
Journal of Computer and Knowledge Engineering, Vol. , No.. 2023.

DOI:

Evaluating Developers’ Expertise in Serverless Functions

by Mining Activities from Multiple Platforms
Research Article

Aref Talebzadeh Bardsiri1 Abbas Rasoolzadegan2

Abstract-- In the domain of software development, the

evaluation of developer expertise has gained prominence,

particularly with the rise of serverless functions. These functions,

which simplify the development process by delegating

infrastructure management to cloud providers, are becoming

more common. As developers may utilize functions created by

their peers, understanding the expertise of the original developer

is crucial since it can serve as an indicator of the functions' quality.

While there are existing methods for expertise evaluation, certain

gaps remain, especially concerning serverless functions. To

address this, our research aims to enhance the assessment of

developer expertise in this area by extracting activity-based

features from both GitHub and Stack Overflow. After processing

the extracted data, we applied various machine learning

algorithms. Our findings suggest a potential improvement in

evaluating developer expertise when incorporating features from

Stack Overflow compared to using only GitHub data. The extent

of this improvement was observed to differ among programming

languages, with variations in accuracy improvement percentages

ranging from 2% to 19%. This study contributes to the ongoing

discourse on developer expertise evaluation, highlighting the

potential benefits of drawing from multiple data sources.

Keywords-- Developer Expertise Evaluation, Data Analysis,

Machine Learning Algorithms, Serverless Functions, Software

Development.

1. INTRODUCTION

In the domain of software development, the ability to

accurately evaluate developer expertise has become paramount

[1-5]. This emphasis on expertise evaluation is not just a

theoretical concern but has practical implications, especially in

the evolving landscape of serverless functions. Serverless

functions, often referred to as Function as a Service (FaaS) [6],

simplify the development process by offloading infrastructure

management to cloud providers. Recent data suggests that over

40% of companies have integrated serverless functions into

their workflows, drawn by their scalability, cost-effectiveness,

and the convenience of reduced infrastructure management

[7][8].

With the increasing adoption of serverless functions, there's

a growing need to understand the expertise behind the functions

being developed. Developers frequently integrate functions

developed by others into their projects. In such contexts,

1 Graduate Student, Department of Computer Engineering, Ferdowsi University, Mashhad, Iran, aref.talebzadeh@mail.um.ac.ir
2 Corresponding author. Associate Professor, Department of Computer Engineering, Ferdowsi University, Mashhad, Iran,

rasoolzadegan@um.ac.ir
3 While NodeJs technically serves as a runtime environment facilitating the execution of JavaScript code on the server side, it is often colloquially

referred to as a programming language due to its prevalent standalone usage in discourse. In this paper, we refer to it as one of our target

languages

assessing the expertise of the original developer is crucial to

ensure the reliability and efficiency of the integrated functions.

Evaluating developer expertise in serverless functions is

particularly important as it can significantly impact the quality

and performance of the applications that use these functions.

Furthermore, as serverless functions are often developed using

"Target Languages" like Java, Python, NodeJs3, Ruby, Go, and

C#—selected for their compatibility with serverless

architectures and their widespread use [9]—it becomes

imperative to evaluate expertise specifically within these

languages to ensure the quality and efficiency of serverless

applications.

The accurate assessment of developer expertise in the

broader software development field has been the focus of

numerous investigations [1-4], [10–14] . While many works

have been conducted in this area, several challenges persist. For

instance, some studies have found that simple metrics, such as

counting commits, might not be a reliable indicator of expertise

within specific libraries or frameworks. Others have introduced

tools that leverage Natural Language Processing (NLP) to

pinpoint expertise, but these often rely solely on data from a

single platform like GitHub. There's also a recognized need to

merge data from multiple platforms, such as GitHub and Stack

Overflow, but many existing approaches primarily focus on

user profiles and specific APIs.

Building on these valuable insights from prior research, our

study endeavors to bridge the identified gaps. Specifically, we

aim to offer a fresh perspective on developer expertise by

tapping into both GitHub and Stack Overflow, thereby opening

a broader window of feature collecting, especially in the context

of serverless functions. We've observed that while some

research has adeptly employed machine learning classifiers, a

predominant reliance on a single data platform suggests an

opportunity for enhancement. Our work underscores the

significance of adopting a multi-platform approach, which we

believe can pave the way for a more holistic understanding of

developer expertise.

Evaluating developer expertise, especially within serverless

functions, requires a systematic approach. Following this

notion, our research utilized the official GitHub REST API4 for

data extraction. We initially identified 408 GitHub repositories

related to serverless functions. From these, we selected the top

150 to ensure representation across different target languages.

On GitHub, we extracted 13 activity-related features, providing

insights into a contributor's activities and expertise. Our

interpretation of these features was informed by Montandon's

work [11].

Turning to Stack Overflow, we sought to link contributors to

their Stack Overflow profiles using the official StackAPI5. This

allowed us to extract 9 additional features related to their

activity on this platform. After data collection, we invited

contributors to self-assess their expertise on a 0 to 5 scale. Of

the 2539 emails we sent, 237 were answered, leading to a

response rate of about 9.3%. This feedback aided in initially

labeling our dataset.

After data extraction, we engaged in preprocessing to

manage data-related challenges. For analysis, we employed

machine learning algorithms like SVM [15], [16], Random

Forest [17], Gradient Boosting [18], and Logistic Regression

[19]. Initial results showed a preference for SVM and Random

Forest in several datasets. When compared to other research,

our findings suggested potential benefits from using data from

both Stack Overflow and GitHub. The efficacy varied by target

language: NodeJs exhibited an accuracy increase of

approximately 19%, while C# showed an increase of about 2%,

resulting in an average improvement of around 10.7%.

Having outlined our proposed method, we sought to address

these two specific research questions:

RQ1. Which machine learning algorithms are most effective

in evaluating developer expertise in serverless functions based

on the extracted features? The answers to this question, based

on our comparative analyses of different algorithms, are

discussed in the 'Evaluation' section.

RQ2. What features or metrics are most indicative of a

developer's expertise in serverless functions? The insights

related to this question, derived from our feature importance

analysis, can be found in the 'Evaluation' section, specifically in

the third part of that section.

In our research, we've made several contributions to

evaluating developer expertise in serverless functions. Notably,

we've adopted a dual-platform data extraction approach,

gathering activity-based features of contributors6 from both

GitHub and Stack Overflow. This approach aims to provide a

more detailed perspective on a developer's engagement by

leveraging data from two major platforms. From this extraction,

we've compiled six language-specific datasets, representing

developer activities in serverless functions for the respective

target languages. Importantly, by making these datasets

publicly available, we aim to foster collaborative research and

encourage further exploration in this domain. This detailed

approach allows for a nuanced evaluation based on the specific

programming language. Additionally, we've conducted a

feature importance analysis using SHAP values to understand

4 https://docs.github.com/en/rest?apiVersion=2022-11-28
5 https://stackapi.readthedocs.io/en/latest

the relative importance of each extracted feature. This step

helps in discerning which activities might be more indicative of

a developer's expertise in serverless functions.

Our proposed method caters not only to serverless functions

but also have versatility for broader software development

contexts. This adaptability accentuates the potential of our

techniques in navigating the multifaceted challenges of

contemporary software development. Furthermore, our

research underscores the imperative of a holistic, multi-

platform approach in developer expertise evaluation, with

implications for refining recruitment strategies in the industry

and fostering a platform proficiency within academic

frameworks.

The remainder of this paper is structured as follows: The

next section delves into the Background, providing a

foundational understanding of the domain and contextualizing

our work within existing literature. Following this, we present

our Proposed Method, detailing the approach and techniques we

employed. The Evaluation section then discusses our findings,

shedding light on the efficacy and implications of our method.

We subsequently address potential Threats to Validity, ensuring

a transparent and critical discussion of our study's limitations.

The paper concludes with a Conclusion section, summarizing

our key contributions, and then looks ahead to Future

Directions, suggesting potential avenues for further research

and exploration in this domain.

2. BACKGROUND

The rapid evolution of software development has led to the

emergence of various platforms where developers collaborate,

share knowledge, and showcase their expertise. Platforms like

GitHub and Stack Overflow have become central to this

ecosystem, providing a wealth of data that can be mined to

understand developer expertise and behavior. Several studies

have delved into this realm, each offering unique insights and

methodologies [5].

Vasilescu et al. embarked on a comprehensive exploration

of the intricate relationship between Stack Overflow and

GitHub activities, Their exploration spanned three distinct

levels: macro, intermediate, and micro. Their macro-level

analysis aimed to discern the differences between GitHub

contributors based on their Stack Overflow involvement,

probing whether activity on one platform could serve as a proxy

for the other. The intermediate level delved into the distribution

of developers' time between GitHub commits and their Q&A

activity on Stack Overflow. At the micro level, the temporal

coordination between GitHub commits and Stack Overflow

Q&A activities was scrutinized. This multifaceted analysis

underscores the intertwined nature of developer activities

across these platforms, emphasizing the potential influence of

participation on one platform over the other [12].

In a similar vein, Song et al. sought to profile developer

expertise by harnessing data from both Stack Overflow and

GitHub. The research underscored the challenges of profiling

expertise based solely on a single platform, given the sparsity

6 In this study, term 'contributors' refers to developers active in

serverless functions.

Journal of Computer and Knowledge Engineering, Vol. , No.. 2019. 3

of expertise matrices for both Stack Overflow and GitHub. By

integrating data from both platforms, the study illuminated the

multifaceted nature of developer expertise, underscoring the

potential benefits of a cross-community approach. Such a

collaboration-aware method can potentially mitigate challenges

like unanswered questions on Stack Overflow and delayed

responses to pull requests on GitHub [2].

The realm of developer expertise assessment witnessed a

novel approach with the introduction of "CVExplorer," a tool

designed to identify potential developer candidates by

meticulously analyzing their contributions to open-source

projects on GitHub. By mining skills from GitHub

contributions, the tool offers recruiters a more accurate

representation of a developer's skills, emphasizing the

importance of real-world contributions in assessing developer

expertise. This approach, which transcends the traditional

reliance on self-authored CVs, underscores the evolving

paradigms in developer assessment and recruitment [14].

 Building on this Constantinou and Kapitsaki delved deep

into the nuances of developer expertise and their roles in

software technologies. Their research introduced the concept of

"core expertise," signifying the primary domain or technology

group where a developer is most prolific. By employing various

metrics and data from platforms like Stack Overflow and

GitHub, the study provided a granular analysis of how

developers transition between roles and how their expertise can

be categorized. Such insights are pivotal in understanding the

evolutionary trajectory of developers and the multifarious roles

they assume over time [3].

Tian et al. introduced a novel approach aimed at constructing

a cross-platform expert recommendation system by synergizing

datasets from GitHub and Stack Overflow. This system,

designed to spotlight top expert developers, or "geek talents,"

underscores the value of expert recommendation systems in the

open-source community and for companies at large. By

leveraging various attributes of user profiles, platform-specific

APIs, and multiple account matching strategies, the system can

adeptly identify top experts in specific technology fields. Such

a method offers a fresh perspective on recommending top

expert developers, emphasizing the increasing importance of

these platforms in the software development community [4].

 Santos et al. ventured into the domain of mining software

repositories with the primary objective of identifying library

experts. By analyzing the source code of collaborative projects

on GitHub, the study introduced a method that ranks developers

based on five dimensions of skills. Preliminary results from this

research underscored the method's capability of identifying

relevant users of specific libraries, emphasizing the importance

of GitHub as a platform to showcase developers' knowledge and

skills. Such a structured approach offers a comprehensive

evaluation of a developer's proficiency, highlighting the

potential benefits for recruitment and human resource

allocation [13].

Oliveira et al. embarked on a comprehensive empirical study

to identify library experts by analyzing source code. By

evaluating the strategy with popular Java libraries and

conducting an online survey with developers, the study

provided insights into the challenges and methodologies of

identifying library experts based on code analysis. The findings

underscored that traditional metrics like "Lines of Code" or

"Number of Commits" might not be sufficient indicators of a

developer's expertise with specific libraries. Such insights are

pivotal in understanding the nuances of developer expertise in

specific libraries and the potential limitations of certain metrics

in the identification process [10].

Lastly, Montandon's research focused on identifying experts

in popular JavaScript libraries by mining GitHub data. By

integrating repository mining with developer surveys,

Montandon provided a robust method for pinpointing expertise

in specific software libraries and frameworks. While this

approach emphasized the importance of combining multiple

data sources for accurate assessments, our research

Recognizing the potential limitations in Montandon's approach,

we advocate for a broader spectrum of features, underscoring

the significance of a more detailed and comprehensive feature

set. This expanded perspective is particularly crucial in the

realm of serverless functions, where the landscape is rapidly

evolving and the nuances of developer expertise are

multifaceted [11]. In light of the existing studies, our research

aims to enhance the understanding of developer expertise by

amalgamating data from both GitHub and Stack Overflow.

While we draw inspiration from the works mentioned, our

unique contribution lies in showcasing the importance of

adding more detailed features, offering a richer and more

holistic understanding of developer expertise.

3. PROPOSED METHOD

We employed a structured research method to assess

contributors’ expertise in a balanced manner, drawing from

their activities on GitHub and Stack Overflow. The method was

divided into three main phases: Data Collection, Data Analysis,

and Model Training.

Phase 1. Data Collection

In this phase, we aimed to gather data from GitHub and Stack

Overflow to understand contributors' activities. Using the

REST APIs of both platforms, we followed a structured process

that began with the selection of repositories and culminated in

the formation of language-specific datasets. This method was

designed to ensure that our data was up-to-date and relevant to

our research objectives. The steps outlined in Figure 1 provide

a detailed breakdown of our data collection approach.

Step 1. GitHub Profile Collection for Contributors

We initially amassed a collection of 408 repositories pertinent

to serverless functions. To optimize the scope of our study and

ensure manageability, these repositories were filtered based on

their number of stars. This criterion narrowed down our dataset

to 150 repositories, striking a balance between

comprehensiveness and feasibility. After finalizing the

repository list, we retrieved the contributors associated with

each repository. For each contributor, we began by extracting

vital details such as email, display name, location, and more to

establish a foundational profile. We then conducted a deep dive

into the user's GitHub activities, encompassing metrics like the

number of commits, code churn, and import statements. This

provided a detailed picture of the contributor's engagement and

coding habits. Moreover, for our GitHub data extraction, we

discerned 13 activity-related features, each offering a

perspective into a contributor's engagement and expertise. It's

noteworthy to mention that our characterization and

terminology for these features have been predominantly

informed by Montandon's work [11], which stands as a

cornerstone in our research approach. For instance, as

elaborated in Table 1, "Client Projects" denotes repositories

encompassing code in any of our target languages, thus serving

as a metric to assess developers' acumen in these specific

languages. Conversely, "Client Files" zooms in to highlight

files within these repositories written in the target languages,

offering a more granular view of the contributor's expertise.

Having collected the GitHub features, we then turned our

attention to extracting features from Stack Overflow.

Step 2. Enriching Profiles with Stack Overflow Features

To augment our dataset, we aimed to identify the Stack

Overflow profile corresponding to each GitHub contributor.

We began by initiating a search using the contributor’s GitHub

username. If any list of Stack Overflow profiles was returned,

we took additional steps to ensure the authenticity and

relevance of the identified profile. Specifically, we applied a

method based on probabilistic record linkage [32], a well-

established technique in data integration. This method involves

calculating a similarity score based on the probabilities of

agreement and disagreement for each attribute (website URL,

location, bio, and company affiliation). These probabilities

were computed based on the distribution of values in each field

in our dataset. The profile with the highest similarity score was

selected for further analysis. In situations where no profiles met

our stringent criteria, we opted for the first profile returned by

the search results, given StackAPI’s tendency to list the most

relevant user first.

To complement our GitHub data, we delved deeply into

Stack Overflow, aiming to extract features that would provide

a detailed view of each contributor's expertise and engagement.

Starting with the Stack Overflow profile of each contributor,

identified in the previous step, we centered our efforts on the

target languages. For each language, we:

(1) Retrieved answers and questions provided by the user,

which not only showcased their expertise but also their level of

engagement with the community.

(2) Computed various metrics that reflected the user's overall

activity and reputation for that target language (Tag Score) on

Stack Overflow. This encompassed the number of answers

they've given, upvotes received, downvotes given, and other

related metrics. find their detailed representation in Table 1

Figure 1. Process of the Data Collection Phase in the Proposed Method

Journal of Computer and Knowledge Engineering, Vol. , No.. 2019. 5

(3) Consolidated these features and stored them in a CSV file,

ensuring they were organized and ready for subsequent

analysis.

Our research method heavily relied on the REST APIs of

both GitHub and Stack Overflow. By integrating the GitHub

REST API with the PyGitHub Python library, we ensured

timely and accurate data extraction from GitHub. Similarly, our

use of StackAPI streamlined our interactions with Stack

Overflow, particularly in retrieving user profiles and associated

data. We opted for these APIs over pre-existing datasets to

ensure we were working with the most up-to-date online data,

reinforcing the repeatability of our method. Given the dynamic

nature of expertise, our method was designed to be adaptable,

allowing for potential replication in future studies. A crucial

part of our data collection process was managing the rate limits

imposed by both platforms. To ensure a smooth data collection

process, we sequentially extracted data, first focusing on

GitHub features for each contributor and then moving to Stack

Overflow.

Step 3. Creating Language Specific Datasets for Evaluating

Developers' Expertise in Serverless Functions

We initiated this phase by reaching out to contributors for a

self-assessment of their expertise. Each contributor received an

email detailing our research objectives and was asked to rate

their expertise on a scale from 0 (no expertise) to 5 (expert

level). Supported by several studies as a reliable measure of

expertise [11], [23], [24], this method yielded a response rate of

approximately 9.33% from the 2539 emails dispatched.

After updating the contributors' profiles with their self-assessed

scores, we curated separate datasets for each of the target

languages: Java, Python, NodeJs, Ruby, Go, and C#. These

datasets encapsulated the contributors' activities specific

to the respective programming language, with their self-

assessed scores serving as the labels. This approach ensured a

granular understanding of developer expertise in serverless

functions, tailored to the nuances of each language.

TABLE 1

Extracted Features from GitHub and Stack Overflow

Phase 2. Data Analysis

Upon completion of the data collection phase, we obtained six

distinct datasets. Each dataset encapsulates 22 features detailing

developers' activities on both GitHub and Stack Overflow,

specific to each of our target languages. In the next step, we

transitioned to the data analysis phase, which is further divided

into two main steps:

Step 1- Data Visualization

Our initial exploration began with visualizing the distribution

of developer expertise across our target languages, as depicted

in Figure 2. For clarity in the figure, we've categorized our

binned labels as follows: ratings of 0 and 1 are denoted as

"Novice (0)", ratings of 2 and 3 are labeled "Intermediate (1)",

and ratings of 4 and 5 are classified as "Expert (2)”. We will

delve into the binning process in a subsequent section. The

visualization reveals compelling insights. For instance,

languages like Python and Ruby, which are often considered

beginner-friendly, had a significant portion of their developer

base in the novice category.

Figure 2. Incremental Distribution of Ratings Across Target

Language

This suggests that these languages are more accessible for

beginners. In contrast, languages such as Java, a prevalent

choice in enterprise settings, showcased a more balanced

expertise distribution, indicating a diverse user base with

varying levels of expertise.

Moving forward, we examined the skewness across different

programming languages, visualized in Figure 3. Skewness, a

measure indicating the asymmetry of data distribution around

the mean, revealed specific patterns. A notable observation was

the positive skewness values for commits in languages like Go,

NodeJs, and Ruby. This suggests a scenario where a majority

of users have fewer commits, but a select few exhibit

exceptionally high commit counts. This skewness indicates that

while most developers contribute at a moderate pace, there are

a few highly active developers who contribute significantly

more. Understanding this skewness is pivotal as it influences

our data interpretation and subsequent modeling strategies [20].

Our analysis subsequently delved into correlation. It is crucial

to emphasize that correlation does not imply causation [21].

Particularly in the realm of expertise, it is common for features

to exhibit high correlation. However, even if two variables

appear to move in tandem, this does not necessarily indicate a

cause-and-effect relationship. For example, we observed a high

correlation between the number of commits and the number of

pull requests made by a developer. While these two variables

are correlated, it does not necessarily mean that making more

commits causes a developer to make more pull requests, or vice

versa. It could simply be that more active developers tend to

both commit and pull request more frequently.

Step 2- Data Preprocessing

After the data analysis phase, we transitioned to data

preprocessing, a crucial step to ensure the data was primed for

modeling. This phase addressed several challenges, including

missing values, skewness, feature selection, label binning, and

label imputation.

Handling Missing Values: In addressing missing values, we

observed that their presence in our dataset often signified a

developer's inactivity for a specific feature. Given this

observation, we logically imputed these missing values with

zero, symbolizing no activity.

Addressing Skewness: Skewness presented another

challenge. Some features in our dataset displayed right-skewed

distributions. To make the data more suitable for modeling, we

applied a logarithmic transformation [22] to these skewed

features, stabilizing their variance and approximating a normal

distribution. However, before this transformation, we had to

manage zeros in the data, as the logarithm of zero is undefined.

To counteract this, we added a constant of 1 to the respective

columns.

Feature Selection: Feature selection emerged as a pivotal

aspect of our preprocessing [23]. Ensuring that our model is

trained on relevant features is paramount for enhancing its

performance and interpretability. Our multifaceted approach to

feature selection began with an examination of correlations.

While correlation provides a measure of the linear relationship

between two variables, it doesn't capture non-linear

relationships or causation, making sole reliance on it potentially

misleading [21]. We also incorporated domain knowledge for

the feature selection, by understanding the context of each

feature in the software development realm, we made informed

decisions. For example, while the number of answers and

accepted answers on Stack Overflow might be correlated, the

emphasis on quality in the latter could offer more valuable

Figure 3. Skewness of Features Across Target Languages

Journal of Computer and Knowledge Engineering, Vol. , No.. 2019. 7

insights. Additionally, we employed the Gradient Boosting

technique, an ensemble learning method, to gain insights into

feature importance. This technique ranked features based on

their significance in influencing the model's predictions. Armed

with these analyses, we made informed decisions on which

features to discard, ensuring our model was built on a relevant

feature set, as visualized in figure 4.

Figure 4: Dropped Features for Each Programming Language

Label Binning: Following feature selection, we addressed

the challenge of label binning. Our dataset contained ratings

ranging from 0 to 5, indicative of the expertise level. To

streamline our modeling process and make the problem more

approachable, we categorized these ratings into three broader

categories. Ratings between 0 and 1 were represented as Novice

(0), those between 2 and 3 as Intermediate (1), and ratings

between 4 and 5 were categorized as Expert (2). This

categorization ensured our models could predict expertise

levels in broader, more generalizable categories, enhancing the

interpretability and applicability of the results.

Label Imputation: Transitioning from the binning process,

we confronted another intricate challenge: Label Imputation. In

the vast landscape of data-driven research, addressing the

absence of labels is a multifaceted endeavor. To adeptly

navigate this, we adopted a dual-strategy approach. This

method seamlessly integrated the domain-centric heuristic

labeling [24] with the algorithmic precision of k-Nearest

Neighbors (kNN) [25] imputation. The rationale behind

employing heuristic labeling as our initial step stemmed from

the nature of our data. Given that some of our labels represented

minority classes, relying solely on kNN label imputation could

introduce biases towards the majority classes. Heuristic

labeling, while dependent on the accuracy of the criteria set for

label determination, offers a way to balance the label

distribution without such biases. However, recognizing the

limitations of heuristic accuracy, we used this method to label

only 10-12% of the dataset. This preliminary step aimed to

create a more balanced label distribution, setting the stage for

the subsequent kNN imputation. The combination of heuristic

labeling and kNN imputation allowed us to leverage the

strengths of both methods, providing a balance between

domain-centric insights and algorithmic precision, and

mitigating the potential weaknesses of each method when used

alone.

1: Heuristic Labeling: Heuristic labeling leverages domain

insights and data patterns to make informed decisions about

labels. This method, while not exhaustive, offers a valuable

starting point, especially when dealing with imbalanced

datasets. Our heuristic algorithm works iteratively. By

adjusting criteria based on the quantiles of key features, we

assign scores and labels to each instance. The process either

converges to a desired label distribution or stops after a

predetermined number of iterations.

2: k-Nearest Neighbors (kNN) Imputation: In advancing our

research, we transitioned from heuristic labeling to the more

nuanced kNN imputation. The underlying principle of the kNN

algorithm is rooted in similarity; for any unlabeled data point,

it identifies its ‘k’ closest labeled neighbors and adopts the

predominant label among them. The selection of ‘k’ is crucial,

and through meticulous testing, we ascertained the ideal ‘k’ for

distinct data subsets. In our case, we performed an iterative

evaluation to determine the optimal ‘k’ value and found that

k=5 yielded the best results. Following the primary imputation,

certain labels emerged as fractional. To ensure consistency with

our discrete categories—Novice, Intermediate, and Expert—we

adjusted these by rounding to the closest whole number. It’s

worth noting that we used kNN in conjunction with heuristic

labeling for the label binning task. While our two-phase

approach aimed to provide the most accurate labels possible,

it’s worth noting that any label imputation method can

introduce errors. For instance, heuristic labeling, while

effective in balancing the dataset, might not always capture the

nuances of individual developer expertise. Similarly, kNN,

though a more common method, can sometimes be influenced

by noisy neighbors, leading to potential mislabeling.

After implementing our dual-strategy, the datasets displayed

more balanced distributions across various programming

languages. For example, widely-used languages like Java

showed a more uniform distribution, whereas specialized

languages like Go had a higher concentration of expert

developers. Notably, after the labeling process, there was a

noticeable increase in the number of novice developers. This

trend mirrors the real-world scenario where many individuals

begin coding, but only a select few achieve expert status.

Upon addressing missing labels with heuristic labeling and

kNN imputation, we tackled class imbalance using the

Synthetic Minority Over-sampling Technique (SMOTE) [26],

[27]. For each dataset, we set target percentages for the 'expert'

class, like 15% for C# and 10% for others. We then split the

data, ensuring a representative class distribution. Before

applying SMOTE, we dynamically set the number of nearest

neighbors based on the 'expert' instances in the training data.

Using SMOTE, we balanced our datasets, enhancing model

accuracy. However, SMOTE can introduce noise, potentially

leading to model over-generalization on real-world data.

Phase 3. Model Training:

With our datasets now complete and labeled, we transitioned to

the third phase of our research method, we directed our

attention towards the pivotal aspect of model training. This

phase is instrumental in elucidating the predictive capabilities

inherent within our rigorously assembled datasets.

Given our objective of predicting developer expertise levels,

we identified it as a multi-class classification problem. We

experimented with various machine learning algorithms,

including Random Forest (RF), Gradient Boosting (GB),

Support Vector Machines (SVM), and Logistic Regression

(LR), to assess their performance on our datasets. The rationale

behind selecting these classifiers is multi-fold:

Random Forest and Gradient Boosting are both ensemble

learning methods known for their high accuracy and ability to

handle large datasets with higher dimensionality. They can

effectively manage missing values and provide a good indicator

of feature importance. Support Vector Machines are renowned

for their power in high-dimensional spaces, which is

particularly beneficial given the number of features in our

dataset. They offer robustness, especially when the number of

dimensions exceeds the number of samples. Logistic

Regression while is a simpler algorithm, is effective for binary

and multi-class classification problems. Its ease of

implementation and interpretability make it a valuable tool in

our arsenal [15], [17], [18].

In our study, we examined our six distinct datasets, each

corresponding to a target language, alongside three datasets

from the base article [11]. To understand the potential influence

of incorporating Stack Overflow features, we employed a two-

pronged analytical approach.

GitHub-Only Features: Initially, all Stack Overflow features

were dropped from our datasets, leaving only the GitHub

features. This step was inspired by our base article, which solely

considered GitHub features. It is essential to note that the

datasets derived from the base article [11] were accessible to

the public. To maintain consistency and ensure an equitable

comparison, we subjected these datasets to analogous

preprocessing steps as those implemented for our own datasets.

This approach not only aligned our method but also enhanced

the performance of the models on the base article datasets. The

results presented in Table 3 for the three base datasets surpass

the performance metrics reported in their original paper[11],

offering a more robust comparison.

 Incorporating Stack Overflow Features: Subsequently, we

reintroduced the Stack Overflow features to our six datasets and

retrained our models. The performance results post this addition

are showcased in Table 4. For each of the above approaches, we

embarked on a systematic method. First, we loaded the

respective datasets, each tailored to a specific approach, be it

GitHub-only or incorporating Stack Overflow features. Then,

the data was split into training and testing sets using stratified

sampling [28], ensuring that each set accurately represented the

overall class distribution. Subsequently, we standardized the

features using the StandardScaler [29], ensuring they were on

the same scale, which is crucial for effective model training.

Next, for each classifier, we defined a set of hyperparameters.

To find the optimal parameters, we employed GridSearchCV,

an exhaustive search method over the specified parameter

values for an estimator. This method pinpointed the parameters

of the estimator that yielded the best results on the left-out

validation set, ensuring our models were primed for optimal

performance.

 3.1 ASSUMPTIONS AND LIMITATIONS OF THE PROPOSED

METHOD

In every research endeavor, certain assumptions guide the

method, and inherent limitations bound the scope. This section

elucidates the foundational assumptions underpinning our

proposed method and highlights potential constraints that might

influence the interpretation of our findings. Recognizing these

factors ensures a nuanced understanding of our research

outcomes.

Assumptions:

Data Completeness: We assumed that the data sourced from

GitHub and Stack Overflow accurately represents the activities

and contributions of developers. However, there might be

private repositories or contributions that are not publicly

accessible.

Feature Relevance: The features selected for model training

were deemed relevant based on prior literature and domain

knowledge. It's assumed that these features are indicative of a

developer's expertise.

Model Applicability: We assumed that the machine learning

models chosen for this study are suitable for the type of data

and the problem at hand. The performance of these models

might vary with different datasets or contexts.

Developer Overlap between NodeJs and MongoDB: In the

base article [11], MongoDB is represented as NODE-

MONGODB, the official NodeJs driver for the MongoDB

database server. While there's likely a significant overlap

between MongoDB and NodeJs developers, it's crucial to

acknowledge that not all MongoDB developers may be

proficient in NodeJs, and vice versa. For the purpose of a more

direct comparison between our datasets and those of the base

article, we operate under the assumption that developers

associated with MongoDB also have expertise in NodeJs.

Self-Assessment Reliability: We operate under the

assumption that the self-assessments provided by contributors

are accurate and offer a reliable representation of their expertise

levels.

Limitations:

Data Bias: Relying solely on GitHub and Stack Overflow might

introduce a bias, as developers might be active on other

platforms or might not be active online at all. This could lead to

an incomplete representation of a developer’s true expertise.

GitHub and Stack Overflow are widely used platforms in the

developer community, but they may not fully represent the

broader developer community. For example, developers who

primarily use other platforms or who do not participate in online

communities may not be well-represented. Furthermore, the

behaviors and activities on these platforms may not fully reflect

a developer’s offline activities or their activities on other

platforms. One potential way to mitigate this bias, which we

discuss in our conclusion, is to integrate data from a wider range

of developer platforms in future research.

External Validity: While our models showed promising

results in the context of serverless functions, their applicability

to other technological domains needs further validation.

Feature Limitations: While we integrated features from

GitHub and Stack Overflow, other platforms like LinkedIn or

Journal of Computer and Knowledge Engineering, Vol. , No.. 2019. 9

TopCoder might offer additional insights that could enhance the

model's predictive power. We attempted to use the public

LinkedIn REST API7 to complement our data collection with

user activity data from LinkedIn. However, to the best of our

knowledge, the LinkedIn public API is no longer accessible.

Furthermore, while we considered implementing a web crawler

to gather data from LinkedIn, we decided against it. Although

it's not illegal to collect publicly accessible data from the web,

such an approach would be against LinkedIn's terms and

conditions.

Model Constraints: Every machine learning model has its

inherent limitations. For instance, linear models might not

capture non-linear relationships well, and tree-based models

might overfit on sparse data [30].

4. EVALUATION

In response to RQ1, which inquires about the most effective

machine learning algorithms for evaluating developer expertise

in serverless functions based on the extracted features, we

conducted a rigorous evaluation of our trained models. Once the

models were trained with the best parameters; they underwent

rigorous evaluation on the test set. We computed a range of

metrics, including accuracy, kappa score, and AUC, to evaluate

their performance. Additionally, we calculated precision, recall,

and F1-score for each class - Novice, Intermediate, and Expert.

This detailed evaluation ensured we captured the nuances of

each model's predictive capabilities, providing a detailed

understanding of their strengths and limitations.

By adhering to this method for both approaches, we ensured

a consistent evaluation, allowing for a fair comparison between

the utility of GitHub-only features and the combined GitHub

and Stack Overflow features. The results for both approaches

can be found in Table 2, Table 3, and Table 4. Following the

presentation of results, we delve into a deeper analysis of the

datasets. Initially, we focus on datasets using only GitHub

features, subsequently, we discuss the datasets enhanced with

Stack Overflow features and the resultant impact on model

outcomes. The evaluation concludes with a feature importance

TABLE 2

Performance metrics of models trained using GitHub for our Target Languages Datasets

TABLE 3

7 https://developer.linkedin.com/product-catalog

Key: Metrics - Acc. (Accuracy), Kp. (Kappa), AUC (Area Under the Curve), P (Precision), R (Recall), F1 (F1 Score); Expertise Levels -

Nv. (Novice), Int. (Intermediate), Exp. (Expert); Models - LR. (Logistic Regression), RF. (Random Forest), GB. (Gradient Boosting).

Performance metrics of models trained using GitHub for Datasets from the Base Article [11]

analysis using the SHAP method, offering insights into the

pivotal role of each feature. In this structured discussion, we

aim to present a thorough understanding of our findings and

their broader implications.

Part 1. Discussion Datasets with only GitHub Features

In the evaluation of target languages' datasets presented in

Table 2, several trends and patterns emerge. RF model

consistently exhibits robust performance across multiple

datasets, often securing the lead in accuracy, Kappa, and F1

scores. This superior performance can be attributed to RF's

ensemble nature, which amalgamates the results of numerous

decision trees, offering a more generalized and resilient model.

On the other hand, the SVM model also demonstrates

commendable performance, particularly in precision. However,

certain anomalies, such as in the Python dataset for the Exp.

category, reveal that while SVM can predict with high

confidence, it might occasionally overlook specific classes,

resulting in a diminished recall.

The GB model, another contender, frequently matches the

performance of RF across datasets. GB's strength lies in its

boosting algorithm, which zeroes in on challenging instances,

potentially enhancing its performance on intricate datasets.

Conversely, the LR model, inherently linear, occasionally falls

short compared to tree-based or SVM models, especially when

faced with datasets characterized by non-linear decision

boundaries. Table 3, focusing on base work [11] results,

highlights the challenges encountered in model predictions. The

Socket.io dataset, for instance, presents notably low metrics for

both RF and SVM models.

 In Figure 5, we compared the performance of the Random

Forest and SVM models for NodeJs and MongoDB datasets.

The motivation behind selecting the NodeJs and MongoDB

datasets for comparison is rooted in the anticipated overlap

between their developer communities. Based on the premise

that MongoDB, denoted as NODE-MONGODB — the official

NodeJs driver for the MongoDB database server — would have

a substantial confluence of developers skilled in both domains,

Figure 5. Comparison of performance metrics for NodeJs and

MongoDB datasets

these datasets were chosen for a deeper analysis. Upon

analyzing the performance metrics, a distinct pattern becomes

evident: models trained on the NodeJs dataset tend to surpass

those trained on the MongoDB dataset across the majority of

metrics. Moreover, within the NodeJs dataset, the RF model

consistently outshines the SVM in parameters such as accuracy,

kappa, and AUC. Both models demonstrate laudable precision

in recognizing novice developers, underscoring a robust ability

to accurately discern beginner-level expertise. Nonetheless, a

discernible drop in precision is observed as we transition to

higher levels of expertise, particularly in the SVM model for

NodeJs. The performance metrics for MongoDB were

influenced by multiple factors. A primary consideration is the

label retrieval method, which predominantly hinged on self-

assessment. While our datasets also utilized self-assessment, it

is noteworthy that around 9% of our data was labeled based on

genuine expertise levels. Our hybrid labeling approach,

encompassing heuristic techniques and kNN label imputation,

seemed to yield more consistent outcomes. This approach

counteracts the inherent discrepancies often associated with

sole reliance on self-assessments. The potential for developers

to inaccurately evaluate their own skills introduces the risk of

misclassification. Such disparities might be accentuated for

MongoDB, suggesting potential variances between self-

declared and actual proficiency. In addition, the constraints

posed by a limited number of training instances cannot be

overlooked. Despite our efforts in employing techniques like

SMOTE to address dataset imbalance, the foundational issue of

a restricted data sample might induce overfitting, consequently

diminishing the model's generalization capabilities. For

consistency, the same preprocessing steps were applied across

all nine datasets, and it's worth mentioning that the performance

results reported for the base work [11] witnessed an

Journal of Computer and Knowledge Engineering, Vol. , No.. 2019. 11

enhancement due to our preprocessing techniques.

Moreover, while accuracy is a widely used metric, its

limitations become pronounced, especially in datasets with

class imbalances. Other metrics like Kappa, AUC, precision,

recall, and F1 score provide a more comprehensive view,

capturing the model's performance nuances across various

classes. In conclusion, while RF often stands out in

performance metrics, it's crucial to consider each dataset's

unique characteristics when choosing a model. The occasional

unexpected or below-average metric emphasizes the

importance of a holistic evaluation using a diverse set of

metrics, ensuring a well-rounded understanding of model

performance.

Part 2.

Discussion on the Enhanced Datasets with Stack Overflow

Features

Upon integrating Stack Overflow features into our datasets, as

shown in Table 4, we observed a marked improvement in the

performance metrics of the models. This enhancement

underscores the significance of feature engineering and the

potential of external data sources in boosting model

performance. For the C# dataset, the RF model stands out with

the highest accuracy of 0.88 and a Kappa score of 0.80. SVM,

with an AUC of 0.97, indicates its capability to distinguish

between classes effectively. Interestingly, LR showcases a

perfect recall of 0.92 for the Exp. category, emphasizing its

strength in identifying true positives for this class. In the Go

dataset, SVM takes the lead with an accuracy of 0.90 and a

Kappa score of 0.82. Its performance in the Int. category, with

a recall of 0.92 and an F1 score of 0.89, is noteworthy,

suggesting its proficiency in classifying intermediate instances.

For the Java dataset, RF demonstrates robust performance with

an accuracy of 0.92 and a Kappa score of 0.87. Its precision of

0.93 for the Int. category is commendable. However, GB's AUC

of 0.98 is the highest, indicating its superior ability to

differentiate between the classes.

In the NodeJs dataset, SVM emerges as the top performer with

an accuracy of 0.92 and a Kappa score of 0.87. Its F1 scores

across all categories are consistently high, reflecting its

balanced precision and recall.

For the Python dataset, SVM shines with the highest

accuracy of 0.93 and a Kappa score of 0.88. Its performance in

the Exp. category, with an F1 score of 0.94, is particularly

impressive. LR's recall of 0.97 for the Nv. category is the

highest, indicating its strength in identifying true positives for

novice instances.

Lastly, in the Ruby dataset, SVM leads with an accuracy of

0.89 and a Kappa score of 0.79. Its performance in the Nv.

category, with an F1 score of 0.94, is outstanding, suggesting

its proficiency in classifying novice instances. The addition of

Stack Overflow features has evidently bolstered the models'

performance across the datasets. The enriched datasets provide

a more detailed view of each instance, allowing the models to

capture intricate patterns and relationships. It's worth noting

that while we couldn't expand the base datasets to include Stack

Overflow features due to privacy concerns related to email

hashing, the similarity in nature between NODE-MONGODB

(NodeJs driver for MongoDB) and NodeJs offers a reasonable

point of comparison. Given the overlaps between MongoDB

and NodeJs developers, this similarity can serve as a benchmark

to assess the impact of the added features. We hypothesize that

if we were able to expand the MongoDB dataset similarly, we

TABLE 4

Performance metrics of models trained using GitHub and Stack Overflow features

would likely observe comparable improvements as seen with

the NodeJs dataset.

In conclusion, the integration of external features, such as

those from Stack Overflow, can substantially enhance model

performance. The importance of feature engineering is evident,

and the potential of utilizing external data sources in machine

learning tasks is undeniable. Referring to the results depicted in

Figure 6, it's clear that leveraging additional features leads to

noticeable accuracy boosts across various programming

languages. For example, the SVM model accuracy for the 'Go'

language saw an increase from 83% using only GitHub features

to 92% when integrated with Stack Overflow features. and the

continuous pursuit of integrating relevant external data to

achieve optimal model performance. We observed similar

significant improvements for languages like 'Java', 'NodeJs',

and 'Python'. However, for languages like 'C#' and 'Ruby', the

enhancements were more modest. These findings underscore

the value of broadening the feature space.

Part 3. Feature Importance Analysis

In response to RQ2, which seeks to identify the most indicative

features or metrics of a developer's expertise in serverless

functions, we employed the SHAP (SHapley Additive

exPlanations) method. SHAP values offer a unified measure of

feature importance, assigning each feature an importance value

for a specific prediction. This method excels in providing both

global interpretability—indicating the importance of each

feature across the entire dataset—and local interpretability,

Figure 6: Comparison of SVM model accuracies using only GitHub

features versus the improvement achieved by adding Stack Overflow

features for target languages

which explains individual predictions. As illustrated in Figure

7 (a SHAP summary plot), the SHAP analysis offers a

comprehensive perspective on the significance of each feature

[31].

Our analysis reveals the pivotal role of various features in

predicting a developer's proficiency. The

'avg_days_commits_import_library' feature, denoting the

average number of days between commits that import libraries,

stands out as paramount. This metric suggests that a developer

integrating new libraries frequently might be inclined towards

proactive experimentation and learning. Similarly, the

'commits_import_library' feature, which reflects the number of

such commits, can hint at the intricacy of applications a

developer crafts. The 'time_of_activity' metric, capturing the

span of a developer's activity, indicates sustained technological

interest, which is crucial for continuous learning and expertise

development.

Yet, insights aren't solely derived from GitHub activity.

Additionally, 'commits_client_files', which counts commits

altering at least one client file, sheds light on a developer's

active involvement and contributions in a project's primary

Figure 7: SHAP Summary Plot

language. This could be interpreted as a sign of a developer’s

commitment to a project and their expertise in the project’s

main language. Integration of Stack Overflow features enriches

our understanding. For instance, 'upvotes', ranking as the third

most influential feature, accentuates the community's

acknowledgment of a developer's input. A high 'tag_score'

signifies domain-specific expertise. Metrics like

'average_score_per_answer' and 'first_answers' encapsulate

both the caliber and the regularity of a user's contributions—the

former indicating consistent answer quality and the latter

reflecting active community participation. 'Accepted_answers'

further vouch for the quality and pertinence of a developer's

knowledge dissemination. While GitHub metrics provide a

window into a developer's coding habits, Stack Overflow

metrics delve into their community engagement and problem-

solving acumen. Collectively, insights from both platforms

paint a holistic picture of a developer's expertise in a specific

technology.

4.1 DISCUSSION

Our results underscore the potential of integrating data from

multiple platforms to enhance the precision of evaluating

developers' expertise, especially those involved in serverless

functions. The incorporation of Stack Overflow features

alongside GitHub data, particularly in the context of serverless

function development, has shown promising improvements in

our model's performance.

In the industrial landscape, our model suggests a nuanced

approach to recruitment, talent acquisition, and team

Journal of Computer and Knowledge Engineering, Vol. , No.. 2019. 13

optimization, especially for roles centered around serverless

functions. By amalgamating coding practices and community

engagement metrics from platforms like GitHub and Stack

Overflow, there's potential for a more in-depth insight into a

developer's skills and contributions in the serverless domain.

Such insights could refine the hiring process, potentially

leading to more targeted training and role assignments.

Although our study's focal point is the serverless function

domain, the method might be adaptable to other technological

areas. For new instances, our model provides a framework for

assessing individual developer profiles, potentially offering

predictions on their expertise levels based on the features we've

identified.

In the academic realm, our model could serve as a potential

reference for research, curriculum development, and student

assessment in serverless function development and beyond. It

might offer insights for studies exploring developer behavior

and proficiency, especially when integrating data from multiple

sources. By evaluating students' real-world coding activities,

there's an opportunity for educators to offer feedback that

encompasses both theoretical knowledge and practical

application, promoting a balanced learning experience.

5. THREATS TO VALIDITY

Research, especially in the domain of empirical studies, is

often subject to various threats that might affect the

generalizability and validity of the results. In this section, we

discuss potential threats to the validity of our study and the

measures we've taken to mitigate them.

Model Bias: While we experimented with multiple machine

learning algorithms, each model comes with its inherent biases.

For instance, tree-based models like Random Forest might

overfit on certain datasets, while linear models like Logistic

Regression might not capture non-linear relationships

effectively.

Hyperparameter Tuning: Although we employed

GridSearchCV for exhaustive hyperparameter tuning, there's

always a possibility that a different combination might yield

slightly better results.

Feature Selection: The inclusion or exclusion of features

can impact model performance. Our hybrid feature selection

method combined heuristic labeling with kNN label imputation.

However, heuristic labeling, despite aiding dataset balance,

may not always reflect the intricacies of developer expertise.

Likewise, while kNN is widely used, it can be susceptible to

mislabeling due to noisy neighbors.

Dataset Specificity: Our study is based on specific datasets

tailored to certain programming languages. The findings might

not be directly generalizable to other languages or platforms.

Data Absence from Other Platforms: The lack of data

from platforms like LinkedIn and TopCoder may limit our

model's comprehensiveness. Missing insights from these

platforms could challenge the external validity of our findings,

potentially overlooking essential indicators of developer

expertise.

Labeling and Classification: The classification of

developers into categories like Novice, Intermediate, and

Expert is based on certain metrics and might not capture the

complete essence of a developer's expertise.

Feature Interpretation: While we employed the SHAP

method for feature importance analysis, the interpretation of the

importance of certain features might vary among experts.

Self-Assessment Accuracy: While we operated under the

assumption that the self-assessments provided by contributors

were accurate reflections of their expertise levels, there's an

inherent risk associated with relying on subjective evaluations.

Contributors might have overestimated or underestimated their

skills due to factors like overconfidence, modesty, or a lack of

clear understanding of the assessment criteria. This potential

discrepancy between perceived and actual expertise could

influence the validity of our findings, especially if these self-

assessments were used as ground truth or reference points in

our analysis.

6. CONCLUSION AND FUTURE DIRECTIONS

In this research, we ventured into the domain of predicting

developer expertise specifically within the realm of serverless

functions, using features extracted from GitHub and Stack

Overflow. Our findings underscored the value of multi-

platform data integration in providing an in-depth

understanding of developer expertise.

In our research, we explored two key areas. The first area of

exploration (RQ1) revolved around identifying the most

effective machine learning algorithms for evaluating developer

expertise. Our journey led us to the Random Forest (RF) model,

which consistently demonstrated robust performance across

multiple datasets. We also observed commendable performance

from the Support Vector Machine (SVM) model, particularly in

terms of precision.

The second area of exploration (RQ2) focused on uncovering

the features or metrics that best indicate a developer’s expertise

in serverless functions. Our exploration revealed that the top 5

indicators were ‘avg_days_commits_import_library’,

‘commits_import_library’, ‘upvotes’, ‘time_of_activity’, and

‘commits_client_files’. We used the SHAP method for feature

importance analysis to arrive at these insights.

Our research adds to the field by predicting developer

expertise in serverless functions, an area not widely studied

before. We used 22 features from GitHub and Stack Overflow,

which is more than what’s typically used in this domain. This

large set of features gives us a detailed look at developer

activities and expertise. While there are other studies [4], [5]

that also use data from multiple platforms, our study stands out

because we use both GitHub and Stack Overflow data and a

larger set of features. Our results agree with other studies that

find it useful to combine insights from multiple platforms. But

our research goes one step further by showing how this

approach works well for serverless functions.

In addition, one of the tangible outputs of our research is the

creation and public release of six language-specific datasets,

representing our target languages. By making these datasets

publicly available8, we not only aim to contribute to the

academic community but also hope to foster further research in

this area.

Our current investigation has also highlighted the potential

benefits of integrating insights from platforms such as Stack

Overflow. Such an integrative approach, which merges data

from varied sources, can offer richer insights into the

multifaceted nature of developer expertise, especially in the

context of serverless functions.

As we move forward, there are multiple avenues we can

explore to build upon our current findings. One potential

direction is to widen our data collection to encompass a more

extensive range of repositories, offering a deeper dive into

developer activities. Another promising avenue is to investigate

other metrics of developer expertise, such as peer reviews or

code quality assessments, which might yield a more nuanced

understanding. Finally, considering the vast ecosystem of

developer platforms, integrating data from platforms like

GitLab, Bitbucket, and LinkedIn, as well as competitive coding

platforms like TopCoder, can provide a more rounded view of

developer behavior and skills. This could be the next step in

further refining and expanding our understanding of expertise

in serverless function development.

7. REFERENCES

[1] S. Kourtzanidis, A. Chatzigeorgiou, and A. Ampatzoglou,

“RepoSkillMiner: Identifying software expertise from GitHub

repositories using Natural Language Processing,” Proc. - 2020

35th IEEE/ACM Int. Conf. Autom. Softw. Eng. ASE 2020, pp.

1353–1357, 2020, doi: 10.1145/3324884.3415305.

[2] X. Song, J. Yan, Y. Huang, H. Sun, and H. Zhang, “A

Collaboration-Aware Approach to Profiling Developer Expertise

with Cross-Community Data,” IEEE Int. Conf. Softw. Qual.

Reliab. Secur. QRS, vol. 2022-Decem, pp. 344–355, 2022, doi:

10.1109/QRS57517.2022.00043.

[3] E. Constantinou and G. M. Kapitsaki, “Developers expertise and

roles on software technologies,” Proc. - Asia-Pacific Softw. Eng.

Conf. APSEC, vol. 0, pp. 365–368, 2016, doi:

10.1109/APSEC.2016.061.

[4] Y. Tian, W. Ng, J. Cao, and S. McIntosh, “Geek talents: Who are

the top experts on GitHub and stack overflow?,” Comput. Mater.

Contin., vol. 61, no. 2, pp. 465–479, 2019, doi:

10.32604/cmc.2019.07818.

[5] S. L. Vadlamani and O. Baysal, “Studying Software Developer

Expertise and Contributions in Stack Overflow and GitHub,”

Proc. - 2020 IEEE Int. Conf. Softw. Maint. Evol. ICSME 2020,

pp. 312–323, 2020, doi: 10.1109/ICSME46990.2020.00038.

[6] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The

rise of serverless computing,” Commun. ACM, vol. 62, no. 12,

pp. 44–54, 2019, doi: 10.1145/3368454.

[7] M. Shahrad et al., “Serverless in the wild: Characterizing and

optimizing the serverless workload at a large cloud provider,”

Proc. 2020 USENIX Annu. Tech. Conf. ATC 2020, pp. 205–218,

2020.

[8] A. Mujezinovic and V. Ljubovic, “Serverless architecture for

workflow scheduling with unconstrained execution

environment,” 2019 42nd Int. Conv. Inf. Commun. Technol.

Electron. Microelectron. MIPRO 2019 - Proc., no. 242, pp. 242–

246, 2019, doi: 10.23919/MIPRO.2019.8756833.

8 https://github.com/aref98/Evaluating-Developer-Expertise-in-Serverless-

Functions-by-Mining-Activities-from-Multiple-Platforms

[9] R. Cordingly et al., “Implications of Programming Language

Selection for Serverless Data Processing Pipelines,” Proc. - IEEE

18th Int. Conf. Dependable, Auton. Secur. Comput. IEEE 18th

Int. Conf. Pervasive Intell. Comput. IEEE 6th Int. Conf. Cloud

Big Data Comput. IEEE 5th Cybe, pp. 704–711, 2020, doi:

10.1109/DASC-PICom-CBDCom-

CyberSciTech49142.2020.00120.

[10] J. Oliveira, M. Viggiato, and E. Figueiredo, “How well do you

know this library? Mining experts from source code analysis,”

ACM Int. Conf. Proceeding Ser., 2019, doi:

10.1145/3364641.3364648.

[11] J. E. Montandon, L. Lourdes Silva, and M. T. Valente,

“Identifying experts in software libraries and frameworks among

GitHub Users,” IEEE Int. Work. Conf. Min. Softw. Repos., vol.

2019-May, pp. 276–287, 2019, doi: 10.1109/MSR.2019.00054.

[12] B. Vasilescu, V. Filkov, and A. Serebrenik, “StackOverflow and

GitHub: Associations between software development and

crowdsourced knowledge,” Proc. - Soc. 2013, pp. 188–195, 2013,

doi: 10.1109/SocialCom.2013.35.

[13] A. Santos, M. Souza, J. Oliveira, and E. Figueiredo, “Mining

software repositories to identify library experts,” ACM Int. Conf.

Proceeding Ser., no. i, pp. 83–91, 2018, doi:

10.1145/3267183.3267192.

[14] G. J. Greene and B. Fischer, “CVExplorer: Identifying candidate

developers by mining and exploring their open source

contributions,” ASE 2016 - Proc. 31st IEEE/ACM Int. Conf.

Autom. Softw. Eng., pp. 804–809, 2016, doi:

10.1145/2970276.2970285.

[15] X. T. Trinh, “Online learning of multi-class Support Vector

Machines,” no. 12 061, 2012.

[16] Christopher J.C. Burges, “A Tutorial on Support Vector

Machines for Pattern Recognition,” Data Min. Knowl. Discov.,

vol. 2, pp. 121–167, 1998.

[17] G. Biau and E. Scornet, “A random forest guided tour,” Test, vol.

25, no. 2, pp. 197–227, 2016, doi: 10.1007/s11749-016-0481-7.

[18] A. Natekin and A. Knoll, “Gradient boosting machines, a

tutorial,” Front. Neurorobot., vol. 7, no. DEC, 2013, doi:

10.3389/fnbot.2013.00021.

[19] A. Schneider, G. Hommel, and M. Blettner, “Lineare

regressionsanalyse - Teil 14 der serie zur bewertung

wissenschaftlicher publikationen,” Dtsch. Arztebl., vol. 107, no.

44, pp. 776–782, 2010, doi: 10.3238/arztebl.2010.0776.

[20] Ö. Senger, “Impact of skewness on statistical power,” Mod. Appl.

Sci., vol. 7, no. 8, pp. 49–56, 2013, doi: 10.5539/mas.v7n8p49.

[21] N. J. Gogtay and U. M. Thatte, “Principles of correlation

analysis,” J. Assoc. Physicians India, vol. 65, no. MARCH, pp.

78–81, 2017.

[22] S. Chulani, B. Boehm, and B. Steece, “Bayesian Analysis of

Empirical Software Engineering Cost Models,” Mach. Learn.

Appl. Softw. Eng., vol. 25, no. 4, pp. 41–51, 2005.

[23] J. Li et al., “Feature selection: A data perspective,” ACM

Comput. Surv., vol. 50, no. 6, 2017, doi: 10.1145/3136625.

[24] B. Boecking, W. Neiswanger, E. P. Xing, and A. Dubrawski,

“Interactive Weak Supervision: Learning Useful Heuristics for

Data Labeling,” ICLR 2021 - 9th Int. Conf. Learn. Represent., pp.

1–27, 2021.

[25] S. Zhang, “Nearest neighbor selection for iteratively kNN

imputation,” J. Syst. Softw., vol. 85, no. 11, pp. 2541–2552, 2012,

doi: 10.1016/j.jss.2012.05.073.

[26] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online Defect

Prediction for Imbalanced Data,” Proc. - Int. Conf. Softw. Eng.,

vol. 2, pp. 99–108, 2015, doi: 10.1109/ICSE.2015.139.

[27] L. Li, T. F. Bissyandé, D. Octeau, and J. Klein, “Reflection-aware

static analysis of android apps,” ASE 2016 - Proc. 31st

Journal of Computer and Knowledge Engineering, Vol. , No.. 2019. 15

IEEE/ACM Int. Conf. Autom. Softw. Eng., pp. 756–761, 2016,

doi: 10.1145/2970276.2970277.

[28] A. S. Singh, M. B. Masuku, and Department, “Sampling

techniques & determination of sample size in applied statistics

research,” Inwood Mag., vol. II, no. 96, pp. 32–33, 2011.

[29] L. Buitinck et al., “API design for machine learning software:

experiences from the scikit-learn project,” pp. 1–15, 2013,

[Online]. Available: http://arxiv.org/abs/1309.0238

[30] R. M. Dawes, “The robust beauty of improper linear models in

decision making.,” Am. Psychol., vol. 34, no. 7, pp. 571–582,

1979, doi: 10.1037//0003-066x.34.7.571.

[31] S. M. Lundberg and S. I. Lee, “A unified approach to interpreting

model predictions,” Adv. Neural Inf. Process. Syst., vol. 2017-

December, no. Section 2, pp. 4766–4775, 2017.

[32] A. Sayers, Y. Ben-Shlomo, A. W. Blom, and F. Steele,

“Probabilistic record linkage,” International Journal of

Epidemiology, vol. 45, no. 3, pp. 954-964, 2016.

