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Abstract-- In the domain of software development, the 

evaluation of developer expertise has gained prominence, 

particularly with the rise of serverless functions. These functions, 

which simplify the development process by delegating 

infrastructure management to cloud providers, are becoming 

more common. As developers may utilize functions created by 

their peers, understanding the expertise of the original developer 

is crucial since it can serve as an indicator of the functions' quality. 

While there are existing methods for expertise evaluation, certain 

gaps remain, especially concerning serverless functions. To 

address this, our research aims to enhance the assessment of 

developer expertise in this area by extracting activity-based 

features from both GitHub and Stack Overflow. After processing 

the extracted data, we applied various machine learning 

algorithms. Our findings suggest a potential improvement in 

evaluating developer expertise when incorporating features from 

Stack Overflow compared to using only GitHub data. The extent 

of this improvement was observed to differ among programming 

languages, with variations in accuracy improvement percentages 

ranging from 2% to 19%. This study contributes to the ongoing 

discourse on developer expertise evaluation, highlighting the 

potential benefits of drawing from multiple data sources. 
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1. INTRODUCTION 

In the domain of software development, the ability to 

accurately evaluate developer expertise has become paramount 

[1-5]. This emphasis on expertise evaluation is not just a 

theoretical concern but has practical implications, especially in 

the evolving landscape of serverless functions. Serverless 

functions, often referred to as Function as a Service (FaaS) [6], 

simplify the development process by offloading infrastructure 

management to cloud providers. Recent data suggests that over 

40% of companies have integrated serverless functions into 

their workflows, drawn by their scalability, cost-effectiveness, 

and the convenience of reduced infrastructure management 

[7][8]. 

With the increasing adoption of serverless functions, there's 

a growing need to understand the expertise behind the functions 

being developed. Developers frequently integrate functions 

developed by others into their projects. In such contexts, 
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assessing the expertise of the original developer is crucial to 

ensure the reliability and efficiency of the integrated functions. 

Evaluating developer expertise in serverless functions is 

particularly important as it can significantly impact the quality 

and performance of the applications that use these functions. 

Furthermore, as serverless functions are often developed using 

"Target Languages" like Java, Python, NodeJs3, Ruby, Go, and 

C#—selected for their compatibility with serverless 

architectures and their widespread use [9]—it becomes 

imperative to evaluate expertise specifically within these 

languages to ensure the quality and efficiency of serverless 

applications. 

The accurate assessment of developer expertise in the 

broader software development field has been the focus of 

numerous investigations [1-4], [10–14] . While many works 

have been conducted in this area, several challenges persist. For 

instance, some studies have found that simple metrics, such as 

counting commits, might not be a reliable indicator of expertise 

within specific libraries or frameworks. Others have introduced 

tools that leverage Natural Language Processing (NLP) to 

pinpoint expertise, but these often rely solely on data from a 

single platform like GitHub. There's also a recognized need to 

merge data from multiple platforms, such as GitHub and Stack 

Overflow, but many existing approaches primarily focus on 

user profiles and specific APIs.  

Building on these valuable insights from prior research, our 

study endeavors to bridge the identified gaps. Specifically, we 

aim to offer a fresh perspective on developer expertise by 

tapping into both GitHub and Stack Overflow, thereby opening 

a broader window of feature collecting, especially in the context 

of serverless functions. We've observed that while some 

research has adeptly employed machine learning classifiers, a 

predominant reliance on a single data platform suggests an 

opportunity for enhancement. Our work underscores the 

significance of adopting a multi-platform approach, which we 

believe can pave the way for a more holistic understanding of 

developer expertise. 

Evaluating developer expertise, especially within serverless 

functions, requires a systematic approach. Following this 



 

 

notion, our research utilized the official GitHub REST API4 for 

data extraction. We initially identified 408 GitHub repositories 

related to serverless functions. From these, we selected the top 

150 to ensure representation across different target languages. 

On GitHub, we extracted 13 activity-related features, providing 

insights into a contributor's activities and expertise. Our 

interpretation of these features was informed by Montandon's 

work [11]. 

Turning to Stack Overflow, we sought to link contributors to 

their Stack Overflow profiles using the official StackAPI5. This 

allowed us to extract 9 additional features related to their 

activity on this platform. After data collection, we invited 

contributors to self-assess their expertise on a 0 to 5 scale. Of 

the 2539 emails we sent, 237 were answered, leading to a 

response rate of about 9.3%. This feedback aided in initially 

labeling our dataset. 

After data extraction, we engaged in preprocessing to 

manage data-related challenges. For analysis, we employed 

machine learning algorithms like SVM [15], [16], Random 

Forest [17], Gradient Boosting [18], and Logistic Regression 

[19]. Initial results showed a preference for SVM and Random 

Forest in several datasets. When compared to other research, 

our findings suggested potential benefits from using data from 

both Stack Overflow and GitHub. The efficacy varied by target 

language: NodeJs exhibited an accuracy increase of 

approximately 19%, while C# showed an increase of about 2%, 

resulting in an average improvement of around 10.7%. 

Having outlined our proposed method, we sought to address 

these two specific research questions: 

RQ1. Which machine learning algorithms are most effective 

in evaluating developer expertise in serverless functions based 

on the extracted features? The answers to this question, based 

on our comparative analyses of different algorithms, are 

discussed in the 'Evaluation' section. 

RQ2. What features or metrics are most indicative of a 

developer's expertise in serverless functions? The insights 

related to this question, derived from our feature importance 

analysis, can be found in the 'Evaluation' section, specifically in 

the third part of that section. 

In our research, we've made several contributions to 

evaluating developer expertise in serverless functions. Notably, 

we've adopted a dual-platform data extraction approach, 

gathering activity-based features of contributors6 from both 

GitHub and Stack Overflow. This approach aims to provide a 

more detailed perspective on a developer's engagement by 

leveraging data from two major platforms. From this extraction, 

we've compiled six language-specific datasets, representing 

developer activities in serverless functions for the respective 

target languages. Importantly, by making these datasets 

publicly available, we aim to foster collaborative research and 

encourage further exploration in this domain. This detailed 

approach allows for a nuanced evaluation based on the specific 

programming language. Additionally, we've conducted a 

feature importance analysis using SHAP values to understand 
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the relative importance of each extracted feature. This step 

helps in discerning which activities might be more indicative of 

a developer's expertise in serverless functions. 

Our proposed method caters not only to serverless functions 

but also have versatility for broader software development 

contexts. This adaptability accentuates the potential of our 

techniques in navigating the multifaceted challenges of 

contemporary software development. Furthermore, our 

research underscores the imperative of a holistic, multi-

platform approach in developer expertise evaluation, with 

implications for refining recruitment strategies in the industry 

and fostering a platform proficiency within academic 

frameworks. 

The remainder of this paper is structured as follows: The 

next section delves into the Background, providing a 

foundational understanding of the domain and contextualizing 

our work within existing literature. Following this, we present 

our Proposed Method, detailing the approach and techniques we 

employed. The Evaluation section then discusses our findings, 

shedding light on the efficacy and implications of our method. 

We subsequently address potential Threats to Validity, ensuring 

a transparent and critical discussion of our study's limitations. 

The paper concludes with a Conclusion section, summarizing 

our key contributions, and then looks ahead to Future 

Directions, suggesting potential avenues for further research 

and exploration in this domain. 

2. BACKGROUND 

The rapid evolution of software development has led to the 

emergence of various platforms where developers collaborate, 

share knowledge, and showcase their expertise. Platforms like 

GitHub and Stack Overflow have become central to this 

ecosystem, providing a wealth of data that can be mined to 

understand developer expertise and behavior. Several studies 

have delved into this realm, each offering unique insights and 

methodologies [5]. 

Vasilescu et al. embarked on a comprehensive exploration 

of the intricate relationship between Stack Overflow and 

GitHub activities, Their exploration spanned three distinct 

levels: macro, intermediate, and micro. Their macro-level 

analysis aimed to discern the differences between GitHub 

contributors based on their Stack Overflow involvement, 

probing whether activity on one platform could serve as a proxy 

for the other. The intermediate level delved into the distribution 

of developers' time between GitHub commits and their Q&A 

activity on Stack Overflow. At the micro level, the temporal 

coordination between GitHub commits and Stack Overflow 

Q&A activities was scrutinized. This multifaceted analysis 

underscores the intertwined nature of developer activities 

across these platforms, emphasizing the potential influence of 

participation on one platform over the other [12]. 

In a similar vein, Song et al. sought to profile developer 

expertise by harnessing data from both Stack Overflow and 

GitHub. The research underscored the challenges of profiling 

expertise based solely on a single platform, given the sparsity 

6 In this study, term 'contributors' refers to developers active in 

serverless functions. 
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of expertise matrices for both Stack Overflow and GitHub. By 

integrating data from both platforms, the study illuminated the

 

 

multifaceted nature of developer expertise, underscoring the 

potential benefits of a cross-community approach. Such a 

collaboration-aware method can potentially mitigate challenges 

like unanswered questions on Stack Overflow and delayed 

responses to pull requests on GitHub [2].  

The realm of developer expertise assessment witnessed a 

novel approach with the introduction of "CVExplorer," a tool 

designed to identify potential developer candidates by 

meticulously analyzing their contributions to open-source 

projects on GitHub. By mining skills from GitHub 

contributions, the tool offers recruiters a more accurate 

representation of a developer's skills, emphasizing the 

importance of real-world contributions in assessing developer 

expertise. This approach, which transcends the traditional 

reliance on self-authored CVs, underscores the evolving 

paradigms in developer assessment and recruitment [14]. 

      Building on this Constantinou and Kapitsaki delved deep 

into the nuances of developer expertise and their roles in 

software technologies. Their research introduced the concept of 

"core expertise," signifying the primary domain or technology 

group where a developer is most prolific. By employing various 

metrics and data from platforms like Stack Overflow and 

GitHub, the study provided a granular analysis of how 

developers transition between roles and how their expertise can 

be categorized. Such insights are pivotal in understanding the 

evolutionary trajectory of developers and the multifarious roles 

they assume over time [3]. 

Tian et al. introduced a novel approach aimed at constructing 

a cross-platform expert recommendation system by synergizing 

datasets from GitHub and Stack Overflow. This system, 

designed to spotlight top expert developers, or "geek talents," 

underscores the value of expert recommendation systems in the 

open-source community and for companies at large. By 

leveraging various attributes of user profiles, platform-specific 

APIs, and multiple account matching strategies, the system can 

adeptly identify top experts in specific technology fields. Such 

a method offers a fresh perspective on recommending top 

expert developers, emphasizing the increasing importance of 

these platforms in the software development community [4].

 Santos et al. ventured into the domain of mining software 

repositories with the primary objective of identifying library 

experts. By analyzing the source code of collaborative projects 

on GitHub, the study introduced a method that ranks developers 

based on five dimensions of skills. Preliminary results from this 

research underscored the method's capability of identifying 

relevant users of specific libraries, emphasizing the importance 

of GitHub as a platform to showcase developers' knowledge and 

skills. Such a structured approach offers a comprehensive 

evaluation of a developer's proficiency, highlighting the 

potential benefits for recruitment and human resource 

allocation [13]. 

Oliveira et al. embarked on a comprehensive empirical study 

to identify library experts by analyzing source code. By 

evaluating the strategy with popular Java libraries and 

conducting an online survey with developers, the study 

provided insights into the challenges and methodologies of 

identifying library experts based on code analysis. The findings 

underscored that traditional metrics like "Lines of Code" or 

"Number of Commits" might not be sufficient indicators of a  

developer's expertise with specific libraries. Such insights are 

pivotal in understanding the nuances of developer expertise in  

specific libraries and the potential limitations of certain metrics 

in the identification process [10]. 

Lastly, Montandon's research focused on identifying experts 

in popular JavaScript libraries by mining GitHub data. By 

integrating repository mining with developer surveys, 

Montandon provided a robust method for pinpointing expertise 

in specific software libraries and frameworks. While this 

approach emphasized the importance of combining multiple 

data sources for accurate assessments, our research 

Recognizing the potential limitations in Montandon's approach, 

we advocate for a broader spectrum of features, underscoring 

the significance of a more detailed and comprehensive feature 

set. This expanded perspective is particularly crucial in the 

realm of serverless functions, where the landscape is rapidly 

evolving and the nuances of developer expertise are 

multifaceted [11]. In light of the existing studies, our research 

aims to enhance the understanding of developer expertise by 

amalgamating data from both GitHub and Stack Overflow. 

While we draw inspiration from the works mentioned, our 

unique contribution lies in showcasing the importance of 

adding more detailed features, offering a richer and more 

holistic understanding of developer expertise. 

3. PROPOSED METHOD 

We employed a structured research method to assess 

contributors’ expertise in a balanced manner, drawing from 

their activities on GitHub and Stack Overflow. The method was 

divided into three main phases: Data Collection, Data Analysis, 

and Model Training. 

Phase 1. Data Collection 

In this phase, we aimed to gather data from GitHub and Stack 

Overflow to understand contributors' activities. Using the 

REST APIs of both platforms, we followed a structured process 

that began with the selection of repositories and culminated in 

the formation of language-specific datasets. This method was 

designed to ensure that our data was up-to-date and relevant to 

our research objectives. The steps outlined in Figure 1 provide 

a detailed breakdown of our data collection approach. 

Step 1. GitHub Profile Collection for Contributors 

We initially amassed a collection of 408 repositories pertinent 

to serverless functions. To optimize the scope of our study and 

ensure manageability, these repositories were filtered based on 

their number of stars. This criterion narrowed down our dataset 

to 150 repositories, striking a balance between 

comprehensiveness and feasibility. After finalizing the 

repository list, we retrieved the contributors associated with 



 

 

each repository. For each contributor, we began by extracting 

vital details such as email, display name, location, and more to 

establish a foundational profile. We then conducted a deep dive 

into the user's GitHub activities, encompassing metrics like the 

number of commits, code churn, and import statements. This 

provided a detailed picture of the contributor's engagement and 

coding habits. Moreover, for our GitHub data extraction, we 

discerned 13 activity-related features, each offering a 

perspective into a contributor's engagement and expertise. It's 

noteworthy to mention that our characterization and 

terminology for these features have been predominantly 

informed by Montandon's work [11], which stands as a 

cornerstone in our research approach. For instance, as 

elaborated in Table 1, "Client Projects" denotes repositories 

encompassing code in any of our target languages, thus serving 

as a metric to assess developers' acumen in these specific 

languages. Conversely, "Client Files" zooms in to highlight 

files within these repositories written in the target languages, 

offering a more granular view of the contributor's expertise. 

Having collected the GitHub features, we then turned our 

attention to extracting features from Stack Overflow. 

Step 2. Enriching Profiles with Stack Overflow Features 

To augment our dataset, we aimed to identify the Stack 

Overflow profile corresponding to each GitHub contributor. 

We began by initiating a search using the contributor’s GitHub 

username. If any list of Stack Overflow profiles was returned, 

we took additional steps to ensure the authenticity and 

relevance of the identified profile. Specifically, we applied a 

method based on probabilistic record linkage [32], a well-

established technique in data integration. This method involves 

calculating a similarity score based on the probabilities of 

agreement and disagreement for each attribute (website URL, 

location, bio, and company affiliation). These probabilities 

were computed based on the distribution of values in each field 

in our dataset. The profile with the highest similarity score was 

selected for further analysis. In situations where no profiles met 

our stringent criteria, we opted for the first profile returned by 

the search results, given StackAPI’s tendency to list the most 

relevant user first. 

To complement our GitHub data, we delved deeply into 

Stack Overflow, aiming to extract features that would provide 

a detailed view of each contributor's expertise and engagement. 

Starting with the Stack Overflow profile of each contributor, 

identified in the previous step, we centered our efforts on the 

target languages. For each language, we: 

(1) Retrieved answers and questions provided by the user, 

which not only showcased their expertise but also their level of 

engagement with the community. 

(2) Computed various metrics that reflected the user's overall 

activity and reputation for that target language (Tag Score) on  

Stack Overflow. This encompassed the number of answers 

they've given, upvotes received, downvotes given, and other 

related metrics. find their detailed representation in Table 1 

Figure 1. Process of the Data Collection Phase in the Proposed Method 
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(3) Consolidated these features and stored them in a CSV file, 

ensuring they were organized and ready for subsequent 

analysis. 

Our research method heavily relied on the REST APIs of 

both GitHub and Stack Overflow. By integrating the GitHub 

REST API with the PyGitHub Python library, we ensured 

timely and accurate data extraction from GitHub. Similarly, our 

use of StackAPI streamlined our interactions with Stack 

Overflow, particularly in retrieving user profiles and associated 

data. We opted for these APIs over pre-existing datasets to 

ensure we were working with the most up-to-date online data, 

reinforcing the repeatability of our method. Given the dynamic 

nature of expertise, our method was designed to be adaptable, 

allowing for potential replication in future studies. A crucial 

part of our data collection process was managing the rate limits 

imposed by both platforms. To ensure a smooth data collection 

process, we sequentially extracted data, first focusing on 

GitHub features for each contributor and then moving to Stack 

Overflow. 

Step 3. Creating Language Specific Datasets for Evaluating 

Developers' Expertise in Serverless Functions 

We initiated this phase by reaching out to contributors for a 

self-assessment of their expertise. Each contributor received an 

email detailing our research objectives and was asked to rate 

their expertise on a scale from 0 (no expertise) to 5 (expert 

level). Supported by several studies as a reliable measure of 

expertise [11], [23], [24], this method yielded a response rate of 

approximately 9.33% from the 2539 emails dispatched. 

After updating the contributors' profiles with their self-assessed 

scores, we curated separate datasets for each of the target 

languages: Java, Python, NodeJs, Ruby, Go, and C#. These 

datasets encapsulated the contributors' activities specific 

to the respective programming language, with their self-

assessed scores serving as the labels. This approach ensured a 

granular understanding of developer expertise in serverless 

functions, tailored to the nuances of each language. 

TABLE 1 

Extracted Features from GitHub and Stack Overflow 

 



 

 

Phase 2. Data Analysis 

Upon completion of the data collection phase, we obtained six 

distinct datasets. Each dataset encapsulates 22 features detailing 

developers' activities on both GitHub and Stack Overflow, 

specific to each of our target languages. In the next step, we 

transitioned to the data analysis phase, which is further divided 

into two main steps: 

 

Step 1- Data Visualization 

Our initial exploration began with visualizing the distribution 

of developer expertise across our target languages, as depicted 

in Figure 2. For clarity in the figure, we've categorized our 

binned labels as follows: ratings of 0 and 1 are denoted as 

"Novice (0)", ratings of 2 and 3 are labeled "Intermediate (1)", 

and ratings of 4 and 5 are classified as "Expert (2)”. We will 

delve into the binning process in a subsequent section. The 

visualization reveals compelling insights. For instance, 

languages like Python and Ruby, which are often considered 

beginner-friendly, had a significant portion of their developer 

base in the novice category.   

 
Figure 2. Incremental Distribution of Ratings Across Target 

Language 

 

This suggests that these languages are more accessible for 

beginners. In contrast, languages such as Java, a prevalent 

choice in enterprise settings, showcased a more balanced 

expertise distribution, indicating a diverse user base with 

varying levels of expertise. 

Moving forward, we examined the skewness across different 

programming languages, visualized in Figure 3. Skewness, a 

measure indicating the asymmetry of data distribution around 

the mean, revealed specific patterns. A notable observation was 

the positive skewness values for commits in languages like Go, 

NodeJs, and Ruby. This suggests a scenario where a majority 

of users have fewer commits, but a select few exhibit 

exceptionally high commit counts. This skewness indicates that 

while most developers contribute at a moderate pace, there are 

a few highly active developers who contribute significantly 

more. Understanding this skewness is pivotal as it influences 

our data interpretation and subsequent modeling strategies [20]. 

Our analysis subsequently delved into correlation. It is crucial 

to emphasize that correlation does not imply causation [21]. 

Particularly in the realm of expertise, it is common for features 

to exhibit high correlation. However, even if two variables 

appear to move in tandem, this does not necessarily indicate a 

cause-and-effect relationship. For example, we observed a high 

correlation between the number of commits and the number of 

pull requests made by a developer. While these two variables 

are correlated, it does not necessarily mean that making more 

commits causes a developer to make more pull requests, or vice 

versa. It could simply be that more active developers tend to 

both commit and pull request more frequently. 

Step 2- Data Preprocessing 

After the data analysis phase, we transitioned to data 

preprocessing, a crucial step to ensure the data was primed for 

modeling. This phase addressed several challenges, including 

missing values, skewness, feature selection, label binning, and 

label imputation. 

Handling Missing Values: In addressing missing values, we 

observed that their presence in our dataset often signified a 

developer's inactivity for a specific feature. Given this 

observation, we logically imputed these missing values with 

zero, symbolizing no activity. 

Addressing Skewness: Skewness presented another 

challenge. Some features in our dataset displayed right-skewed 

distributions. To make the data more suitable for modeling, we 

applied a logarithmic transformation [22] to these skewed 

features, stabilizing their variance and approximating a normal 

distribution. However, before this transformation, we had to 

manage zeros in the data, as the logarithm of zero is undefined. 

To counteract this, we added a constant of 1 to the respective  

columns.  

Feature Selection: Feature selection emerged as a pivotal 

aspect of our preprocessing [23]. Ensuring that our model is 

trained on relevant features is paramount for enhancing its 

performance and interpretability. Our multifaceted approach to 

feature selection began with an examination of correlations. 

While correlation provides a measure of the linear relationship 

between two variables, it doesn't capture non-linear 

relationships or causation, making sole reliance on it potentially 

misleading [21]. We also incorporated domain knowledge for 

the feature selection, by understanding the context of each 

feature in the software development realm, we made informed 

decisions. For example, while the number of answers and 

accepted answers on Stack Overflow might be correlated, the 

emphasis on quality in the latter could offer more valuable 

Figure 3. Skewness of Features Across Target Languages 
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insights. Additionally, we employed the Gradient Boosting 

technique, an ensemble learning method, to gain insights into 

feature importance. This technique ranked features based on 

their significance in influencing the model's predictions. Armed 

with these analyses, we made informed decisions on which 

features to discard, ensuring our model was built on a relevant 

feature set, as visualized in figure 4. 

 
Figure 4: Dropped Features for Each Programming Language 

Label Binning: Following feature selection, we addressed 

the challenge of label binning. Our dataset contained ratings 

ranging from 0 to 5, indicative of the expertise level. To 

streamline our modeling process and make the problem more 

approachable, we categorized these ratings into three broader 

categories. Ratings between 0 and 1 were represented as Novice 

(0), those between 2 and 3 as Intermediate (1), and ratings 

between 4 and 5 were categorized as Expert (2). This 

categorization ensured our models could predict expertise 

levels in broader, more generalizable categories, enhancing the 

interpretability and applicability of the results. 

Label Imputation: Transitioning from the binning process, 

we confronted another intricate challenge: Label Imputation. In 

the vast landscape of data-driven research, addressing the 

absence of labels is a multifaceted endeavor. To adeptly 

navigate this, we adopted a dual-strategy approach. This 

method seamlessly integrated the domain-centric heuristic 

labeling [24] with the algorithmic precision of k-Nearest 

Neighbors (kNN) [25] imputation. The rationale behind 

employing heuristic labeling as our initial step stemmed from 

the nature of our data. Given that some of our labels represented 

minority classes, relying solely on kNN label imputation could 

introduce biases towards the majority classes. Heuristic 

labeling, while dependent on the accuracy of the criteria set for 

label determination, offers a way to balance the label 

distribution without such biases. However, recognizing the 

limitations of heuristic accuracy, we used this method to label 

only 10-12% of the dataset. This preliminary step aimed to 

create a more balanced label distribution, setting the stage for 

the subsequent kNN imputation. The combination of heuristic 

labeling and kNN imputation allowed us to leverage the 

strengths of both methods, providing a balance between 

domain-centric insights and algorithmic precision, and 

mitigating the potential weaknesses of each method when used 

alone. 

1: Heuristic Labeling: Heuristic labeling leverages domain 

insights and data patterns to make informed decisions about 

labels. This method, while not exhaustive, offers a valuable 

starting point, especially when dealing with imbalanced 

datasets. Our heuristic algorithm works iteratively. By 

adjusting criteria based on the quantiles of key features, we 

assign scores and labels to each instance. The process either 

converges to a desired label distribution or stops after a 

predetermined number of iterations. 

2: k-Nearest Neighbors (kNN) Imputation: In advancing our 

research, we transitioned from heuristic labeling to the more 

nuanced kNN imputation. The underlying principle of the kNN 

algorithm is rooted in similarity; for any unlabeled data point, 

it identifies its ‘k’ closest labeled neighbors and adopts the 

predominant label among them. The selection of ‘k’ is crucial, 

and through meticulous testing, we ascertained the ideal ‘k’ for 

distinct data subsets. In our case, we performed an iterative 

evaluation to determine the optimal ‘k’ value and found that 

k=5 yielded the best results. Following the primary imputation, 

certain labels emerged as fractional. To ensure consistency with 

our discrete categories—Novice, Intermediate, and Expert—we 

adjusted these by rounding to the closest whole number. It’s 

worth noting that we used kNN in conjunction with heuristic 

labeling for the label binning task. While our two-phase 

approach aimed to provide the most accurate labels possible, 

it’s worth noting that any label imputation method can 

introduce errors. For instance, heuristic labeling, while 

effective in balancing the dataset, might not always capture the 

nuances of individual developer expertise. Similarly, kNN, 

though a more common method, can sometimes be influenced 

by noisy neighbors, leading to potential mislabeling. 

After implementing our dual-strategy, the datasets displayed 

more balanced distributions across various programming 

languages. For example, widely-used languages like Java 

showed a more uniform distribution, whereas specialized 

languages like Go had a higher concentration of expert 

developers. Notably, after the labeling process, there was a 

noticeable increase in the number of novice developers. This 

trend mirrors the real-world scenario where many individuals 

begin coding, but only a select few achieve expert status. 

Upon addressing missing labels with heuristic labeling and 

kNN imputation, we tackled class imbalance using the 

Synthetic Minority Over-sampling Technique (SMOTE) [26], 

[27]. For each dataset, we set target percentages for the 'expert' 

class, like 15% for C# and 10% for others. We then split the 

data, ensuring a representative class distribution. Before 

applying SMOTE, we dynamically set the number of nearest 

neighbors based on the 'expert' instances in the training data. 

Using SMOTE, we balanced our datasets, enhancing model 

accuracy. However, SMOTE can introduce noise, potentially 

leading to model over-generalization on real-world data. 

Phase 3. Model Training: 

With our datasets now complete and labeled, we transitioned to 

the third phase of our research method, we directed our 

attention towards the pivotal aspect of model training. This 

phase is instrumental in elucidating the predictive capabilities 

inherent within our rigorously assembled datasets. 

Given our objective of predicting developer expertise levels, 

we identified it as a multi-class classification problem. We 



 

 

experimented with various machine learning algorithms, 

including Random Forest (RF), Gradient Boosting (GB), 

Support Vector Machines (SVM), and Logistic Regression 

(LR), to assess their performance on our datasets. The rationale 

behind selecting these classifiers is multi-fold: 

Random Forest and Gradient Boosting are both ensemble 

learning methods known for their high accuracy and ability to 

handle large datasets with higher dimensionality. They can 

effectively manage missing values and provide a good indicator 

of feature importance. Support Vector Machines are renowned 

for their power in high-dimensional spaces, which is 

particularly beneficial given the number of features in our 

dataset. They offer robustness, especially when the number of 

dimensions exceeds the number of samples. Logistic 

Regression while is a simpler algorithm, is effective for binary 

and multi-class classification problems. Its ease of 

implementation and interpretability make it a valuable tool in 

our arsenal [15], [17], [18]. 

In our study, we examined our six distinct datasets, each 

corresponding to a target language, alongside three datasets 

from the base article [11]. To understand the potential influence 

of incorporating Stack Overflow features, we employed a two-

pronged analytical approach. 

GitHub-Only Features: Initially, all Stack Overflow features 

were dropped from our datasets, leaving only the GitHub 

features. This step was inspired by our base article, which solely 

considered GitHub features. It is essential to note that the 

datasets derived from the base article [11] were accessible to 

the public. To maintain consistency and ensure an equitable 

comparison, we subjected these datasets to analogous 

preprocessing steps as those implemented for our own datasets. 

This approach not only aligned our method but also enhanced 

the performance of the models on the base article datasets. The 

results presented in Table 3 for the three base datasets surpass 

the performance metrics reported in their original paper[11], 

offering a more robust comparison. 

 Incorporating Stack Overflow Features: Subsequently, we 

reintroduced the Stack Overflow features to our six datasets and 

retrained our models. The performance results post this addition 

are showcased in Table 4. For each of the above approaches, we 

embarked on a systematic method. First, we loaded the 

respective datasets, each tailored to a specific approach, be it 

GitHub-only or incorporating Stack Overflow features. Then, 

the data was split into training and testing sets using stratified 

sampling [28], ensuring that each set accurately represented the 

overall class distribution. Subsequently, we standardized the 

features using the StandardScaler [29], ensuring they were on 

the same scale, which is crucial for effective model training. 

Next, for each classifier, we defined a set of hyperparameters. 

To find the optimal parameters, we employed GridSearchCV, 

an exhaustive search method over the specified parameter 

values for an estimator. This method pinpointed the parameters 

of the estimator that yielded the best results on the left-out 

validation set, ensuring our models were primed for optimal 

performance. 

 3.1 ASSUMPTIONS AND LIMITATIONS OF THE PROPOSED 

METHOD 

In every research endeavor, certain assumptions guide the 

method, and inherent limitations bound the scope. This section 

elucidates the foundational assumptions underpinning our 

proposed method and highlights potential constraints that might 

influence the interpretation of our findings. Recognizing these 

factors ensures a nuanced understanding of our research 

outcomes. 

Assumptions: 

Data Completeness: We assumed that the data sourced from 

GitHub and Stack Overflow accurately represents the activities 

and contributions of developers. However, there might be 

private repositories or contributions that are not publicly 

accessible. 

Feature Relevance: The features selected for model training 

were deemed relevant based on prior literature and domain 

knowledge. It's assumed that these features are indicative of a 

developer's expertise. 

Model Applicability: We assumed that the machine learning 

models chosen for this study are suitable for the type of data 

and the problem at hand. The performance of these models 

might vary with different datasets or contexts. 

Developer Overlap between NodeJs and MongoDB: In the 

base article [11], MongoDB is represented as NODE-

MONGODB, the official NodeJs driver for the MongoDB 

database server. While there's likely a significant overlap 

between MongoDB and NodeJs developers, it's crucial to 

acknowledge that not all MongoDB developers may be 

proficient in NodeJs, and vice versa. For the purpose of a more 

direct comparison between our datasets and those of the base 

article, we operate under the assumption that developers 

associated with MongoDB also have expertise in NodeJs. 

Self-Assessment Reliability: We operate under the 

assumption that the self-assessments provided by contributors 

are accurate and offer a reliable representation of their expertise 

levels. 

Limitations: 

Data Bias: Relying solely on GitHub and Stack Overflow might 

introduce a bias, as developers might be active on other 

platforms or might not be active online at all. This could lead to 

an incomplete representation of a developer’s true expertise. 

GitHub and Stack Overflow are widely used platforms in the 

developer community, but they may not fully represent the 

broader developer community. For example, developers who 

primarily use other platforms or who do not participate in online 

communities may not be well-represented. Furthermore, the 

behaviors and activities on these platforms may not fully reflect 

a developer’s offline activities or their activities on other 

platforms. One potential way to mitigate this bias, which we 

discuss in our conclusion, is to integrate data from a wider range 

of developer platforms in future research. 

External Validity: While our models showed promising 

results in the context of serverless functions, their applicability 

to other technological domains needs further validation. 

Feature Limitations: While we integrated features from 

GitHub and Stack Overflow, other platforms like LinkedIn or 
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TopCoder might offer additional insights that could enhance the 

model's predictive power. We attempted to use the public 

LinkedIn REST API7 to complement our data collection with 

user activity data from LinkedIn. However, to the best of our 

knowledge, the LinkedIn public API is no longer accessible. 

Furthermore, while we considered implementing a web crawler 

to gather data from LinkedIn, we decided against it. Although 

it's not illegal to collect publicly accessible data from the web, 

such an approach would be against LinkedIn's terms and 

conditions.  

Model Constraints: Every machine learning model has its 

inherent limitations. For instance, linear models might not 

capture non-linear relationships well, and tree-based models 

might overfit on sparse data [30]. 

4. EVALUATION 

In response to RQ1, which inquires about the most effective 

machine learning algorithms for evaluating developer expertise 

in serverless functions based on the extracted features, we 

conducted a rigorous evaluation of our trained models. Once the  

models were trained with the best parameters; they underwent 

rigorous evaluation on the test set. We computed a range of 

metrics, including accuracy, kappa score, and AUC, to evaluate 

their performance. Additionally, we calculated precision, recall,  

and F1-score for each class - Novice, Intermediate, and Expert.  

This detailed evaluation ensured we captured the nuances of  

each model's predictive capabilities, providing a detailed 

understanding of their strengths and limitations. 

By adhering to this method for both approaches, we ensured 

a consistent evaluation, allowing for a fair comparison between 

the utility of GitHub-only features and the combined GitHub 

and Stack Overflow features. The results for both approaches 

can be found in Table 2, Table 3, and Table 4. Following the 

presentation of results, we delve into a deeper analysis of the 

datasets. Initially, we focus on datasets using only GitHub 

features, subsequently, we discuss the datasets enhanced with 

Stack Overflow features and the resultant impact on model 

outcomes. The evaluation concludes with a feature importance          

TABLE 2 

Performance metrics of models trained using GitHub for our Target Languages Datasets 

 
  

  
 

TABLE 3 

                                                           
7 https://developer.linkedin.com/product-catalog 

Key: Metrics - Acc. (Accuracy), Kp. (Kappa), AUC (Area Under the Curve), P (Precision), R (Recall), F1 (F1 Score); Expertise Levels - 

Nv. (Novice), Int. (Intermediate), Exp. (Expert); Models - LR. (Logistic Regression), RF. (Random Forest), GB. (Gradient Boosting). 



 

 

Performance metrics of models trained using GitHub for Datasets from the Base Article [11] 

analysis using the SHAP method, offering insights into the 

pivotal role of each feature. In this structured discussion, we 

aim to present a thorough understanding of our findings and 

their broader implications. 

Part 1. Discussion Datasets with only GitHub Features 

In the evaluation of target languages' datasets presented in 

Table 2, several trends and patterns emerge. RF model 

consistently exhibits robust performance across multiple 

datasets, often securing the lead in accuracy, Kappa, and F1 

scores. This superior performance can be attributed to RF's 

ensemble nature, which amalgamates the results of numerous 

decision trees, offering a more generalized and resilient model. 

On the other hand, the SVM model also demonstrates 

commendable performance, particularly in precision. However, 

certain anomalies, such as in the Python dataset for the Exp. 

category, reveal that while SVM can predict with high 

confidence, it might occasionally overlook specific classes, 

resulting in a diminished recall. 

 

The GB model, another contender, frequently matches the 

performance of RF across datasets. GB's strength lies in its 

boosting algorithm, which zeroes in on challenging instances, 

potentially enhancing its performance on intricate datasets. 

Conversely, the LR model, inherently linear, occasionally falls 

short compared to tree-based or SVM models, especially when 

faced with datasets characterized by non-linear decision 

boundaries. Table 3, focusing on base work [11] results, 

highlights the challenges encountered in model predictions. The 

Socket.io dataset, for instance, presents notably low metrics for 

both RF and SVM models. 

 In Figure 5, we compared the performance of the Random 

Forest and SVM models for NodeJs and MongoDB datasets. 

The motivation behind selecting the NodeJs and MongoDB 

datasets for comparison is rooted in the anticipated overlap 

between their developer communities. Based on the premise 

that MongoDB, denoted as NODE-MONGODB — the official 

NodeJs driver for the MongoDB database server — would have 

a substantial confluence of developers skilled in both domains,  

 
Figure 5. Comparison of performance metrics for NodeJs and 

MongoDB datasets 

these datasets were chosen for a deeper analysis. Upon 

analyzing the performance metrics, a distinct pattern becomes 

evident: models trained on the NodeJs dataset tend to surpass 

those trained on the MongoDB dataset across the majority of 

metrics. Moreover, within the NodeJs dataset, the RF model 

consistently outshines the SVM in parameters such as accuracy, 

kappa, and AUC. Both models demonstrate laudable precision 

in recognizing novice developers, underscoring a robust ability 

to accurately discern beginner-level expertise. Nonetheless, a 

discernible drop in precision is observed as we transition to 

higher levels of expertise, particularly in the SVM model for 

NodeJs. The performance metrics for MongoDB were 

influenced by multiple factors. A primary consideration is the 

label retrieval method, which predominantly hinged on self-

assessment. While our datasets also utilized self-assessment, it 

is noteworthy that around 9% of our data was labeled based on 

genuine expertise levels. Our hybrid labeling approach, 

encompassing heuristic techniques and kNN label imputation, 

seemed to yield more consistent outcomes. This approach 

counteracts the inherent discrepancies often associated with 

sole reliance on self-assessments. The potential for developers 

to inaccurately evaluate their own skills introduces the risk of 

misclassification. Such disparities might be accentuated for 

MongoDB, suggesting potential variances between self-

declared and actual proficiency. In addition, the constraints 

posed by a limited number of training instances cannot be 

overlooked. Despite our efforts in employing techniques like 

SMOTE to address dataset imbalance, the foundational issue of 

a restricted data sample might induce overfitting, consequently 

diminishing the model's generalization capabilities. For 

consistency, the same preprocessing steps were applied across 

all nine datasets, and it's worth mentioning that the performance 

results reported for the base work [11] witnessed an 
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enhancement due to our preprocessing techniques.  

Moreover, while accuracy is a widely used metric, its 

limitations become pronounced, especially in datasets with 

class imbalances. Other metrics like Kappa, AUC, precision, 

recall, and F1 score provide a more comprehensive view, 

capturing the model's performance nuances across various 

classes. In conclusion, while RF often stands out in 

performance metrics, it's crucial to consider each dataset's 

unique characteristics when choosing a model. The occasional 

unexpected or below-average metric emphasizes the 

importance of a holistic evaluation using a diverse set of 

metrics, ensuring a well-rounded understanding of model 

performance. 

Part 2. 

Discussion on the Enhanced Datasets with Stack Overflow 

Features 

Upon integrating Stack Overflow features into our datasets, as 

shown in Table 4, we observed a marked improvement in the 

performance metrics of the models. This enhancement 

underscores the significance of feature engineering and the 

potential of external data sources in boosting model 

performance. For the C# dataset, the RF model stands out with 

the highest accuracy of 0.88 and a Kappa score of 0.80. SVM, 

with an AUC of 0.97, indicates its capability to distinguish 

between classes effectively. Interestingly, LR showcases a 

perfect recall of 0.92 for the Exp. category, emphasizing its 

strength in identifying true positives for this class. In the Go 

dataset, SVM takes the lead with an accuracy of 0.90 and a 

Kappa score of 0.82. Its performance in the Int. category, with 

a recall of 0.92 and an F1 score of 0.89, is noteworthy, 

suggesting its proficiency in classifying intermediate instances. 

For the Java dataset, RF demonstrates robust performance with 

an accuracy of 0.92 and a Kappa score of 0.87. Its precision of 

0.93 for the Int. category is commendable. However, GB's AUC 

of 0.98 is the highest, indicating its superior ability to 

differentiate between the classes. 

In the NodeJs dataset, SVM emerges as the top performer with 

an accuracy of 0.92 and a Kappa score of 0.87. Its F1 scores 

across all categories are consistently high, reflecting its 

balanced precision and recall. 

For the Python dataset, SVM shines with the highest 

accuracy of 0.93 and a Kappa score of 0.88. Its performance in   

the Exp. category, with an F1 score of 0.94, is particularly 

impressive. LR's recall of 0.97 for the Nv. category is the 

highest, indicating its strength in identifying true positives for 

novice instances. 

Lastly, in the Ruby dataset, SVM leads with an accuracy of 

0.89 and a Kappa score of 0.79. Its performance in the Nv. 

category, with an F1 score of 0.94, is outstanding, suggesting 

its proficiency in classifying novice instances. The addition of 

Stack Overflow features has evidently bolstered the models' 

performance across the datasets. The enriched datasets provide 

a more detailed view of each instance, allowing the models to 

capture intricate patterns and relationships. It's worth noting 

that while we couldn't expand the base datasets to include Stack 

Overflow features due to privacy concerns related to email 

hashing, the similarity in nature between NODE-MONGODB 

(NodeJs driver for MongoDB) and NodeJs offers a reasonable 

point of comparison. Given the overlaps between MongoDB 

and NodeJs developers, this similarity can serve as a benchmark 

to assess the impact of the added features. We hypothesize that 

if we were able to expand the MongoDB dataset similarly, we 

TABLE 4 

Performance metrics of models trained using GitHub and Stack Overflow features 



 

 

would likely observe comparable improvements as seen with 

the NodeJs dataset. 

In conclusion, the integration of external features, such as 

those from Stack Overflow, can substantially enhance model  

performance. The importance of feature engineering is evident, 

and the potential of utilizing external data sources in machine 

learning tasks is undeniable. Referring to the results depicted in 

Figure 6, it's clear that leveraging additional features leads to 

noticeable accuracy boosts across various programming 

languages. For example, the SVM model accuracy for the 'Go' 

language saw an increase from 83% using only GitHub features 

to 92% when integrated with Stack Overflow features. and the 

continuous pursuit of integrating relevant external data to 

achieve optimal model performance. We observed similar 

significant improvements for languages like 'Java', 'NodeJs', 

and 'Python'. However, for languages like 'C#' and 'Ruby', the 

enhancements were more modest. These findings underscore 

the value of broadening the feature space. 

Part 3. Feature Importance Analysis 

In response to RQ2, which seeks to identify the most indicative 

features or metrics of a developer's expertise in serverless 

functions, we employed the SHAP (SHapley Additive 

exPlanations) method. SHAP values offer a unified measure of 

feature importance, assigning each feature an importance value 

for a specific prediction. This method excels in providing both 

global interpretability—indicating the importance of each 

feature across the entire dataset—and local interpretability,  

 
Figure 6: Comparison of SVM model accuracies using only GitHub 

features versus the improvement achieved by adding Stack Overflow 

features for target languages 

which explains individual predictions. As illustrated in Figure 

7 (a SHAP summary plot), the SHAP analysis offers a 

comprehensive perspective on the significance of each feature 

[31]. 

Our analysis reveals the pivotal role of various features in 

predicting a developer's proficiency. The 

'avg_days_commits_import_library' feature, denoting the 

average number of days between commits that import libraries,  

stands out as paramount. This metric suggests that a developer 

integrating new libraries frequently might be inclined towards 

proactive experimentation and learning. Similarly, the 

'commits_import_library' feature, which reflects the number of 

such commits, can hint at the intricacy of applications a 

developer crafts. The 'time_of_activity' metric, capturing the 

span of a developer's activity, indicates sustained technological 

interest, which is crucial for continuous learning and expertise 

development. 

Yet, insights aren't solely derived from GitHub activity.  

Additionally, 'commits_client_files', which counts commits 

altering at least one client file, sheds light on a developer's 

active involvement and contributions in a project's primary  

 
Figure 7: SHAP Summary Plot 

language. This could be interpreted as a sign of a developer’s 

commitment to a project and their expertise in the project’s 

main language. Integration of Stack Overflow features enriches 

our understanding. For instance, 'upvotes', ranking as the third 

most influential feature, accentuates the community's 

acknowledgment of a developer's input. A high 'tag_score' 

signifies domain-specific expertise. Metrics like 

'average_score_per_answer' and 'first_answers' encapsulate 

both the caliber and the regularity of a user's contributions—the 

former indicating consistent answer quality and the latter 

reflecting active community participation. 'Accepted_answers'  

further vouch for the quality and pertinence of a developer's 

knowledge dissemination. While GitHub metrics provide a 

window into a developer's coding habits, Stack Overflow 

metrics delve into their community engagement and problem-

solving acumen. Collectively, insights from both platforms 

paint a holistic picture of a developer's expertise in a specific 

technology. 

4.1 DISCUSSION  

Our results underscore the potential of integrating data from 

multiple platforms to enhance the precision of evaluating 

developers' expertise, especially those involved in serverless 

functions. The incorporation of Stack Overflow features 

alongside GitHub data, particularly in the context of serverless 

function development, has shown promising improvements in 

our model's performance. 

In the industrial landscape, our model suggests a nuanced 

approach to recruitment, talent acquisition, and team 
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optimization, especially for roles centered around serverless 

functions. By amalgamating coding practices and community 

engagement metrics from platforms like GitHub and Stack 

Overflow, there's potential for a more in-depth insight into a 

developer's skills and contributions in the serverless domain. 

Such insights could refine the hiring process, potentially 

leading to more targeted training and role assignments. 

Although our study's focal point is the serverless function 

domain, the method might be adaptable to other technological 

areas. For new instances, our model provides a framework for 

assessing individual developer profiles, potentially offering 

predictions on their expertise levels based on the features we've 

identified. 

In the academic realm, our model could serve as a potential 

reference for research, curriculum development, and student 

assessment in serverless function development and beyond. It 

might offer insights for studies exploring developer behavior 

and proficiency, especially when integrating data from multiple 

sources. By evaluating students' real-world coding activities, 

there's an opportunity for educators to offer feedback that 

encompasses both theoretical knowledge and practical 

application, promoting a balanced learning experience. 

5. THREATS TO VALIDITY 

Research, especially in the domain of empirical studies, is 

often subject to various threats that might affect the 

generalizability and validity of the results. In this section, we 

discuss potential threats to the validity of our study and the 

measures we've taken to mitigate them. 

Model Bias: While we experimented with multiple machine 

learning algorithms, each model comes with its inherent biases. 

For instance, tree-based models like Random Forest might 

overfit on certain datasets, while linear models like Logistic 

Regression might not capture non-linear relationships 

effectively. 

Hyperparameter Tuning: Although we employed 

GridSearchCV for exhaustive hyperparameter tuning, there's 

always a possibility that a different combination might yield 

slightly better results. 

Feature Selection: The inclusion or exclusion of features 

can impact model performance. Our hybrid feature selection 

method combined heuristic labeling with kNN label imputation. 

However, heuristic labeling, despite aiding dataset balance, 

may not always reflect the intricacies of developer expertise. 

Likewise, while kNN is widely used, it can be susceptible to 

mislabeling due to noisy neighbors. 

Dataset Specificity: Our study is based on specific datasets 

tailored to certain programming languages. The findings might 

not be directly generalizable to other languages or platforms. 

Data Absence from Other Platforms: The lack of data 

from platforms like LinkedIn and TopCoder may limit our 

model's comprehensiveness. Missing insights from these 

platforms could challenge the external validity of our findings, 

potentially overlooking essential indicators of developer 

expertise. 

Labeling and Classification: The classification of 

developers into categories like Novice, Intermediate, and 

Expert is based on certain metrics and might not capture the 

complete essence of a developer's expertise. 

Feature Interpretation: While we employed the SHAP 

method for feature importance analysis, the interpretation of the 

importance of certain features might vary among experts. 

Self-Assessment Accuracy: While we operated under the 

assumption that the self-assessments provided by contributors 

were accurate reflections of their expertise levels, there's an 

inherent risk associated with relying on subjective evaluations. 

Contributors might have overestimated or underestimated their 

skills due to factors like overconfidence, modesty, or a lack of 

clear understanding of the assessment criteria. This potential 

discrepancy between perceived and actual expertise could 

influence the validity of our findings, especially if these self-

assessments were used as ground truth or reference points in 

our analysis. 

6. CONCLUSION AND FUTURE DIRECTIONS 

In this research, we ventured into the domain of predicting 

developer expertise specifically within the realm of serverless 

functions, using features extracted from GitHub and Stack 

Overflow. Our findings underscored the value of multi-

platform data integration in providing an in-depth 

understanding of developer expertise. 

In our research, we explored two key areas. The first area of 

exploration (RQ1) revolved around identifying the most 

effective machine learning algorithms for evaluating developer 

expertise. Our journey led us to the Random Forest (RF) model, 

which consistently demonstrated robust performance across 

multiple datasets. We also observed commendable performance 

from the Support Vector Machine (SVM) model, particularly in 

terms of precision. 

The second area of exploration (RQ2) focused on uncovering 

the features or metrics that best indicate a developer’s expertise 

in serverless functions. Our exploration revealed that the top 5 

indicators were ‘avg_days_commits_import_library’, 

‘commits_import_library’, ‘upvotes’, ‘time_of_activity’, and 

‘commits_client_files’. We used the SHAP method for feature 

importance analysis to arrive at these insights. 

Our research adds to the field by predicting developer 

expertise in serverless functions, an area not widely studied 

before. We used 22 features from GitHub and Stack Overflow, 

which is more than what’s typically used in this domain. This 

large set of features gives us a detailed look at developer 

activities and expertise. While there are other studies [4], [5] 

that also use data from multiple platforms, our study stands out 

because we use both GitHub and Stack Overflow data and a 

larger set of features. Our results agree with other studies that 

find it useful to combine insights from multiple platforms. But 

our research goes one step further by showing how this 

approach works well for serverless functions. 

In addition, one of the tangible outputs of our research is the 

creation and public release of six language-specific datasets, 

representing our target languages. By making these datasets 



 

 

publicly available8, we not only aim to contribute to the 

academic community but also hope to foster further research in 

this area. 

Our current investigation has also highlighted the potential 

benefits of integrating insights from platforms such as Stack 

Overflow. Such an integrative approach, which merges data 

from varied sources, can offer richer insights into the 

multifaceted nature of developer expertise, especially in the 

context of serverless functions. 

As we move forward, there are multiple avenues we can 

explore to build upon our current findings. One potential 

direction is to widen our data collection to encompass a more 

extensive range of repositories, offering a deeper dive into 

developer activities. Another promising avenue is to investigate 

other metrics of developer expertise, such as peer reviews or 

code quality assessments, which might yield a more nuanced 

understanding. Finally, considering the vast ecosystem of 

developer platforms, integrating data from platforms like 

GitLab, Bitbucket, and LinkedIn, as well as competitive coding 

platforms like TopCoder, can provide a more rounded view of 

developer behavior and skills. This could be the next step in 

further refining and expanding our understanding of expertise 

in serverless function development. 

7. REFERENCES 

[1] S. Kourtzanidis, A. Chatzigeorgiou, and A. Ampatzoglou, 

“RepoSkillMiner: Identifying software expertise from GitHub 

repositories using Natural Language Processing,” Proc. - 2020 

35th IEEE/ACM Int. Conf. Autom. Softw. Eng. ASE 2020, pp. 

1353–1357, 2020, doi: 10.1145/3324884.3415305. 

[2] X. Song, J. Yan, Y. Huang, H. Sun, and H. Zhang, “A 

Collaboration-Aware Approach to Profiling Developer Expertise 

with Cross-Community Data,” IEEE Int. Conf. Softw. Qual. 

Reliab. Secur. QRS, vol. 2022-Decem, pp. 344–355, 2022, doi: 

10.1109/QRS57517.2022.00043. 

[3] E. Constantinou and G. M. Kapitsaki, “Developers expertise and 

roles on software technologies,” Proc. - Asia-Pacific Softw. Eng. 

Conf. APSEC, vol. 0, pp. 365–368, 2016, doi: 

10.1109/APSEC.2016.061. 

[4] Y. Tian, W. Ng, J. Cao, and S. McIntosh, “Geek talents: Who are 

the top experts on GitHub and stack overflow?,” Comput. Mater. 

Contin., vol. 61, no. 2, pp. 465–479, 2019, doi: 

10.32604/cmc.2019.07818. 

[5] S. L. Vadlamani and O. Baysal, “Studying Software Developer 

Expertise and Contributions in Stack Overflow and GitHub,” 

Proc. - 2020 IEEE Int. Conf. Softw. Maint. Evol. ICSME 2020, 

pp. 312–323, 2020, doi: 10.1109/ICSME46990.2020.00038. 

[6] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The 

rise of serverless computing,” Commun. ACM, vol. 62, no. 12, 

pp. 44–54, 2019, doi: 10.1145/3368454. 

[7] M. Shahrad et al., “Serverless in the wild: Characterizing and 

optimizing the serverless workload at a large cloud provider,” 

Proc. 2020 USENIX Annu. Tech. Conf. ATC 2020, pp. 205–218, 

2020. 

[8] A. Mujezinovic and V. Ljubovic, “Serverless architecture for 

workflow scheduling with unconstrained execution 

environment,” 2019 42nd Int. Conv. Inf. Commun. Technol. 

Electron. Microelectron. MIPRO 2019 - Proc., no. 242, pp. 242–

246, 2019, doi: 10.23919/MIPRO.2019.8756833. 

                                                           
8 https://github.com/aref98/Evaluating-Developer-Expertise-in-Serverless- 

Functions-by-Mining-Activities-from-Multiple-Platforms 

[9] R. Cordingly et al., “Implications of Programming Language 

Selection for Serverless Data Processing Pipelines,” Proc. - IEEE 

18th Int. Conf. Dependable, Auton. Secur. Comput. IEEE 18th 

Int. Conf. Pervasive Intell. Comput. IEEE 6th Int. Conf. Cloud 

Big Data Comput. IEEE 5th Cybe, pp. 704–711, 2020, doi: 

10.1109/DASC-PICom-CBDCom-

CyberSciTech49142.2020.00120. 

[10] J. Oliveira, M. Viggiato, and E. Figueiredo, “How well do you 

know this library? Mining experts from source code analysis,” 

ACM Int. Conf. Proceeding Ser., 2019, doi: 

10.1145/3364641.3364648. 

[11] J. E. Montandon, L. Lourdes Silva, and M. T. Valente, 

“Identifying experts in software libraries and frameworks among 

GitHub Users,” IEEE Int. Work. Conf. Min. Softw. Repos., vol. 

2019-May, pp. 276–287, 2019, doi: 10.1109/MSR.2019.00054. 

[12] B. Vasilescu, V. Filkov, and A. Serebrenik, “StackOverflow and 

GitHub: Associations between software development and 

crowdsourced knowledge,” Proc. - Soc. 2013, pp. 188–195, 2013, 

doi: 10.1109/SocialCom.2013.35. 

[13] A. Santos, M. Souza, J. Oliveira, and E. Figueiredo, “Mining 

software repositories to identify library experts,” ACM Int. Conf. 

Proceeding Ser., no. i, pp. 83–91, 2018, doi: 

10.1145/3267183.3267192. 

[14] G. J. Greene and B. Fischer, “CVExplorer: Identifying candidate 

developers by mining and exploring their open source 

contributions,” ASE 2016 - Proc. 31st IEEE/ACM Int. Conf. 

Autom. Softw. Eng., pp. 804–809, 2016, doi: 

10.1145/2970276.2970285. 

[15] X. T. Trinh, “Online learning of multi-class Support Vector 

Machines,” no. 12 061, 2012. 

[16] Christopher J.C. Burges, “A Tutorial on Support Vector 

Machines for Pattern Recognition,” Data Min. Knowl. Discov., 

vol. 2, pp. 121–167, 1998. 

[17] G. Biau and E. Scornet, “A random forest guided tour,” Test, vol. 

25, no. 2, pp. 197–227, 2016, doi: 10.1007/s11749-016-0481-7. 

[18] A. Natekin and A. Knoll, “Gradient boosting machines, a 

tutorial,” Front. Neurorobot., vol. 7, no. DEC, 2013, doi: 

10.3389/fnbot.2013.00021. 

[19] A. Schneider, G. Hommel, and M. Blettner, “Lineare 

regressionsanalyse - Teil 14 der serie zur bewertung 

wissenschaftlicher publikationen,” Dtsch. Arztebl., vol. 107, no. 

44, pp. 776–782, 2010, doi: 10.3238/arztebl.2010.0776. 

[20] Ö. Senger, “Impact of skewness on statistical power,” Mod. Appl. 

Sci., vol. 7, no. 8, pp. 49–56, 2013, doi: 10.5539/mas.v7n8p49. 

[21] N. J. Gogtay and U. M. Thatte, “Principles of correlation 

analysis,” J. Assoc. Physicians India, vol. 65, no. MARCH, pp. 

78–81, 2017. 

[22] S. Chulani, B. Boehm, and B. Steece, “Bayesian Analysis of 

Empirical Software Engineering Cost Models,” Mach. Learn. 

Appl. Softw. Eng., vol. 25, no. 4, pp. 41–51, 2005. 

[23] J. Li et al., “Feature selection: A data perspective,” ACM 

Comput. Surv., vol. 50, no. 6, 2017, doi: 10.1145/3136625. 

[24] B. Boecking, W. Neiswanger, E. P. Xing, and A. Dubrawski, 

“Interactive Weak Supervision: Learning Useful Heuristics for 

Data Labeling,” ICLR 2021 - 9th Int. Conf. Learn. Represent., pp. 

1–27, 2021. 

[25] S. Zhang, “Nearest neighbor selection for iteratively kNN 

imputation,” J. Syst. Softw., vol. 85, no. 11, pp. 2541–2552, 2012, 

doi: 10.1016/j.jss.2012.05.073. 

[26] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online Defect 

Prediction for Imbalanced Data,” Proc. - Int. Conf. Softw. Eng., 

vol. 2, pp. 99–108, 2015, doi: 10.1109/ICSE.2015.139. 

[27] L. Li, T. F. Bissyandé, D. Octeau, and J. Klein, “Reflection-aware 

static analysis of android apps,” ASE 2016 - Proc. 31st 



Journal of Computer and Knowledge Engineering, Vol. , No.. 2019. 15 

 

 

IEEE/ACM Int. Conf. Autom. Softw. Eng., pp. 756–761, 2016, 

doi: 10.1145/2970276.2970277. 

[28] A. S. Singh, M. B. Masuku, and Department, “Sampling 

techniques & determination of sample size in applied statistics 

research,” Inwood Mag., vol. II, no. 96, pp. 32–33, 2011. 

[29] L. Buitinck et al., “API design for machine learning software: 

experiences from the scikit-learn project,” pp. 1–15, 2013, 

[Online]. Available: http://arxiv.org/abs/1309.0238 

[30] R. M. Dawes, “The robust beauty of improper linear models in 

decision making.,” Am. Psychol., vol. 34, no. 7, pp. 571–582, 

1979, doi: 10.1037//0003-066x.34.7.571. 

[31] S. M. Lundberg and S. I. Lee, “A unified approach to interpreting 

model predictions,” Adv. Neural Inf. Process. Syst., vol. 2017-

December, no. Section 2, pp. 4766–4775, 2017. 

[32] A. Sayers, Y. Ben-Shlomo, A. W. Blom, and F. Steele, 

“Probabilistic record linkage,” International Journal of  

Epidemiology, vol. 45, no. 3, pp. 954-964, 2016. 


