple idea to meet this requirement is to have a direct link 

between each pair of vertices, which transforms the network 

into a complete graph. A low-cost alternative for this 

requirement is spanner graphs. The spanners are some 

subgraphs of the complete graph that, despite having fewer 

edges than the complete graph, ensure that there is a short 

path for each vertex pair in the graph. The spanner graphs are 

introduced by Plug and Schaffer [1] in the context of 

distributed computing, and independently by Chew [2] in the 

geometric context. 

 In this paper, we focus on the geometric spanner graphs 

whose formal definition is as follows: Suppose a set 𝑉 of n 

points on the plane and a real number 𝑡 > 1. Let 𝐺 = (𝑉, 𝐸) 

be a weighted graph such that the weight of each edge 𝑒 =
(𝑢, 𝑣) ∈ 𝐸 is equal to the Euclidean distance between points 

𝑢, 𝑣 (e.g., |𝑢𝑣|). Graph 𝐺 is called a geometric 𝑡-spanner on 

𝑉 if for each pair of points 𝑢, 𝑣 ∈ 𝑉 there exists a path 

between 𝑢 and 𝑣 in 𝐺 whose weight is at most 𝑡|𝑢𝑣|. This 

path is called a 𝑡-spanner path (or 𝑡-path for short) between 

𝑢 and 𝑣. The minimum value of 𝑡 such that 𝐺 is a 𝑡-spanner 

for 𝑉 is called the stretch factor of 𝐺. 

 Since the introduction of spanner graphs, their efficient 

construction has been of interest to researchers. To date, 

several algorithms have been proposed to efficiently 

construct spanner graphs. These algorithms differ with 
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respect to the quality of the resulted spanners (size, weight, 

maximum degree, etc.) or the features of the construction 

method (time and space complexity, ease of construction). 

 Althöfer et al. [3] proposed a greedy algorithm, named 

Path-greedy, for the construction of spanner graphs whose 

time and space complexity was 𝑂(𝑛3 log 𝑛) and 𝑂(𝑛2), 
respectively. The spanner constructed by Path-greedy 

algorithm, called the greedy spanner, has 𝑂(𝑛) edges, 

maximum degree 𝑂(1), and total weight 𝑂(𝑤𝑡(𝑀𝑆𝑇(𝑉))), 

where 𝑤𝑡(𝑀𝑆𝑇(𝑉)) is the weight of a minimum spanning 

tree of 𝑉. Although other types of spanners have also been 

suggested that can be constructed in 𝑂(𝑛 log 𝑛) time, 

empirical experiments [4] have shown that greedy spanners 

have higher quality than other types of spanner graphs. 

 This motivates the researchers to increase the effectiveness 

of Path-greedy algorithm [4, 5, 6, 7, 8, 9, 10, 11]. The aim of 

most efforts has been improving the time complexity, 

resulting in 𝑂(𝑛2 log 𝑛) algorithms [4, 5, 6], and more 

recently an algorithm [9] with 𝑂(𝑛 𝑙𝑜𝑔2𝑛 𝑙𝑜𝑔2𝑙𝑜𝑔 𝑛) 

average time complexity on points with uniform distribution. 

 Another set of attempts has been made to reduce the space 

complexity, resulting in linear space complexity algorithms 

with time complexity 𝑂(𝑛2 log 𝑛2) [7] and recently 

𝑂(𝑛 𝑙𝑜𝑔2𝑛 𝑙𝑜𝑔2𝑙𝑜𝑔 𝑛) [9], again in average for the set of 

points with uniform distribution. 

1.1. Our contribution 

Searching for the shortest path, using the Dijkstra’s 

algorithm [11], is the most expensive part of the greedy 

spanner construction algorithms, so the main strategy of 

these algorithms for improving the greedy spanner 

construction process is limiting the number of times this 

operation is required to be invoked. 

 In this paper, we also follow this strategy by introducing 

some changes to the FG algorithm [4] that is one of the most 

cited algorithms for the construction of greedy spanner 

graphs. The changes offer low-cost alternatives for the role 

that is played by the Dijkstra’s algorithm in the greedy 

spanner construction algorithms, that is, determining the 

presence or absence of a 𝑡-path between pair of points 

studied. To this end, the proposed improvements use some 

local information that is maintained by FG algorithm to 

estimate the presence or absence of a 𝑡-path between pair of 

points before invoking the Dijkstra’s algorithm. In addition, 

we propose some changes to the Dijkstra’s algorithm to 

avoid unnecessary actions and, therefore, reduce the cost of 

each execution of the operation. 

 Although these improvements do not change the time 

complexity of the FG algorithm, the results of experiments 

showed its effectiveness in constructing greedy spanners, 

especially when the stretch factor gets close to 1. 
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 The paper is organized as follows. In Section 0 we briefly 

describe some of the existing algorithms for constructing 

greedy spanners. In Section 0 we present and discuss our 

proposed improvements. Section 0 deals with the 

experiments that are done and the results achieved. Finally, 

Section 0 concludes the paper. 

 

2. Greedy spanner construction algorithms 

In almost all greedy spanner construction algorithms, 

construction process starts with an empty spanner graph 𝐺 =
(𝑉, ∅), and then the edges are added to partial spanner graph 

incrementally. Some greedy spanner construction algorithms 

[3, 4, 5, 6] process pairs of points in ascending order of their 

distances; so these algorithms start with sorting the pairs with 

respect to their distances. 

 In Path-greedy algorithm [3], processing of a pair of points 

(𝑢, 𝑣) involves invoking Dijkstra’s algorithm to determine 

the length of the shortest path between 𝑢 𝑎𝑛𝑑 𝑣 in the current 

spanner. If the length is greater than 𝑡|𝑢𝑣|, then the edge 

(𝑢, 𝑣) is added to the spanner. 

 FG algorithm [4] acts like Path-greedy algorithm except 

that after invoking Dijkstra’s algorithm, the achieved 

distances between point pairs are kept in a distance matrix. 

These distances are used for determining the existence of 𝑡-

paths between next pairs of points before invoking the 

Dijkstra’s algorithm. 

 Bose et al. [5] showed FG algorithm has 𝜃(𝑛3 log 𝑛) time 

complexity in the worst case. They presented an algorithm 

that we call BCFMS, whose time complexity is 𝑂(𝑛2 log 𝑛). 

In BCFMS algorithm, the objective is to keep the distance 

matrix values consistent with the current structure of the 

spanner. In this algorithm, the pairs of points are first divided 

into some buckets so that the size of the largest element in a 

bucket is at most 2 times the smallest element, and then the 

buckets are processed in the order of their sizes. At the 

beginning of the process of each bucket, the distance matrix 

is updated. During the process of a bucket, if one edge is 

added to the spanner, Dijkstra’s algorithm is called from the 

points that are within a certain distance from the endpoints 

of the added edge to update their distance to other points. 

 Farshi and Hekmat Nasab [12] compared the time 

complexity of algorithms “Path-greedy”, “FG”, and 

“BCFMS” from a practical point of view.  

 Bar-on and Carmi [6] introduced an algorithm called 𝛿-

Greedy with 𝑂(𝑛2 log 𝑛) time complexity, where each point 

holds a set of cones. The characteristic of the cones of a point 

𝑝 is that if a point 𝑞 lies in a cone, there is a 𝑡-path between 

𝑝 and 𝑞. Accordingly, the processing of a point pair begins 

by first examining if each point lies in the cone of the other 

one. If this is not the case, Dijkstra’s algorithm is called to 

find the shortest path between them. 

 Some algorithms are presented that allow the construction 

of greedy spanners with linear space [7, 8, 9, 10]. These 

algorithms use some methods to partition (𝑛
2
) pairs of points 

to 𝑂(𝑛) partitions of points. The resulting partitions are then 

processed to construct the greedy spanner. Bakhshesh and 

Farshi [10] used cones for partitioning and provided a linear 

space algorithm with 𝑂(𝑛3𝑙𝑜𝑔2𝑛) time complexity. It should 

be noted that we do not consider their proposed algorithm in 

our experiments. 

 Alewijnse et al. [7] used Well Separated Pair 

Decomposition (WSPD) to partition the pair of points. They 

showed that the time complexity of their algorithm, we call 

WSPD, is 𝑂(𝑛2𝑙𝑜𝑔2𝑛). Bouts et al. [8] proposed another 

partitioning method and showed that their proposed 

algorithm, named Lazy-greedy, reduces the memory 

requirement of the WSPD algorithm by a factor of 𝑂(1/(𝑡 −
1)). By introducing and applying the greedy spanner 

algorithms framework, they also showed that Lazy-greedy 

has a time complexity of 𝑂(𝑛2 log 𝑛 log𝛷), where 𝛷 is a 

function of the distribution of points. 

 Bouts et al. [9] presented a three-step algorithm that has 

average time complexity 𝑂(𝑛 𝑙𝑜𝑔2𝑛 𝑙𝑜𝑔2𝑙𝑜𝑔 𝑛) for a set of 

points that are distributed uniformly. Considering the fact 

that in the greedy spanners, most of edges are small, their 

proposed algorithm, named Bucket, in the first step only 

processes close pairs of points to identify small edges with a 

method similar to FG algorithm. In the second step, the 

remaining pairs of points are partitioned. The authors 

showed that most of obtained partitioned can be bypass using 

evidence obtained from edges added in the first step. Finally, 

the algorithm processes the remaining partitions using the 

WSPD algorithm to identify possible large edges. 
 

3. Proposed improvements 

3.1. Reducing the number of shortest path search operation 

calls 

Determining the existence of a 𝑡-path between two given 

points 𝑝 and 𝑞 by searching for the shortest path between 

them imposes a high cost. In this section we describe two 

low-cost alternatives that estimate the presence/absence of a 

𝑡-path between 𝑝 and 𝑞 using some local information. In the 

following sections, we use 𝑁(𝑝) as the set of neighbors of 𝑝 

in 𝐺, that is, 𝑁(𝑝) = {𝑞|𝑞 ∈ 𝑉, (𝑝, 𝑞) ∈ 𝐸}. Also 𝑤(𝑝, 𝑞) 

indicates the corresponding element of pair 𝑝, 𝑞 in the 

distance matrix. 

3.1.1. Estimating the presence of a 𝒕-path 

We apply and extend the idea of FG algorithm to estimate 

the distance between vertices using the distance matrix, 

before invoking the Dijkstra’s algorithm. For this purpose, 

when the pair (𝑝, 𝑞) is to be processed, in addition to 

examining their corresponding element in the distance 

matrix, e.g., 𝑤(𝑝, 𝑞), for all vertices 𝑟 ∈ 𝑁(𝑝), the existence 

of a 𝑡-path between 𝑝 and 𝑞 using 𝑟 is examined. 

 Suppose that 𝑟 is a neighbor of 𝑝. We know that an upper 

bound for the length of the path between 𝑝   𝑎𝑛𝑑 𝑞 that 

passes through 𝑟 is |𝑝𝑟| + 𝑡|𝑟𝑞|. Clearly if this value is at 

most 𝑡|𝑝𝑞|, we have already a 𝑡-path between 𝑝 𝑎𝑛𝑑  𝑞. 

However, it could be the case that the value of 𝑤(𝑟, 𝑞) is 

much less than 𝑡|𝑟𝑞|, so, in our modified FG algorithm, 

referred to as IFGBN1, we use the most recent value of 

𝑤(𝑟, 𝑞) to estimate the distance between 𝑟 and 𝑞. 

 The following lemma, which is a modified version of 

Lemma 1 in [6], gives a sufficient condition for the existence 

of a 𝑡-path. 

Lemma 1. Let 𝑡 and 𝜃 be real numbers, such that 𝑡 ≥ 1 and 

0 ≤ 𝜃 ≤
𝜋

4
. Let 𝑝, 𝑞, and 𝑟 be points in the plane and 𝑟 ∈

𝑁(𝑝), such that: 

1. |𝑝𝑟| ≤ |𝑝𝑞|, 

2. 
1

(𝑐𝑜𝑠𝜃−𝑠𝑖𝑛𝜃)
≤ 𝑡, where 𝜃 is the angle ∠𝑟𝑝𝑞, in other words 

∠𝑟𝑝𝑞 =  𝜃 ≤
𝜋

4
− 𝑎𝑟𝑐𝑠𝑖𝑛 (

1

𝑡√2
) 
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Then |𝑝𝑟| + 𝑡|𝑟𝑞| ≤ 𝑡|𝑝𝑞|. 
Proof. Let 𝑟’ be the orthogonal projection of 𝑟 onto segment 

𝑝𝑞 (see Figure 1). Then |𝑟𝑟’| = |𝑝𝑟| sin 𝜃, |𝑝𝑟’| =
|𝑝𝑟| cos 𝜃 , and |𝑟’𝑞| = |𝑝𝑞| − |𝑝𝑟’|.  
Thus 
 

|𝑟’𝑞| = |𝑝𝑞| − |𝑝𝑟| cos 𝜃       (1) 
 

By triangle inequality 
 

|𝑟𝑞| ≤ |𝑟𝑟’| + |𝑟’𝑞| ≤ |𝑝𝑟|𝑠𝑖𝑛𝜃 + |𝑝𝑞| − |𝑝𝑟| 𝑐𝑜𝑠𝜃 

       = |𝑝𝑞| − |𝑝𝑟|(𝑐𝑜𝑠𝜃 − 𝑠𝑖𝑛𝜃). 
(2) 

 

We have, 

|𝑝𝑟| + 𝑡|𝑟𝑞| ≤ |𝑝𝑟| + 𝑡(|𝑝𝑞| − |𝑝𝑟|(𝑐𝑜𝑠𝜃 − 𝑠𝑖𝑛𝜃) 

      = 𝑡|𝑝𝑞| − |𝑝𝑟|(𝑡(𝑐𝑜𝑠𝜃 − 𝑠𝑖𝑛𝜃) − 1) ≤  𝑡|𝑝𝑞|. 
(3) 

 Lemma 1 states that for every neighbor 𝑟 of 𝑝, there exists 

a cone with 𝑝 as the apex and ray 𝑝𝑟⃗⃗⃗⃗  as the bisector, such that 

for each point 𝑞 inside the cone, there is a 𝑡-path from 𝑝 to 𝑞 

(see  

Figure 2). The thickness of the cone depends on the value of 

the stretch factor, i.e., the apex angle of the cone decreases 

as the stretch factor 𝑡 gets close to 1. We call this apex the 

clear apex. 

 

 
 

Figure 1. Illustration of Lemma 1 

 

 
 

Figure 2. Demonstration of a clear apex 

 

 Note that we can interpret Lemma 1 in another way. 

Consider the moment that the pair (𝑝, 𝑞) is to processed. We 

have a cone with 𝑝 (or 𝑞) as its apex, apex angle equals to 
𝜋

4
− 𝑎𝑟𝑐𝑠𝑖𝑛 (

1

𝑡√2
) and 𝑝𝑞 as its bisector. If the apex has a 

neighbor 𝑟 that lies in this cone, the lemma assures that there 

exists a 𝑡-path between 𝑝 and 𝑞.  

 Lemma 1 uses the worst-case value of 𝑡|𝑟𝑞| as the distance 

between 𝑟 and 𝑞, however as stated above, it could be the 

case that the value of 𝑤(𝑟, 𝑞) is much less than 𝑡|𝑟𝑞|, so 

ignoring neighbors of 𝑝 (resp. 𝑞), whose clear apex does not 

contain 𝑞 (resp. 𝑝), may cause losing some potential 𝑡-paths. 

As a result, IFGBN1 investigates all neighbors of 𝑝 (resp. 𝑞). 

3.1.2. Estimating the absence of a 𝒕-path 

In this section we show how it is possible to definitely 

estimate the absence of a 𝑡-path between two points. Before 

describing the method, we have to define an obligated pair. 

We call (𝑝, 𝑞) an obligated pair if for every path 𝜋 between 

𝑝 and 𝑞 there exists at least one point in 𝜋 such that it lies 

outside the closed ellipse with the focal points 𝑝 and 𝑞, and 

eccentricity 1/𝑡, that is the ellipse defined as: 

𝑒𝑝𝑞 = {𝑟 ∈ ℝ2| |𝑝𝑟| + |𝑟𝑞| ≤ 𝑡|𝑝𝑞|}    (4) 

 

 Our definition of obligated pair is a generalization of the 

concept mandatory pair provided by Bouts et al. [9]. Note 

that the set of mandatory pairs is a subset of the set of 

obligated pairs. In other words, each mandatory pair is an 

obligated pair, but the opposite is not necessarily true. 

Lemma 2. Given an obligated pair (𝑝, 𝑞), for any 𝑡-spanner 

𝐺, (𝑝, 𝑞) ∈ 𝐸(𝐺). 

Proof. Assume, for the sake of contradiction, that there 

exists a 𝑡-spanner 𝐺 such that (𝑝, 𝑞) ∉ 𝐸(𝐺). It means there 

exists a path ⟨𝑝, 𝑟1, 𝑟2, . . . , 𝑟𝑘 , 𝑞⟩ between 𝑝 and 𝑞 in 𝐺 whose 

length is at most 𝑡|𝑝𝑞|. Because of the definition of obligated 

pairs, there exists a point 𝑟𝑗, 1 ≤ 𝑗 ≤ 𝑘 in this path such that 

𝑟𝑗 does not lie in ellipse 𝑒𝑝𝑞. In other words. 

 

|𝑝𝑟𝑗| + |𝑟𝑗𝑞| > 𝑡|𝑝𝑞|        (5) 

 

 We can bound the length of the path as follows: 

 

|⟨𝑝, 𝑟1, . . . , 𝑟𝑘, 𝑞⟩|  =  |⟨𝑝, 𝑟1, . . . , 𝑟𝑗⟩|  +  |⟨𝑟𝑗 , . . . , 𝑞⟩|            (6) 

 

≥ |𝑝𝑟𝑗| + |𝑟𝑗𝑞|                                                                   (7) 

 

>  𝑡|𝑝𝑞|                                                                              (8) 

 

 which contradicts the assumption that the path is a 𝑡-path. 

Equation Error! Reference source not found.7 follows the 

triangle inequality, and Equation 8 by applying Equation 5. 

 Using Lemma 2, when processing an obligated pair (𝑝, 𝑞), 

we just need to add edge (𝑝, 𝑞) to the spanner, without 

searching for the shortest path between them. But testing 

whether a given pair (𝑝, 𝑞) is obligated is rather time-

consuming. We here use a simple method to find some 

obligated pairs quickly. 

 We denote the set of neighbors of 𝑝 that lie in 𝑒𝑝𝑞 as 

𝐸𝐿𝑁(𝑝, 𝑞). When processing (𝑝, 𝑞), if either of 𝐸𝐿𝑁(𝑝, 𝑞) 

or 𝐸𝐿𝑁(𝑞, 𝑝) is empty, then (𝑝, 𝑞) is obligated. Now suppose 

that 𝐸𝐿𝑁(𝑝, 𝑞) and 𝐸𝐿𝑁(𝑞, 𝑝) are not empty. If there exists 

a 𝑡-path between 𝑝 and 𝑞 such as 𝜋 = ⟨𝑝, 𝑟1,· · · , 𝑟𝑘 , 𝑞⟩, the 

points 𝑟1 and 𝑟𝑘 will be members of 𝐸𝐿𝑁(𝑝, 𝑞) and 

𝐸𝐿𝑁(𝑞, 𝑝), respectively. Because of the triangle inequality, 

the length of ⟨𝑝, 𝑟1, 𝑟𝑘 , 𝑞⟩ is an upper bound for the length of 

𝜋. Therefore, we consider lengths of all paths like 

⟨𝑝, 𝑟𝑖 , 𝑟𝑗 , 𝑞⟩, where 𝑟𝑖 ∈ 𝐸𝐿𝑁(𝑝, 𝑞) and 𝑟𝑗 ∈ 𝐸𝐿𝑁(𝑞, 𝑝), and 

if for all of them the spanning condition does not hold, we 

conclude that (𝑝, 𝑞) is an obligated pair. 

 We modify the original FG algorithm so that it uses this 

method before performing the shortest path search operation. 

The modified algorithm, referred to as IFGBN2, will add the 

edge (𝑝, 𝑞) to the spanner if the aforementioned method 

shows the infeasibility of having a 𝑡-path between 𝑝 and 𝑞. 

 Algorithm 1 shows the final algorithm (IFGBN) after 

applying the two proposed modifications to the original FG 

algorithm. In the new algorithm, lines 10-14 apply IFGBN1 

and lines 15-21 apply IFGBN2. 
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Algorithm 1. IFGBN 
 

Input: A set P of points in the plane and a real number t 

Output: A Greedy t-spanner for P 

1: sort the (𝑛
2
) pairs of distinct points in non-decreasing order 

of their distances and store them in list L; 

2: 𝐸 ←  ∅ 
3: 𝐺 ←  (𝑃, 𝐸) 
4: 𝑤(𝑝, 𝑞) ← ∞ ∀𝑝, 𝑞 ∈ 𝑃 

5: 𝑤(𝑝, 𝑝) ← 0 ∀𝑝 ∈ 𝑃 

6: foreach (𝑝, 𝑞)  ∈  𝐿 (𝑖𝑛 𝑠𝑜𝑟𝑡𝑒𝑑 𝑜𝑟𝑑𝑒𝑟) do  
7:               𝑖𝑓 𝑤(𝑝, 𝑞) ≤  𝑡|𝑝𝑞|𝑡ℎ𝑒𝑛 
8:                     𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 
9:               𝑒𝑛𝑑 

10:             𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ← 𝑚𝑖𝑛({|𝑝𝑟| + 𝑤(𝑟, 𝑞) | 𝑟 ∈
𝑁(𝑝)} ∪ {|𝑞𝑟| + 𝑤(𝑟, 𝑝) | 𝑟 ∈ 𝑁(𝑞)}) 
11:             𝑤(𝑝, 𝑞) ← 𝑚𝑖𝑛(𝑤(𝑝, 𝑞), 𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟) 

12:             𝑖𝑓 𝑤(𝑝, 𝑞) ≤ 𝑡|𝑝𝑞| 𝑡ℎ𝑒𝑛 

13:                       𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 
14:             𝑒𝑛𝑑 

15:             𝐸𝐿𝑁(𝑝, 𝑞) ← 𝑁(𝑝) ∩ 𝑒𝑝𝑞  

16:             𝐸𝐿𝑁(𝑞, 𝑝) ← 𝑁(𝑞) ∩ 𝑒𝑝𝑞  

17:               𝑖𝑓 ∀𝑟𝑖 ∈ 𝐸𝐿𝑁(𝑝, 𝑞), 𝑟𝑗 ∈ 𝐸𝐿𝑁(𝑞, 𝑝), | <

𝑝, 𝑟𝑖 , 𝑟𝑗 , 𝑞 > |  >  𝑡|𝑝𝑞| 𝑡ℎ𝑒𝑛 

18:                         𝐸 ← 𝐸 ∪ {(𝑝, 𝑞)} 
19:                        𝑤(𝑝, 𝑞) ← |𝑝𝑞| 
20:                        𝑤(𝑞, 𝑝) ← |𝑝𝑞| 
21:             𝑒𝑛𝑑 

22:             𝑒𝑙𝑠𝑒 

23:                      

𝑝𝑒𝑟𝑓𝑜𝑟𝑚 𝑎𝑛 𝑆𝑆𝑆𝑃 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝐺 𝑤𝑖𝑡ℎ 𝑠𝑜𝑢𝑟𝑐𝑒 𝑝 

24:                     𝑓𝑜𝑟𝑒𝑎𝑐ℎ 𝑣 ∈  𝑃 𝑑𝑜 

25:                                𝑢𝑝𝑑𝑎𝑡𝑒 𝑤(𝑝, 𝑣) 𝑎𝑛𝑑 𝑤(𝑣, 𝑝) 

26:                    𝑒𝑛𝑑 

27:                    𝑖𝑓 𝑤(𝑝, 𝑞) > 𝑡|𝑝𝑞| 𝑡ℎ𝑒𝑛 

28:                                 𝐸 ←  𝐸 ∪ {(𝑝, 𝑞)} 
29:                                 𝑤(𝑝, 𝑞) ← |𝑝𝑞| 
30:                                 𝑤(𝑞, 𝑝) ← |𝑝𝑞| 
31:                   𝑒𝑛𝑑 

32:            𝑒𝑛𝑑 

33:   𝑒𝑛𝑑 
34:  𝑟𝑒𝑡𝑢𝑟𝑛 𝐺  

 

3.2. Reducing Dijkstra’s algorithm cost 

In the original FG algorithm, when searching for the shortest 

path from a point (using Dijkstra’s algorithm), shortest paths 

are computed to all other points of the graph, and then the 

obtained distances are stored in the distance matrix. These 

costs are paid in the hope that, when a pair (𝑝, 𝑞) is to be 

processed later, the stored values proof the existence of a 𝑡-

path and so avoid the need for invoking Dijkstra’s algorithm. 

 However, if the obtained shortest path did not have 𝑡-path 

condition, the paid costs are wasted, because it is required to 

run Dijkstra’s algorithm once again. To avoid these extra 

costs, we propose a change to Dijkstra’s algorithm. Before 

describing this change, consider the following lemma. 

Lemma 3. Let 𝜋 =  ⟨𝑝, 𝑟1, 𝑟2, . . . , 𝑟𝑘 , 𝑞⟩ be a 𝑡-path between 

pair 𝑝 and 𝑞. For all 𝑖 = 1 . . . 𝑘, there exist a 𝑡-path between 

𝑝 and 𝑟𝑖. 
Proof. For each 𝑟𝑖 ∈ 𝜋, we have one of the following two 

cases: 
 

1. |𝑝𝑞|  >  |𝑝𝑟𝑖| 
2. |𝑝𝑞|  ≤  |𝑝𝑟𝑖| 
 

 In the case (𝑖), prior to processing (𝑝, 𝑞), the pair (𝑝, 𝑟𝑖) 

has been processed and therefore there is a 𝑡-path between 

them. 

 For the case (𝑖𝑖), let 𝑑(𝑝, 𝑟𝑖) and 𝑑(𝑝, 𝑞) denote the 

distance from 𝑝 to 𝑟𝑖 and 𝑞 in 𝜋, respectively. We know: 
 

𝑑(𝑝, 𝑟𝑖) ≤ 𝑑(𝑝, 𝑞) 
              ≤ 𝑡|𝑝𝑞| 
              ≤ 𝑡|𝑝𝑟𝑖| 

(9) 

 Lemma 3 states that if a 𝑡-path exists between 𝑝 and 𝑞, 

which passes through a point 𝑟, then there will also be a 𝑡-

path between 𝑝 and 𝑟. In other words, if Dijkstra’s algorithm 

from 𝑝 reaches a point 𝑟, and the resulting path is not a 𝑡-

path, then 𝑟 could not be a middle point in a 𝑡-path from 𝑝 to 

other points. According to Lemma 3, Dijkstra’s algorithm is 

modified as shown in Algorithm 2. 

 
Algorithm 2. ModifiedDijkstra(G, p, t) 

 

𝑰𝒏𝒑𝒖𝒕: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐺𝑟𝑎𝑝ℎ 𝐺, 𝑝𝑜𝑖𝑛𝑡𝑠 𝑝
∈ 𝑉(𝐺) 𝑎𝑛𝑑 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑡 

𝑶𝒖𝒕𝒑𝒖𝒕: 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑝 𝑡𝑜 𝑎𝑙𝑙 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑉(𝐺) 

1: 𝑑(𝑝) ← 0 
2: 𝑑(𝑣) ← ∞  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑣 ∈ 𝑉 − {𝑝} 
3: 𝑄 ← 𝑉 
4: 𝒘𝒉𝒊𝒍𝒆 𝑄 ≠  ø 𝒅𝒐  
5:        𝑟 ←  𝑚𝑖𝑛𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑄, 𝑑) 
6:        𝒊𝒇 𝑑(𝑟) =  ∞ 𝒕𝒉𝒆𝒏 
7:               𝒃𝒓𝒆𝒂𝒌 

8:        𝒆𝒏𝒅 

9:        𝒇𝒐𝒓𝒆𝒂𝒄𝒉 𝑣 ∈  𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠[𝑟] 𝒅𝒐 
10:            𝒊𝒇 𝑑(𝑣) > 𝑑(𝑟) + 𝑑𝑖𝑠𝑡(𝑟, 𝑣)  𝒕𝒉𝒆𝒏 

11:                  𝒊𝒇  𝑑(𝑟) +  𝑑𝑖𝑠𝑡(𝑟, 𝑣) ≤ 𝑡|𝑝𝑣| 𝒕𝒉𝒆𝒏 

12:                       𝑑(𝑣)  ←  𝑑(𝑟) +  𝑑𝑖𝑠𝑡(𝑟, 𝑣) 
13:                  𝒆𝒏𝒅 

14:            𝒆𝒏𝒅 

15:      𝒆𝒏𝒅 
16: 𝒆𝒏𝒅 
17: 𝒓𝒆𝒕𝒖𝒓𝒏 𝑑  

 

 Line 11 of Algorithm 2 has been added to Dijkstra’s 

algorithm to apply Lemma 3. With this change, point 𝑟 is 

considered in the shortest path from 𝑝 to 𝑣 only if, in addition 

to shortening the distance between 𝑝 and 𝑣, the path 

constructed is also a 𝑡-path between 𝑝 and 𝑟. Note that for 

any point 𝑣, if none of the paths to 𝑣 satisfies the 𝑡-path 

condition, the value of 𝑣 will not be updated in the distance 

vector, and whenever 𝑣 is processed in line 5, Dijkstra’s 

algorithm will end, which prevents it from spending more 

wasted time in Dijkstra’s algorithm. 

 

4. Experimental results 

Performance of the proposed changes to the original FG 

algorithm compared to other greedy spanner construction 

algorithms are presented in this section. Algorithms used 

include well-known greedy spanner construction algorithms 

(such as FG [4], BCFMS [5]) and algorithms that have been 

proposed in recent years (including WSPD [7], Lazy [8], 

Bucket [9] and 𝛿-Greedy [6]). The criteria used for the 

comparisons include the number of times the shortest path 

search is called in the construction process (Section 0) and 

the duration of the construction (Section 0).  

 In both Sections 0 and 0, first, the original FG algorithm is 
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compared with the two algorithms IFGBN1 and IFGBN2. 

We remind that IFGBN1 algorithm is a version of the 

original FG algorithm in which the proposed method in 

Section 0 is used. Likewise, IFGBN2 algorithm refers to a 

version of the original FG algorithm in which the proposed 

method in Section 0 is utilized. After that, IFGBN algorithm 

(a version of the original FG that incorporates both 

improvements proposed in Section 0) will be compared with 

other algorithms.  

 In Section 0, we compare FG and IFGBC algorithms, 

which is a version of the original FG that performs the 

shortest path search using the modified Dijkstra’s algorithm 

presented in Section 0. Since the proposed method in Section 

0 does not affect the number of times the shortest path search 

is invoked, these two algorithms will be compared only 

based on the duration of greedy spanner construction. 

 It should be noted that the output of all algorithms, except 

𝛿-Greedy, is greedy spanner. So, the results are of the same 

quality. In the case of 𝛿-Greedy algorithm, there is a 

parameter called 𝛿 that according to [6], the output of the 

algorithm will be a greedy spanner whenever its value is 

equal to the stretch factor, therefore we set 𝛿 = 𝑡 in the 

experiments. 

 All the experiments except for BCFMS algorithm were 

performed on point sets of size 500 to 16,000 and the stretch 

factor between 1.1 and 1.01. Due to the high memory usage 

of BCFMS algorithm, the experiments on this algorithm are 

limited to 4000 points. The point sets are randomly generated 

in the plane with uniform and clustered distributions, and 

with random coordinates ranging from 0 to 30,000. We 

followed the method proposed by Alewijnse et al. [7, 9] to 

generate points with clustered distribution. 

 We used the source code shared by Alewijnse et al. [7, 9] 

for WSPD, Lazy, Bucket, FG and BCFMS algorithms. 

Moreover, to implement the 𝛿-Greedy and our proposed 

algorithms, we used their codes as much as possible. The 

source codes were written in C++ language and compiled 

into machine codes using Visual Studio 2015 compiler. The 

experiments performed on a machine with an Intel Core i7-

7700HQ processor with 16GB of main memory on Windows 

10 operating system. 

 

4.1. Effects on the number of shortest path search 

operations 
Figure 3 shows the number of shortest path searches 

performed by IFGBN1, IFGBN2 and FG algorithms. 

 As can be seen, in all conditions both IFGBN1 and 

IFGBN2 algorithms perform a smaller number of searches 

than FG algorithm.  

 Nonetheless IFGBN1 and IFGBN2 act differently in 

different distributions. While in the clustered distribution, 

IFGBN1 has performed the least number of searches, in the 

uniform distribution, the least number of searches was 

performed by IFGBN2. The effect of stretch factor is also 

different in the performance of IFGBN1 and IFGBN2. While 

IFGBN1 performs more searches and achieves a 

performance similar to FG as the stretch factor decreases, 

IFGBN2, despite the relative increase in the number of 

searches, showed to be less affected by the change in the 

stretch factor.  

 
 

 
 

 

Figure 3. The number of the shortest path search operation performed by IFGBN1, IFGBN2 and FG algorithms 

t = 1.1 (a, b), t = 1.01 (c, d) 
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 In the case of IFGBN2, it seems that reducing the stretch 

factor increases the probability that the pairs will be 

obligated, and therefore, cutting down the number of shortest 

path searches. However, the results do not support this 

hypothesis. For further investigations, the performance of 

this algorithm was tested for smaller values of the stretch 

factor. In these experiments, we investigate the number of 

times the shortest path search operation is called by IFGBN2 

on six-point sets of size 100, 250, and 500, with uniform and 

clustered distributions. The stretch factor values are selected 

in the range [1.00001…1.1].  

Figure 4 shows the results. 

 According to the results, even though decreasing the 

stretch factor initially increases the number of shortest 

path searches, as the stretch factor continues to decrease, 

this value begins to reduce. The starting point of this 

reduction partly depends on the number and distribution 

of points. This effect happens earlier for smaller point sets 

and for the uniform distribution.  

 Now, we compare the performance of IFGBN with 

other algorithms in terms of the number of shortest path 

searches. As shown in  

Figure 5, with a great difference, IFGBN algorithm has 

the smallest number of shortest path searches, under 

different conditions such as the number of points, 

distributions, and different values of the stretch factor. On 

the other hand, WSPD algorithm performs the greatest 

number of searches compared to other algorithms. In 

general, the performance of the algorithms which are 

based on the well separated pair decomposition (e.g., 

WSPD and Bucket) for clustered points sets is better than 

uniform points set [9]. In addition, reducing the stretch 

factor in the uniform distribution had more negative 

impact on WSPD algorithm than in the clustered 

distribution. 

 Even though IFGBN has the minimum number of 

shortest path searches, its searches increase as the stretch 

factor decreases. IFGBN inherits this behavior from 

IFGBN2. To ensure this, the performance of IFGBN was 

investigated at smaller values of the stretch factor, the 

results of which are given in Figure 6. The results confirm 

that the number of shortest path searches increases only 

within a small range of 𝑡, and then it starts to decrease 

again, similar to IFGBN2 algorithm.

 

 
 

Figure 4. The number of shortest path search operation performed by IFGBN2 algorithm. (a): Clustered, (b): Uniform 

 

 
 

Figure 5. The number of shortest path search operation performed by the construction algorithms. t = 1.1 (a, b), t = 1.01 (c, d) 
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Figure 6. The number of shortest path searches performed by 

IFGBN algorithm. (a): Clustered, (b): Uniform 

 

4.2. Effects on the running-time 

In this section, the construction time of the greedy spanner 

by construction algorithms is presented. Similar to the 

previous section, we will again examine the results of the 

proposed improvements in Section 0 separately and in 

combination. Figure 7 and 8 show the results of the 

experiments. As can be seen, there is a significant 

relationship between the number of shortest path searches 

performed by the algorithms (Figure 3 and 4), and the 

duration of the construction of the greedy spanner. 

 IFGBN always spends less time to construct a greedy 

spanner. Furthermore, reducing the stretch factor 

amplifies the gap between IFGBN and other algorithms. 

The worst algorithm in terms of the running time depends 

on the distribution of points. In the clustered distribution, 

BCFMS, and in the uniform distribution, WSPD spends 

the most time to construct greedy spanners. According to 

the results, Bucket algorithm, similar to IFGBN, is less 

sensitive to the stretch factor. 

4.3. Effect of reducing the cost of Dijkstra’s algorithm 

Figure 9 shows the greedy spanner construction time of 

two algorithms, FG and IFGBC (which is a version of FG 

that uses the modified version of the Dijkstra’s algorithm 

presented in Algorithm 2). Although there is a great 

similarity between the performance of the two algorithms, as 

can be seen, by reducing the stretch factor or increasing the 

number of points, IFGBC algorithm gradually shows its 

superiority over FG and increases its distance with it. 

Furthermore, the distribution of points does not have much 

impact on the behavior of IFGBC and it has acted almost 

identically in both distributions.

 
 

Figure 7. Running time of IFGBN1, IFGBN2 and FG algorithms for constructing greedy spanner.  

t=1.1 (a, b), t=1.01 (c, d) 

 

https://cke.um.ac.ir/


34  Hosein Salami et. al.: Improving Greedy Spanner Construction Algorithm 
 

 

  
 

Figure 8. Running time of greedy spanner construction algorithms. t=1.1 (a, b), t= 1.01 (c, d) 

 

 
 

Figure 9. Time spent by FG and IFGBC algorithms for constructing greedy spanner. t= 1.1 (a, b), t = 1.01 (c, d) 

 

5. Discussion 

The results presented in the previous sections showed that 

each of the proposed improvements provide better 

performance in certain conditions.  

 IFGBN1 algorithm performs well when the stretch factor 

is large, but as the stretch factor gets closer to 1, it loses its 

effectiveness in improving the performance of FG algorithm. 

As mentioned in Section 0, the thickness of the cones around 

a point 𝑝 depends on the value of the stretch factor in such a 

way that its size decreases with the decrease of the stretch 

factor. Shrinking the thickness of the cones reduces the 

probability of placing other points in them and therefore 

increases the need to search for the shortest path. This 

justifies the inappropriate performance of IFGBN1 in small 

values of stretch factor.  

 IFGBN2 algorithm does not perform very well at first 

when the stretch factor approaches 1, but it performs better 

as stretch factor gets closer to 1. This behavior can be 

attributed to the increase in the degree of vertices of the 

greedy spanner at lower values of the stretch factor. As the 
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degree of vertices increases, the sets 𝐸𝐿𝑁(𝑝, 𝑞) and 

𝐸𝐿𝑁(𝑞, 𝑝) become larger, and hence the likelihood of 

finding a path that is eligible for being 𝑡-path increases. 

However, as the value of the stretch factor becomes closer to 

1, the ellipse 𝑒𝑝𝑞 gradually converges to a line segment, and 

thus more pairs become obligated.  

 IFGBN algorithm takes best advantage of both 

improvements and, as presented in  

Figure 5 and Figure 8, exhibits good performance in most 

conditions. 

 

6. Conclusion 

One way of accelerating the process of constructing the 

greedy spanners is to replace or modify Dijkstra’s 

algorithm due to its costly nature. In this paper, two 

improvements were made to the process of creating the 

greedy spanners: 1) reducing the number of Dijkstra’s 

call; and 2) reducing the running time of Dijkstra’s 

algorithm. Reducing the number of Dijkstra’s call is 

achieved by replacing it with heuristics that approximate 

the distance between the points. In order to reduce the cost 

of executing Dijkstra’s algorithm, the algorithm was 

modified in such a way that it advances in the graph only 

on paths that their results can be used for following steps. 

 The experiments showed that the proposed 

improvements, especially when the stretch factor is close 

to 1, have significant impacts on reducing the running 

time. Furthermore, the results showed the decisive role of 

Dijkstra’s algorithm in the running time and emphasized 

the need to pay more attention to replacing or modifying 

this algorithm in the process of the greedy spanner 

construction. 
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