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Abstract:  Target tracking is estimating the state of moving 
targets using noisy measurements obtained at a single 
observation point or node. Particle filters or sequential 
Monte Carlo methods use a set of weighted state samples, 
called particles, to approximate the posterior probability 
distribution in a Bayesian setup. During the past few years, 
Particle Filters have become very popular because of their 
ability to process observations represented by nonlinear 
state-space models where the noise of the model can be non-
Gaussian. There are many Particle Filter methods, and 
almost all of them are based on three operations: particle 
propagation, weight computation, and resampling. One of 
the main limitations of the previously proposed schemes is 
that their implementation in a wireless sensor network 
demands prohibitive communication capability since they 
assume that all the sensor observations are available to every 
processing node in the weight update step. In this paper, we 
use a machine learning technique called support vector 
machine to overcome this drawback and improve the energy 
consumption of sensors. Support Vector Machine (SVM) is 
a classifier which attempts to find a hyperplane that divides 
two classes with the largest margin. Given labeled training 
data, SVM outputs an optimal hyperplane which categorizes 
new examples. The training examples that are closest to the 
hyperplane are called support vectors. Using our approach, 
we could compress sensor observations and only support 
vectors will be communicated between neighbor sensors 
which lead to  cost reduction in communication. We use 
LIBSVM library in our work and use MATLAB software to 
plot the results and compare the proposed protocol with CPF 
and DPF algorithms. Simulation results show significant 
reduction in the amount of data transmission over the 
network. 
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1. Introduction 
Target tracking is one of the most important applications of 
wireless sensor networks. Examples include security and 
surveillance [1], environmental monitoring [2] and tracking 
tasks [3]. Target tracking is the estimation of the current state 
and prediction of future states of a target based on 
measurements received from a sensor that is observing it. 
The limited on-board resources of the sensor node and the 
limited wireless bandwidth are the major constraints of 
performing target tracking in wireless sensor networks. In 
order to save resources, target tracking should be 
implemented in a distributed way. Distributed computation 
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has found very successful applications in sensor networks, 
particularly when a powerful central unit is not available. 

Before particle filtering methods became popular, the 
Kalman filter was the standard method for solving state 
space models [4]. The Kalman filter can be applied to 
optimally solve a linear Gaussian state space model. When 
linearity or Gaussian conditions do not hold, its variants, i.e. 
the extended Kalman filter and the unscented Kalman filter, 
can be used. However, for highly nonlinear and non-
Gaussian problems they fail to provide a reasonable estimate. 

Particle filtering techniques offer an alternative method. 
They work online to approximate the marginal distribution 
of the latent process as observations become available. 
Importance sampling is used at each point in time in order to 
approximate the distribution with a set of discrete values, 
known as particles, each with a corresponding weight. There 
are several papers and books which have presented detailed 
reviews of particle filters and their applications [5-12]. 

In this work we tackle the problem of implementing the 
DPF algorithm and make use of support vector machine – a 
well-known machine learning classification method – to 
compress measurements collected by processing nodes and 
thus reducing communication costs. 

The rest of the paper is organized as follows. In Section 2, 
a brief review of prior related works on target tracking is 
presented. In Section 3 we introduce the problem of target 
tracking in the context of Bayesian filtering and describe the 
solution to the nonlinear filtering problem with a centralized 
PF. In Section 4 we provide a formal description of the DPF 
algorithm. Section 5 introduces support vector machines. In 
Section 6 we provide details of the proposed method. 
Simulation and experimental results are presented and 
discussed in Section 7 and, finally, Section 8 is devoted to 
conclusions. 
 

2. Related Works 

Target tracking has many real life applications such as 

battlefield surveillance, detection of illegal borders crossing, 

gas leakage, fire spread, and wildlife monitoring. 
Various taxonomies of target tracking algorithms have 

been proposed in the literature and there is no standardized 
or predefined classification. Some works have studied 
tracking algorithms according to the security aspect [13] 
while others have considered energy efficiency [14], fault 
tolerance, mobility, accuracy, and so on [15]. 

A comparative study of target tracking with Kalman Filter, 

Extended Kalman Filter and Particle Filter using Received 

Signal Strength measurements has been reported in [16] and 

their simulation results show that PF has superior 
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performance to the KF and EKF in terms of accuracy and 

root mean square error (RMSE). 

The application of PFs in WSNs is challenging due to the 

limited resources of WSNs. Centralized particle filters (CPFs) 

have some problems such as  consuming significant energy 

and vulnerability as a single point of failure. Distributed 

particle filters (DPFs) were studied as a response to these 

problems, in particular, to offload the computation from the 

central unit [17]. 

Particle filtering for target tracking in WSNs has already 

attracted some attention, including a body of work in 

distributed methods [18]. Its relation with agent networks has 

also been explored in [19]. 

In [20], a fully decentralized particle filtering algorithm 

for cooperative blind equalization is introduced. The 

technique is proper, in the sense that it does not make any 

approximations in the computation of the importance 

weights of the particles. However, the scheme is applicable 

only when the state signal is discrete, and would be infeasible 

in terms of computation and communication among nodes. 

In [21], the communication load is reduced using 

quantization and parametric approximations of densities. A 

similar parametric approach is applied in [18] to further 

simplify communications. 

The work reported in [22] provides a generalized approach 

for approximating global likelihood through a consensus 

filter. It approximates log-likelihood by a polynomial 

function, and the sensors exchange only the coefficients of 

the polynomial function to compute  global likelihood. 

The authors in [23] proposed a distributed particle filtering 
algorithm with the objective of reducing the overhead data 
that is communicated among the sensors. In their algorithm, 
the sensors exchange information to collaboratively compute 
the global likelihood function that encompasses the 
contribution of the measurements towards building the 
global posterior density of the unknown location parameters. 
Each sensor uses its own measurement to compute its local 
likelihood function and approximates it using a Gaussian 
function. The sensors then propagate only the mean and 
covariance of their approximated likelihood functions to 
other sensors, thereby reducing the communication overhead. 
The global likelihood function is computed collaboratively 
from the parameters of the local likelihood functions using 
an average consensus filter or a forward-backward 
propagation information exchange strategy. 

In [24] a distributed particle filter is designated and it is 
shown that the difference in accuracy of their proposed DPF 
and a centralized filter with the same total number of 
particles is less than 2 cm, while the DPF with four 
processing nodes is over four times faster than an equivalent 
centralized version. This equivalently means that the same 
performance can be obtained on less powerful hardware. The 
main limitation of that scheme is that every node performing 
a subset of the computations of the PF should have access to 
all the observations (i.e., all the measurements collected by 
the WSN at the current time step) in order to guarantee that 
the particle weights are proper and, therefore, the resulting 
estimators are consistent. 

 

3. Nonlinear Filtering in State-Space System 

3-1. Bayesian Filtering 

Consider the Markov state-space random model with 
conditionally independent observations [25, 26] described by 

the triplet: 

𝑝(𝑥0),     𝑝(𝑥𝑡|𝑥𝑡−1),    𝑝(𝑦𝑡|𝑥𝑡),      𝑡 = 1, 2, …                 (1) 

We denote the states and the observations up to time t by 

x0:t ≜ {x0, … , xt} and y0:t ≜ {y0, … , yt}, respectively. p(x0) 
is the prior probability density function (pdf) of the state, the 
transition density p(xt|xt−1)  describes the (random) 

dynamics of the process xt and the conditional pdf p(yt|xt) 
describes how the observations are related to the state and it 
is usually referred to as the likelihood of xt. The goal of a 
stochastic filtering algorithm is to recursively estimate the 
posterior distribution p(xt|y1:t), t ≥ 1. 

Suppose that the required pdf p(xt−1|y1:t−1) at time t − 1 
is available. The prediction stage obtains the prior pdf of the 
state at time t via: 

 

𝑝(𝑥𝑡|𝑦1:𝑡−1) = ∫ 𝑝(𝑥𝑡|𝑥𝑡−1)𝑝(𝑥𝑡−1|𝑦1:𝑡−1)𝑑𝑥𝑡−1            (2) 
 

At time step t, an observation ytbecomes available, and it 

may be used to update the prior (update stage) via Bayes’ 

rule: 
 

𝑝(𝑥𝑡|𝑦1:𝑡) ∝ 𝑝(𝑦𝑡|𝑥𝑡)𝑝(𝑥𝑡|𝑦1:𝑡−1)                                     (3) 

 

Eqs. (2) and (3) form the basis for the optimal Bayesian 
solution [6]. If the system of Eq. (1) is linear and Gaussian 
then p(xt|y1:t) is Gaussian and can be obtained exactly using 
the Kalman filter algorithm [27]. If the state space is discrete 
and finite, exact solutions can also be computed [25]. 
However, if any of the pdf's in (1) is non-Gaussian, or the 
system is nonlinear, we have to resort to suboptimal 
algorithms in order to approximate the filter pdf p(xt|y1:t). 

 

3-2. Particle Filtering 

Particle Filters, also known as sequential Monte Carlo 
methods, are simulation based algorithms that yield 
estimates of the state based on a random point-mass (or 
"particle") representation of the probability measure with 
density p(xt|y1:t)  [28-30]. Table 1 shows the standard 
particle filter algorithm. We refer to it as centralized in order 
to make explicit that it requires a central unit that collects all 
the observations together, generates all the particles and 
processes them together. The resampling step randomly 
eliminates samples with low importance weights and 
replicates samples with high importance weights in order to 
avoid the degeneracy of the importance weights over time 
[26, 31]. 
 

Table 1: The Centralized Particle Filter (CPF) algorithm 
 

Initialize: At time 𝑡 = 0 

For 𝑚 = 1, … , 𝑀 

     sample 𝒙0
(𝑚)

from prior 𝑝(𝒙0) 

 

Recursive step: for 𝑡 > 0 

For 𝑚 = 1, … , 𝑀 

 

     draw 𝒙𝑡
(𝑚)

~ 𝑝(𝒙𝑡|𝒙𝑡−1
(𝑚)

) and set 𝒙0:𝑡
(𝑚)

= {𝒙𝑡
(𝑚)

, 𝒙0:𝑡−1
(𝑚) } 

     compute importance weights 𝑤𝑡
(𝑚)∗

= 𝑝(𝒚𝑡|𝒙𝑡
(𝑚)

) 

Normalize weights 𝑤𝑡
(𝑚)

= 𝑤𝑡
(𝑚)∗ ∑ 𝑤𝑡

(𝑗)∗𝑀
𝑗=1⁄  

Resample the weighted sample {𝒙0:𝑡
(𝑚)

, 𝑤𝑡
(𝑚)}

𝑚=1

𝑀
to obtain 

an unweighted sample {𝒙0:𝑡
(𝑚)}

𝑚=1

𝑀
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4. Distributed Particle Filtering 

In this paper, we implement a distributed particle filter with 

nodes that can operate as processing elements (PEs) on a 

wireless sensor network. Each PE is a low-powered device 

that has to perform sensing, computation and radio 

communication tasks while running on batteries. A common 

assumption in other proposed schemes is that all 

observations can be readily made available to all PEs in the 

system [24, 32-33]. Such capacity cannot be taken for 

granted in a WSN, where the observations are collected 

locally by the nodes and communications are necessarily 

constrained because of energy consumption. This issue will 

be addressed in subsequent sections. 

Assume we have N processing nodes in the network and 

each is capable of running a separate PF with K particles (we 

ignore any non-processing nodes for now since they do not 

run particle filters). The total number of particles distributed 

over the network is M=NK. In particular, after the 

completion of a full recursive step of the distributed PF at 

time t-1, the n-th PE should hold the set 

{xt−1
(n,k)

, wt−1
(n,k)∗, Wt−1

(n)∗}
k=1,…,K

, where xt−1
(n,k)

 is the k-th particle 

at the n-th PE, wt−1
(n,k)∗

 is the corresponding non-normalized 

importance weight, and Wt−1
(n)∗

 is the non-normalized 

aggregated weight of PE n. 

Each PF runs locally on a node involves the usual steps of 

drawing samples, computing weights and resampling. The 

generation of new particles, the update of the importance 

weights and the resampling step are taken strictly locally, 

without interaction between different nodes. To be specific, 

assume that the transition pdf of model (1) is used as an 

importance function and that the observation vector yt  is 

available at every node. Then, at the n-th PE, and for k =

1, … , K, xt
(n,k)

 is drawn from the pdf p(xt
(n,k)

|xt−1
(n,k)

), and the 

corresponding nonnormalized weight is computed as 

wt
(n,k)∗ = wt−1

(n,k)∗p(yt|xt
(n,k)

). 

Hence, the information stored by the n-th node at this point 

becomes {xt
(n,k)

, wt
(n,k)∗}

k=1,…,K
 and the aggregated weight is 

Wt
(n)∗ = ∑ wt

(n,k)∗K
k=1 . 

Next, a resampling step is taken locally by each PE. 

Assuming a multinomial resampling algorithm, we assign, 

for k = 1, … , K , xt
(n,k)

= xt
(n,j)

with probability wt
(n,j)

and 

j ϵ {1, … , K} , where wt
(n,j)

=
wt

(n,j)∗

∑ wt
(n,l)∗K

l=1

 ,    j = 1, … , K , are 

the locally normalized importance weights. After resampling, 

the particles at the n-th PE are equally weighted. 

In the estimation step, we obtain local estimates of target 

position at any node as: 

 

�̂�𝑡
𝑛 = 𝐸(𝑥𝑡|𝑦1:𝑡) = ∫ 𝑥𝑡𝑝(𝑥𝑡|𝑦1:𝑡) 𝑑𝑥𝑡 = ∑ 𝑤𝑡

(𝑛,𝑘)
𝑥𝑡

(𝑛,𝑘)𝐾
𝑘=1       

(5) 

where wt
(n,k)

= wt
(n,k)∗ Wt

(n)∗, k = 1, … , K⁄  are the 

locally normalized importance weights. 

Global estimates can be easily computed by a linear 

combination of local estimates. In order to obtain a global 

estimate of target position, each node n in the network should 

transmit its local estimate �̂�𝑡
𝑛  and its aggregated weight 

𝑊𝑡
(𝑛)∗

 to a prescribed node (working as a fusion center) 

where global estimates can be computed as: 

 

�̂�𝑡
𝑀𝑀𝑆𝐸 = ∑ 𝑊𝑡

(𝑛)
�̂�𝑡

(𝑛)𝐾
𝑘=1                                                    (6) 

 

where Wt
(n)

= Wt
(n)∗ ∑ Wt

(i)∗N
i=1⁄  is the globally 

normalized aggregated weight of the n-th node. 

 

5. Support Vector Machine 

Support vector machines discriminate two classes by fitting 

an optimal linear separating hyperplane to the training 

samples of two classes in a multidimensional feature space. 

The optimization problem being solved aims to maximize 

the margins between the optimal linear separating 

hyperplane and the closest training samples which are called 

support vectors (Figure 1). In a linearly non-separable case, 

the input data are mapped into a high-dimensional space in 

which the new distribution of the samples enables the fitting 

of a linear hyperplane [34]. 

 

 
 

Fig 1. An example of classification of two classes by SVM. The 

support vectors are filled. 

 

Assume some training data S which are a set of n points 

of the form: 

 

𝑆 = {(𝑥𝑖 , 𝑦𝑖)|𝑥𝑖 ∈ ℝ𝑑 , 𝑦𝑖 ∈ {+1, −1}}    𝑖 = 1, … , 𝑛         (7)  

 

where ℝ𝑑  indicates the class to which point xi  belongs 

and each xi is a d-dimensional real vector. The goal of SVM 

is to define a hyperplane which divides S, such that all the 

points with the same label are on the same side of the 

hyperplane while maximizing the distance between the two 

classes +1, -1 and the hyperplane. The boundary can be 

expressed as w. x +  b = 0, where w is the normal vector to 

the hyperplane. The parameter 
b

‖w‖
 determines the 

perpendicular distance from the hyperplane to the origin 

along the normal vector w and ‖w‖ is the Euclidean norm of 

w. The data points nearest to the boundary are used to define 

the margins between the two classes and are known as 

support vectors. At the margins, where the support vectors 

are located, the equations for classes +1 and -1, respectively, 

are: 

 

𝑤. 𝑥 + 𝑏 = +1 ,      𝑤. 𝑥 + 𝑏 = −1                                    (7) 

 

http://en.wikipedia.org/wiki/Real_number
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and the following decision function can be used to classify 

any data point in either class +1 or -1: 

 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑤. 𝑥 + 𝑏)                                                      (8) 

 

The margin between the two classes is measured 

perpendicular to the hyperplane is 
2

‖w‖
, so we want to 

minimize ‖w‖ . In a linearly separable case, the support 

vector machine looks for the separating hyperplane with the 

largest margin. Suppose that all the training data satisfy these 

constraints: 

 

𝑤. 𝑥𝑖 + 𝑏 ≥ +1    ∀ 𝑥𝑖  𝑤𝑖𝑡ℎ 𝑦𝑖 = +1                                   (9) 

 

𝑤. 𝑥𝑖 + 𝑏 ≤ −1    ∀ 𝑥𝑖  𝑤𝑖𝑡ℎ 𝑦𝑖 = −1                              (10) 

 

These can be combined into one inequality: 

 

𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) ≥ 1   𝑖 = 1, 2 , … , 𝑁                                   (11) 

 

where N is the number of training sets. According to [28] 

it is worth to use Lagrangian formulation of the problem. 

Thus, introducing Lagrange multipliers αi ≥ 0, i =
1, 2 , … , N, one for each of the constraints in Eq. (9), we get 

the following Lagrangian: 

 

𝐿(𝑤, 𝑏, 𝛼) =
1

2
‖𝑤‖2 − ∑ 𝛼𝑖𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏)𝑁

𝑖=1 + ∑ 𝛼𝑖   
𝑁
𝑖=1 (12) 

 

We must now minimize Eq. (10) with respect to w and b, 

and maximize it with respect to αi. Thus: 

 
𝜕

𝜕𝑤
𝐿(𝑤, 𝑏, 𝛼) = 0,      

𝜕

𝜕𝑏
𝐿(𝑤, 𝑏, 𝛼) = 0                          (13) 

 

which leads to: 

 

𝑤 = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖
𝑁
𝑖=1 ,      ∑ 𝛼𝑖𝑦𝑖 = 0𝑁

𝑖=1                                  (14) 

 

Substituting Eq. (12) into Eq. (10) yields the dual 

quadratic optimization problem: 

 

Maximize 

𝐿𝐷 = ∑ 𝛼𝑖
𝑁
𝑖=1 −

1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖 . 𝑥𝑗

𝑁
𝑖,𝑗=1                             (15) 

 

Subject to 

𝛼𝑖 ≥ 0,    𝑖 = 1,2, … , 𝑁,                                                    (16) 

 

∑ 𝛼𝑖𝑦𝑖 = 0𝑁
𝑖=1                                                                    (17) 
 

On substitution of Eq. (12) into the decision function (6) 

we obtain an expression which can be evaluated in terms of 

dot products between the pattern to be classified and the 

Support Vectors: 
 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖𝑦𝑖(𝑥𝑖 . 𝑥)𝑁
𝑖=1 + 𝑏)                                (18) 

 

The dot product can therefore be replaced with a nonlinear 
kernel function, thereby performing large margin separation 
in the feature-space of the kernel. 

 

6. Using Support Vector Machine with Distributed 

Particle Filter 

We use LIBSVM [35] in our work. LIBSVM is a library for 

Support Vector Machines and has gained wide popularity in 

machine learning and many other areas [36].  

The Web address of the package is at 
http://www.csie.ntu.edu.tw/~cjlin/libsvm. Also, we use the 
MATLAB software to plot the results. 

A classification task usually involves separating data into 

training and testing sets. Each instance in the training set 

contains one “target value” (i.e. the class labels) and several 

“attributes” (i.e. the features or observed variables). The goal 

of SVM is to produce a model (based on the training data) 

which predicts the target values of the test data given only 

the test data attributes. Our idea is to make use of support 

vector machine as a data classification technique in our work 

to reduce communications among the nodes. 
As we mentioned in section 4 in the weight update step we 

assume that the observation vector yt is available at every 
node which involves communications among the nodes. We 
use SVM to reduce these communications. SVMs only 
consider points near the margin (support vectors) instead of 
whole data points. According to our assumption, the 

observation coming from sensor j at time t, denoted yj,t, is 

modeled as a binary observation. Then our SVM has two 
classes. Each sensor has two attributes which are equal to the 
coordinates of its position. 

Scaling before applying SVM is very important. The main 
advantage of scaling is to avoid attributes in greater numeric 
ranges dominating those in smaller numeric ranges. Another 
advantage is to avoid numerical difficulties during the 
calculation. Because kernel values usually depend on the 
inner products of feature vectors, e.g. the linear kernel and 
the polynomial kernel, large attribute values might cause 
numerical problems. In [37] it is recommended to linearly 
scale each attribute to the range [-1, +1] or [0, 1]. We have 
to use the same method to scale both training and testing data. 
For example, suppose that we scaled the first attribute of 
training data from [-10, +10] to [-1, +1]. If the first attribute 
of testing data lies in the range [-11; +8], we must scale the 
testing data to [-1.1, +0.8]. There are four basic kernel 
functions in SVM, including linear, polynomial, radial basis 
function (RBF) and sigmoid. In our work we have used RBF 
kernel in the training step since it has fewer numerical 
difficulties and has better performance in nonlinear cases. 

When the training is done, support vectors are generated. 
Once the support vectors are determined, the rest of the 
feature set can be discarded, since the support vectors contain 
all the necessary information for the classifier. We propagate 
observations corresponding to these support vectors ( y̅t ) 

rather than the whole yt in the network. Then, in the weight 
update step of our distributed particle filter, every processing 
element can obtain observations of other sensors by running 
the final step of the SVM, namely prediction. On the other 
hand, in the prediction step of SVM, we obtain observation 
vector yt  from vector y̅t . Table 2 summarizes the DPF 
algorithm investigated in this paper. 
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Table 2. Distributed Particle Filter (DPF) algorithm 

 

Initialize: At time 𝑡 = 0, for 𝑛 = 1, … … 𝑁 

Draw 𝒙0
(𝑛,𝑘)

, for  𝑘 = 1, … , 𝐾, from prior 𝑝(𝒙0) 

Assign 𝑤0
(𝑛,𝑘)∗

=  
1

𝐾
 for all k, set 𝑊0

(𝑛)∗
= 1 

Build the set {𝒙0
(𝑛,𝑘)

, 𝑤0
(𝑛,𝑘)∗

, 𝑊0
(𝑛)∗}

𝑘=1

𝐾
 

Recursive step: At time 𝑡 > 0, start from the set {𝒙𝑡−1
(𝑛,𝑘)

, 𝑤𝑡−1
(𝑛,𝑘)∗

, 𝑊𝑡−1
(𝑛)∗}

𝑘=1

𝐾
. Then, for 𝑛 = 1, … , 𝑁 

Sampling: Draw 𝒙𝑡
(𝑛,𝑘)

 from 𝑝(𝒙𝑡|𝒙𝑡−1
(𝑛,𝑘)

), for 𝑘 = 1, … , 𝐾 

Weight update: 𝑤𝑡
(𝑛,𝑘)∗

=  𝑤𝑡−1
(𝑛,𝑘)∗

𝑝(𝒚𝑡|𝒙𝑡
(𝑛,𝑘)

) 

Estimation: compute the desired output, such as the expected value 

Resampling: to obtain the set {𝒙𝑡
(𝑛,𝑘)

, 𝑤𝑡
(𝑛,𝑘)∗

, 𝑊𝑡
(𝑛)∗}

𝑘=1

𝐾
, where 𝑤𝑡

(𝑛,𝑘)∗
= 𝑊𝑡

(𝑛)∗
/𝐾    for 𝑘 = 1, … , 𝐾 

 

7. Simulation and Experimental Results 

The goal of our work is to implement a DPF for target 

tracking in a wireless sensor network and use SVM to 

compress measurements collected by these sensors. Our 

experimental scenario is shown in Figure 2. It is a room with 

10 nodes (which are equipped with a light sensor) enclosing 

an area of 4×6 m2 with a single source of natural light (a 

window). Modeling environment specifications and 

translating the disturbances caused by the target in the sensor 

readings into distance measurements are very complex. Then, 

instead we emphasize on obtaining binary observations: 1 if 

the target is in the detection zone and 0 otherwise. 

 

 
 

Fig. 2 Tracking scenario of 46 m2. The thick line is the light 

source. There are 10 nodes equipped with light sensors around the 

edges, indicated by squares. The entry to the scenario lies at the 

bottom-right corner. 

Table 3 displays values of the relevant simulation and 

algorithm parameters. The number of processing elements 

(N) is 4 in our experiments and we use N=1 as the equivalent 

to a centralized particle filter. Changing N affects other 

variables, such as the number of sensing-only elements (J-N) 

and the number of particles per PE (K=M/N). It does not 

matter which of the nodes are PEs and which are SEs, since 

we assume a fully connected network. Each node (either PE 

or SE) produces one binary observation every Ts second. 

Figure 3 displays the empirical distribution of errors, and 

the average error, for 100 simulated paths. Figure 4 plots two 

selection of these paths along with the path estimated by our 

SVM-based DPF. The dissensions between true and 

estimated position tend to happen when the target moves 

between detection zones. Since the observations are binary 

and zone-based, rather than distance-based, there are gaps 

around the edges (see for example the final points in Figure 

4). Accuracy also tends to be higher nearer the light source 

where more detection zones overlap. 
 

 
Table 3. Simulation and algorithm parameters 

 

Variable Symbol Value (unit) 

Number of PEs N 4 

Number of nodes J 10 

Number of SEs  J-N 

Total number of particles M 100 

Number of particles/PE K M N⁄  

Number of timesteps T 20 (s) 

Sampling period 𝑇𝑠 1 (s) 
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Fig 3. Histogram of position error in meters for both the centralized 

(up) and our distributed (down) versions of the particle filter over 

100 simulated trajectories. 

 

 

 
 

Fig 4. The simulated (black) path for two simulations, and the 

corresponding SVM-based DPF-estimated path (red); over T=20 

time steps. 

 

Figure 5 displays the amount of saving in the volume of 

propagating information for updating particle weights, using 

the proposed method, for 100 simulated paths. The 

horizontal axis shows the simulation run and the vertical axis 

shows the amount of propagating observations (in percent) 

on the network compared to the case when SVM is not used. 

The results show that using the proposed scheme, 

only %51.9 of sensor observations are propagated on the 

network, compared to the work done in [24], that leads to 

saving energy consumption of sensors. 

 

 
 

Fig 5. The amount of saving in the volume of propagating 

information for updating particle weights, using our proposed 

method, for 100 simulated paths. 
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8. Conclusion 

In this paper, we have described the implementation of a 

distributed particle filter for target tracking in a wireless 

sensor network. One of the main limitations of similar works 

is the need to make all sensor observations available to every 

processing node. To overcome this limitation, we have used 

support vector machine to compress sensor observations. 

Simulation results show that the difference in accuracy of the 

proposed scheme and centralized particle filter and also 

distributed particle filter are insignificant, whereas by 

combining SVM with DPF we have reduced 

communications among the nodes around %48. Since SVMs 

only consider points near the margin (support vectors) 

instead of whole data points, they are suitable for data 

compression. SVMs can produce accurate and robust 

classification results on a sound theoretical basis, even when 

input data are non-monotone and non-linearly separable. The 

biggest limitation of the support vector approach lies in 

choice of the kernel function. In our work, we have used RBF 

kernel in the training step since it has fewer numerical 

difficulties and has better performance in nonlinear cases. 
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