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Abstract: Duplicate Bug Report Detection (DBRD) is one 
of the famous problems in software triage systems like 
Bugzilla. There are two main approaches to this problem, 
including information retrieval and machine learning. The 
second one is more effective for validation performance. 
Duplicate detection needs feature extraction, which is a time-
consuming process. Both approaches suffer runtime issues, 
because they should check the new bug report to all bug 
reports in the repository, and it takes a long time for feature 
extraction and duplicate detection. This study proposes a 
new two-step classification approach which tries to reduce 
the search space of the bug repository search space in the first 
step and then check the duplicate detection using textual 
features. The Mozilla and Eclipse datasets are used for 
experimental evaluation. The results show that overall, 
87.70% and 89.01% validation performance achieved 
averagely for accuracy and F1-measure, respectively. 
Moreover, 95.85% and 87.65% of bug reports can be 
classified in step one very fast for Eclipse and Mozilla 
datasets, respectively, and the other one needs textual feature 
extraction until it can be checked by the traditional DBRD 
approach. An average of 90% runtime improvement is 
achieved using the proposed method. 
Keywords: Duplicate Detection, Bug Report, Machine 
Learning, Runtime Performance, Search Space Reduction 

 

1. Introduction 
Duplicate detection is one of the essential and time-
consuming operations in social communities like software 
repositories of bug reports (e.g., Bugzilla) or question and 
answering forums (e.g., Stack Overflow). There has been 
about 30% to 60% duplicate bug reports in various software 
repositories, especially open-source projects, and it is 
growing every day with growing their communities [1]. 
Duplicate detection needs to compare a new bug report to all 
bug reports of the repository. The comparing process is not 
straightforward because bug reports contain many data fields 
with various domains (e.g., identity, temporal, categorical, 
and textual domains). The textual data fields cannot be 
compared simply because two texts may have the same 
content but different forms and words. So, feature extraction 
should be used to convert bug reports as unstructured data to 
structured data [2]. There are many efforts on feature 
extraction, like using time difference of temporal data fields 
[3], textual features considering term frequencies [4], and 
subsequence matching [5, 6], using similarity of bug reports 
to specific topics as contextual features [7, 8, 9]. By the way, 
there are some issues for feature extraction, especially for 
textual data fields, e.g., stemming, removing the stop words, 
correcting typos [10, 11, 12, 13, 14], which can improve the 
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validation performance of duplicate bug report detection 
(DBRD). 

After feature extraction, the features of a pair of bug 
reports, including a new bug report and another one from the 
repository, should be checked for duplication. The 
Information Retrieval (IR) approach checks the similarity of 
these features to the features of other pairs of bug reports. If 
the two feature vectors were very similar, they would be 
reported as duplicates. Machine Learning (ML) approach 
tries to learn the features of duplicate pairs and predict the 
label of a new pair without comparing it to other pairs, 
usually [15]. ML approach is a little faster than IR approach 
because, after feature extraction, it uses the ML algorithm to 
predict the duplication, but IR approach compares the feature 
to other features that take a long time again [16].  

Duplicate detection is a binary operator that needs two 
bug reports, and we cannot say a bug report is duplicated 
without considering other bug reports. It is challenging 
because of the massive number of bug reports in the 
repository. If we suppose every feature extraction and 
duplicate detection using ML algorithms take just 1 second 
–even though it can take more time based on the feature 
extraction methods, especially for textual features-, for a bug 
report repository containing 10,000 bug reports, it takes 
10,000 seconds, which is about 2.7 hours. So, this approach 
cannot be used for online DBRD. Besides, some feature 
extractors like the longest common subsequence sometimes 
take more than 1 second to calculate. 

Offline DBRD has no time limit. It has a repository of bug 
reports and tries to find duplicate bug reports like a clustering 
problem that categorizes data in some clusters. Here, the 
clusters contain those bug reports that are related and 
duplicated. Online DBRD tries to find a duplicate of new bug 
reports as it wants to be submitted in the repository and even 
helps the writer avoid submitting duplicated bug report real-
time. The continuous query is a kind of online DBRD that 
repeatedly checks duplications [17, 18], and the time 
complexity is very important in the online DBRD versus the 
offline version. Such complexity is the major problem of 
online DBRD, which is currently lacking knowledge.  

This study focuses on the runtime performance as a 
significant online DBRD objective to avoid comparing a new 
bug report to all bug reports of the repository in online 
DBRD. The significant difference between this study and 
related works is that this stufy considers runtime challenges 
for online DBRD, not just the validation performance. The 
main contributions of this study are: 
1. Introducing a novel two-step classifying approach for 

improving the runtime performance of DBRD based on 
two light and full classifiers. The first one uses faster and 
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easier features, and the second one uses all the time-
consuming features; 

2. Using voting ensemble approach to improve the 

validation performance of the proposed online and two-

step DBRD.  
This study’s fundamental hypothesis is that a two-step 

filtering-based classification approach reduces the feature 
extraction runtime for online DBRD. 

Section 2 will review the machine learning approach, and 
Section 3 introduces our proposed machine learning 
algorithm. Section 4 includes the results of the experiments, 
and Section 5 concludes the study. 

 

2. Literature review 

The following first sub-section will introduce methodology 
of Duplicate Bug Report Detection (DBRD) and then the 
feature extraction methods will be illustrated to clear 
demonstration of examples about proposed method. 
Moreover, a comparative tabular review on the related works 
will be summarized to show lack of runtime improvement in 
state-of-the-arts. 

2.1. The methodology of Duplicate Bug Report 
Detection (DBRD) 
Figure 1 shows the traditional approach of duplicate bug 
report detection (DBRD). The bug reports of a dataset will 
be pre-processed in the first step (box 2). There are many 
pre-processing operations such as dealing with null values, 
homogenizing data types, cleaning textual fields, and 
preparing for feature extraction. Then pairs of bug reports 
should be selected for duplicate checking (box 4).  

This methodology is for offline DBRD, but it can also be 

used for online DBRD. In online DBRD, there is no need to 

select pairs of bug reports. The new bug report can be paired 

with all bug reports of the repository instead. Then, feature 

extraction will be used to extract various types of features 

such as categorical, temporal, textual, and contextual 

features (box 6) [2]. The feature selection [19] or instance-

based learning [20] can be used at this time after feature 

extraction and before the train and test process. The feature 

vector sets will be divided into two parts for offline usage, 

including some vectors for training a machine learning (ML) 

algorithm and others for testing the ML (outputs of box 7). 

Now it is time to use an ML for training the features of 

duplicated pairs (box 8). The trained ML will then be used to 

predict the test set label (box 10). Four modes occurr here 

based on the prediction label and the real one, which is 

tabulated in Table 1. The validation performance metrics of 

the evaluation process can be calculated based on Table 1. 

There are many reliable and robust metrics for this purpose. 

Accuracy refers to true predictions for duplication or non-

duplication status of all bug reports (1). 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (𝑇𝑃)

𝑇𝑜𝑡𝑎𝑙 (𝑇𝑇)
                                       (1) 

 

Precision indicates the exactitude of duplication detection 

of duplicates as (2). 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠 (𝑇𝐷)

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠
                                       (2) 

 

Recall shows the memory of an ML algorithm for actual 

duplicates as (3). 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝐷

𝐴𝑐𝑡𝑢𝑎𝑙 𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠=𝑇𝐷+𝐹𝑁𝐷
                                   (3) 

 

F1-measure or F1-score is a harmonic mean of precision 

and recall as (4). 
 

𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                               (4) 
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Figure 1. The methodology of Duplicate Bug Report Detection using Machine Learning Algorithms [15] 

 

Table 1. Modes of the duplicate detection 
 

Actual → 

/Predict ↓ 
Actual Dup (AD) Actual Non-Dup (AND) Total Actual Status 

Predicted Duplicated True Dup (TD) False Dup (FD) AD = TD+FND 

Predicted Non-Duplicated False Non-Dup (FND) True Non-Dup (TND) AND = FD+TND 

Total Prediction True Prediction (TP=TD+TND) False Prediction (FP=FD+FND) 
Total (TT = 

TP+FP=AD+AND) 
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2.2. Feature extraction methods 

The most crucial bug reports’ fileds are textual which can not 

be used by machine learning techniques and need to be 

converted to nominal or numerical data which is called 

feature extraction. There are many feature extraction types in 

state-of-the-art, which can be categorized as: 

 

1. Textual features extract the similarity of textual fields of 

bug reports using natural language processing and 

information retrieval techniques. The tokenizing sentences 

and extracting words, removing useless and frequent words 

known as stop words, removing conjunctions and 

punctuation, removing redundant words, and stemming 

words to find the pure form of each noun or verb. The 

process of counting the same words in two bug reports 

requires pre-processing.  

The N-gram model compares the n-sequence-word of two 

text fields. Increasing n in n-gram indicates greater similarity 

between two documents. TF and IDF refer to the frequency 

of a term in a document and in a set of documents, 

respectively. Equation 1 and 2 are commonly used in a 

DBRD context, and the BM25F model is built based on these 

equations [4]. An occurrence of a term t in document d, 

which can be a textual field of a bug report in a bug triage 

system is checked through Equation 1. Parameter K is the 

number of textual fields in document d, and f is an index of 

the textual fields of a bug report. The weight factor wf is 

based on the importance of each text field, the length is the 

number of characters in term t, and average_lengthf is the 

average length of all words in this field. The importance of a 

term t of document D is calculated using Equation 2 in all 

bug reports of the software repository, which contains many 

documents d, and each document contains many terms t. The 

result of BM25F is an aggregated value representing the 

weighted average of the TF and IDF approaches for all 

standard terms in both texts d and q, and K1 is a constant for 

preventing division by zero in Equation 3. 

 

𝑇𝐹𝐷(𝑡, 𝑑) = ∑
𝑤𝑓×𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠(𝑑[𝑓],𝑡)

1−𝑏𝑓+
𝑏𝑓×𝑙𝑒𝑛𝑔𝑡ℎ

𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑙𝑒𝑛𝑔𝑡ℎ𝑓

𝐾
𝑓=1                               (1) 

 

𝐼𝐷𝐹(𝑡, 𝐷) = 𝑙𝑜𝑔
𝑁

|{𝑑∈𝐷:𝑡∈𝑑[𝑓]}|
                                              (2) 

 

𝐵𝑀25𝐹𝑒𝑥𝑡(𝑑, 𝑞) =  
 

∑ 𝐼𝐷𝐹(𝑡, 𝑇𝑜𝑡𝑎𝑙 𝑇𝑒𝑥𝑡 𝐹𝑖𝑒𝑙𝑑𝑠 𝑜𝑓 𝐵𝑢𝑔 𝑅𝑒𝑝𝑜𝑟𝑡𝑠)

𝑀𝑡∈𝑑[𝑓]∩𝑞[𝑓]

 

 

×
𝑇𝐹𝐷(𝑡, 𝑑[𝑓])

𝐾1 + 𝑇𝐹𝐷(𝑡, 𝑑[𝑓])
 

(3) 
 

There are two major text fields in bug reports: title and 

description. It should be noted that at least one of the title and 

description fields is non-empty [10]. Comparing the different 

combination of these two fields requires more computational 

overhead and is time-consuming for feature extraction.  

Sometimes, simple features can also be extracted from 

texts, such as text size (length of text in characters or number 

of words in the text) [21], which is shown in Equation 4 and 

where the norm (||) refers to the size of bug reports in words, 

and abs is the absolute value. There are many typos in bug 

reports [10], which have adverse side impacts on textual 

features and should be corrected as a pre-processing phase.  

 
𝑆𝑖𝑧𝑒𝐷𝑖𝑓𝑓(𝑑, 𝑞) = 𝑎𝑏𝑠(|𝑑[𝑓]| − |𝑞[𝑓]|) (4) 

 
The interconnected typos are usual in software bug reports 

because of the identity of variables and methods in the stack 

traces, or sometimes they record user-typing mistakes. Some 

algorithms proposed a correction of these typos [11, 12], but 

this phase is more complicated and needs additional effort to 

find the best candidates among the suggested corrections 

based on the context of a bug report. A new labeled dataset 

is introduced for typo corrections in the bug report context in 

which the correction algorithms have about 80% accuracy, 

and the effectiveness of typo correction on DBRD is an 

unresolved issue [13]. 

It is also possible to use other textual features, such as 

extracting the length of the longest common subsequence 

(LCS) in two texts as a textual feature and some other 

derived features (such as the number of words in LCS [5, 6]), 

or by using word embedding vectors [22]. The bag of words 

is another textual feature extraction method that considers 

different textual fields of bug reports as a bag and compares 

textual features of each bag with other bags.  

The time complexity of textual feature extraction methods 

is greater than other feature types. The bag of words 

produces many textual features that are very time-

consuming. Additionally, the extracted features may be 

unnecessary and need dimension reduction to select the best 

features, which causes a further deceleration of the 

workflow, and is not used in state-of-the-art features [23]. 

The technique of word embedding has been used regularly 

to extract the frequency of each term considering nearby 

terms in a bug report textual field [22, 24]. This technique 

suffers from high dimensionality and a sparsity problem, 

because it considers all terms in the bug report repository as 

vectors and counts the frequency of each term in a specific 

bug report for nearby terms to convert the unstructured 

textual field to a numeric structured vector. This method is a 

type of word2vec model. It is a very time and memory 

intensive and is appropriate for training neural network 

models, especially deep models. The neural network models 

are especially appropriate for solving non-linear problems, 

but related works showed that DBRD is a rule-based problem 

which can be solved by linear models as well [5, 7]. 

Therefore, it is better to avoid using this technique until it 

becomes necessary. 

2. Temporal feature is a type of feature that shows an 

interval time between two bug reports (Equation 5 and 6) in 

the seconds or milliseconds [3, 25]. Usually, when a new 

release of the software is published, many users report 

duplicate bugs, and so there is a relationship between the 

submission dates of bug reports. The lesser value of these 

features indicates the highest probability of similarity of two 

bug reports. However, some researchers use a timing 

window instead of temporal features to limit the search space 
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of the duplicate finder and find the duplication in a specific 

period [26]. 

𝑓𝐼𝑑(𝑑, 𝑞) = 𝑎𝑏𝑠(𝑑. 𝐵𝑢𝑔𝐼𝑑 −  𝑞. 𝐵𝑢𝑔𝐼𝑑)                           (5) 
 

𝑓𝐷𝑎𝑡𝑒(𝑑, 𝑞) = 𝑎𝑏𝑠(𝑑. 𝑂𝑝𝑒𝑛𝐷𝑎𝑡𝑒 − 𝑞. 𝑂𝑝𝑒𝑛𝐷𝑎𝑡𝑒)            (6) 

 
3. Structural features are calculated based on runtime 

information [27] and stack traces [28] in bug reports. Only 

some bug reports have this type of information in their 

description; therefore, it is not possible to calculate these 

features for all of the bug reports. Textual similarity 

techniques can also be used to calculate these features; new 

methods convert the stack trace to a graph and extract some 

graph-based features like number of nodes, number of 

incoming and outgoing edges of nodes, and similar metrics. 

The hidden Markov model can also be used to investigate the 

similarity of chain on method calls in stack traces as a feature 

[29]. 

 

4. Categorical feature is a type of feature that shows how 

much two bug reports are related [4] using equality 

comparisons or subtraction of categorical fields. These 

features can be calculated by either checking the equality of 

two nominal values like (7), (8), and (9) or subtracting two 

ordinal or interval values like (10), (11), (12), and (13) in two 

bug reports d and q [4, 25]. Both (10) and (11) or (12) and 

(13) are similar, and both pairs always generate a number 

less than 1. However, (11) and (13) sometimes may be 

invalid because of division by zero, for the same priorities or 

variations, which can be considered as zero. Perhaps Lazar 

et al. [25] wrote or misused the equations, but these new 

features can also be studied. The letters “A” and “S” at the 

end of these equations refers to “Addition” and 

“Subtraction” in their denominators, respectively. 

 

 𝑓𝑃𝑟𝑜𝑑𝑢𝑐𝑡(𝑑, 𝑞) = {
1 𝑖𝑓 𝑑. 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 = 𝑞. 𝑃𝑟𝑜𝑑𝑢𝑐𝑡
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

       (7) 

 

     𝑓𝐶𝑜𝑚𝑝𝑎𝑛𝑦(𝑑, 𝑞) = {
1 𝑖𝑓 𝑑. 𝐶𝑜𝑚𝑝𝑎𝑛𝑦 = 𝑞. 𝐶𝑜𝑚𝑝𝑎𝑛𝑦
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(8) 

        𝑓𝑇𝑦𝑝𝑒(𝑑, 𝑞) = {
1 𝑖𝑓 𝑑. 𝑇𝑦𝑝𝑒 = 𝑞. 𝑇𝑦𝑝𝑒
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                   (9) 

 

       𝑓𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝐴(𝑑, 𝑞) =
1

1+|𝑑.𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦−𝑞.𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦|
                    (10) 

 

       𝑓𝑃𝑟 𝑖𝑜𝑟𝑖𝑡𝑦𝑆(𝑑, 𝑞) =
1

1−|𝑑.𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦−𝑞.𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦|
                    (11) 

 

        𝑓𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴(𝑑, 𝑞) =
1

1+|𝑑.𝑉𝑒𝑟𝑠𝑖𝑜𝑛−𝑞.𝑉𝑒𝑟𝑠𝑖𝑜𝑛|
                        (12) 

 

       𝑓𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝑆(𝑑, 𝑞) =
1

1−|𝑑.𝑉𝑒𝑟𝑠𝑖𝑜𝑛−𝑞.𝑉𝑒𝑟𝑠𝑖𝑜𝑛|
                          (13) 

 

5. Topical or contextual feature is a type of feature that is 

used to compare textual fields of a bug report with a word 

list containing exclusive content, like (1) security, (2) 

performance of software [30], (3) the anonymous topics 

made by latent Dirichlet analysis (LDA) [31], or (4) latent 

semantic indexing (LSI). The results obtained from these 

semi-textual features indicate how much the report involves 

specific contexts; thus, the conceptual category for bug 

reports. Contextual features of two bug reports can be 

compared as a vector by the cosine similarity equation or the 

Manhattan similarity individually to expand the feature 

space of bug reports [7]. 

 

2.3. Machine learning algorithms 

As Table 2 shows, so much effort has been done over the past 

decade to detect duplicate bug reports based on the above 

descriptions. The numbered columns refer to textual, 

identical, temporal, structural, categorical, and contextual 

features. Some features (textual, temporal, and categorical) 

are essential, and the duplicate detection process should 

mention them, while contextual features are less important 

[7]. Textual features can also cover structural features, even 

though structural features represent another aspect of 

similarity between bug reports. Further, all bug reports 

cannot calculate them, except those that have stack trace(s). 

Contextual features need contextual attributes as some 

derived attributes based on textual fields can be calculated 

and stored in preprocessing phase in clearning texts section 

to reduce feature extraction runtime.  

Most state-of-the-art approaches use ML algorithm. 

Almost all related works have focused on improving the 

validation performance using new feature extraction 

methods [5, 7, 8, 32, 33] and/or using various ML algorithms 

like deep learning [24, 34, 35, 36]. Table 2 shows a brief 

review of related and state-of-the-art works using ML 

algorithms. As Table 2 hows, none of these related works 

mentioned the search space and runtime challenges of 

duplication-checking, except a continuous query study that 

tried to improve validation performance on the continuous 

query as an online challenge [17]. The related works usually 

choose a part of pairs of bug reports randomly to evaluate 

their methods without considering runtime challenge, 

although if they want to compare a new bug report with the 

entire database, it was very time-consuming. As there is no 

related work for the DBRD runtime problem, the literature 

review is limited to state-of-the-art studies' general 

parameters and features. 

Reviewing the literature showed that runtime challenge is 

considered for the first time for DBRD. Therefore, we will 

choose the best current methods for comparison. Besides, the 

literature review shows that the selected parameters for 

experiments are almost the same as state-of-the-art. 
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Table 2. Review of related works in state-of-the-art using machine learning algorithms 

Ro
w 

Ref Year Machine Learning Algorithms Dataset Validation Metrics 

1 Bettenburg et al. [38] 2008 SVM, Naïve Bayes, Eclipse Accuracy 

2 Sun et al. [39] 2010 SVM 
Eclipse, Mozilla, 

OpenOffice 
Recall 

3 Nguyen et al. [31] 2012 LDA, Ensemble Averaging 
Eclipse, Mozilla, 

OpenOffice 
Accuracy 

4 Tian et al. [40] 2012 SVM Mozilla 
F1-measure, TP and 

TN Rates 

5 Liu et al. [41] 2013 SVM Eclipse, Mozilla F1-measure, MAP 

6 
Alipour et al. [30], 

[42] 
2013 

0-R, C4.5, kNN, Logistic Regression, 
Naïve Bayes 

Android 
Accuracy, Kappa, 

ROC, AUC 

7 Feng et al. [43] 2013 SVM, Naïve Bayes, Decision Tree MeeGo 
Accuracy, Precision, 
Recall, MAP, TP and 

TN Rates 

8 Lazar et al. [25] 2014 
kNN, Linear SVM, RBF SVM, Naïve 
Bayes, Decision Tree, Random Forest 

Eclipse, Mozilla, 
OpenOffice, NetBeans 

Accuracy, Precision, 
Recall, AUC 

9 Tsuruda et al. [44] 2015 SVM Eclipse, OpenOffice 
Accuracy, Precision, 

Recall 

10 
Aggarwal et al. [8], 

[9] 
2015, 
2017 

0-R, Naïve Bayes, Logistic 
Regression, SVM, C4.5 

Eclipse, Mozilla, 
OpenOffice 

Accuracy, Kappa 

11 
Sharma and Sharma 

[45] 
2015 SVM Bugzilla 

ROC, TP and FP 
Rates, 

12 Hindle et al. [46] 2016 
0-R, C4.5, kNN, Logistic Regression, 

Naïve Bayes 
Android, Eclipse, 

Mozilla, OpenOffice 
Accuracy, Kappa, 
ROC, AUC, MAP 

13 Lin et al. [23] 2016 SVM 
Apache, ArgoUML, 

SVN 
Recall 

14 Pasala et al. [47] 2016 kNN Chrome Recall 

15 Rakha et al. [48] 2016 
Random Forest 

 
Eclipse, Mozilla, 

Bugzilla, SeaMonkey 
Precision, Recall, F1-

measure, AUC 

16 Deshmukh et al. [34] 2017 
Siamese Convolutional Neural 

Networks (CNN), Long Short-Term 
Memory (LSTM) 

Eclipse, OpenOffice, 
NetBeans 

Accuracy, Recall 

17 Budhiraja et al. [24] 2018 Deep Neural Network Mozilla, OpenOffice Recall 

18 Su and Joshi [49] 2018 Logistic Regression Oracle Recall 

19 Xie et al. [36] 2018 Convolutional Neural Networks 
Hadoop, HDFS, 

MapReduce, Spark 
Accuracy, F1-

measure 

20 
Soleimani Neysiani 

and Babamir [5] 
2019 

Naïve Bayes, Decision Tree, Linear 
Regression, Perceptron Neural 

Network, Bayesian Boosting by 
Decision Tree 

Android, Eclipse, 
Mozilla, OpenOffice 

Accuracy, Precision, 
Recall 

21 
Soleimani Neysiani 

and Babamir [7] 
2019 

Naïve Bayes, Decision Tree, Linear 
Regression, Auto MLP, Bagging 

ensemble of Decision Tree 

Android, Eclipse, 
Mozilla, OpenOffice 

Accuracy, Precision, 
Recall 

22 
Soleimani Neysiani 
and Babamir [14] 

2019 

Naïve Bayes, k-Nearest 
Neighborhood, Decision Tree, Linear 

Regression, Auto Multi-Layer 
Perceptron, Deep Learning with H2O 

Android 
Accuracy, Precision, 

Recall 

23 
Soleimani Neysiani 
and Babamir [16] 

2020 
k-Nearest Neighborhood, Linear 

Regression 
Android 

Accuracy, Precision, 
Recall, F1 Measure 

24 
Soleimani Neysiani et 

al. [50] 
2020 

Linear Regression, Decision Tree, 
Auto Multi-Layer Perceptron, Deep 

Learning with H2O 

Android, Eclipse, 
Mozilla, OpenOffice 

Accuracy, Precision, 
Recall, F1 Measure 

25 
Soleimani Neysiani et 

al. [20] 
2020 

Linear Regression, Decision Tree, k-
Nearest Neighborhood 

Android, Mozilla, 
Accuracy, Precision, 

Recall 

26 Kukkar et al. [51] 2020 Deep Learning (CNN) 
Eclipse, Mozilla, 

OpenOffice, Gnome, 
NetBeans, Firefox 

Accuracy, Precision, 
Recall, F1 Measure, 

Recall @k 

27 Kim and Yang [52] 2021 
Naïve Bayes, Random Forest, CNN, 

LSTM, CNN+LSTM 
Eclipse, Mozilla, 

Apache, KDE 
Accuracy, Precision, 
Recall, F1 Measure 

28 Zhang et al. [53] 2022 Deep Learning (Dual Channel-CNN) 
Eclipse, Mozilla, 

Hadoop, Spark, Kibana, 
VS Code 

Recall @k 
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3. Proposed method 

Calculating the textual features is very time-consuming. The 

main idea of the proposed approach is dividing the duplicate 

detection process into two phases: 1) trying to predict the 

duplication status using light features like non-textual 

features, which can be calculated quickly; 2) predicting the 

duplication status using all features, including the textual 

features that are more time-consuming. Figure 2 shows the 

methodology of the proposed approach. 

Steps 1 to 5 as the pre-processing phase (red box) are 

similar to the traditional methodology of duplicate bug report 

detection (DBRD), but the splitting data for evaluation is 

held on Step 6 here (box 6). The pairs of bug reports must be 

divided into two different parts to train and test machine 

learning (ML) algorithms. It is better to split data samples by 

considering the distribution of duplicated pairs in both parts, 

which have the same percentage of duplicated pairs. After 

splitting the pairs of bug reports, the training phase (green 

box) starts, which uses the training pairs for feature 

extraction (box 6.1.2) but without textual features. Then an 

ML algorithm is used to train the non-textual features of pairs 

of bug reports (box 6.1.4). 

On the other hand, textual features of pairs must be 

extracted, too (box 6.1.6), and appended to non-textual 

features (box 6.1.8) till another ML algorithm can be trained 

for all kinds of features, including textual and non-textual 

features (box 6.1.10). Now we have two ML algorithms as 

duplicate item finders (DIF). 

The test phase (blue box) will be started after the training 

phase is finished, and the test pairs will be feature extracted 

using non-textual features, too (boxes 6.2.1, 6.2.2, and 

6.2.3). It is time to evaluate testing pairs' features using the 

first light DIF (box 7). The results of ML algorithms usually 

contain two values: 1) The predicted label, which is the status 

of a pair of bug reports as duplicated or non-duplicated here; 

2) The confidence of the ML algorithm for this prediction. 

Every ML algorithm can predict the confidence level in a 

customized method. For example, the Naïve Bayes 

confidence is the algorithm’s direct calculated probability 

when the confidence value is real. The k-NN confidence is 

the number of the k neighbors with the predicted class 

divided by k, and the single values are weighted by distance 

in weighted predictions. The SVM has a reasonable 

estimation of a binomial class problem's positive class (14), 

where the function_value is the SVM prediction. This 

approach is also used by the RapidMiner tool [54]. 
 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =  
1

1+𝑒−𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑣𝑎𝑙𝑢𝑒                                     (14)
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Figure 2. The methodology of Duplicate Bug Report Detection using the proposed two-step Classification Approach of Machine 

Learning Algorithms  
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Now it is time to check the confidence of predicted status 

(box 9). If the confidence is more than a specific threshold, 

e.g., 90%, the prediction can be accepted; otherwise, the 

textual features of that pair should be extracted too (box 10), 

and the combined features (boxes 12 and 13), including 

textual and non-textual features of that pair of the testing set 

must be used for second DIF (box 6.1.11), which considers 

all kinds of features to predict the status of this pair (box 14). 

Then the predicted status (box 15) is used to compare the real 

status of that pair (box 16) and evaluate the validation 

performance metrics of DIF as the final result of DBRD (box 

17). 

For example, consider following three real bug reports in 

Table 3 from Eclipse dataset [4, 46, 55], where the two first 

ones already exist in the bug reports database and the third 

one is a new or target bug report that is compared to other 

existing bug reports. Their identical fields include bug report 

id and master id which is the bug report id of main bug report 

for duplicate bug reports and it is null for those bug reports 

which are not duplicate. The categorical fields determine 

detail categories for each bug report like the software product 

and component, The status field shows the last state of bug 

report which can be new, assigned to developer for fixing, 

fixed, duplicate, and so on. The textual fields are the main 

fields of every bug report because they are the main fields to 

find uniqueness or duplication of each bug report. 

The contextual fields are derived from textual fields and 

as mentioned before, can be calculated and stored once time 

to be used later for feature extraction in comparison with 

other bug reports. There can be more contextual fields in 

various domains based on the software triage system 

modules or external aspects like software engineering topics. 

The selected example consider four general, networking, 

cryptography, and java conexts to calculate contextual fields, 

but it is possible to build dictionaries based on each module 

of software triage system and calculate contextual fields for 

those topics based on built dictionaries. 

Table 4 shows some extracted features for comparing the 

new bug report to existing bug reports in the database. The 

class label shows that the selected pair is really duplicate or 

not based on master ID field in the dataset. For training 

dataset, the master ID fields are filled, so the training dataset 

including training pairs have deterministic label. In test 

phase, the label should be predicted using machine learning 

algorithms. Various types of features based on state-of-the-

art are calculated and determined in Table 4 and their name 

and equations are referenced in second column. The values 

of the features are shown in two last columns. 

 
Table 3. Real Sample Bug Reports Data 

 

Field Type Field Bug Report 1 Bug Report 2 Target Bug Report 

Identical 
Bug ID 240427 258365 258935 

MasterID 233269 - 258365 

Categorical 

Product Equinox Equinox Equinox 

Component P2 P2 P2 

Type Normal Major Normal 

Priority 3 3 3 

Version 3.4 3.5 3.5 

Status Duplicate Fixed Duplicate 

Temporal 
Open Date (GMT) 11/7/2008 00:25:00 10/12/2008 21:33:00 16/12/2008 14:18:00 

Close Date (GMT) 14/7/2008 15:27:48 21/1/2010 07:12:35 18/12/2008 03:52:48 

Textual 

Title 
software update dialog / filter field 

blocks user input 

[fwkadmin][shared] shared 

install eclipse.ini not read 

[shared] shared tests 

are failing on mac 

Description 

menu: help->software updates displays 

a dialog with available software to 

install. in the top part there is a filter 

field. when typing a text into this filter 

eclipse starts to immediately applying 

the filter and whole dialog is block - 

what blocks possibility to continue 

typing into the filter field. there is 

certain delay but it is too short to be 

able to type in you filter expression. it 

almost imposible to use the filter field 

resonably. 

i20081210-0800 when i 

install something in shared 

install i loose my p2 menus. 

n20081215 

testreadonlydropinsst

artup and 

testuserdropinsstartu

p are failing 

Contextual 

(Derived 

from 

textual) 

General 26.858 8.973 4.298 

Networking 23.838 6.821 4.298 

Crypto graphy 21.514 5.501 2.325 

Java 22.946 3.291 4.298 
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Table 4. Real sample extracted features 
 

Features Type Features 
Target Bug Report  

vs Bug Report 1 

Target Bug 

Report  

vs Bug Report 2 

Label Duplicate No Yes 

Textual 

fBM25F-1G (3) 1.407 1.786 

fBM25F-2G (3) 1.270 2.395 

fSizeDiff (4) 386 17 

fLCS [5, 6] 83 59 

Temporal 
fId (5) 18508 570 

fDate (6) (sec) 13387812 34620875 

Categorical 

fproduct (7) 1 1 

fcompany (8) 1 1 

ftype (9) 1 0 

fPriorityA (10) 1 1 

fPriorityS (11) 1 1 

fVersionA (12) 0.9 1 

fVersionS (13) 1.1 1 

Contextual (Distance) 

Cosine 0.984 0.937 

General Manhattan 22.560 4.674 

Networking Manhattan 19.539 2.522 

Cryptography Manhattan 19.188 3.175 

Java Manhattan 18.647 1.006 

 

 

It should be mentioned that textual features are very 

important for DBRD, but their time complexity is more than 

other feature types and depends on the length of texts. For 

example, the minimum, average and maximum text length of 

Eclipse dataset is 8, 1080, and 65,054 characters, and 2, 136, 

and 10,762 words, respectively. A pretest for comparing bug 

report 259801 with 697 characters and 130 words to more 

than 18,000 other bug reports shows that the minimum, 

average, and maximum runtime of all non-textual features 

calculation were 0, 2.8 and 100.8 micro seconds for each 

pair. These times for textual features were 0.6, 11.3 and 

968.1 milli seconds which are four thousand times more than 

non-textual features times. If the selected bug report length 

is more, the runtime will be increased a lot too. So, textual 

features are harmful for runtime performance, and useful for 

validation performance of DBRD. 

After feature extraction, the feature vectors including 

some numerical values and a label will be made and given to 

a ML algorithm to be trained and learn features of duplicated 

pairs. In the test phase, a feature vector will be provided in 

comparison of new bug report with other existing bug reports 

in the triage system. Then each feature vector will be given 

to the trained ML algorithm to predict its label. In the 

proposed approach, just non textual features will be 

calculated in the first stage and they will be given to simple 

or light or non-textual ML algorithm. Adside the predicted 

label by ML algorithm, the confidence of ML algorithm will 

be checked. If the confidence is more than a certain threshold 

(e.g., 90%), the predicted label based on non-textual features 

will be accepted and reported as the final result. Otherwise, 

the textual features will be calculated and appended to 

feature vector and the new full feature vector will be given 

to heavy or full ML algorithm and its result will be reported 

as the final result. 

Furthermore, the DBRD process is divided into two parts 

based on the textual features. There are some considerations 

to improve the validation performance of this two-step 

classification approach as a DBRD: 

1. Using more robust non-textual features to improve the 

validation performance of non-textual DIF, e.g., using more 

topics for contextual features [7]; 

2. Using robust and powerful ideas for ML algorithms of first 

DIF, e.g., ensemble algorithms like using some ML 

algorithms and voting their results to improve the validation 

performance of non-textual DIF; 

3. Using an ML algorithm like linear regression to predict 

the best value for the threshold of confidence checking step 

(box 9). 

 

4. Experimental results  

The traditional and proposed methodologies of duplicate bug 

report detection (DBRD) are implemented using Takelab 

script [56] in Python 3.8 for textual feature extraction and 

RapidMiner 9.5 [57] for implementing the machine learning 
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algorithms. The state-of-the-art approach is the most 

commonly used ML-based DBRD [5, 7, 8, 14, 20, 21, 30, 46, 

50]. In the first experiment, we use all the ML algorithms 

based on [50] as the best results between related works for 

comparison. Besides, the ID difference feature was the most 

important feature that improves the validation performance 

results a lot, so it was eliminated because there may be some 

biased judgment in considering a relation between ID 

difference and duplication status. However, the open date 

difference was kept as a temporal feature. The results were 

much realistic, and there is hope that there is no more 

difference between the proposed approach and the triager 

needs in the real world. Figure 3 shows the results of the 

comparison of various ML algorithms for different 

scenarios. The results of the scenario of simple features (S) 

must be worse than the scenario of full features (F), but, 

interestingly, the results of the scenario of two-step 

classification (TSC) are in the middle of other scenarios that 

are more than 87% and 89% for both accuracy and F1-

measure metrics, respectively. The ML algorithm of TSC is 

a voting-based ensemble algorithm of other ML algorithms; 

that is, S-Vote for non-textual duplicate item finder (DIF) 

and F-Vote for full DIF. Even though the deep learning ML 

algorithm has better performance in both simple and full 

feature scenarios, the TSC just tested using the voting 

algorithm because deep learning training is time-consuming 

at ist improvement is less than one percent for both simple 

and full feature scenarios. 

Table 5 shows the experiments’ parameters. Various 

machine learning (ML) algorithms are chosen to compare 

their efficiency for DBRD in three different scenarios with 

non-textual features, full features, or the proposed two-step 

classification. Three scenarios are considered for evaluating 

the proposed method, including: 1) Simple or light scenario 

just including the non-textual features as an old approach of 

state-of-the-art; 2) Full feature as the current state-of-the-art 

approach; 3) Two-Step Classification (TSC) as the proposed 

approach.  

Moreover, the detailed properties of datasets are 

tabulated in the control variable section of The state-of-the-

art approach is the most commonly used ML-based DBRD 

[5, 7, 8, 14, 20, 21, 30, 46, 50]. In the first experiment, we 

use all the ML algorithms based on [50] as the best results 

between related works for comparison. Besides, the ID 

difference feature was the most important feature that 

improves the validation performance results a lot, so it was 

eliminated because there may be some biased judgment in 

considering a relation between ID difference and duplication 

status. However, the open date difference was kept as a 

temporal feature. The results were much realistic, and there 

is hope that there is no more difference between the proposed 

approach and the triager needs in the real world. Figure 3 

shows the results of the comparison of various ML 

algorithms for different scenarios. The results of the scenario 

of simple features (S) must be worse than the scenario of full 

features (F), but, interestingly, the results of the scenario of 

two-step classification (TSC) are in the middle of other 

scenarios that are more than 87% and 89% for both accuracy 

and F1-measure metrics, respectively. The ML algorithm of 

TSC is a voting-based ensemble algorithm of other ML 

algorithms; that is, S-Vote for non-textual duplicate item 

finder (DIF) and F-Vote for full DIF. Even though the deep 

learning ML algorithm has better performance in both simple 

and full feature scenarios, the TSC just tested using the 

voting algorithm because deep learning training is time-

consuming at ist improvement is less than one percent for 

both simple and full feature scenarios. 

Table 5, which indicates the number of bug reports in 

each dataset and the number of selected bug report pairs in 

step four of both state-of-the-art and the proposed 

methodologies. The K-fold cross-validation is used for the 

evaluation of ML algorithms to avoid biased results. 

Moreover, various kinds of features are extracted for 

duplicate detection. 

The state-of-the-art approach is the most commonly used 

ML-based DBRD [5, 7, 8, 14, 20, 21, 30, 46, 50]. In the first 

experiment, we use all the ML algorithms based on [50] as 

the best results between related works for comparison. 

Besides, the ID difference feature was the most important 

feature that improves the validation performance results a 

lot, so it was eliminated because there may be some biased 

judgment in considering a relation between ID difference 

and duplication status. However, the open date difference 

was kept as a temporal feature. The results were much 

realistic, and there is hope that there is no more difference 

between the proposed approach and the triager needs in the 

real world. Figure 3 shows the results of the comparison of 

various ML algorithms for different scenarios. The results of 

the scenario of simple features (S) must be worse than the 

scenario of full features (F), but, interestingly, the results of 

the scenario of two-step classification (TSC) are in the 

middle of other scenarios that are more than 87% and 89% 

for both accuracy and F1-measure metrics, respectively. The 

ML algorithm of TSC is a voting-based ensemble algorithm 

of other ML algorithms; that is, S-Vote for non-textual 

duplicate item finder (DIF) and F-Vote for full DIF. Even 

though the deep learning ML algorithm has better 

performance in both simple and full feature scenarios, the 

TSC just tested using the voting algorithm because deep 

learning training is time-consuming at ist improvement is 

less than one percent for both simple and full feature 

scenarios. 
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Table 5. The parameters of experiments 
 

Variable 

Type 
Variable Name Variable States (Values) 

Independent 

Classifier 
Linear Regression (LR), Decision Tree (DT), Random Forest (RF), Deep Learning with H2O 

(DL) [58, 59], Voting of all mentioned Classifiers as an Ensemble approach (Vote) 

Scenarios 

Simple (S): using the non-textual features 

Full Features (F): as the traditional approach 

Two-Step Classification approach (TSC): the proposed approach 

Control 

Dataset Eclipse and Mozilla [4, 46, 55] 

Number of Bug 

Reports 

Dataset # Bug Reports 

Eclipse 45,234 

Mozilla 75,648 

Number of Bug 

Pairs 

Pairs→ /Dataset 

↓ 
Duplicates 

None- 

Duplicates 
Total Dup% 

Eclipse 15,219 5,536 20,755 26.6% 

Mozilla 40,537 14,297 54,834 26.0% 

Total 55,756 19,833 75,589 26.3% 

K-fold 10 

Stemming Is used 

Features ollection Temporal, Categorical, Contextual [7, 46], Textual [56] 

 

 

 
 

 

Figure 3. The runtime of three scenarios for both datasets based on seconds in logarithmic scale 

 

Table 6. The maximum performance of different machine learning algorithms for various kinds of scenarios of classification 

 

Scenario→ State-ot-the-art Classification Two-step Classification Full Features [50] 

Dataset ↓ Accuracy F1-measure Accuracy F1-measure Accuracy F1-measure 

Eclipse 87.33% 77.67% 88.05% 86.43% 91.53% 84.75% 

Mozilla 84.26% 89.34% 87.34% 91.60% 90.98% 93.80% 

Average 85.80% 83.51% 87.70% 89.01% 91.26% 89.28% 

 

Eclipse Mozilla

Simple 219.2 579.0

TSC 1,698.9 15,141.3

Full 47,146.2 124,549.6

1
2
4
8

16
32
64

128
256
512

1,024
2,048
4,096
8,192

16,384
32,768
65,536

131,072
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Table 6 shows the detailed results on the experiments' 

maximum performance for each dataset. The results show 

that the TSC validation performance is almost in the middle 

of both scenarios in various datasets even though the TSC is 

implemented only using the Vote-based ML, but those are 

compared to their best ML algorithms.  

Although no one expects the results of TSC to be less than 

the results of simple scenario, it is time to know the impact 

of TSC on runtime performance. The number of pairs of bug 

reports is used for runtime comparison instead of execution 

time to eliminate hardware configuration impact on the 

results and have a better insight about the time complexity 

improvement. Using a logarithmic scale to better show value 

contrast, Table 4 shows the number of used features using 

the first and second DIFs.  The first DIF uses Simple Features 

for classification, and the second DIF uses Full Features, as 

mentioned in Table 3. The results show that many bug report 

pairs can be classified using the first classifier, and just a few 

pairs need the complex textual feature extraction phase. Non-

textual features can be extracted in less than a millisecond, 

but textual feature sometimes takes more than 5 seconds to 

be extracted for just a pair based on their text lengths. 

 

 
 

Figure 4. The average validation performance of various scenarios of Table 5  

 

 
Figure 5. The number of bug reports which can be detected fast using simple features versus full features scenario 

(including textual features) 

 
Table 7. Percentage of bug reports predicted for classification 

 

Time Complexity Improvement 

→ 

/ Dataset ↓ 

using Non-

Textual Features 

using All 

Features 

Total Number of Bug 

Reports 

(100%) 

Eclipse 95.85% 4.15% 16,604 

Mozilla 87.65% 12.35% 43,868 

Average of Results 89.90% 10.10%  

 

LR RF DT Vote DL Vote DL LR DT RF Vote DL

Simple-Light Features
Two Step

Classification
Full-All Features

Accuracy 85.21 85.34 85.26 85.70 85.86 87.59 90.81 89.57 90.65 91.87 91.98 92.05

F1-Measure 82.90 83.08 83.48 83.41 83.46 87.65 88.53 87.15 88.92 90.21 90.26 90.36

81.00

83.00

85.00

87.00

89.00

91.00

93.00

Eclipse Mozilla

Simple Features 15,914 38,452

Full Features 690 5,416

Total Pairs 16,604 43,868

1

4

16

64

256

1,024

4,096

16,384

65,536
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The values are converted to percentage in Table 7. It 

shows that 87% and 95% of pairs of bug reports can be 

classified faster than the traditional approach using non-

textual features for Eclipse and Mozilla datasets, 

respectively. These predictions' average validation 

performance was 87% and 89% for accuracy and F1-

measure, respectively, which are relatively more than many 

related works [48].  

Furthermore, 89.9% of pairs of bug reports averagely in 

both datasets can be classified with more than 87% accuracy 

and F1-measure, using simple checking of the categorical, 

temporal, and contextual features. The contextual features 

can be calculated. At first a new bug report is inserted in the 

repository to improve the performance of DBRD. So, the 

DBRD can be implemented merely using a SQL query in the 

repository for almost all bug reports, and those which are 

suspicious and need more checking, can be sent for textual 

feature extraction and give the full features vector of those to 

the full DIF.  

 

5. Conclusion 

This study focused on the runtime performance of the 

process of duplicate bug report detection (DBRD). A novel 

two-step classification method was proposed for DBRD, 

which uses non-textual features in the first step to check the 

duplication of a pair of bug reports. A machine learning 

(ML) algorithm is trained as a duplicate item finder (DIF) to 

predict the duplication status of non-textual feature vectors 

of pairs of bug reports. If the first DIF has low confidence in 

its prediction, the textual features should be extracted, and 

the second DIF is used to predict the status of the pair based 

on all features, especially textual features. The experiments 

show that the validation performance results of the proposed 

approach are better than those using the first non-textual DIF 

alone. Moreover, the runtime performance results of the 

proposed approach are better than using the second DIF 

alone. So, the proposed approach has a good runtime and 

validation performance in comparison with the traditional 

approaches. Every non-textual feature, like more contextual 

features, can improve the first DIF validation performance in 

the future. Also, the threshold of the first DIF for switching 

to the second DIF can be improved. Other datasets can be 

used to evaluate their validation performance. A semi-

supervised [60] machine learning algorithm can be used for 

an incremental bug report repository of software triage 

systems.  
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